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Abstract

We present in this paper a new framework
for propositional merging. Distance-based
merging operators, parameterized by a dis-
tance between interpretations and two aggre-
gation functions, are introduced. Many dis-
tances and aggregation functions can be used
and many merging operators already defined
in the literature (including both model-based
ones and syntax-based ones) can be recovered
as specific distance-based operators. Both
logical and complexity properties of distance-
based merging operators are studied. An
important result is that (under very weak
assumptions) query entailment from merged
bases is “only” at the first level of the poly-
nomial hierarchy when any of our distance-
based operators is used. As a by-product,
complexity results for several existing merg-
ing operators are derived as well.

1 INTRODUCTION

Belief merging is an important issue of many Al fields
(see [Bloch and Hunter, 2001] for a panorama of ap-
plications of data and knowledge fusion).

Although particular requirements can be asked for
each application, several pieces of information are usu-
ally brought into play when propositional base merging
is concerned. In the following:

— A knowledge set E = {Ki,...,K,} is a finite
multi-set of knowledge bases, where each knowl-
edge base K; represents the set of beliefs from
source ¢. Each K; is a propositional formula, or
more generally, a finite set of propositional formu-
las ¢; ; encoding the explicit beliefs from source
i.
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— Some integrity constraints IC encoded as a propo-
sitional formula. IC represents some common
knowledge on which all sources agree (e.g. some
physical constraints, norms, etc.).

The purpose of merging E is to characterize a for-
mula (or a set of formulas) Arc(E), considered as the
overall knowledge from the m sources given the in-
tegrity constraints IC. Recently, several families of
such merging operators have been defined and charac-
terized in a logical way [Revesz, 1997; Lin and Mendel-
zon, 1999; Liberatore and Schaerf, 1998; Konieczny
and Pino Pérez, 1999; Benferhat et al., 2000]. Among
them are the so-called model-based merging operators
[Revesz, 1997; Lin and Mendelzon, 1999; Liberatore
and Schaerf, 1998; Konieczny and Pino Pérez, 1999]
where the models of Ajo(F) are defined as the mod-
els of IC which are preferred according to some cri-
terion depending on E. Often, such preference infor-
mation take the form of a total pre-order on inter-
pretations, induced by a notion of distance d(w, E)
between an interpretation w and the knowledge set
E. d(w, E) is typically defined by aggregating the dis-
tances d(w, K;) for every K;. Usually, model-based
merging operators takes only into account consistent
knowledge bases K;. Other merging operators are
syntaz-based ones [Baral et al., 1991; Baral et al., 1992;
Konieczny, 2000]. They are based on the selection of
some consistent subsets of | J*; K;. This renders pos-
sible to take into account inconsistent knowledge bases
K; and to incorporate some additional preference in-
formation into the merging process! but the price to
be paid is to give some importance to the syntax of
knowledge bases. Moreover, since they are based on
the set-theoretic union |J]*, K; of the bases, such op-
erators usually do not take into account the frequency

'Indeed, as in belief revision, giving some importance
to the syntax of K; is a way to specify (implicitly but in
a cheap way w.r.t. representation) that explicit beliefs are
preferred to implicit beliefs [Nebel, 1989; Hansson, 1998].



of each explicit pieces of belief into the merging pro-
cess (the fact that ¢; ; is believed in one source only or
in the m sources under consideration is not considered
relevant, which is often counter-intuitive?).

In this paper, a new framework for defining propo-
sitional merging operators is provided. A family of
merging operators parametrized by a distance d be-
tween interpretations and two aggregation functions f
and g is presented. These parameters are used to de-
fine a notion of distance between an interpretation and
a knowledge set E in a two-step fashion. Like in exist-
ing model-based approaches to merging, the models of
the merging of E given some integrity constraints IC
are exactly the models of IC that are as close as pos-
sible to E with respect to the distance. Moreover, the
first aggregation step enables to take into account the
syntax of knowledge bases within the merging process.
This allows to handle inconsistent ones in a satisfying
way.

The contribution of this work is many fold. First, our
framework is general enough to encompass almost all
model-based merging operators as specific cases. In
addition, despite the model-theoretic ground of our
approach, several syntax-based merging operators pro-
vided so far in the literature can be captured as well.
We show that, by imposing few conditions on the pa-
rameters, several logical properties that are expected
when merging operators are considered, are already
satisfied.

Another very strong feature offered by our framework
is that query entailment from Aj¢(E) is guaranteed
to lay at the first level of the polynomial hierarchy pro-
vided that d, f and g can be computed in polynomial
time. Accordingly, improving the generality of the
model-based merging operators framework through an
additional aggregation step does not result in a com-
plexity shift.

We specifically focus on some simple families of dis-
tances and aggregation functions. By letting the pa-
rameters d, f and g vary in these respective sets, sev-
eral merging operators are obtained; some of them
were already known and are thus recovered as specific
cases in our framework, and others are new operators.
In any case, we investigate the logical properties and
identify the complexity of each operator under con-
sideration. As a by-product, the complexity of several
model-based merging operators already pointed out so
far is also identified.

The full proofs of the results given in this article can
be found in [Konieczny et al., 2001].

2See [Konieczny, 2000] for one step in that direction.

2 FORMAL PRELIMINARIES

We consider a propositional language PROPpg built
up from a finite set P.S of propositional symbols in the
usual way. An interpretation is a total function from
PS to BOOL = {0,1}. The set of all interpretations
is denoted W. An interpretation w is a model of a
formula iff it makes it true in the usual classical truth
functional way. Provided that ¢ is a formula from
PROPps, Mod(yp) denotes the set of models of ¢, i.e.,
Mod(p) ={w €W | w = ¢}

A knowledge base K; is said to be consistent iff the
conjunction A K; of its formulas is consistent. Simi-
larly, a knowledge set E is said to be consistent iff the
conjunction A E of its knowledge bases is consistent.
Two knowledge bases K; and K> are said to be logi-
cally equivalent (K; = K>) iff A K; = A K>, and two
knowledge sets E; and E, are said to be equivalent
(E1 = E-) iff there is a bijection between E; and E-
such that each knowledge base of F; is logically equiv-
alent to its image in E5. LI denotes the multi-set union.
For every knowledge set E and for every integer n, E™
denotes the multi-set obtained by “unioning” E with
itself n times.

The complexity results we give in this paper refer
to some complexity classes which we now briefly re-
call (see [Papadimitriou, 1994] for more details), espe-
cially the classes A? and ©F [Eiter and Gottlob, 1992;
Wagner, 1987] from the polynomial hierarchy PH, as
well as the class BHs from the Boolean hierarchy (see
[Papadimitriou, 1994]). Given a problem A, we denote
by A its complement. We assume the reader familiar
with the classes P, NP et coNP and we now introduce
the following three classes located at the first level of
the polynomial hierarchy:

— BH2 (also known as DP) is the class of all lan-
guages L such that L = Ly N Ly, where L; is in
NP and Ls in coNP. The canonical BHs-complete
problem is SAT-UNSAT: given two propositional
formulas ¢ and v, (p,1) is in SAT-UNSAT if and
only if ¢ is consistent and ¥ is inconsistent.

- AP = PNP is the class of all languages that can be
recognized in polynomial time by a Turing ma-
chine equipped with an NP oracle, where an NP
oracle solves whatever instance of a problem NP
in unit time.

- 05 = AB[O(log n)]) is the class of all languages
that can be recognized in polynomial time by a
Turing machine using a number of NP oracles
bounded by a logarithmic function of the size of
the input data.



Note that the following inclusions hold:
NP U coNP C BH, C ©4 C A? C PH.

3 DISTANCE-BASED MERGING

3.1 THE GENERAL FRAMEWORK

Defining a merging operator in our framework simply
consists in setting three parameters: a distance d and
two aggregation functions f and g. Let us first make
precise what such notions mean in this paper:

Definition 1 (distances) Let d be a total function
from W x W to IN s.t. (1) for every wi, wa €
W, d(wi,ws) = d(wa,w1) and (2) d(wi,w2) = 0 iff
w1 = wy. Such a d is called o distance between in-
terpretations®. d induces a distance between any in-
terpretation w and any formula ¢ given by d(w,p) =
min, d(w,w’).

Definition 2 (aggregation functions) Let f be a
total function associating a nonnegative integer to ev-
ery finite tuple of nonnegative integers and s.t.

— f is non-decreasing in each argument®, and

- f satisfies (minimality) for every n-
uple (x1,...,on) of mnonnegative integers,
fl@e,...,2n)=0iff ;1 =... =2, =0, and

— for every nonnegative integer x1, f(x1) = z1.

f is called an aggregation function®.

We are now in position to define our distance-based
merging operators:

Definition 3 (distance-based merging operators)
Let d be a distance between interpretations and f and

g be two aggregation functions. For every knowledge

set E = {K3,...,K,} and every integrity constraint

1C, A?’g’g(E) is defined in a model-theoretical way

by:

Mod(AFS9(E)) = {w € Mod(IC) | d(w, E) is minimal}

3We slightly abuse words here, since d is only a pseudo-
distance (triangular inequality is not required).

Te., if z < gy, then f(Z1,...,2,...,Ts) <
fl@a, ..o Yy oy Tn).

®The aggregation function f can take arbitrarily many
arguments; more formally, a “function” f is a family
f = {fan | n € IN} of n-ary functions from IN" to IN.
Slightly abusing notations, we write f(z1,...,z,) instead
of fn(x1,...,Tn) since this can never be ambiguous.

where
d(w, E) = g(d(w, K1), .., d(w, Ky))
and for every K; = {@i1,...,0in;}
dw, K;) = f(d(w, i), - - - dw, pin,))-

Formulas appearing in a knowledge base K; can have
various possible meanings, for instance:

— pieces of information provided by the source i:
when merging several beliefs stemming from dif-
ferent sources (sensors or experts, for example);

— pieces of information pertaining to a criterion i:
when evaluating alternatives with respect to dif-
ferent criteria;

— elementary goals expressed by the agent i: when
aggregating individual preferences in a group de-
cision making context — see [Lafage and Lang,
2000]. In this case, the formulas ¢; ; are no longer
beliefs but preferences (which does not prevent us
from using the same merging operators).

The reason why we use two (generally distinct) aggre-
gation functions f and g is that both aggregation steps
are of different nature. The first step is an intra-source
aggregation: f aggregates scores w.r.t. the elementary
(explicit) pieces of information contained in each Kj;
(it allows, in particular, to take inconsistent knowledge
bases into account). The second step is an inter-source
aggregation: ¢ aggregates the “f-aggregated scores”
pertaining to the different sources.

Interestingly, few conditions are imposed on d, f, and
g- As we will see in the next section, many distances
and aggregation functions can be used. Often, the
aggregation functions f and g are required to be sym-
metric (i.e., no priority is given to some explicit beliefs
in a knowledge base, and no priority is given to some
knowledge bases in a knowledge set). However, this
condition is not mandatory here and this is important
when some preference information is available, espe-
cially when all sources i are not equally reliable. For
instance, the weighted sum aggregation function can
be used to give rise to (non-symmetric) merging oper-
ators.

Let us stress that, contrarily to usual model-based op-
erators, our definition allows inconsistent knowledge
bases to take (a non-trivial) part in the merging pro-
cess.

Example 1 Assume for erample that we want to
merge E = {K1, Ks,Ks, K4} under the integrity con-
straints IC = T, where



- K; ={a,b,c,a — —b},
- Ky = {a,b},

- K3 = {—a, b},

- K4y ={a,a — b}.

In this example, K; knows that ¢ holds; since this
piece of information is not involved in any contra-
diction, it can prove sensible to be confident in K;
about the truth of ¢. Model-based merging opera-
tors can not handle this situation: inconsistent knowl-
edge bases can not be taken into account. Thus, pro-
vided that the Hamming distance between interpre-
tations is considered, the operator A* [Revesz, 1997;
Lin and Mendelzon, 1999; Konieczny and Pino Pérez,
1999] gives a merged base whose models are: {a, b, ~c}
and {a, b, c}; the operator A“™2% [Konieczny and Pino
Pérez, 1999] gives a merged base whose models are:
{_|a7 b7 _|c}7 {_|a7 b7 c}7 {a7 _|b7 _|c}7 and {a7 _|b7 c}' In
any of these two cases, nothing can be said about
the truth of ¢ in the merged base, which is counter-
intuitive since no argument against it can be found in
the input.

Syntax-based operators render possible the exploita-
tion of inconsistent knowledge bases, but they do not
care about the distribution of information. Consider
the two standard syntax-based operators [Baral et al.,
1992], selecting the maximal subsets of |J*, K; (one
w.r.t. set inclusion and the other one w.r.t. cardinal-
ity). On the previous example, the first one returns
a merged base equivalent to ¢ and the second one to
c¢A—a. So, a is in the result for none of these two oper-
ators, whereas a@ holds in three over four input bases.

Our distance-based operators achieve a compromise
between model-based operators and syntax-based op-
erators, by taking into account the way information is
distributed and by taking advantage of the informa-
tion stemming from inconsistent knowledge bases. For
instance, our operator A4P:5um:sum (cf  Section 3.2)
gives a merged base whose single model is {a, b, ¢}, and
Adpssumile retyrns a merged base whose models are
{—a,b,c} and {a,—b,c}. So, with any of these two op-
erators, we can deduce that ¢ holds after the merging.
Moreover, these operators exhibit typical merging be-
haviours. The first one is a majority operator: since
three of four bases agree on a, a holds in the result.
The second one is an arbitration operator; being more
consensual, it gives that only one of a or b holds, to be
as close as possible to each of the knowledge bases.

3.2 INSTANCIATING OUR
FRAMEWORK

Let us now instantiate our framework and focus on
some simple families of distances and aggregation func-
tions.

Definition 4 (some distances) Let wy, w2 € W be
two interpretations.

— The drastic distance dp is defined by
dD(wl,wz) =0 z'fwl = w2,
1 otherwise
— The Hamming distance dy is defined by

dp(wi,wz) = [{z € PS | wi(z) # wa(z)}|

— Let q be a total function from PS to IN*. The
weighted Hamming distance dy, induced by q is
defined by

di, (W1,w2) = 20eps | wi(2)swa(z) 1(T)

These distances satisfy the requirements imposed in
Definition 3.

The Hamming distance is the most usual distance con-
sidered in model-based merging®. Tt is very simple to
express, but one has to keep in mind that it is very
sensitive to the representation language of the problem
(i-e., the choice of propositional symbols) and that nu-
merous others distances can be used. Weighted Ham-
ming distances are relevant when some propositional
symbols are known as more important than others.

Definition 5 (some aggregation functions)

— Let q be a total function from {1,...,n} to IN*
s.t. q(1) = 1 whenever n = 1. The weighted sum
WSy induced by q is defined by WSy(e1, ..., en) =
Z?:l q(i)ei.

— Let q be a total function from {1,...,n} to IN s.t.
q(1) = 1 whenever n = 1, and ¢(1) # 0 in any
case. The ordered weighted sum OWS, induced by
q is defined by OWSy(e1, ..., en) = Y iy q(i)eq(s
where o is a permutation of {1...n} s.t. e, 1) >
€5(2) 2 -+ 2 €g(n)-

q is a weight function, that gives to each formula (resp.
knowledge base) p; (resp. K;) of index i its weight ¢(%)
denoting the formula (resp. knowledge base) reliabil-
ity. With the slight difference that g is normalized (but
without requiring that ¢(1) = 1 whenever n = 1), the
latter family is well-known in multi-criteria decision

5In this context, it is also called Dalal distance [Dalal,
1988].
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Figure 1: Example 2

making under the terminology “Ordered Weighted Av-
erages” (OWAs) [Yager, 1998]. When ¢(i) = 1 for ev-
ery i € 1...n, WS, is the usual sum (and OWS, as
well). When ¢(1) =1 and ¢(2) = ... = ¢(n) =0 then
OWS,(e1,...,en) =maz(er, ..., ep).

For the second aggregation step g, it is relevant to con-
sider the well-known leximax ordering which compares
two vectors of scores by focusing on the largest scores
of each vector, and in case of equality, on the second
largest scores, and so on. For the sake of homogeneity,
we reformulate the leximax ordering so as to compare
aggregated scores rather than vectors of scores. This
can be done thanks to a specific aggregation function
OW S,:

Definition 5.1 (leximax)

Let M be an upper bound of the scores d(w, K;)7, i.e.,
for any w we have d(w,K;) < M. Now, let q(i) =
M™% for all i. The rank order on vectors of scores
induced by OWS, is the leximax ordering, abbreviated
by lex®.

Using the lezimazx aggregation for the first aggregation
step (f) would also be possible, but leads to rather
lengthy technical tricks to be defined properly in case
where the second aggregation function g is not purely
ordinal (i.e., g different from maz and leximaz) and we
ignore this possibility here (see the long version of the
paper [Konieczny et al., 2001]).

All these functions satisfy the requirements imposed in
Definition 3; all of them are symmetric but weighted
sum (except when ¢ is uniform).

Many other possible choices for f and g can be found
in the literature of multi-criteria decision making (and
to a smaller extent in the literature of group decision

"For instance, when d = dy and f = max we can choose
M = |PSL+ 1; when d = dg and f = ) we can choose
M =|PS|” + 1.

8Namely, we have  OWSy(e1,...,en) >
OWS,y(el, - - ., en) iff (ex1) > eli(1y) or (ex(1) = €,1(1) and
€a(2) > €,1(2)) OF etc.

theory). Noticeably, the usual aggregation functions
used in these fields are all polynomially computable,
which makes the following complexity results applica-
ble when instantiating f and g with these functions.

Note that functions such as the purely utilitarian
sum or weighted sum allow for compensations between
scores (and lead to majority-like operators), while the
egalitarian functions max and lex do not.

By letting the parameters d, f and g vary in these re-
spective sets, several merging operators are obtained;
some of them were already known and are thus recov-
ered as specific cases in our framework, and others are
new operators. Thus, A4P,mazmaz ig the basic merg-
ing operator, giving A E A IC if consistent and IC
otherwise. Ad4pr-maz.sum ig the drastic merging oper-
ator which amounts to select the models of IC sat-
isfying the greatest number of knowledge bases from
E. It is equivalent to the drastic majority operator
as defined in [Konieczny, 2000] when working with de-
ductively closed knowledge bases. A®p:5um,sum cop
responds to the intersection operator of [Konieczny,
2000]. Alo:WSimaz corresponds to an operator used
in [Lafage and Lang, 2000] in a group decision context.
When singleton knowledge bases are considered ? — re-
call that in this case f is irrelevant — every Ad#.fmaz
operator is a AM operator [Revesz, 1997], every
Ndusfisum gnerator is a A operator [Revesz, 1997;
Lin and Mendelzon, 1999; Konieczny and Pino Pérez,
1999], and every Adu:5lez gperator is a AFMa% gper-
ator [Konieczny and Pino Pérez, 1999]. Still with sin-
gleton knowledge bases, taking d = dp and f = WS,

A5 WS, s a penalty-based merging (where one

minimizes the sum of the penalties ¢(i) attached to
the K;’s) [Pinkas, 1995], and taking d = dp and
f = WMAX, (defined by WMAX,(z1,...,2,) =
max;—1. , min(q(i),x;)) we get!® a possibilistic merg-
ing operator [Benferhat et al., 2000).

90r, equivalently, when each K; is replaced by {A K;}
before merging.

10T he scales used for scores are different but it is obvious
to show that this difference has no impact.



Table 1: Adm:sumilez Qperator

aANbAc a—-b aAb —-an-b b a a—b K; Ky Kz K, E
(0,0,0) 3 0 2 0 0 1 0 3 2 0 1 3210
(0,0,1) 2 0 2 0 0 1 0 2 2 0 1 2210
(0,1,0) 2 0 1 1 1 1 0 2 1 2 1 2211
(0,1,1) 1 0 1 1 1 1 0 1 1 2 1 2111
(1,0,0) 2 0 1 1 0 O 1 2 1 1 1 2111
(1,0,1) 1 0 1 1 0 O 1 1 1 1 1 1111
(1,1,0) 1 1 0 2 1 0 0 2 0 3 0 3200
(1,1,1) 0 1 0 2 1 0 0 1 0 3 0 3100

We will now illustrate the behaviour of these different
operators on an example.

Example 2 Consider the following knowledge set
E = {K,,K,,K3,K,} that we want to merge under
the integrity constraints IC' = T.

- Ki ={aAbAc,a— b},
- Ky ={aAb},

- K3 = {—-a A —b,—b},

- Ky ={a,a — b}.

The result of the merging of E according to the differ-
ent operators with d € {dp,du}, f € {maz,sum} and
g € {maz,sum,lex} under no constraints (i.e. IC=
T) is indicated figure 1. See table 1 for an example
of calculation with the A%HSvmle operator. In this
table the interpretation (1,0,0) for example is the one
mapping a to true and b and ¢ to false. The result of
the merging A%-H’sum’lew (E) is the interpretation that
is the closest to E, that is the one at a distance 1111,
i.e. the one mapping a and c to true and b to false.

The wide variety of obtained results show the degree
of freedom given by this framework. This example il-
lustrates several aspects of merging operators : the
knowledge base K is not consistent, but it is the only
base that gives an information about ¢, so it can be
sensible to take ¢ as true in the result of the merging.
K3 is logically equivalent to —a A —b, but replacing
K3 by this formula would lead to different results for
merging. Syntax is relevant for distance-based merg-
ing operators since one has to consider that different
formulae of a same base are distinct reasons to believe
in a same information. Taking syntax into account is
important from the point of view of representation of
beliefs (or goals), but the operators can then “choose”
to take or not this information into account. So the

point in this framework is that, unlike classical model-
based merging operators, the connector “,” is not the

same that the connector “A”.

4 COMPUTATIONAL
COMPLEXITY

Let us now turn to the complexity issue. We obtained
the following result:

Proposition 1 Let A%/9 be a distance-based merg-
ing operator. Given a knowledge set E and two for-
mulas IC and a:

- Ifd, f and g are computable in polynomial time,
then determining whether A‘;’C’f’g (E) E o holds is
in AP,

- Ifd, f and g are computable in polynomial time
and are polynomially bounded, then determining
whether A%19(E) = o holds is in ©5.

A sketch of proof is given in the Appendix. See

[Konieczny et al., 2001] for a detailed proof.

As shown by the previous proposition, improving
the generality of the model-based merging operators
framework through an additional aggregation step
does not result in a complexity shift (the decision prob-
lem for query entailment is still at the first level of PH).

We have also identified the complexity of query entail-
ment from a merged base for the following distance-
based merging operators:

Proposition 2 Given a knowledge set E and two for-
mulas from PROPps IC and o, the complexity of
A?g’g(E) =" « is reported in Tables 2, 3 and 4 (when
X is a complexity class, X -c means X -complete).



Table 2: Complexity results (d = dp)
| flg | maz | sum | lex | WS, | OWS, ]

o BN OTE O M- [0
sum O%-c | Bfc | Al-c | Alc| Alc
WS, Ab-c | Al-c | Af-c | Al-c | Ab-c
OWS, O%-c | Ab-c | Al-c | Al-c| Al-c

Table 3: Complexity results (d = dg)

| f/g | maz | sum | lex | WS, | OWS, |
maz | ©5-c | ©5-¢c | Al-c | Al-c | Ab-c
sum | ©5-¢c | @Fc | Alc | Alc| Abc
WS, | Ab-c | Al-c | Alc | Ab-c | Af-c
OWS, | Abc | Alc | Al-c | Abc| Ab-c

Sketches of the proofs are given in the Appendix
(again, see [Konieczny et al., 2001] for fully detailed
proof). It is worth adding that in the case d = dy,,
AP-hardness still holds whenever F is a singleton { K},
K is a singleton {¢} and ¢ is a conjunction of variables
(in this case, neither f nor g plays a significant role in
the elaboration of the distance to E). As to the case
d = dg, Ab-hardness still holds when each explicit
belief is a conjunction of variables, and ©%-hardness
results hold whenever E is a singleton {K}, K is a
singleton {p} and ¢ is a conjunction of variables.

Looking at the tables above, we can observe that the
choice of the distance d has a great influence on the
complexity results. Thus, whenever d = dg or d =
dp, , the complexity results for inference from a merged
base coincide whenever f (or g) is a WS, function or
a OWS, function. This is no longer the case when
d = dp is considered.

Together with Proposition 1, the complexity of many
model-based merging operators already pointed out in
the literature are derived as a by-product of the pre-
vious complexity results. To the best of our knowl-
edge, the complexity of such operators has not been
identified up to now!!, hence this is an additional con-
tribution of this work. We can also note that, while
the complexity of our distance-based operators is not
very high (first level of PH, at most), finding out sig-
nificant tractable restrictions seems a hard task since
intractability is still the case in many restricted sit-
uations. Finally, our results show that some syntax-
based merging operators (based on set inclusion in-

UHowever, (A% ™) =7 o) € A can be re-
covered from a complexity result given in [Liberatore and
Schaerf, 2000], page 151.

Table 4: Complexity results (d = dg,)

| flg | maz | sum | lex | WS, | OWS, |
maz | Ab-c | Ab-c | Al-c | AL-c | Al-c
sum | Abc | Alc | Alc | Afc| Abc
WS, | Ab-c | Al-c | Al-c | Ab-c | Ab-c
OWS, | Ab-c | Af-c | Ab-c | Al-c | Al

stead of cardinality and “located” at the 2"? level of
PH) cannot be encoded in polynomial time as distance-
based operators (unless PH collapses).

5 LOGICAL PROPERTIES

Since we aim at investigating the logical properties of
our family of merging operators, a set of properties
must first be considered as a base line. In [Konieczny
and Pino Pérez, 1999], a study of logical properties
that “good” merging operators should satisfy (in the
case where all the knowledge bases are equally reli-
able) is carried on. The following set of postulates was
proposed:

Definition 6 (IC merging operators) Let E, Ej,
E5 be knowledge sets, K1, K> be consistent knowledge
bases, and IC, ICy, ICy be formulas from PROPpg.
A is an IC merging operator iff it satisfies the follow-
ing postulates:

(IC0) Ajc(E) EIC
(IC1) IfIC is consistent, then Ajc(E) is consistent

(IC2) If NE is consistent with IC, then
Ajc(E) = /\E ANIC

(IC3) If Ey = E» and ICy = ICy, then
Agc, (Er) = Arc,(Es)

(IC4) If K, = IC and Ky |= IC, then Arc(Ky U
K>) A Ky is consistent iff Ajo(K1 U Ka) A Ky

18 consistent
(IC5) AI()(El) A Alc(Eg) |= AI()(El L E2)

(IC6) If Arc(Er) A Arc(E») is consistent , then
Arc(Ey U Es) = Arc(Er) A Are(Es)

(ICT) Are,(E) NICy = Aroynare, (E)

(IC8) If Arc,(E) NICy is consistent, then
AICU\ICz (E) |= AIC’l (E)

Two sub-classes of IC merging operators have also
been defined. Majority operators that aim at resolving
conflicts by listening the majority wishes, and arbitra-
tion operators that have a more consensual behaviour:



Definition 7 (majority and arbitration) A ma-
jority operator is an IC merging operator that satisfies
the following majority postulate:

(MaJ) dn Arc (E1 L Egn) '= Ajc(EQ)

An arbitration operator is an [C merging operator that
satisfies the following postulate:

Arc, (K1) = Aro, (K?)

(Arb) Aroye-10, (K1 UK2) = (IC1 & —IC?)

I1Cs | IC)
Arcyvic, (K1 U Ksy) = Are, (K1)

See [Konieczny and Pino Pérez, 2002; Konieczny and
Pino Pérez, 1999] for more explanations about those
two postulates and the behaviour of the two sub-
classes.

We have the following result:

Proposition 3 A%F9 satisfies (IC0), (IC1), (1C2),
(IC7), (IC8). The other postulates are not satisfied in
the general case.

Clearly enough, it is not the case that every distance-
based merging operator is an IC merging operator (not
satisfying some postulates is deliberate since we want
to give some importance to the syntax in order to take
into account inconsistent knowledge bases). Let us in-
troduce some properties to be satisfied by aggregation
functions f:

1) f(z1,...,2,)=0iffx; =... =2, =0
(minimality)
2) If o1 A . N ¢, is consistent, then
f(d(w:<P1)a s ,d(’w,gon)) = f(d(’w,g01 A A QOTL))
(and)
3) For any permutation o, f(Z1,...,Zn) =
flo(@y,... an)) (symmetry)
DU f@r,mn) < f@neum),  then
flz1,. ., 2n,2) < f(Y1,---,Yn,2) (composition)
5 If f(z1,...,2n,2) < f(Y1,.-.-,Yn,2), then
f(z1,...,20) < fy1,...,yn) (decomposition)

Now, if one wants to recover the full set of postulates
(IC0)-(IC8):

Proposition 4 A distance-based merging operator
NG9 satisfies (IC0)-(IC8) if and only if the function
[ satisfies (minimality) and (and), and the function g
satisfies (minimality), (symmetry), (composition) and
(decomposition).

IC: [ IC, =

Concerning the operators examined in the previous
section, we have identified the following properties:

Proposition 5 A%59 satisfies the logical properties
stated in Tables 5 and 6. Since all these operators are
already known to satisfy (IC0), (IC1), (IC2), (IC7)
and (IC8) (cf. Proposition 3), we avoid repeating such
postulates here. For more readability, postulate (IC%)
is noted i and M (resp. A) stands for (Maj) (resp.

(Arb)).

Table 5: Logical properties (d = dp)

| flg | maz | sum | lex | WS, |
maz 345A | 34,56MA | 56M
sum 5,A 5,6,M | 5,6,A | 5,6,M

56,M | 5,6,A | 5,6M

WS, — OWS, | 5,A

Table 6: Logical properties (d = di or d = dm,)

| flg | mazx | sum | lex | WS, |
max 5A | 5,6,M | 5,6,A | 5,6, M
sum 5A | 56,M | 5,6,A | 5,6,M

WS, — OWS, | 5,A | 5,6,M | 5,6,A | 5,6,M

The tables above show our operators to exhibit differ-
ent properties. We remark that among our operators,
only Adp.maz.sum gatisfies all listed properties. Fail-
ing to satisfy (IC3) (irrelevance to the syntax) in many
cases is not surprising, since we want to allow our oper-
ators to take syntax into account. (IC4) imposes that,
when merging two knowledge bases, if the result is con-
sistent with one knowledge base, it has to be consistent
with the other one — this fairness postulate is irrele-
vant when working with non-symmetric operators (so,
unsurprisingly, it is not satisfied for g = WiS,). This
postulate is not satisfied by any operator for which d
is Hamming distance since cardinalities of the knowl-
edge bases have an influence on f, and more gener-
ally, it is hardly satisfiable when working with syntax-
dependent operators. (IC5) and (IC6) are related to
Pareto dominance in social choice theory and are really
important for multi-source aggregation; so it is worth
noting that almost all operators satisfy them (only op-
erators for which g = maz do not satisfy (IC6)).

We do not put the operators with g = OWS, in the ta-
bles because they gather many aggregation functions
and so they do not satisfy a lot of logical properties.
Moreover, some properties (as (IC5) and (IC6)) re-
quire to be able to cope with knowledge sets of differ-
ent sizes, whereas g = OW.S, operators have to specify



exactly the size of the knowledge sets. It is possible
to generalize the definition of those operators to cope
with these cases but it is out of the scope of this paper.

6 CONCLUSION

The major contribution of this paper is a new frame-
work for propositional merging. It is general enough to
encompass many existing operators (both model-based
ones and syntax-based ones) and to enable the defini-
tion of many new operators (symmetric or not). Both
the logical properties and the computational proper-
ties of the merging operators pertaining to our frame-
work have been investigated. Some of our results are
large-scope ones in the sense that they make sense un-
der very weak conditions on the three parameters that
must be set to define an operator in our framework.
By instantiating our framework and considering sev-
eral distances and aggregation functions, more refined
results have also been obtained.

This work calls for several perspectives. One of them
consists in analyzing the properties of the distance-
based operators that are achieved when some other
aggregation functions or some other distances are con-
sidered. For instance, suppose that a collection of for-
mulas of interest (topics) is available. In this situation,
the distance between w; and wy can be defined as the
number of relevant formulas on which w; and w, differs
(i.e., such that one of them satisfies the formula and
the other one violates it). Several additional distances
could also be defined and investigated (see e.g. [Lafage
and Lang, 2001] for distances based on Choquet inte-

gral).
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Appendix: Proof sketches of the
complexity results

Sketch of Proof of Proposition 1 : These results
are consequences of the two following lemmata:

Lemma 1 Let k be an integer; if d, f and g are com-
putable in polynomial time, then the problem of de-
termining whether min,,_rc d(w, E) < k given IC, E
and k is in NP.

Proof : It is sufficient to consider the following
non-deterministic algorithm:

1. guess an interpretation w and N interpretations
wi; (6 = 1.m, j = 1.n;) over Var(E U {IC}),
where N = ¥;_1. ,n; is the total number of for-
mulas ¢;,; in E;

2. check that w |= IC and that w;; |= ¢;; for all
t=1.m and all j = 1..n;;

3. compute d(w,w; ;) for all ¢ and all j;
4. compute d(w, K;) for all i;
5. compute d(w, E) and check that d(w, E) < k.

This algorithm runs in polynomial time in the size of
the input (E, IC and k represented in binary) since
d, f, g are computable in polynomial time.

O

Lemma 2 If for oll w € W the value of d(w, E) is
bounded by the value h(|E|+|IC|) (where h is a func-
tion with values in IN) then the value min,,_rc d(w, E)
can be computed using [log h(|E| + |IC|)] calls to an
NP oracle.

Proof :  min = min, ;¢ d(w, E) can be computed
using binary search on {0,...,h(|E| + |IC|)} with
at each step a call to an NP oracle to check whether
min,_ro d(w, E) < k (that is in NP from lemma 1).
Since a binary search on {0,...,h(|E| + |[IC|)} needs
at most [log h(|E| + |IC|)] steps, the result follows.
|

e Point 1. of Proposition 1

If d, f and g are computable in polynomial time,
then for every knowledge set E and every w € W,
the binary representation of d(w, E) is bounded by
p(|E| + |IC]), where p is a polynomial. Hence, the
value of d(w,E) is bounded by 2PUEI+ICD — From
lemma 2, we can conclude that min can be computed
using a polynomial number of calls to an NP oracle.
Now, let E be a knowledge set, IC' be a formula, &k
be an integer and a be a formula, it can be shown
that the problem of determining whether there
exists a model w of IC such that d(w,E) = k and
such that w £ « is in NP. So we can show that
A?’C’:’g (E) £ a using first a polynomial number of
calls to an NP oracle in order to compute min, and
then using an additional call to an NP oracle in order
to determine whether there exists a model w of IC s.t.
d(w, E) = min and w [~ a. Hence the membership to



AP for this problem, and hence for its complement.

e Point 2. of Proposition 1
When d, f and g are polynomially bounded, the proof
is similar to the one of point 1., but the computation
of min, ;¢ d(w, E) needs only a logarithmic number
of steps since h is polynomially bounded, hence the
membership to ©5.

O

Sketch of Proof of Proposition 2 :

1. Membership

Membership-to-A¥ results are direct consequences of
Proposition 1 since both distances and aggregation
functions can be computed in polynomial time.
Membership-to-©% results are also consequences of
Proposition 1, except those for which f or g is an
OW S, (including lex) when the drastic distance dp
is considered; these cases are briefly discussed now:

— case d = dp, f = max and g = OWS,. We first
establish that d(w, E) can only take only a poly-
nomial number of different values, and that this
set of possible values can be computed in poly-
nomial time. Indeed, if kg(w) is the number of
belief bases K; from F st. w = K;, we have
d(w, E) = 371 k(o)1 @5 Which makes |E| +1 dif-
ferent values, computable in polynimial time. The
rest of the proof is similar to the proof of mem-
bership to ©% in the cases where g and g are poly-
nomially bounded, the difference being here that
the minimal value min = min,cq d(w, E) is com-
puted through binary search using the precom-
puted |E|+ 1 different possible values for d(w, E).

— the case d =dp, f = OWS,; and g = max is sim-
ilar, the main difference is that d(w, E) can only
take at most max;c1.. ncard(K;) different values.

Finally, as to the basic merging operator
(dp, max,maz), determining whether a formula
a is a logical consequence of the merged base E given
IC can be achieved using the following algorithm:

if sat(E U {IC}) then return(unsat(E U {IC,—-a}))
else return(unsat({IC,—a})), which shows member-
ship of the decision problem to BH,.

2. Hardness:

— table 2, ©FY-hardness results: they are di-
rect consequences of hardness results for

cardinality-maximizing base revision oc (The-
orem 5.14 from [Nebel, 1998]) since we have
AT ({{er1}, -, {en}}) = {1, o0} 00 IC
for any (f,9) € {(maz,maz), (mazx,lex),
(sum,maz), (sum,sum)}. Since sum is a spe-
cific OW S, function, the corresponding results
still hold in the cases (f = OWS,, 9 = mazx) and
(f = maz,g = OWS,).

table 2, case d = dp, f = OWS,, g = sum: AL-
hardness is established by considering the follow-
ing polynomial reduction from the Af-complete
problem MAX-SAT-ASG.qq [Wagner, 1987]. MAX-
SAT-ASG,qq is the following decision problem:
given a propositional formula ¥ s.t. Var(X) =
{z1,...,2,} and a strict ordering z1 < 22 < ... <
Zn, on Var(X) inducing the lexicographic ordering
< on (2, is the greatest model w of ¥ w.r.t. < such
that w(z,) = 1?7 We just give here the reduction:
to X s.t. Var(X) = {z1,...,z,}, we associate the
tuple M(X) = (E,IC,a), where E = {K; | i €
1...n},IC =%, a =2, and for each i € 1...m,
K; = {/\Zif_Ja:z |j€l...n+2—i} (each K;
contains n + 2 — ¢ formulas that are syntactically
distinct but all equivalent to x;), and we consider
the OWS, function f induced by ¢ s.t. ¢(1) =1
and for every j > 1, q(j) = 2¢=2.

table 2, AP-hardness results in the case f = sum:
hardness in the case (d = dp, f = sum,g = lex)
is easily derived by taking advantage of the A%-
hardness result in the case where each Kj; is a sin-
gleton reduced to a conjunction of atoms (hence f
is irrelevant), g = lex and d = dy. Since sum is a
specific WS, function and lex is a specific OWS,
function, this hardness result can be extended to
the rest of the table, except for the cases where
f is a WS, function and g € {maz,sum}) and
where g is a WS, function. In the latter case, the
AP-hardness of linear base revision oy, (Theorem
5.9 from [Nebel, 1998]) can be used to obtain the
desired result: indeed, it is sufficient to consider
belief bases K; reduced to singletons; we have
AT Ky,. . Ky)) = {Ki,..., Ky} o IC,
where g is the weighted sum induced by ¢ s.t.
q(i) = 2", and each K; is viewed as the unique
formula it contains. Here, the preference ordering
over {Ki,...,Kp}isst. K1 < Ka <...< K.

table 2, case (d = dp,f = g = maxz): it is suf-
ficient to consider the following polynomial re-
duction M from SAT-UNSAT: to a pair of for-
mulas {p,?) which do not share variables (this
can be assumed without loss of generality), we let
M{p,0)) = (E = ¢,IC = new,a = p Anew A



—1p) where new is a new variable and we check
that (p,1) € SAT-UNSAT iff « is a logical conse-
quence of the merged base E given IC.

— table 3, ©F-hardness results. They still hold in the
situation where E contains only one belief base
K and K itself contains only one formula that is
a conjunction of atoms. This merely shows that
our hardness result is independent from f and g
(since they are irrelevant whenever E and K are
singletons) but is a consequence of the distance
that is used (Hamming). Indeed, in this restricted
case, A?Z’f’g({K}) is equivalent to KopIC where
op is Dalal’s revision operator. The fact that the
inference problem from K op IC' is ©4-hard (even
in the restricted case where K is a conjunction of
atoms) concludes the proof (see Theorem 6.9 from
[Eiter and Gottlob, 1992]).

— table 3, Ab-hardness results. We show that these
A¥-hardness results hold in the restricted case
where each K; is a singleton, reduced to a con-
junction of literals (hence f is irrelevant) when
g = lex by the following polynomial reduction M
from MAX-SAT-ASG,q4: tO any propositional for-

mula ¥ s.t. Var(X) = {z1,...,7,} we associate
M(S) =(E = {K; = {zi A\NJ2;11 mew;} | i€ 1

. n}IC=3XA /\522 —new;,a = ,) where each
new; (j € 2 .. 2n) is a new variable.

— table 4. We show that A%-hardness holds in the
very restricted case where E contains only one
belief base K and K itself contains only one for-
mula that is a conjunction of atoms. This merely
shows that our hardness result is independent
from f and g (since they are irrelevant when-
ever E and K are singletons) but is a consequence
of the family of distances that is used (weighted
Hamming). This is done by the following poly-
nomial reduction M from MAX-SAT-ASG,qq: tO
any ¥ s.t. Var(X) = {z1,...,2,} we associate
M(E) =(E={{\L,z}},IC =%,a = z,,) and
the weighted Hamming distance dp, induced by
gst. Viel.. n,q(x;)=2""%
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