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Abstract

We investigate the logical properties of knowl-
edge base combination operators proposed in
the literature. These operators are based on
the selection of some maximal subsets of the
union of the knowledge bases. We argue that
they are not fully satisfactory to merge knowl-
edge bases, since the source of information is
lost in the combination process. We show that
it is the reason why those operators do not sat-
isfy a lot of logical properties. Then we pro-
pose to use more refined selection mechanisms
in order to take the distribution of informa-
tion into account in the combination process.
That allows to define merging operators with
a more subtle behaviour.

1 INTRODUCTION

In the fields of artificial intelligence and databases, one
is often faced with conflicting information coming from
several sources. Thus, an important problem in such
cases is how to reach a coherent piece of information
from these contradictory ones.

For example, if one wants to build an expert system
from a group of human experts, it is sensible to code
the knowledge of each expert in a knowledge base and
then to combine them in a knowledge base that repre-
sents the knowledge of the group. This process allows to
discover new pieces of knowledge distributed among the
sources. For example, if an expert knows that a is true
and another one knows that a — b holds, then the “syn-
thesized” knowledge knows that b is true whereas none
of the expert knows it. This is called implicit knowledge
in [HM92]. However, simply put these knowledge bases
together is a wrong way since there could be contradic-
tions between some experts.

Some combination operators have been proposed, see
e.g. [BKM91, BKMS92]. They are all based on the
union of all the knowledge bases and on the selection
of some maximal subsets, due to a given order (not
necessarily the inclusion).

We study the logical properties of these operators. More
exactly we investigate the rationality of these operators
through the logical characterization of merging opera-
tors stated in [KP98, KP99]. This characterization is
useful to classify particular merging methods and to
highlight flaws and advantages of each of them.

In particular, an important drawback of combination
operators is that the source of each knowledge is lost
in the fusion process. We shall call merging operators
the fusion operators that take the source of information
into account. We propose in this paper a definition
of selection functions & la AGM [AGMS85, G&r88] for
combination operators that allows to take into account
the source of each piece of information. So we can define
operators with a more subtle behaviour.

In order to motivate the need to take the source of in-
formation into account, consider the following scenario:
Consider that we want to combine the following knowl-
edge bases: K; = Ky = {a,b}, K3 = {a,b = ¢},
K4 = {—a,d}. Then the union of the knowledge bases
is {a,—a,b,b — ¢,d}. With a combination operator
the maxiconsistent sets will be {a,b,b — ¢,d} and
{—a,b,b = c¢,d}.With this result we can not decide
whether a or —a holds. But a is supported by three
of the four experts whereas only one supports —a. So
it could be sensible to put a in the resulting knowl-
edge base. Combination operators do not allow to take
such arguments into account. We will see how to build
merging operators that allow that behaviour.

The rest of the paper is organized as follows: In section
2 we give some definitions and state some notations. In
section 3 we give a set of logical properties for merging
operators. In section 4 we investigate the logical proper-



ties of some combination operators given in [BKMS92].
In section 5 we propose to use selection functions in
order to define merging operators taking care of the
distribution of information among the sources. Finally
we discuss open problems in a concluding section.

2 PRELIMINARIES

Definition 1 A knowledge base K is a finite set of
well-formed first-order formulae.

Note that a knowledge base is not necessarily closed
under consequence relation.

Definition 2 A knowledge set E is a multi-set of
knowledge bases.

We will note U the union on multi-sets. By abuse if K is
a knowledge base, K will also denote the knowledge set
E = {K}. And if K and K' are two knowledge bases
we will denote K LI K’ the knowledge set E = {K, K'}.

For the proofs, we need to define a partition operator
®. K = K' ® K" denotes that K’ U K" = K and that
KI m K” — @.

Let K and K' be two knowledge bases, K A K' will
denote the knowledge base K UK'. Analogously, if E =
{K,,... ,K,},then EAK = {K,AK,... ,K,AK}. We
will note A E the conjunction of the knowledge bases
of E,ie. AE=K|A...ANK,.

Definition 3 A knowledge set E is consistent if and
only if \ E is consistent.

In addition to these basic definitions, we have to define
the equivalence between knowledge sets.

Definition 4 Let E,,E5 be two knowledge sets. E;
and Ey are equivalent, noted E; <> E,, iff there exists a
bijection f from E| = {K},... ,KL} to Ey = {Kf, ,
K2} such that f(K) « K.

Let E be a knowledge set, E™ will denote the knowledge
set EU...UE.
—_——
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The result of the combination operators investigated in
this paper is a set of knowledge bases. These sets have
been called flocks by Fagin et al. [FKUVS86].

Note that flocks and knowledge sets are both sets of
knowledge bases (in fact knowledge sets are multi-sets).
But the difference is that in the case of knowledge sets,
the sets denote different sources of information, whereas
in flocks the sets denote alternatives about the result of
a combination. Flocks are similar to the extensions in

default knowledge bases [Rei80, Eth88]. In order to
underline this difference we will note K the elements of
a knowledge set and M, P, @), R the elements of a flock.

In order to investigate the logical properties of combi-
nation operators we need to define what are the con-
sequences of a flock. We will adopt a cautious ap-
proach that considers, in a sense, flocks as disjunctions
of knowledge bases.

Definition 5 Let F = (My,... ,M,) be a flock. If
F = 0, then F is inconsistent and, as usual, Cn(F)
is the set of all formulae. Else we define

Cn(F) = ﬁ Cn(M;)

We can then define equivalence between flocks:

Definition 6 Let F and F' be two flocks, we say that
F implies F', noted F = F' if Cn(F) D Cn(F'). F
and F' are equivalent, noted F = F', if both F v F'
and F' &= F hold. Similarly, we define F - K where K
is a knowledge base as Cn(F) D Cn(K).

Definition 7 Let F = (My,...,M,) and F' =
(My,...,M]) be two flocks. FV F' denotes the flock
(My,..., My, M{,... , M) and F AN F' denotes the
flock (M{'y, ..., My ,,) where M}, = M; U M.

So notice that if F = (My,...,M,) and F' = F V
(Py,...,Py) with Vi P; inconsistent, then F = F'. So,
when considering a flock, we can focus only on its con-
sistent knowledge bases.

3 IC MERGING OPERATORS

In [KP98, KP99] a set of logical properties for merging
operators is stated. We call operators satisfying these
postulates Integrity Constraints merging operators (IC
merging operators for short). Next we recall those pos-
tulates.

Definition 8 Let E be a knowledge set, let IC be a
knowledge base coding the integrity constraints of the
merging, and let /A be an operator that assigns to each
knowledge set E and knowledge base IC a knowledge
base Arc(E). A is an IC merging operator if and only
if it satisfies the following properties:

(IC0) Aje(E)FIC
(IC1) IfIC is consistent, then Ajc(E) is consistent

(IC2) If A\ E is consistent with IC, then
A[c(E) = /\E/\IC



(IC3) If E; < E5 and ICl s ICQ, then
Agey(Er) & Dgc, (E2)

(IC4) If K+ IC and K' + IC, then
Ac(KUKYAKF L= Ac(KUK')YAK' ¥ L

(IC5) Arc(Er) A Ajc(Eq) F Aje(Ey U Es)

(IC6) If Arc(Er) A Arc(E2) is consistent, then
Arc(Er U Ey) F Apc(Er) A Are(Es)

(IC7) AIC1 (E) ANICy = A101A102 (E)

(IC8) If Arc,(E) AICy is consistent, then
AICl/\Icz(E) F AICl (E)

Most of these postulates are a generalization of belief re-
vision postulates [AGM85, Gar88, KM91]. (IC0) states
that the result of the merging complies with the in-
tegrity constraints. (IC1) ensures that, when the in-
tegrity constraints are consistent, we always manage to
extract a coherent piece of information from the knowl-
edge set. (IC2) says that, if it is possible, the result
of the merging is simply the conjunction of the knowl-
edge bases of the knowledge set with the integrity con-
straints. (IC3) is the principle of irrelevance of syntax.
It states that if two knowledge sets are equivalent and
two integrity constraints knowledge bases are equiva-
lent, then the result of the merging of each knowledge
set under their respective integrity constraints will give
two equivalent knowledge bases. The purely “merging”
postulates are (IC4),(IC5) and (IC6). (IC4) is what
we call the fairness postulate. It ensures that when
one merges two knowledge bases, it can not give the
preference to one of them. (IC5) and (IC6) correspond
to Pareto’s conditions in Social Choice Theory [Arr63].
(IC5) states that if a group compromises on a set of
alternatives A belongs to, and another group compro-
mises on another set of alternatives which contains also
A, then A has to be in the chosen alternatives if we
join the two groups. (IC6) states that if a group prefers
strictly an alternative A to an alternative B and an-
other group finds A and B equally plausible, then A
will be preferred to B if we join the two groups. Fi-
nally (IC7) and (IC8) state conditions on the conjunc-
tion of integrity constraints. It ensures that the notion
of “closeness” is well-behaved. See [KP99] for a full
motivation of this set of postulates and for a semanti-
cal characterization in terms of family of pre-orders on
interpretations.

There are two major subclasses of merging operators,
namely majority and arbitration operators. Whereas
majority operators try to satisfy the majority of the
protagonists, arbitration operators try to satisfy each
protagonist to the best possible degree.

A majority merging operator is an IC merging operator
that satisfies the following property:

(Maj) In Ao (E1 [N E2n) F Ajc(EQ)

This postulate expresses the fact that if an opinion has
a large audience, it will be the opinion of the group.

An arbitration operator is an IC merging operator that
satisfies the following property:

Are, (K1) © Arc,(Ks)
AICN—>—JC'2(K1 L Kg) <~ (IC’1 <« _|I02)
IC ¥ IC,

ICy ¥ IC,

=  Aroyvic, (K1 UKy) < Are, (Ky)

(Arb)

From a semantical point of view (Arb) ensures that it
is the median possible worlds that are chosen, that is
if Ky prefers strictly a world A to a world B and if
K, prefers strictly A to a world C and if B and C are
equally desirable for the merging, then A will be strictly
preferred to B and C for the merging (cf [KP99]).

Another property, opposed to the majority postulate,
we can mention is the majority independence which is
the following one:

(MI) VYn Arc (E1 [N Egn) <~ AIC’(EI L Eg)

That very strong property states that the result of the
merging is fully independent of the popularity of the
views but simply takes into account each different view.
But the following results hold [KP98]:

Theorem 1 (i). There is no IC merging operator sat-
isfying (MI).

(i1). If an operator satisfies (IC1), then it can’t satisfy
both of (MI) and (Maj).

4 COMBINATION OPERATORS

Baral, Kraus, Minker and Subrahmanian proposed in
[BKM91, BKMS92] several theory merging operators,
these operators are based on a selection of maxiconsis-
tent subsets in the union of the knowledge bases of the
knowledge set.

Once the union of the knowledge bases is settled, the
problem is to find a coherent information from an incon-
sistent knowledge base. Thus, such a definition is very
close to Brewka’s preferred subtheories [Bre89] and to
the work of Benferhat et al. on entailment in inconsis-
tent databases [BCD193, BDP97, BDL+98].

Definition 9 Let MAXCONS(K,IC) be the set of maz-
imal (with respect to inclusion) consistent subsets of



K A IC which contain IC, i.e. MAXCONS(K, IC) is the
set of all M such that

- M CKAIC,
— IC C M,
—ifMcCcM CKANIC,then M' 1.

Let MAXCONS(E, IC) = MAXCONS(A E,IC). We will
use the subscript MAXCONS q-q(E, IC) when the mazxi-
mality of the sets is with respect to cardinality.

Let’s define the following operators:

Definition 10 Let E be a knowledge set and IC be a
knowledge base:

AC o (E) = MAXCONS(E, IO)

AP G(BE)={M : M € MAXCONS(E,T) and M A
IC consistent}

Ao (E) = {M : M € MAXCONS.q4(E, IC)}

Ao (E) = {MAIC : M € MAXCONS(E, T) and M A
IC consistent } if this set is non empty
and IC otherwise.

The AC!,,(E) operator takes as result of the combi-
nation the set of maximal consistent subsets of E A IC
which contain the constraints IC. The A“?;,(E) oper-
ator computes first the set of maximal consistent sub-
sets of E, and then selects those that are consistent
with the constraints. The A®4,,(E) operator selects
the set of consistent subsets of E A IC which contain
the constraints /C' and that are maximal with respect
to cardinality.

The  operators  ACl, (E), A (E) and
A%, (E) correspond respectively to the operators
Combl(E,IC), Comb3(E,IC) and Combd(E,IC) in
[BKMS92]. The A®® operator is a slight modification
of A3 in order to grasp more logical properties.

In the following theorems we investigate the logical

properties of the operators defined above.

Theorem 2 The AC! operator satisfies (1C0), (IC1),
(IC2), (1C4), (IC5), (IC7), and (MI). It does not sat-
isfy (IC3), (IC6), (IC8) and (Maj).

Proof: (IC0), (IC1) and (IC2) are satisfied by defini-
tion of the AC! operator.

A1 satisfies (IC4) because the stronger following prop-
erty is satisfied:

If K+ IC then AL (KUK')AKY L.

Since K is a consistent subset of K A K' A IC and by
hyp. K F IC, then there exists a maxiconsistent subset

of K AK' AIC that contains K. And then A®!, (KU
KYANKVK 1.

(IC5) holds. It is trivially true when A;c(E;) A
Arc(Es) is not consistent. And if Arc(E1) AArc(E?)
is consistent, let P; be the elements of MAXCONS(E; U
E,,IC), Q; the elements of MAXCONS(E,IC), and R;
the elements of MAXCONS(Ey, IC). To show that (IC5)
holds it is enough to prove that if (); A R}, is consistent
then 3i P; = Q; ARy. First put L=ICUAE{UA E,,
Q; N Ry, is a consistent (with IC) subset of L, and
as P; is a maxiconsistent (with IC) subset of L, then
3 P, O Q; A Ri. We claim that P; C Q; A Ry, holds.
Because otherwise we have P; D @; A R;. Then we can
decompose P; = Py A P, with P, = P,N (A E{ A IC)
and P, = P,N (A Ey; AIC). And then we have that
P, D Qj or P, D Ry. So either Q; or Ry is not a
maximum consistent subset of E; or E, respectively.
Contradiction.

AC! does not satisfy (IC6). Consider the following ex-
ample: K1 = {a = ¢, e > ¢, b > —c}, Ky = {a,e},
K3 ={b}and IC = T. Then A°Y(K;UK,)AACL(K}3)
is consistent but A1 (K, UK, UK3) ¥ ACY K UK,)A
ACIK,).

(IC7) is satisfied. When Aje, (E) A ICs is not con-
sistent (IC7) is trivial. Otherwise let P; be the el-
ements of MAXCONS(E,IC;) and @; the elements of
MAXCONS(E, ICy A IC,). Tt is enough to prove that if
P;ANIC is consistent then 3Q); such that P;AIC, = Q.
Let P; A IC5 be a consistent subset of A EAIC: AIC,
then there exists a maxiconsistent subset (); that con-
tains P; A IC5, so 35 P; C ();. Moreover, we have that
P;ANIC5 2 Qj, otherwise P; A IC> C @4, and from this
it is easy to see that P; C Q; N (AE AICy). So P; is
not maximum. Contradiction.

(IC8) is not satisfied. We use the counterexample to
(IC6) slightly modified: K = {a — ¢,e = —¢,b — —c},
IC, = {a,e} and IC, = {b}. Then A}, (K) A IC
is consistent but A 1o (K) ¥ A9 o (K) A ICs.

Theorem 3 The A“? operator satisfies (IC4), (IC5),
(IC7), (1C8), (MI). It does not satisfy (IC0), (IC1),
(IC2), (IC3), (IC6) and (Maj).

Proof: A®? does not satisfy (ICO) since the result is
only consistent with I7C. It does not satisfy (IC1) since
when there is no maxiconsistent consistent with IC' the
disjunction is empty and the result is L. And it does
not satisfy (IC2), we have instead: If A E is consistent
with IC, then A% (E) = \ E.

The proofs of (IC4) and (IC5) for AY? are similar to
the ones for ACL.



Table 1: Properties of combination operators

ICO IC1 1IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
NG, v v - v v - v - v -
A - - - - =y
NGt v v - - — - v v -
NG, v v — v v — v v v —

A does not satisfy (IC6).
terexample than for A1,

(IC7) and (IC8) are satisfied directly. If AY%, (E) A
ICy is not consistent (IC7) is trivial. Other-
wise since by definition A9, (E) = {Q
@ € MAXCONS(E,T) and Q A IC; consistent}, then
A9 (E)NIC, ={Q : Q € MAXCONS(E, T) and QA
ICy AIC, consistent} (this set is non empty by hypoth-
esis) what is by definition A3 ;o A0, (E). [ |

There is the same coun-

Theorem 4 The A4 operator satisfies (IC0), (IC1),
(1C2), (1C7), (IC8) and (MI). It does not satisfy (I1C3),
(IC4). (IC5), (IC6) and (Maj).

Proof: (IC0), (IC1) and (IC2) are satisfied by defini-
tion.

A%t does not satisfy (IC4): Let’s take IC = {a,b},
K = {a,b,¢,d}, K' = {a,b,c - —-d,d — -c}.
Then A%, (K U K') = {{a,b,c,c = —d,d - —c},
{a,b,d,c = —d,d — —c}}, s0 A4 (KUK')AK'¥ L
and A4 (KUK )AK & L.

(IC5) does not hold. Consider the following example:
Let K1 = {a}, K3 = {-a A b}, K3 = {-a Ac}. Then
with El = Kl UKQ, E2 = Kl UK3 and IC = T, we
have AC4Ic(E1) N AC4Ic(E2) ¥ AC4IC(E1 L E2)

(IC6) is not satisfied. Consider the following exam-
ple: Let K, = {a}, Ky = {-a A (DV)}, K3 =
{a,a N 2}, K4 = {-a A =b,ma A =c}. Then with
E, =K UK,, By = K3 UK, and IC = T, we have
At (Ey) A ACY o (E,) consistent but AYY,(E; U
Ey) ¥ A 16(Er) A A 1o(Bs).

(IC7) and (IC8) are satisfied. When A%}, (E) A IC,
is not consistent (IC7) and (IC8) are satisfy straightfor-
wardly. So assume that A9} (E) AIC: is consistent.
Let P be an element of MAXCONSq.-q(E, ICy A IC5).
And let @ be an element of MAXCONSqq(F, IC1) con-
sistent with ICy. We want to show that Q U ICs €
MAXCONS¢ord(E, ICy A IC>) and that P can be rewrit-
ten P, ® P, with P € MAXCONS 4-¢(E, ICy) and P, C
IC,. This is enough to show that A%, (E) AIC, <
Ao arc,(B). Let’s define Ay = AE U IC; and
Ay = IC5 \ A;. Then we can split P = P, & P, with
P, =PnNA; and P, = PN A, . Similarly let’s define

QUICZ = Ql EBQQ such that Ql = (QUICQ)OAl and
Qz = (QUICz)mAz As 102 g P and 102 g QUICQ,
by construction it is easy to see that P, = Ay, =
Q2. In terms of cardinalities |P| = |Pi| + |P,| and
|QUICs| =|Q1] + |Q2|.- But we have that |Ps| = |Qa|.
As P is in MAXCONSqrg(E, ICy ANIC3) and QU ICy C
EUIC, UICy, then |P| > |QU IC,|. So |Pi| > |Q1]-
Similarly as Q1 = @ is in MAXCONS¢qrq(E,IC)) and
P, C EUICY, then |Pi| < |Q@1]. From this it is easy to
see that both |P| = |Q U IC3| and |Q| = |P1| hold. So
QU IC; is in MAXCONScqrq(E,ICy AIC2), and Py is in
MAXCONS qrq(E, ICY). [ |

Theorem 5 The A®® operator satisfies (1C0), (IC1),
(I1C2), (1C4), (1C5), (IC7), (IC8), (MI). It does mot
satisfy (IC3), (IC6) and (Maj).

Proof: The proofs are mainly the same that for theo-
rem 3 except (IC0), (IC1) and (IC2) that are now sat-
isfied by definition. [ ]

We sum up the previous results in Table 1. The symbol
v (respectively —) in a square means that the corre-
sponding operator satisfies (resp. does not satisfy) the
corresponding postulate. By construction all the oper-
ators satisfy (MI). We can also note that none of these
operators satisfies (IC6). We will see in the next sec-
tion how to build merging operators with more logical
properties.

None of the operators we study in this paper satisfies
(IC3) since they are all syntax sensitive. We can il-
lustrate this on the following example. Consider three
knowledge bases K; = {a,b}, Ko = {a A b}, and
K3 = {“b} Let Ey = K1 UK3 and Ey = Ko U K3
be two knowledge sets. The maxiconsistent subsets of
E,; are {a,b} and {a, b}, the ones of E, are {a Ab} and
{=b}. So each maxiconsistent of E; implies a, whereas
it is not the case for F,. So, although the knowledge
bases K; and K, are logically equivalent, with the syn-
tactical operators studied in this paper, the result of
the fusion of E; will imply a, whereas it will not be the
case with the fusion of E,.



5 SELECTION FUNCTION AND
MERGING OPERATORS

The combination operators do not take into account the
“individual side” of the merging, since the source of in-
formation doesn’t matter in the combination process.
They simply put all the pieces of information together
and then select some maximal consistent subsets. So,
with this approach, it is not possible to try to reach
the best consensus between protagonists. We can not
for example select only the maxiconsistent sets that fit
the majority of agents. In the same way we can not try
to arbitrate these views, that is to satisfy all the pro-
tagonists to the best possible degree. The idea in this
section is to use a selection function to choose among
the maxiconsistent subsets, those that best fit a “merg-
ing criterion”.

The motivation to define such selection functions comes
from AGM revision framework [AGM85, G&r88]. The
A1 operator corresponds to full meet contraction func-
tion [AM82, G&r88] that has been shown to be unsatis-
factory for a revision since it drops too much informa-
tion. Partial meet contraction functions, defined from
selection functions by choosing only some of the maxi-
consistents, have been shown to have a less drastic be-
haviour.

In this section, we will examine some selection merging
operators. The idea of this kind of operators is to give
the preference to the maxiconsistents that are closer to
the agents’ view. The differences between these opera-
tors lie firstly in the definition of the “distance” between
a maxiconsistent and a knowledge base, and secondly in
the aggregation of these results to define the “distance”
between a maxiconsistent and a knowledge set.

We will focus on operators defined from the AC! op-
erator and investigate their logical properties. But the
following methods can also be used with the other com-
bination operators.

5.1 DRASTIC MAJORITY OPERATOR

The “distance” between knowledge bases we will con-
sider here is drastic. We will set this distance to 0 if the
conjunction of these two knowledge bases is consistent
and 1 otherwise.

Definition 11 Consider a knowledge set E and a
knowledge base M.

0 if M AN K consistent

— distn(M, K) = { 1 otherwise

— distn(M, E) = Y distp(M, K)
KeEE

- AII)C(E) ={M e A (E):

distp(M, E) = M,'EAH}}&C(E)

(distp(M;, E))}
So this selection function chooses among the maxicon-
sistents those that are consistent with a maximum of
knowledge bases.

It is easy to see that when a maxiconsistent is consis-
tent with a knowledge base it contains this knowledge
base. So it amounts to choose the maxiconsistents that
contain a maximum of knowledge bases.

Theorem 6 The AP, operator satisfies (IC0), (IC1),
(1C2), (IC4), (IC5), (IC7) and (Maj). It does not sat-
isfy (IC3), (1C6), (IC8) and (MI).

Proof: (IC0), (IC1) and (IC2) are straightforwardly
satisfied.

AP satisfies (IC4). Since either K is consistent with K’
and then (IC4) holds trivially, or K is not consistent
with K. So there is no maxiconsistent consistent with
the two knowledge bases. There exists a maxiconsistent
that contains K. So AP (KUK )AK ¥ L.

(IC5) holds for AP. Let @; the elements of AP (E,),
and R; the elements of AP (E,). Note that if Q; is con-
sistent with K € E;, then K C @; and then if Q; A R;
is consistent, so Q; AR; AK is consistent. Soif K € E,
then distp(Q; AN Rj, K) = distp(Q;,K). And simi-
larly for K € E,, distp(Q; A R;, K) = distp(R;, K).
So if Q; A R; is consistent, then distp(Q;,E;) +
distp(R;,Es) = distp(Q; N Rj, E; U E5). Since we
know that AC! satisfies (IC5), we have that @Q; A
R; € MAXCONS(E; U Ey, IC). It remains to show that
distp(Q; A R;, By U Es) is minimal. If it is not the case
3P € AP (E, U E,) such that distp(P,E, U E,) <
distp(Q; N R;, E; U E,). So either distp(P,E;) <
distp(Q;AR;, Ey) or distp (P, Ey) < distp(Q;ARj, E,)
hold. Suppose w.l.g. that distp(P, E,) < distp(Q; A
R;, E,), then distp(PN(E,UIC), Ey) < distp(Qi, Ey).
So Q; ¢ AP (E,). Contradiction.

AP does not satisfy (IC6) and (IC8). The counterex-
amples used for A®! hold here too.

The proof that (IC7) holds for AP is exactly the same
that in theorem 2, since add integrity constraints IC>
does not change the “score” of each maxiconsistent. W

This operator satisfies as many basic properties as the
A1 operator. But it satisfies (Maj) instead of (MI), so
it can be used to merge knowledge bases, since it takes
the distribution of information into account.

Furthermore, the complexity of this operator is not
much higher than the one of A®! since we only add
inclusion tests.



5.2 CARDINALITY OPERATORS

The previous operator is very rough, because the eval-
uation of a maxiconsistent is a drastic one: a maxi-
consistent is ever good or bad for a knowledge base.
Therefore, we can expect a more subtle way to evalu-
ate a maxiconsistent. Such a problem has already been
addressed in the literature. For example in the case of
database update, Fagin et al. [FUV83, FKUV86] pro-
posed a notion of fewer change:

Definition 12 Let K, K, and K be knowledge bases.

1. K, has fewer insertions than K, with respect to K
fKi\KCKy\K.

2. K, has fewer deletions than K, with respect to K
if K\K; C K\ K,.

3. K. has fewer change than Ko with respect to K
if Ky has fewer deletions than K, or K; and K,
have the same deletions and K, has fewer inser-
tions than K.

The problem with Fagin et al. definition of fewer change
is that it gives only a partial order. Here we need a total
order in order to aggregate the “individual” preferences
into “social” preferences.

Furthermore, Fagin et al. give more importance to dele-
tions than to insertions. Even if it can be justified, for
update, by the wish to keep as many as possible of the
formulae of the old knowledge, it seems to contradict
the “smallest change” requirement, since a set that ac-
complishes no deletions but adds thousands of formulae,
would be considered better than a set that accomplishes
one deletion and no insertion. So, from a merging point
of view, it seems that we have to give the same impor-
tance to deletions as to insertions. This leads to the
following operators.

5.2.1 The Symmetrical Difference Operator

The following operator is defined from a distance that
denotes the cardinality of the symmetrical difference be-
tween the knowledge base and the maxiconsistent sets.

Definition 13 Consider a knowledge set E and a
knowledge base M.

— dists(M,K) = |K\ M|+ |M \ K|

— dists(M,E) = _ dists(M, K)
KeFE

— AP(BE) = {M € A% o (EB) :

dists(M,E) = min

dists(M;, E
MiGAClIC(E)( ists( N}

So the selected maxiconsitent sets are those that have
the least differences (in terms of number of formulae)
with the knowledge bases.

The following theorem states the logical properties sat-
isfied by this operator.

Theorem 7 The Afcz operator satisfies (1C0), (IC1),
(IC2), (1C4), (IC7), (IC8) and (Maj). It does not sat-
isfy (IC3), (IC5), (IC6) and (MI).

Proof: (IC0), (IC1) and (IC2) are directly satisfied by
definition.

(IC4) is satisfied by A%*. Tt follows from the following
property: VM KNK' C M C KUK’ dists(M,K U
K') = |K| +|K'| - 2|[K N K'|. Then if Aj2 (K UK') A
K ¥ 1, that is K is consistent with a maxiconsistent
M. Tt implies that K C M, so by the above property
dists(M,KUK') = |K|+|K'|-2|KNK'|. But K" isa
consistent subset of K U K’, so there exists an element
M' € ACY(K U K') such that K' C M'. By the same
property we get dists(M', KUK') = dists(M, K UK"),
so M' € ASF(KUK'). So As(KUK)YAK'¥ 1.

(IC5) does not hold for A%*. Consider the three knowl-
edge bases K; = {a,a —» bAc}, Ky = {-¢} and
K3 ={a — —c¢}. And define E; = K| U K,, Ey = K3
and IC =T.

(IC6) does not hold for A%*. The counterexample for
AC! holds here too.

(IC7) and (IC8) hold for AS®. When Ay (E) A ICo
is not consistent (IC7) and (IC8) are satisfied straight-
forwardly. So assume that A‘Ig’czl (E)ANIC, is consistent.

Let P be an element of A?’é/\]@ (E), and let @ be an

element of A}ggi (E) consistent with IC>. Let’s define
Ay = NEANIC) and As = IC> \ A;. Then we can split
P=P &P, with P, =PNA; and P, = PNA, . Sim-
ilarly let’s define Q U ICy = Q1 @ )2 such that )1 =
(QUIC)NA; and Q2 = (QUIC)NA2. AsICy, CP
and ICy; C @ U IC5, by construction it is easy to see
that P, = As = Q. In terms of distances, let K € FE,
dists(P,K) = dists(P1,K) + |P» \ K| — |[P N K| and
dists(QUICs, K) = dists(Q1, K) +|Q2\ K| - Q2N K].
We have that |P2 \ K| — | N K| = [Q2\ K| — Q2N K]|.
As Pisin A} ;. (E) and QUIC, C EUIC; UIC,,
then dists(P,K) < dists(Q U IC,,K). Similarly as
Q1 = Q is in A} (E) and P, C E U ICy, then
dists(P1, K) > dists(Q, K). From this it is easy to
see that both dists(P,K) = dists(Q U IC2,K) and
dists(Q,K) = dists(P1,K) hold. So Q U ICs is in
A e, (B), and Py is in A7 (E). |
This operator doesn’t seem to have a lot of logical prop-
erties. In particular, it does not satisfy the very impor-



Table 2: Properties of the merging operators based on A¢?!

ICO IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
At v v — v v — v - v -
Al v v v - v v - v - = v
AFE v v — v - — v v - v
ANE v v - = v v v v = v

tant (IC5) and (IC6) postulates, whereas this is mainly
those two postulates that deal with “aggregation” prop-
erties of the merging operators.

But instead of focusing on the differences between the
knowledge bases and the maxiconsistent sets, we can
focus on what is common in those sets. These two ap-
proaches are very close in spirit but the second one is
more interesting from a logical point of view.

5.2.2 The Intersection Operator

This operator is defined from a distance that denotes
the cardinality of the intersection between the knowl-
edge base and the maxiconsistent sets.

Definition 14 Consider a knowledge set E and a
knowledge base M.

— distn(M,K) = |K 0 M|

— distn(M,E) = ) distn(M, K)
KeFE

— AE(B) = {M € A% o (B) :

distn(M, E) = . X (E)(distn(Mi, E))}
@ Ic

So the selected maxiconsistent sets are those that fit the
knowledge bases on a maximum of formulae.

Theorem 8 The A?(’JE operator satisfies (IC0), (IC1),
(IC2), (IC5), (IC6), (IC7), (IC8) and (Maj). It does
not satisfy (IC3), (IC4) and (MI).

Proof: (IC0), (IC1) and (IC2) are straightforwardly
satisfied.

(IC4) is not satisfied. Consider the following example:
K = {a,b} and K’ = {-~aA—b}. Then AT*(KUK') =
K and AP*(KUK')AK'F L.

(IC5) holds for A™*. The result is straightforward if
A?(’;E (El)/\A?(’;E (E,) is not consistent. Otherwise there

exists (); an element of A?’CE(EI) and R; an element of
A?(’;E (E,) such that Q; AR; is consistent. Notice that if

Kl S E17 then dlStm(Q, A Rj,Kl) = dZStn(Q,,Kl) Be-
cause if it is not the case, that is distn(Q; A R;, K;) >
distn(Q;, K;) then there exists a formula a € A E;
such that o ¢ @; and @Q; U « is consistent. So @Q; is
not a maxiconsistent. Contradiction. And similarly if
K, € E,, then distn(Q; A R;, K;) = distn(R;,K;). So
if Q; A R; is consistent, then distn(Q; A R;, E; UE,) =
distn(Qi, E,) + distn(R;, E5). From properties of A?
we know that Q; A R; is in MAXCONS(E; U E,,IC).
It remains to show that distn(Q; A R;, E) is maxi-
mum. If it is not the case IP € A?(’JE(EI U Es,)
such that distn(P, By U E,) > distn(Q; A R;j, Ex U
E,). So either distn(P,E1) > distn(Q; N R, Eq)
or distn(P, Ey) > distn(Q; A Rj, E»2) hold. Suppose
w.lg. that distn(P,E1) > distn(Q; A Rj,Eq), then
distm(Pﬁ (E1 U IC),El) > distn(Qi,El). So Q; ¢
A%E(El). Contradiction.

(IC6) holds. Let P be an element of ATZ (B, U E,).
And decompose P = P, U P, with P, = PN (IC U E,)
and P, = PN (ICUE,). If P, ¢ AW (E,), then
exists @) € A?’CE(EI) and R € A?’CE(E2) such that
@ A R is consistent and by definition distn(Q,E;) >
distn(Py, E;) and distn(R, Ey) > distn(P2, Ey). So
with a similar argument than for (IC5) we have that
distn(Q, By U Ey) > distn(P,E, U Ey). So P ¢
A?&E(El U E,). Contradiction.

(IC7) and (IC8) hold. The proof is similar to the
one of AS®. When A?(’f (E) A IC, is not consistent
(IC7) and (IC8) are satisfied straightforwardly. So as-
sume that A?(’;EI(E) A ICy is consistent. Let P be
an element of A?’Czl arc,(E).  And let Q be an ele-

ment of A?CEI(E) consistent with ICy. Let’s define
Ay = ANEUIC; and Ay = ICy \ A;. Then we can
Splltpzpl@PQ WlthPl :PﬂAl andP2 :PﬂAQ .
Similarly let’s define Q U ICs = @1 & Q> such that
Ql = (Q U ICQ) N A; and QQ = (Q U ICQ) n A,.
As ICy C P and ICy; C Q U IC,, by construction
it is easy to see that P, = As = (J2. In terms of
distances distn(P,K) = distn(P1,K) + distn(Ps, K)
and distn(Q, K) = distn(Q1, K) + distn(Q2, K). But
we have that distn(P, K) = distn(Q2,K). As P
is in AYZ ;o (E) and QU IC, C EUIC, UICs,



then distn(P,K) > distn(Q U ICy, K). Similarly as
Q1 = Qis in ARG (E) and P C E U ICy, then
distn (P, K) < distn(Q,K). From this it is easy to
see that both distn(P,K) = distn(Q U IC2,K) and
distn(Q,K) = distn(P1,K) hold. So Q U IC, is in
A?(’;EI/\I@ (E), and P is in A?éEI(E) |

The properties of merging operators defined in this sec-
tion from selection functions are summed up in Table
2. So it is clear that one can get more logical properties
with suitable selection functions.

All the operators we have defined in this section satisfy
(Maj) (so they do not satisfy (MI)) and therefore are
much more satisfactory than ACT as merging operators.

We can note, in particular, that the intersection opera-
tor A™> satisfies almost all the properties of IC merg-
ing operators. It’s very hard for a syntactical opera-
tor (i.e. for an operator working on knowledge bases
that are not closed under logical consequences) to sat-
isfy (IC3). So the sole “missing” property is (IC4).

Remark that the only operator that satisfies as many
properties as A™> is the A®® operator. But the be-
haviour of A®? is (over-)simpler than the one of A™%.
Furthermore the postulate not satisfied by A™* is
(IC4), whereas the one that A“® does not satisfy is
(IC6). But failing to satisfy (IC6) is worse that not
satisfy (IC4) since, in fact, (IC5) and (IC6) are the con-
ditions that purely deal with the aggregation problem.
Their semantical counterparts [KP99] are seen as essen-
tial conditions for aggregation methods in Social Choice
Theory (cf e.g. [Sen79]).

Finally, as noted at the beginning of this section, we
can apply those methods (or other ones) to the other
combination operators (A“3, A“4 and A%) in order
to improve their behaviour in the same way.

6 CONCLUSION

We have studied in this paper the logical properties
of combination operators. We have shown that, due
to the irrelevance of the distribution of information for
the combination process, those operators do not have a
good behaviour concerning the merging.

Then, we have shown that the use of selection functions
can improve the logical properties of combination op-
erators. In particular the intersection operator A™*
satisfies almost all the postulates of IC merging opera-
tors.

We have only used a utilitarist aggregation method by
adding the different distances when calculating the dis-
tance between a maxiconsistent and a knowledge set.
So we have only defined majority operators. It could

be interesting to see if one obtains similar results with
an egalitarian method & la leximin (cf the AGMaz op-
erator in [KP99]), leading to arbitration operators.

Another interesting work could be to find the general
properties that selection methods have to verify in order
to satisfy the postulates, as done in belief revision with
transitively relational partial meet contraction functions
[AGMS85, Gar88]. That can give a new representation
theorem for IC merging operators.
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