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Abstract

We study how belief merging operators can be con-
sidered as maximum likelihood estimators, i.e., we
assume that there exists a (unknown) true state of
the world and that each agent participating in the
merging process receives a noisy signal of it, char-
acterized by a noise model. The objective is then to
aggregate the agents’ belief bases to make the best
possible guess about the true state of the world. In
this paper, some logical connections between the
rationality postulates for belief merging (IC postu-
lates) and simple conditions over the noise model
under consideration are exhibited. These results
provide a new justification for IC merging pos-
tulates. We also provide results for two specific
natural noise models: the world swap noise and
the atom swap noise, by identifying distance-based
merging operators that are maximum likelihood es-
timators for these two noise models.

1 Introduction
The aggregation of pieces of information, encoding prefer-
ences, beliefs or judgments, that are owned by a number of
agents, is a key challenge in many settings, among social
choice, vote, merging, or judgment aggregation. Whatever
the setting, the design of aggregation operators is typically
guided either by axiomatic concerns, or by epistemic con-
cerns. In the former case, expected properties (postulates)
are exhibited, and operators satisfying them are pointed out
or impossibility theorems are proved. In the latter case, it
is assumed that the preferences, beliefs or judgments that
are reported by the agents are a noisy perception of “cor-
rect” preferences, beliefs or judgments. Such an epistemic
approach have received great attention when dealing with
preferences [Young, 2003; Conitzer and Sandholm, 2005;
Xia et al., 2010; Conitzer, 2014; Elkind and Slinko, 2016;
Pivato, 2012], and can be traced back at least to Condorcet,
who justified the use of majoritarian vote in this way (his fa-
mous jury theorem [Condorcet, 1785]). Contrastingly, the
epistemic interpretation of belief merging operators gave rise
to few research work (we know a single paper about it, it is
discussed in the related work section).

Propositional belief merging operators aim to associate a
belief base with a set of (usually conflicting) belief bases rep-
resenting the individual beliefs of the agents. So far, belief
merging operators have been evaluated with respect to several
criteria, such as rationality properties leading to the so-called
IC merging operators [Konieczny and Pino Pérez, 2002a;
Konieczny and Pino Pérez, 2011], properties inspired by vote
[Haret et al., 2016], computational complexity [Konieczny
et al., 2004], strategy-proofness [Everaere et al., 2007], etc.
In this work, we want to evaluate belief merging operators
as maximum likelihood estimators (MLE). One assumes that
there exists a true state of the world ω? (represented by a spe-
cific propositional interpretation) and that each agent partici-
pating in the merging process receives a noisy signal of it (a
formula Ki). The objective is then to aggregate the agents’
belief bases to make the best possible guess about ω?. The
key issue we want to address is to determine the extent to
which belief merging operators are suited to this objective,
i.e., to figure out how the corresponding merged bases and
ω? are connected.

In the following, we provide a number of results in this di-
rection. First, we present some logical connections between
rationality postulates for merging (IC postulates) and sim-
ple conditions (especially about independence) over the noise
model P under consideration. We also rationalize a large
family of distance-based IC merging operators ∆ by show-
ing that for each operator ∆ of the family, there exists a noise
model P such that ∆ is a MLE for P . Then we focus on
two specific noise models. For the first one, the world swap
noise, we show that a standard distance-based merging op-
erator based on the drastic distance is a MLE. And for the
second one, the atom swap noise, we show that the distance-
based merging operator based on the sum and the Hamming
distance is a MLE. Finally, we report some empirical results
showing that those two distance-based merging operators are
efficient noise cancellers in practice, meaning that the num-
ber of agents needed for identifying the true state of the world
with high probability remains small enough.

The rest of the paper is organized as follows. In the
next section, some formal preliminaries on belief merging
are provided. In Section 3, noise models and maximum
likelihood estimators are defined in the belief merging set-
ting. In Section 4, conditions under which merging opera-
tors are / are not maximum likelihood estimators are pointed

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1763



out. In Section 5 the focus is laid on the world swap noise,
and in Section 6 on the atom swap noise. Section 7 gives
some empirical results. Section 8 discusses some related
work. Finally, Section 9 concludes the paper. For space rea-
sons only the proofs of some of the main results are pro-
vided. A full-proof version of the paper is available on
http://www.cril.fr/∼konieczny/ijcai20proofs.pdf.

2 Formal Preliminaries
We consider a propositional language L defined from a finite
set P of m propositional variables and the usual connectives.
An interpretation (or state of the world) ω is a total function
from P to {0, 1}. Ω is the set of all interpretations. An in-
terpretation ω is a model of a formula φ ∈ L if and only if
it makes it true in the usual truth-functional way. Otherwise,
ω is a counter-model of φ. [φ] denotes the set of models of
formula φ, i.e., [φ] = {ω ∈ Ω | ω |= φ}.

A belief base K is a finite set of propositional formulae,
interpreted conjunctively (i.e., viewed as the conjunction of
its elements). A profile E (of belief bases) is associated with
a group of n agents that are involved in the merging process;
formally, E is given by a vector of bases E = 〈K1, . . . ,Kn〉.∧
E denotes the conjunction of all elements of E, and t

denotes concatenation. Two profiles E = 〈K1, . . . ,Kn〉
and E′ = 〈K ′

1, . . . ,K
′
n〉 are said to be equivalent, noted

E ≡ E′, iff there exist a permutation σ such that ∀Ki, we
have [Ki] = [K ′

σ(i)]. An integrity constraint µ is a formula re-
stricting the possible results of the merging process. A merg-
ing operator 4 is a mapping which associates with a profile
E and an integrity constraint µ a (merged) base4µ(E).

We expect belief merging operators to satisfy the following
rationality postulates (the IC postulates):

Definition 1 A merging operator4 is an IC merging opera-
tor iff it satisfies the following properties:
(IC0) 4µ(E) |= µ

(IC1) If µ is consistent, then4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then4µ(E) ≡

∧
E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then4µ1(E1) ≡ 4µ2(E2)

(IC4) If K1 |= µ and K2 |= µ, then4µ(〈K1,K2〉) ∧K1 is
consistent if and only if4µ(〈K1,K2〉)∧K2 is consistent

(IC5) 4µ(E1) ∧4µ(E2) |= 4µ(E1 t E2)

(IC6) If4µ(E1) ∧4µ(E2) is consistent,
then4µ(E1 t E2) |= 4µ(E1) ∧4µ(E2)

(IC7) 4µ1
(E) ∧ µ2 |= 4µ1∧µ2

(E)

(IC8) If4µ1
(E) ∧ µ2 is consistent, then

4µ1∧µ2
(E) |= 4µ1

(E) ∧ µ2

See [Konieczny and Pino Pérez, 2002a] for explanations
and justifications of these properties.

Let us give some examples of IC merging operators from
the family of distance-based merging operators [Konieczny et
al., 2004]. We first need a notion of (pseudo-)distance:

Definition 2 A (pseudo-)distance between interpretations is
a mapping d : Ω × Ω→ IR+ such that for any ω1, ω2 ∈ Ω:
• d(ω1, ω2) = d(ω2, ω1)

• d(ω1, ω2) = 0 iff ω1 = ω2

Every distance between interpretations can be easily lifted
to a “distance” between worlds and formulae, by stating that
d(ω,K) = minω′∈[K]d(ω, ω′).

Usual distances considered in merging [Konieczny and
Pino Pérez, 2002a] are the Hamming distance dH and the
drastic distance dD. dH(ω1, ω2) is the number of proposi-
tional letters on which the two interpretations differ. dD is
such that dD(ω1, ω2) = 0 iff ω1 = ω2, and = 1 otherwise.

One then needs a notion of aggregation function:

Definition 3 An aggregation function is a mapping1 f from
(IR+)p to IR+, which satisfies:
• if xi ≥ x′i,

then f(x1, . . . , xi, . . . , xp) ≥ f(x1, . . . , x
′
i, . . . , xp)

• if ∀i ∈ {1, . . . , p} xi = 0 then f(x1, . . . , xp) = 0

• f(x) = x

• If σ is a permutation over {1, . . . , p}, then
f(x1, . . . , xp) = f(xσ(1), . . . , xσ(p))

Many aggregation functions have been pointed out so far,
and considered in the belief merging literature. They include
sum (Σ), leximin (alias Gmin), leximax (alias Gmax ), and
Σk (the sum of the kth powers – where k is a fixed integer).
Formal definitions can be found, e.g., in [Konieczny and Pino
Pérez, 2002a; Everaere et al., 2010b].

Definition 4 Let d and f be respectively a pseudo-
distance between interpretations and an aggregation func-
tion. The distance-based merging operator4d,f is defined by
[4d,fµ (E)] = min([µ],≤E), where the total pre-order≤E on
Ω is defined in the following way (with E = 〈K1, . . . ,Kn〉):
• ω ≤E ω′ iff d(ω,E) ≤ d(ω′, E),
• d(ω,E) = f(d(ω,K1), . . . , d(ω,Kn)).

For many standard aggregation functions, whatever the
chosen pseudo-distance d between interpretations, the cor-
responding distance-based operator 4d,f is an IC merging
operator [Konieczny and Pino Pérez, 2002a; Everaere et al.,
2010b]:

Proposition 1 Let d be any pseudo-distance between inter-
pretations and let f be an aggregation function among Σ,
leximin , leximax , or Σk. 4d,f is an IC merging operator.

More generally, properties on the aggregation function en-
suring that the corresponding distance-based operator is an IC
merging operator can be found in [Konieczny et al., 2004].

3 Noise and Maximum Likelihood Estimators
In this work, we assume the existence of a true state of the
world, that is represented by an interpretation ω? ∈ Ω. When-
ever some integrity constraints µ are available, we assume
that ω? is a model of µ, meaning that the integrity constraints
are always supposed to hold in the true state of the world.
Stated otherwise, integrity constraints are pieces of knowl-
edge, i.e., of true beliefs.

1Strictly speaking, it is a family of mappings, where a mapping
is defined for each positive integer p.
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Let I be a set of n agents. We suppose that each agent has
a noisy perception of the true state of the world ω?: for every
i ∈ I , the base Ki representing the beliefs of agent i corre-
sponds to the perception of ω? by i. The given (observed)
profile E = 〈K1, . . . ,Kn〉 thus reflects the noisy perception
of the true state of the world by the group of agents.

Because of the noise, there is no guarantee that [Ki] =
{ω?} for at least one agent i, or even that there exists any
logical connection between E and ω? (for instance, it can be
the case that ω? is inconsistent with each Ki in E). How-
ever, depending on ω?, the observation of a profile E is more
or less plausible given the noise. Formally, a noise model
makes precise the connection between ω? and the profiles us-
ing probabilities.

Given the worlds ω ∈ Ω and the agents i ∈ I, one con-
siders 2m × n Boolean random variables of the form (ω, i).
Each random variable (ω, i) is thus associated with two pos-
sible outcomes, the one noted (ω, i), where the random vari-
able (ω, i) takes the truth value true, and the one noted (ω, i),
where the random variable (ω, i) takes the truth value false.
The fact that (ω, i) takes the truth value true (resp. false)
means that the world ω is not discarded (resp. discarded)
by the observation achieved by agent i, i.e., ω is a model
of Ki (resp. not a model of Ki). O denotes the Cartesian
product of the set of outcomes for all the Boolean random
variables (ω, i). Every element of O represents (from a se-
mantical point of view) a profile E since it indicates for every
world ω ∈ Ω and every agent i ∈ I whether or not ω is a
model of Ki. Similarly, every projection of an element of O
over the outcomes associated with all the random variables
of the form (ω, i) for a fixed i ∈ I represents (again, up to
logical equivalence) a belief base Ki. Given those notations,
a noise model can be formally defined as follows:
Definition 5 A noise model P is a mapping associating with
every consistent formula µ ∈ L and every interpretation ω ∈
[µ] a joint probability distribution, noted Pµ,ω , of the 2m × n
Boolean random variables (ω, i), i.e., Pµ,ω is a probability
distribution overO, s.t. the following conditions are satisfied:
• ∀ω′ ∈ Ω, if ω′ 6|= µ, then ∀i ∈ I, Pµ,ω((ω′, i)) = 0,
• If µ′ ≡ µ, then Pµ,ω = Pµ′,ω .
Since each Pµ,ω is a joint probability distribution, every

(non-empty) subset of the 2m × n Boolean random variables
of the form (ω, i) corresponds to a marginal probability dis-
tribution.

The first condition in Definition 5 states that any interpreta-
tion ω′ that violates the given integrity constraint µ will never
be reported by any agent as a model of her belief base (stated
otherwise, every agent involved in the merging process is sup-
posed to be aware of µ). Thus, the (marginal) probability
of such an (impossible) event (ω′, i) for the random variable
(ω′, i) is 0. The second condition in the definition expresses
a form of syntax-independence for the integrity constraint.

A profile E is said to be generated by the noise model P
if E is a random variate (outcome) from P . In this work, we
observe a single profile E generated by P , and we want to
determine whether a merging operator allows to identify the
worlds that best explain E, i.e., to find (if it exists) a merging
operator that is a maximum likelihood operator for P :

Definition 6 Let P be a noise model. A merging operator
∆P is a maximum likelihood estimator (MLE) for P iff for
any consistent formula µ ∈ L and for any profileE generated
by P , we have2 [∆P

µ (E)] = argmaxωPµ,ω(E).

4 IC Postulates, IC Operators and MLEs
We first show that if a merging operator ∆ is a MLE for some
noise P (whatever this noise), then ∆ must comply with some
IC postulates.

Proposition 2 Let P be any noise model. If ∆ is a MLE for
P , then ∆ satisfies (IC0), (IC1), (IC3), (IC7) and (IC8).

In general, we can expect noise models to satisfy some ad-
ditional constraints, like the following independence condi-
tion, which is very natural (and is quite standard for voting
methods):

Definition 7 A noise model P satisfies the independence
condition iff for any for any consistent formula µ ∈ L, any
ω ∈ [µ], for each i ∈ I , the set of 2m random variables
{(ω, i) | ω ∈ Ω} considered in Pµ,ω is independent from all
the remaining random variables.

When P satisfies the independence condition, whatever the
true state of the world, the beliefs of any agent are indepen-
dent from the beliefs of the other agents.

The independence condition rules out some merging oper-
ators as MLEs:

Proposition 3 Let P be any noise model satisfying the inde-
pendence condition. If ∆ is a MLE for P , then ∆ satisfies
(IC5) and (IC6).

To sum up, a merging operator that is a MLE for a noise
model satisfying the independence condition must satisfy al-
most all IC postulates. The exceptions are (IC2) (that requires
the merged base to be the conjunction of all the bases with the
integrity constraints whenever this conjunction is consistent),
and (IC4) (that requires an equal treatment of the two bases
in any profile containing two bases).

In the literature (see for example [Conitzer and Sandholm,
2005]), another assumption about noise is often considered,
namely the uniformity condition:

Definition 8 A noise model P satisfies the uniformity condi-
tion iff for any for any consistent formula µ ∈ L, any ω ∈ [µ],
ω′ ∈ Ω, any i, j ∈ I, we have Pµ,ω((ω′, i)) = Pµ,ω((ω′, j)).

Intuitively, the uniformity condition states that the noise
model is the same one for all the agents.

Interestingly, many merging operators (especially IC ones)
can be interpreted as MLEs for a noise model satisfying the
independence condition and the uniformity condition:

Proposition 4 Let d be any pseudo-distance on interpreta-
tions. Let k be any natural number. There exists a noise
model P satisfying the independence condition and the uni-
formity condition such that the merging operators ∆d,Σk

and
∆d,leximax are MLEs for P .

2argmaxωPµ,ω(E) = {ω ∈ Ω|∀ω′ ∈ Ω, Pµ,ω(E) ≥
Pµ,ω′(E)}.
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Proof: Let ω? |= µ be the true state of the world and
E = 〈K1, . . . ,Kn〉 a given profile. Let us define the noise P
such that the probability that any world ω is a model of the
base associated with any agent j, namely Pµ,ω?((ω, j)), is
equal to α × 1

2(d(ω,Kj)+1)k
, where α is a positive real number

that does not depend on j (the uniformity assumption ensures
that it exists) and k is a fixed integer.
Due to the independence condition on P , the probability of ω
to be a model of every base of E is thus equal to

Πn
j=1

α

2(d(ω,Kj)+1)k
=

αn

2Σn
j=1((d(ω,Kj)+1)k)

.

Then the problem of determining the maximum likeli-
hood estimates of ω? consists in exhibiting the interpre-
tations ω |= µ such that αn

2
Σn
j=1

((d(ω,Kj)+1)k)
is maximal.

Obviously, αn

2
Σn
j=1

((d(ω,Kj)+1)k)
is maximal if and only if

Σnj=1((d(ω,Kj) + 1)k) is minimal, and Σnj=1((d(ω,Kj) +

1)k) is minimal if and only if the weighted sum of Ham-
ming distances of ω to every base from the profile E =

〈K1, . . . ,Kn〉 is minimal. This shows that every ∆d,Σk

is
a MLE for P .
Finally, it is well-known [Konieczny and Pino Pérez,
2002b] that for a sufficiently large k whatever the
pseudo-distance d over interpretations and the profile
E = 〈K1, . . . ,Kn〉, two worlds ω and ω′ are such that∑n
i=1 d(ω,Ki)

k ≤
∑n
i=1 d(ω′,Ki)

k if and only if the
leximax aggregation of the values d(ω,K1), . . . , d(ω,Kn)
is less than or equal to the leximax aggregation of the
values d(ω′,K1), . . . , d(ω′,Kn) w.r.t. the lexicographic
ordering. Hence an interpretation ω minimizing the leximax
aggregation of the values d(ω,K1), . . . , d(ω,Kn) w.r.t.
the lexicographic ordering maximizes the probability
Πn
j=1

α

2(d(ω,Kj)+1)k
when k is sufficiently large. Accordingly,

the merging operator ∆d,leximax is also a MLE for P . 2

Proposition 4 shows that many distance-based merging op-
erators ∆ (namely those for which the aggregation function
is one of the Σk or leximax ) are rationalizable in the sense
that there exists a noise model P such that ∆ is a MLE for P .

The fact that a merging operator can be rationalized as a
MLE (i.e., showing that there exists a noise model P such
that the operator is a MLE for P ) is a valuable property of the
operator when one is interested in making the best possible
guess about ω?. Indeed, as already discussed in [Everaere
et al., 2010a], merging a profile of belief bases is a useful
operation when one wants to synthesize the information given
in the profile, i.e., to characterize a belief base which best
represents the beliefs of the input profile (the synthesis view
of belief merging), or when one wants to best approximate the
true state of the world from the information give in the profile
(the epistemic view of belief merging). In the second case,
rationalizable merging operators must clearly be preferred to
non-rationalizable ones. The rationalization property can thus
be viewed as an interesting criterion for helping to choose a
merging operator that is suited to the epistemic purpose.

In some situations, more information about the noise
model P are available, and an interesting issue is then to de-
termine whether a merging operator that is a MLE for the
specific noise model P exists. This is a research question
that is somewhat converse to the one discussed in the previ-
ous paragraphs: instead of starting with a merging operator
∆ and looking for the existence of a noise model P such that
∆ is a MLE for P , one starts with a noise model P and looks
for a merging operator ∆ that is a MLE for P .We address this
issue in the rest of the paper. To be more precise, two sensi-
ble noise models are considered and merging operators that
are suited to them are identified.

5 The World Swap Noise
A plausible noise model is obtained by assuming that some
interpretations ω of Ω are misperceived (and thus misclas-
sified) by the agents: for an agent i, when ω = ω? (resp.
ω 6= ω?), it is considered as a counter-model (resp. a model)
of Ki. This noise model is parameterized by a (world) swap
probability p, which represents the chances of an interpreta-
tion to be considered as a model of the beliefs of an agent
while it is not the true state of the world. We make the (rea-
sonable) assumption that this probability of error is less than
1
2 , otherwise the noise would be too important. More for-
mally, the world swap noise model Pwsn is a mapping asso-
ciating with every consistent formula µ ∈ L, every interpre-
tation ω ∈ [µ], the joint probability distribution, noted Pwsnµ,ω ,
of the 2m×n Boolean random variables (ω′, i) defined as the
product of the distributions of the random variables (ω′, i)
when ω′ varies in Ω and i varies in I:

Definition 9 Let p ∈ [0, 1
2 ), the (world) swap probability is:

Pwsnµ,ω ((ω′, i)) =

{
0 if ω′ 6|= µ
p if ω′ |= µ and ω′ 6= ω,
1− p otherwise.

Stated otherwise, one considers here that every Boolean
random variable (ω, i) is associated with a Bernoulli distribu-
tion, so that the joint distribution Pwsnµ,ω for the 2m×n random
variables is a binomial distribution with parameters n and p.

We can easily check that the world swap noise model Pwsn
satisfies the independence and uniformity conditions. It turns
out that this noise is linked to a pseudo-distance between for-
mulae. The distance of two formulae is defined here as the
number of interpretations one have to add or to retrieve to
one of the two formulae to make it equivalent to the other for-
mula. We call it the swap distance dswap between formulae.

Definition 10 (swap distance) Let φ, φ′ be two formulae
from L. dswap(φ, φ′) = |{ω ∈ Ω | ω |= φ⊕ φ′}|.3

Example 1 Consider the formulae φ = a ∧ b, φ′ = a ∨ b,
φ′′ = ¬a where P = {a, b}. We have: dswap(φ, φ′) = 2,
dswap(φ, φ

′′) = 3, and dswap(φ
′, φ′′) = 3. According to

dswap, a ∧ b is thus closer to a ∨ b than to ¬a.

Proposition 5 dswap is a pseudo-distance between formulae.

3⊕ is the exclusive disjunction connective.
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When the world swap noise model Pwsn is considered, for
any model ω of the integrity constraint µ and any base K of
E, the largest dswap(K,ω), the less Pwsnµ,ω (K). As a conse-
quence:

Proposition 6 Let ω be any model of the integrity constraint
µ, φ be any formula having ω as its single model, and
let Ki, Kj be two belief bases of E. If dswap(Ki, φ) ≥
dswap(Kj , φ), then Pwsnµ,ω (Ki) ≤ Pwsnµ,ω (Kj).

On this ground, we can show that the drastic merging op-
erator ∆dD,Σ is a MLE for this noise:

Proposition 7 ∆dD,Σ is a MLE for Pwsn.

6 The Atom Swap Noise
Another interesting noise is the atom swap noise P v , obtained
by considering that the observed values of variables from P
may differ from their values in ω?. In such a case, the prob-
ability that an interpretation belongs to a base decreases with
the Hamming distance between this interpretation and ω?.
Such a noise model is suited for instance to scenarios where
the observed values of the variables come from noisy sensors.
P v is parameterized by a probability p < 1, that indicates

the probability that the truth value of any observed variable
v ∈ P differs from the actual one (i.e., its value in ω?). For-
mally the atom noise model P v is a mapping associating with
every consistent formula µ ∈ L, every interpretation ω ∈ [µ],
a joint probability distribution, noted P vµ,ω , of the 2m × n
Boolean random variables (ω′, i) defined as the product of the
distributions of the random variables (ω′, i) when ω′ varies in
Ω and i varies in I:

Definition 11 Let p ∈ (0, 1). The (atom) swap probability is

P vµ,ω((ω′, i)) =

{
0 if ω′ 6|= µ

pdH(ω,ω′)+1 otherwise.

So, with this noise model, the true state of the world ω?
appears in any belief base with a probability p, and any other
world has a smaller probability, which exact value depends
on its distance to ω?.

Clearly enough, P v satisfies the independence condi-
tion (by definition) and the uniformity condition (since
P vµ,ω((ω′, i)) does not depend on i).

Let us illustrate the behavior of this noise model on an ex-
ample, with three variables (m = 3) and a profile for n = 5
agents.

Example 2 Suppose that the true state of the world ω? is
ω? = 001, with a swap noise P v such that p = 30%.
For 5 agents, a possible outcome given that noise is the
profile E = 〈K1,K2,K3,K4,K5〉 with [K1] = {011},
[K2] = {110, 001, 111, 101}, [K3] = {000, 001, 111},
[K4] = {000, 110, 001}, [K5] = {001, 111}. In this case,
the resulting merged base with ∆dH ,Σ from this profile is
[∆dH ,Σ(E)] = {001}.
Proposition 8 ∆dH ,Σ is a MLE for P v .

Proof: Let w be any interpretation. Let dH,Σ(w, E) de-
note dH(w,K1) + . . . + dH(w,Kn), where dH(w,Ki) =

minω∈Ki dH(w, ω). Let ωw
i be a model of Ki such that

dH(w, ωw
i ) = dH(w,Ki).

We have dH,Σ(w, E) = dH(w, ωw
1 ) + . . .+ dH(w, ωw

n).
Now, by definition of the atom swap noise, the prob-
ability that ωw

i is a model of Ki given the interpreta-
tion w is P vµ,w((ωw

i , i)) = pdH(w,ωw
i )+1. In addition

P ((ωw
1 , 1) ∩ . . . ∩ (ωw

n , n)) = pdH(w,ωw
1 )+1 × . . . ×

pdH(w,ωw
n)+1 since the atom swap noise satisfies indepen-

dence. Furthermore pdH(w,ωw
1 )+1 × . . . × pdH(w,ωw

n)+1 =
pn × pdH(w,ωw

1 )+...+dH(w,ωw
n) = pn × pdH,Σ(w,E).

We want to prove that ∆dH ,Σ is a MLE for P v , which means
that [∆dH ,Σ

µ (E)] = argmaxωPµ,ω(E). This is a direct con-
sequence of the following equivalences:
w ∈ argmaxωPµ,ω(E)⇔ ∀w′ |= µ, Pµ,w(E) ≥ Pµ,w′(E)}
⇔ ∀w′ |= µ, pdH(w,ωw

1 )+...+dH(w,ωv
n) ≥
pdH(w′,ωw′

1 )+...+dH(w′,ωw′
n )

⇔ ∀w′ |= µ, dH(w, ωw
1 ) + . . .+ dH(w, ωw

n)

≤ dH(w′, ωw′

1 ) + . . .+ dH(w′, ωw′

n )

⇔ ∀w′ |= µ, dH,Σ(w, E) ≤ dH,Σ(w′, E)

⇔ w |= ∆dH ,Σ
µ (E). 2

7 Experimental Results
In this section we study how the merging operators identi-
fied as maximum likelihood estimators for the world swap
noise and for the atom swap noise are efficient noise can-
cellers in practice. This requires to evaluate the number of
agents needed for getting a merged base equals to the true
state of the world with high probability. To this end, we per-
form some experiments. We report hereafter the obtained re-
sults for the world swap noise and the atom swap noise.

In our experiments, the true state of the world ω? has been
generated by considering every variable v from P in an iter-
ative way, assigning v to 1 with probability 1

2 . We did not
assume any integrity constraint to be fulfilled (i.e., µ is sup-
posed to be a valid formula). Then, for several values of the
parameter p, the noise model Pwsn (resp. P v) has been ap-
plied to ω? in order to generate 1000 profiles E consisting of
n bases for increasing values of n.

Each resulting profile has then been merged using ∆dD,Σ

for the world swap noise and using ∆dH ,Σ for the atom swap
noise. A success has been obtained whenever [∆dD,Σ(E)] =
{ω?} for the world swap noise and [∆dH ,Σ(E)] = {ω?} for
the atom swap noise. For each value of n, the success rate
was defined as the percentage of profiles for which a success
has been obtained.

Figure 1 shows some of the results obtained for the world
swap noise and the atom swap noise, for several values of p
when m = 10. Though considering 10 propositional vari-
ables may look not that high, one must keep in mind that 2m

possible worlds exist since no integrity constraint is consid-
ered, so that the task is to identify a single world in a set of
1024 worlds. To interpret the results correctly, one must re-
mind that the noise increases with p when the world swap
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(a) World swap noise

(b) Atom swap noise

Figure 1: Success rate for several values of p, with m = 10.

noise is considered, while it decreases with p when the atom
swap noise is considered.

Our experimental results confirm the ability of the merg-
ing operators ∆dD,Σ and ∆dH ,Σ to “cancel” their respective
noises. It is interesting to note that when the noise level is
low (p = 30% for the world swap noise and p = 60% for the
atom swap noise), as few as 30 bases are enough for being
nearly sure (> 90%) to identify the true world. One can ob-
serve that for the world swap noise, the number of agents to
be considered for getting with high probability a merged base
having the true state of the world as its sole model remains
quite small, even when the noise level is high. The empiri-
cal results also show that the noise cancellation task requires
less effort (i.e., less agents) when dealing with the atom swap
noise than when dealing with the world swap noise.

Finally, let us note that similar results have been obtained
for the other values of m considered in our experiments (we
let m vary from 2 to 15; the shapes of the resulting curves are
close to those of the curves given in Figure 1, the number of
agents required for getting a success increasing with m).

8 Related Work
This work is related to the rationalization of voting rules as
maximum likelihood estimators, as discussed in [Conitzer

and Sandholm, 2005; Young, 1995; Xia et al., 2010; Conitzer,
2014; Pivato, 2012]. Such an interpretation of voting rules
requires to suppose that some candidates are better than oth-
ers, in an absolute/objective sense, and that the agent’s pref-
erences are noisy estimates of the “absolute” agents’ ranking.
The objective of voting is then to determine this best ranking
from the agents’ votes.

This work has also connections with the truth tracking
problem [Bovens and Rabinowicz, 2006; Pigozzi and Hart-
mann, 2007], that has been studied for belief merging in [Ev-
eraere et al., 2010a]. This problem consists in determining,
when the agents are reliable enough, whether the true state
of the world ω? can be identified in the limit (i.e., when the
number of agents participating in the merging process tends
to infinity) as the unique model of the corresponding merged
base. In [Everaere et al., 2010a], an extension of Condorcet’s
jury theorem to belief merging has been pointed out, giving a
positive answer to the issue under some standard assumptions
about the independence and the reliability of the agents.

The maximum likelihood estimator question differs from
the truth tracking one in several aspects. In the truth tracking
case, ω? is known and every agent is more or less reliable. In
the maximum likelihood case, ω? is not known, agents have
a noisy perception of it, and the corresponding noise model
is more or less known. Furthermore, the observed profile is
fixed (so the number of agents does not tend to infinity). So,
while the truth tracking problem and the MLE one are related
to the issue of providing an epistemic justification for belief
merging operators, they offer complementary views.

9 Conclusion
In this work we carried out an evaluation of belief merging
operators as maximum likelihood estimators. We have shown
close connections between noise models and postulates for IC
merging. Especially, we have proved that a merging operator
that is a MLE for an independent and uniform noise model
has to satisfy most IC merging postulates.We have also shown
that all distance-base merging operators based on the Σk ag-
gregation functions are MLEs for some noise. We have stud-
ied two specific, yet sensible noise models: the world swap
noise and the atom swap noise. We have shown that some
well-studied distance-based merging operators are MLEs for
those noise models. Finally, we have reported results from ex-
periments showing that finding the true state of the world is
feasible in practice for each of the two specific noises. Based
on those results, our work provides a new justification for IC
merging operators, of epistemic nature.

This work calls for several perspectives for further re-
search. One of them consists in identifying some additional
pairs (P,∆) where ∆ is a MLE for the noise model P . In ap-
plication scenarios where merging beliefs is required, when-
ever the noise model can be guessed, a catalog of such pairs
would be a useful methodological tool for deciding which be-
lief merging operator to choose.
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