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Abstract
Computing a consensus is a key task in various
AI areas, ranging from belief fusion, social choice,
negotiation, etc. In this work, we define consen-
sus operators as functions that deliver parts of the
set-theoretical union of the information sources (in
propositional logic) to be reconciled, such that no
source is logically contradicted. We also investi-
gate different notions of maximality related to these
consensuses. From a computational point of view,
we propose a generic problem transformation that
leads to a method that proves experimentally effi-
cient very often, even for large conflicting sources
to be reconciled.

1 Introduction
A ubiquitous concept in AI concerns forms of consensus
among several agents (e.g., [Ephrati and Rosenschein, 1996;
Ren et al., 2005]), belief sources (e.g., [Jøsang, 2002; Gauwin
et al., 2007]), and more generally several information or
knowledge1 sources, hereafter all simply called sources. Con-
sensuses can take different forms. In this paper, they are in-
vestigated in a logic-based context and defined as sets of for-
mulas that do not contradict any of the sources to be recon-
ciled, each of the sources being itself a set of formulas. In this
respect, we adopt a liberal approach to the nature of a consen-
sus in the sense that a consensus is not necessary only made
of some of the information present in every source but can
contain some information not opposed by any source, where
opposition is translated by a logical conflict. However, this
liberal attitude is limited in this study in the sense that a con-
sensus can only be a subset of all the formulas in the sources.

For example, such a form of consensus can prove helpful in
a negotiation context since it allows a group of agents to agree
on a common position that is not conflicting with the position
of any member of the group. For instance, a coalition of polit-
ical groups that tries to define and agree on a shared political
agenda can find such consensuses useful since they can be ad-
vocated and defended by each group. Indeed, each group can
explain that the contents of the consensus does not conflict

1In this paper, no difference is made between knowledge, belief
and information.

with its own specific positions. Obviously, some consensuses
are more appealing than other ones and various families of
preference criteria can be used to select consensuses.

Technically, we consider consensus operators in Boolean
logic that thus deliver subsets � of the set-theoretical union
of n information sources [�1, . . . ,�n] such that � does not
logically conflict with any �i. We require each source to be a
satisfiable set of formulas: an unsatisfiable source would lead
to the absence of consensus since no set of formulas is satis-
fiable together with an unsatisfiable set of formulas. Of nat-
ural interest are consensuses that are maximal in some sense.
The simplest maximal consensus operators deliver (cardinal-
ity or set-inclusion) maximal subsets of formulas that obey
the required absence of conflict with each of the sources. In-
terestingly, they differ from the well-studied family of max-
imal consistent merging operators (e.g., [Baral et al., 1991;
Konieczny, 2000]), which can contradict some of the sources
by focusing on (preferred) maximal satisfiable subsets ofSn

i=1 �i. Actually, we investigate a family of consensus op-
erators that implement a stepwise prioritization of various
forms of preference between the sources to be reconciled
and/or their contents.

Noticeably, a generic method to compute one consensus
according to these operators is presented and is shown ex-
perimentally efficient for many large difficult instances. The
approach circumvents the difficulty of having to check the
satisfiability of the candidate consensus with each source sep-
arately while providing at the same time the guarantee that the
consensus satisfies all the maximality and preference require-
ments.

2 Logical Preliminaries and Conventions
Let L be the standard language of Boolean logic. Boolean
variables are noted a, b, . . . The conjunctive, disjunctive,
negation, material implication and equivalence connectives
are noted ^,_,¬,!,⌘, respectively. A literal is a possibly
negated variable and a clause is a formula that consists of
a disjunction of literals. Formulas and sets of formulas are
noted ↵,�, . . . and �,�, . . . , respectively. Profiles are noted
S, V, . . . The cardinality of a set � is noted #�. Logically
equivalent formulas are considered indistinguishable. A set
of formulas is satisfiable (also said consistent) iff there exists
a truth value assignment of every variable such that all for-
mulas in the set are true according to usual compositional
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rules. ` denotes the deduction relation and > a tautology.
A pre-ordering, noted �, is a binary relation that is both re-
flexive and transitive: we often use its induced � strict rela-
tion. From now on, the profile S = [�1, . . . ,�n] represents
n sources �i where each �i ⇢ L is satisfiable.

3 Basic Forms of Consensus
A consensus for S is defined as a subset of

Sn
i=1 �i that does

not logically contradict any �i. Formally,
Definition 1. A set � ⇢ L is a consensus for S iff

� ✓
Sn

i=1 �i and 8 �i 2 S : � [ �i is satisfiable.

Note that by definition any consensus is satisfiable. Of
wide-scope interest are consensuses that are maximal either
with respect to cardinality or set inclusion.
Definition 2. A consensus � for S is max✓ iff 8 ⇥ s.t. � ⇢
⇥ ✓

Sn
i=1 �i, 9 �i 2 S s.t. ⇥ [ �i is unsatisfiable.

A consensus � for S is max# iff 8 ⇥ s.t. ⇥ ✓
Sn

i=1 �i and

#⇥ > #�, 9 �i 2 S s.t. ⇥ [ �i is unsatisfiable.

Clearly, any max# consensus is a max✓ consensus whereas
the converse does not hold. Depending on the context, max

is used as a shortcut for either max# or max✓, or for any of
them. When

Sn
i=1 �i is satisfiable, this latter set is the unique

max consensus for S . For any S , there always exists at least
one max consensus, which can be the empty set. Notice also
that none of these forms of maximality (and none of the other
ones that will be investigated later in the paper) necessarily
delivers one unique consensus for S .

Interestingly, max consensuses can differ from maximal
satisfiable subsets of

Sn
i=1 �i noted maxcons, extracted by

belief merging operators (see e.g. [Konieczny, 2000]). In-
deed, maxcons are not required to be satisfiable with each
individual �i. Accordingly, maxcons are not necessarily max

consensuses for S and conversely, although any consensus is
included in a maxcons. Assume for example that t, w, u and p
are Boolean variables standing respectively for increase taxa-

tion on pollution, increase wages, reduce unemployment and
reduce pollution. Let S be the programs of three political
groups that negotiate to form a coalition: S = {�1,�2,�3}
with �1 = {t,¬w}, �2 = {w ^ (t ! ¬u)} and �3 =
{u ^ (¬w ! ¬u), t ! p}. The unique max✓ consensus for
S is � = {t, t ! p}, namely, increase taxation on pollu-

tion and this will reduce pollution. If the group adopts this
consensus then it agrees that t and p could hold. Notice that
none of the members of the coalition can deduce p based on
its own �: p is a kind of implicit group information produced
by the consensus. Notice that one of the maxcons of S is
⇥ = {w ^ (t ! ¬u), u ^ (¬w ! ¬u), t ! p}: ⇥ does not
entail t and ⇥ is not satisfiable together with �1.

4 Maximal Number of Agreed Concepts
The knowledge represented in S can be such that each
Boolean variable translates one concept. We might prefer a
consensus that expresses an agreement on a maximum num-
ber of concepts mentioned in S and thus on a maximum num-
ber of variables. For example, in a political negotiation, we
might prefer a consensus that translates an agreement on de-

crease taxation, strengthen foreign policy and preserve social

security than another consensus with an agreement on only
two of these concepts.

Different notions of agreement on a Boolean variable v
(say, decrease taxation) in S can be defined. For example, v
(or, ¬v) might be required to be inferable from each source; a
consensus that translates this agreement should then contain
the formula v (resp., ¬v), or, at least, sufficient information
to derive it.

In this paper, we adopt a wider-scope form of agreement on
a variable v that does not require v (resp., ¬v) to be derivable
in every source, or even simply in one of them. We require
any consensus that translates an agreement on the variable v
to gather what is directly expressed in each source about v,
namely all the formulas from S that contain at least one oc-
currence of the variable v. Notice that, as a consequence,
when at least one source contains that (resp., negated) vari-
able as a formula, any consensus that translates an agreement
on v must contain the formula v (resp., ¬v). The intuition for
this approach to agreement on a variable is best understood in
the clausal setting, which will be our practical computational
framework. Indeed, a clause that contains a literal v as a dis-
junct can be rewritten in implicative format, or rule, with v
as right-hand side and with the left-hand side stating condi-
tions for v to hold. Accordingly, gathering inside a consensus
all clauses that contain v gathers all conditions to derive v
that are directly expressed. Obviously, each source might or
might not contain its own ways to derive these conditions for
v and the different sources might not agree on that.

A consensus � that agrees on a maximum number of
variables, interpreted as concepts, will thus be a subset ofSn

i=1 �i that is satisfiable with each �i and that contains oc-
currences of a maximum number of variables that do not oc-
cur in S \

Sn
i=1 �i. Formally, let ⇥ and  be two sets of

formulas, we note #var(⇥, ) the number of different vari-
ables occurring in ⇥ that are not occurring at all in  .
Definition 3. A consensus � for S is max#ac (”ac” meaning

agreed concepts) iff for any consensus �0 for S s.t. � 6= �0,
we have that #var(�0,

Sn
i=1 �i\�0)#var(�,

Sn
i=1 �i\�).

Notice that there may exist consensuses for S that contain
occurrences of more variables than max#ac consensuses for
S do.

5 More Maximality Preference Criteria
We now examine other maximality-based preference
paradigms that can lead to the selection of different or even
smaller subsets of consensuses for S . We will allow for their
stepwise combinations: this will yield possible additional
progressive pruning of the set of of preferred consensuses
into a set of better preferred consensuses.

First, let us give an example of stepwise combination of
criteria: the max#ac concept can be selected and adapted to
follow or precede the max✓ (or the max#) paradigm. We
can for instance first select the max#ac consensuses for S
and adapt max# in such a way that it only refines this lat-
ter set of consensuses. Clearly this translates a sequencing
and prioritization of preferences: 1. a preference for con-
sensuses that agree on a maximal number of concepts, and
then 2. a preference for the consensuses (among these latter
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ones) that contain a maximum number of formulas from the
sources. For short, this ordered combination of operations is
noted max#(max#ac(S)).

Let us now examine other possible forms of preferences
among sources. For example, one might prefer a consensus
� that totally satisfies a maximum number of sources when a
source �i is defined as totally satisfied by � iff �i ✓ �.
Definition 4. A consensus � for S totally satisfies a source

�i iff �i ✓ �. � is max#100%�i
iff @�0 s.t. �0 is a consensus

for S that totally satisfies a strictly greater number of sources

of S than � does.

The consensuses defined so far handle all sources (resp.,
all formulas in the sources) with no specific priority or pref-
erence among them. There has been a tremendous amount
of work in AI about preferred maximal satisfiable subsets of
formulas (see e.g., [Martinez et al., 2013; Benferhat et al.,
1998b]) when such priorities or preferences are to be taken
into account. Adapting this to consensuses requires the ad-
ditional condition of consistency with each source to be han-
dled. Let us just give two examples.

A simple criterion discriminates among formulas by means
of a pre-ordering between all formulas of

Sn
i=1 �i.

Definition 5. Assume that a preference pre-ordering � ap-

plies to all formulas in

Sn
i=1 �i in such a way that ↵ � �

whenever ↵ is preferred over �.

A consensus � for S is a max� consensus for S iff no consen-

sus for S contains a formula ↵ such that ↵ � � 8� 2 �.

A second form of preference adapts a well-known way to
handle inconsistencies in stratified belief bases ([Benferhat et

al., 1998a; 1998b]) to the consensuses extraction problem:
it gives each source a specific weight and states an ordering
between these weights. Formally, this yields:
Definition 6. Assume that all �i in [�1, . . . ,�n] are under a

total ordering < such that �i is preferred over �j whenever

i < j. A consensus � for S is a max[�1<···<�n] consensus for

S iff for every consensus �0 for S , @j 2 [1 . . . n] s.t. 8i < j

we have that (� \
Si

k=1 �k) = (�0 \
Si

k=1 �k) and (� \
�j) ⇢ (�0 \ �j).

Importantly, various forms of integrity constraints can be
easily mixed up with the consensus concept: for instance,
they can be formulas that can be external or not to S and that
must belong to any consensus, or simply be satisfiable with
any consensus. They can also be variables that represent con-
cepts for which an agreement must be reached in the sense,
for example, that any formula in S containing any occurrence
of these variables must belong to any consensus. In the same
vein, a pre-ordering among variables could express a prefer-
ence ranking among variables on which preferred consensus
should agree on.

6 More on max Consensuses vs. maxcons

Let us come back to the difference between max✓ (and max#)
consensuses and maxcons. As every consensus is included in
a maxcons, one natural question is whether or not a same set
of consequences can be drawn from the intersection of either
all max✓ (resp., max#) consensuses or all maxcons. Interest-
ingly, the additional constraint requiring consistency with all

sources makes both inference relations differ. Indeed, skep-
tical inference from max consensuses and maxcons differs in
the general case. Assume X is a profile. The set of skeptical
consequences from X , noted SKI(X ), is defined as follows.
Definition 7. SKI(X ) = {' s.t. 8 ⇥ 2 X : ⇥ ` '}

Assume c 2 {✓,#} in the following. Let us note Cc
S (resp.,

Mc
S ) the set of all maxc consensuses (resp., maxconsc) for S .

Proposition 1. SKI(Mc
S) *SKI(Cc

S), SKI(Cc
S) *SKI(Mc

S)

maxcons have been used to define merging operators [Baral
et al., 1991; Konieczny, 2000], so we can check which merg-
ing properties [Konieczny, 2000] are satisfied by max consen-
suses. This requires to modify slightly consensuses for S to
include an additional non-empty set of formulas µ to play the
role of integrity constraints; let us note C✓S,µ the correspond-
ing operator:
Definition 8. A set � ⇢ L is a consensus for S under the

constraints µ iff µ ✓ � ✓
Sn

i=1 �i[µ and 8 �i 2 S : �[�i

is satisfiable.

As consensuses are syntax-based and as their aim is distinct
from the goal of merging operators, it is not a surprise that
few properties from those operators are satisfied by C✓S,µ.

Proposition 2. C✓S,µ satisties (IC0) and (IC2). It does not

satisfy (IC1), (IC3), (IC4), (IC5), (IC6), (IC7), (IC8).

Finally, about the relationship between the different no-
tions of consensus: it is easy to show that using preferences
allows more inferences to be drawn.
Proposition 3. SKI(C✓S ) ✓ SKI(C#

S ), SKI(C✓S ) ✓ SKI(C#ac
S )

Let � be any preference criterion: SKI(C✓S ) ✓ SKI(C�S ).

7 Computing one Preferred Consensus
We now present a generic computational framework for the
extraction of consensuses for S according to any of the above
preference paradigms and their possible stepwise combina-
tions. As we make use of a single-type optimization process
that maximizes the size of consensuses, we do not mix the
max✓ with other preference criteria. Note that max# consen-
sus is a max✓ consensus; one max✓ consensus can thus be
computed by our technique, too.

We assume that every formula in S is a clause and we op-
portunely take advantage of the best advances of SAT-related
technologies. This restriction is not an invincible limitation
on the scope of our approach since every formula can be
translated into a set of clauses while preserving satisfiabil-
ity: each such set of clauses (vs. each clause) should then
be treated as an elementary entity with respect to the vari-
ous preference criteria and the algorithms that compute one
consensus must be adapted `a la group-CNF (see e.g., [Belov
and Marques-Silva, 2012; Nadel, 2010] for group-CNF tech-
niques).

Although consensuses and satisfiable subsets are not iden-
tical concepts, the extraction of max consensuses can benefit
from techniques to compute maxcons, at least to some extent.
But, first, let us stress that computing one maxcons of a set
of clauses is intractable in the worst case and so is the extrac-
tion of one max consensus. The extraction of one maxcons✓
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belongs to the FPNP [wit, log] class, i.e., the set of function
problems that can be computed in polynomial time by exe-
cuting a logarithmic number of calls to an NP oracle that re-
turns a witness for the positive outcome [Marques-Silva and
Janota, 2014]. The extraction of one maxcons# belongs to
the Opt-P class of problems [Papadimitriou and Yannakakis,
1991], i.e., the class of functions computable by taking the
maximum of the output values over all accepting paths of an
NP machine. In the worst case, the number of maxcons and
of max consensuses for a profile is exponential with respect
to the number of clauses in the profile. In this last respect,
we propose a technique that will deliver one preferred con-
sensus, only. For applications involving a lot of variables and
formulas, extracting one such consensus can be sufficient to
agree on a common position. A tentative enumeration of all
preferred consensuses would require a form of iteration of the
process and by augmenting the problem with a constraint stat-
ing that previously extracted consensuses should not be ex-
hibited again (see for example [Liffiton and Sakallah, 2008]
for this kind of enumeration technique).

Interestingly, recent techniques to compute one maxcons✓
or one maxcons# prove actually efficient for many prob-
lem instances: see for example [Grégoire et al., 2014;
Marques-Silva et al., 2013; Mencı́a et al., 2015]. This opens
the way for computing one consensus even for very large
sources. Consensuses differ from maxcons by an additional
constraint that requires satisfiability with each one of the n
sources. Since the sources can be mutually conflicting, this
consistency constraint cannot be replaced by one satisfiabil-
ity check with the conjunction (i.e., set-theoretical union) of
these sources. It is also crucial to note that starting withS

n

i=1 �i

and pruning this set in a progressive and minimal
manner so that it becomes satisfiable with more and more
sources until it becomes satisfiable with all sources, does not
necessarily deliver one max# (or max✓) satisfiable subset. As
emphasized in [Besnard et al., 2015], this process would need
to be repeated for all possible orderings of the sources, and all
possible orderings of the clauses within each source, in order
to guarantee maximality: such an iterated process leads to a
combinatorial blow up since these numbers of orderings are
exponential. In [Besnard et al., 2015], the authors have in-
troduced a so-called transformational approach to compute
one maximal set of clauses that does not contradict several
given external contexts. Despite the increase of the size of the
problem representation, this approach is currently the most
efficient and scalable one for difficult and large instances.

max# First, we thus adapt this transformational approach in
order to compute one max# consensus. Interestingly, we
also generalize it so that it can extract one consensus un-
der any stepwise combination of the preference paradigms
presented above. The approach relies on the transforma-
tion of the search for one consensus into one instance of the
Weighted Partial MaxSAT problem. This optimization prob-
lem requires the set of clauses to be partitioned into two sub-
sets: the set of hard clauses (which must be satisfied in any
solution) and the set of soft clauses (which are not necessarily
satisfied in solutions). It searches one truth value assignment
that satisfies all hard clauses and a maximum number of soft

clauses. Actually, the soft clauses are given weights. Any
solution must be such that the sum of the weights of the fal-
sified clauses is minimal. [Besnard et al., 2015] made use of
Partial MaxSAT only, missing the possibility to handle pref-
erences among variables, clauses or sources, and the stepwise
combinations of those preferences. Actually, we use a version
of Weighted Partial Max-SAT that does not only deliver the
maximal number of soft clauses satisfiable together with the
hard clauses, but also the set of these satisfied clauses itself.

The adaptation of [Besnard et al., 2015] to the extraction
of one max# consensus for S is as follows. Algorithm Trans-

form1 illustrates the construction of the soft and hard clauses
of the instance of the Weighted Partial MaxSAT problem.

Transform1(S) for max#

input : S = [�1, . . . ,�n]: a profile of n satisfiable sets of Boolean clauses ;
Assume that the clauses of �i are noted �1i , �

2
i , . . . ;

output: �Hard: a set of hard clauses, �Soft: a set of soft clauses

�Hard  ;; �Soft  ;;1
⌃ 

S
�i2S{¬✏ji _ �ji s.t. �ji 2 �i and where ✏ji are new fresh variables};2

�Soft  {✏ji}i,j ;3
foreach �i 2 S do4

�i  ⌃ [ �i;5
Rename all variables in �i (except the ✏ji ) with fresh new ones;6
�Hard  �Hard [ �i;7

return (�Hard, �Soft);8

We need to find some subset of
S

n

i=1 �i

that is satisfiable
with each �

j

. Each restriction of this satisfiability constraint
to one �

j

is considered as a subproblem; the subproblems will
be linked together to form one single optimization problem.
Each clause �

j

i

from any �
i

is augmented with an additional
disjunct ¬✏j

i

using a new fresh variable (line 2): this yields a
set ⌃. These ✏

j

i

variables will be used to link the various sub-
problems. Each subproblem is created by unioning ⌃ with
one �

i

and by renaming all variables except the ✏

j

i

(l. 4-7).
All together, the subproblems form the set of hard clauses;
these ones are all simultaneously satisfiable (just assign all ✏j

i

to true). The set of soft clauses is made of all unit clauses ✏

j

i

(l. 3). If a same weight is assigned to every soft clause, this in-
stance of Weighted Partial Max-SAT is actually an instance of
Partial Max-SAT, which searches one truth-value assignment
such that all hard clauses and one maximal number of clauses
✏

j

i

are satisfied. Accordingly, all clauses �ji corresponding to
the satisfied ✏

j

i

form one max# consensus for S .
Even more linking variables and the use of weights The
challenge is to keep one single optimization process while
coping with other preferences and their combinations. To this
end, we take advantage of both the weights on soft clauses
and more ✏ji -like variables to link sub-problems. The weight,
noted weight(↵), given to a soft clause ↵ can be used to en-
force a stepwise prioritization between clauses or sources in
the optimization process. In the previous representation, the
set of the soft clauses is {✏j

i

}
i,j

and when one ✏

j

i

is satisfied
in the Weighted Partial MaxSAT solution, this means that the
clause �

j

i

belongs to the computed consensus. To enforce the
higher priority of ✏

j

i

over a set ⇥ of other ✏

l

k

clauses in any
solution, weight(✏j

i

) needs to be strictly greater than the total
sum of the weights given to the clauses of ⇥.
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max#100%�i
We augment the sets of hard and soft clauses

delivered by Transform1 as follows. A new fresh variable
'i is associated to each �i. The set of soft clauses is
augmented with each 'i unit clause, whose weight is such
that weight('

i

) >

P
n

j=i+1 weight('
j

) and weight('
i

) >P
k,l

weight(✏l
k

). The set of hard clauses is augmented with
{¬'

i

_ ✏

j

i

}
i,j

. Hence, 'i with the biggest weights will be ten-
tatively satisfied first. When 'i is satisfied, ✏j

i

is also satisfied
for all j and so are all clauses of �i.
max#ac For each variable x occurring in S , a new soft clause
x0 is created where x0 is a new fresh variable. Then, ad-
ditional clauses are created and inserted within the set of
hard clauses for each x0: they are the clausal form of x

0 !
(✏m

l

^ · · · ^ ✏

q

p

) where the ✏

j

i

are the variables corresponding
to all the clauses in S that contain an occurrence of a literal
containing x. Accordingly, Weighted Partial Max-SAT will
maximize the number of satisfied clauses x0: corresponding
to each satisfied x0, all the occurrences of clauses contain-
ing x or ¬x will be satisfied in the solution since ✏ji is itself
satisfied. Again, weights need to be assigned to rank-order
the priorities between the soft clauses to ensure the intended
order between the selected criteria.
max[�1<···<�n] The sets of soft and hard clauses are
given by the Transform procedures above, with the fol-
lowing constraints on ✏

j

i

(which weight must be bigger
than any other types of soft clauses): 8i8j weight(✏j

i

) >P
(weight(✏m

l

) 8�m
l

2 �
l

s.t. l > i).
max� Weights are assigned to soft clauses in a similar way
to reflect a pre-ordering among clauses.
max#(max[�1<···<�n]) and max�(max#) As other exam-
ples of implementing sequential combinations of preferences,
the ¬✏j

i

_ �

j

i

hard clauses are replaced by ¬✏j
i

_¬cj
i

_ �

j

i

where
c

j

i

are fresh variables. The set of soft clauses is augmented
with the set {cj

i

}
i,j

. Weights are assigned according to the
order between the criteria. Transform2 describes this process
(weights are not represented).

Transform2(S) for max#(max[�1<···<�n]) and max�(max#)

�Hard  ;; �Soft  ;;1
⌃ 

S
�i2S{¬✏ji _ ¬cji _ �ji s.t. �ji 2 �i (✏

j
i and cji are new variables)};2

�Soft  {✏ji}i,j [ {cji}i,j ;3
foreach �i 2 S do4

�i  ⌃ [ �i;5
Rename all variables in �i (except the ✏ji and the cji ) with fresh new ones;6
�Hard  �Hard [ �i;7

return (�Hard, �Soft);8

Interestingly, all these transformations can be combined.
We have implemented a platform, called Consensus, which
allows the computation of sequential combinations of pref-
erences and criteria from this study. One practical limit
is the maximal possible value for weight. Indeed, when
the soft clauses are for example ranked in l different lev-
els with m clauses per level and when strictly positive in-
tegers are considered, the maximum weight assigned to a
clause is O(ml�1), which must not exceed the 264 maximum
weight permitted by current best performing Weighted Partial
MaxSAT solvers.

8 Experimental Study

All experimentations have been conducted on Intel Xeon E5-
2643 (3.30GHz) processors with 8Gb RAM on Linux Cen-
tOS. We made used of MaxHS, the Weighted Partial Max-
SAT solver from www.maxhs.org. We have implemented all
the other algorithms in C++ on top of Glucose (www.labri.fr/
perso/lsimon/glucose). Our software, as well as the data and
results of these experimentations are available at www.cril.fr/
consensus. The profiles S were based on the 291 different un-
satisfiable (mostly real-world) instances from the 2011 MUS
competition www.satcompetition.org/2011, which focused on
the extraction of (set-inclusion) minimal unsatisfiable sub-
sets, in short MUSes. The search for MUSes and maxcons are
naturally related. Indeed, MUSes can be computed from max-

cons and conversely (see e.g. [Liffiton and Sakallah, 2005]).
Let us stress that these instances are really challenging: they
are formed of up to more than 15983000 clauses and 4426000
variables (457459 clauses using 139139 different variables,
on average): their maxcons# are often made of a few clauses,
only. Consensuses are thus necessarily not bigger than that.
Each instance was randomly split into n 2 [3, 5, 7, 10] same-
size (modulo n) �i to yield all the S . When preferences
that rank-order clauses were considered, 5 levels of prefer-
ence were used: clauses were assigned randomly inside these
levels so that each level contains a same number of clauses.
When n � 5 sources had to be rank-ordered, each source was
assigned to one of the 5 levels, randomly. For n < 5 sources,
we used n levels of preference between sources.

Consensus was run to transform each instance and ex-
tract one preferred consensus following max#, max#ac

,
max#100%�i

, max�, max[�1<···<�n], max#(max#ac

),
max[�1<···<�n](max#) and max#(max#ac

(max#100%�i
)),

as a significant panel of criteria and of their combinations.
Time-out was set to 900 seconds per consensus extraction.

Table 1 summarizes the average results for the extraction of
one preferred consensus per criterion and value of n. It sum-
marizes the 500+ Gb of detailed data results. For each cri-
terion or combination of criteria, it gives the number of suc-
cessful extractions, the average time in seconds to extract one
preferred consensus, the average numbers of clauses and vari-
ables in the transformed instance and the average number of
clauses in the extracted consensuses. When max#100%�i

was
involved, it then gives the number of totally satisfied sources
in the consensus. max#100%�i

was successful almost all the
times (e.g., for n = 3, a consensus was found for each of the
291 instances, except one; for n = 10, 266 instances were
solved). The drop of performance when n increases is clearly
due to the increasing number of satisfiability constraints with
each source in the transformed problem. Actually, increas-
ing n entails both an increase of size of the representation
of the transformed instance and additional satisfiability tests:
as our experimentations illustrate, this affects all the consid-
ered criteria. A similar drop of performance was noticed for
the max# criterion, which solved between 207 and 235 in-
stances, depending on n. Interestingly, the approach proved
somewhat less efficient for this latter criterion. One explana-
tion for this phenomenon is as follows: under max#100%�i

,
when some of the clauses of �i have been shown already un-
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n = 3 n = 5 n = 7 n = 10

1

#solved 235 223 210 207
time 96 109 119 150
#var 303643 329599 380110 460194
#cl 1325632 1855884 2386137 3181517
#cl

sol

7 2 2 2

2

#solved 117 116 107 102
time 255 229 238 235
#var 153553 139909 122367 158878
#cl 2069215 2599468 3129721 3925100
#cl

sol

20 40 16 26

3

#solved 290 285 279 266
time 24 49 77 124
#var 465177 534802 622374 707358
#cl 1590761 2121016 2651271 3446653
#cl

sol

167384 92083 65039 46159
#src

sol

2 2 2 2

4

#solved 137 135 134 133
time 57 68 67 71
#var 30731 37129 43290 52929
#cl 76711 98629 120547 153423
#cl

sol

3 2 2 2

5

#solved 232 134 140 135
time 100 67 71 64
#var 412784 36274 45688 53290
#cl 1855884 98629 128933 153423
#cl

sol

7 2 2 2

6

#solved 121 116 104 100
time 272 227 239 234
#var 159659 134720 130672 172960
#cl 2069215 2599468 3129721 3925100
#cl

sol

19 39 17 39

7

#solved 211 20 23 20
time 138 51 83 86
#var 254986 8706 12264 12752
#cl 1855884 23560 33337 36649
#cl

sol

8 2 2 2

8

#solved 60 43 38 35
time 246 166 176 152
#var 35809 23867 28892 41552
#cl 2334344 2864599 3394854 4190236
#cl

sol

2 2 2 2
#src

sol

2 2 2 2

Table 1: Experimental Results for 1: max# 2: max#ac

3:
max#100%�i

4: max�, 5: max[�1<···<�n] 6: max#(max#ac

) 7:
max[�1<···<�n](max#) and 8. max#(max#ac

(max#100%�i
)).

satisfied by the current truth assignment, the other clauses of
�i need not be examined under this assignment. This does
not apply under max#. Not surprisingly, max[�1<···<�n] and
max� gave quite similar results in terms of successful extrac-
tions: except for n = 3 where the difference is more signif-
icant. More precisely, max[�1<···<�n] has extracted a con-
sensus for 232 (n = 3) and 135 (n = 10) instances whereas
max� solved 137 and 133 instances for these values for n. On
the one hand, the better result obtained under max[�1<···<�n]
for n = 3 can be explained by the fact that the number of
clauses in S is then divided inside 3 strata whereas max� al-
ways classifies clauses inside 5 strata. Accordingly, since the
number of clauses per stratum is often huge, the maximum
possible value 264 for the weights permitted by the Weighted
Partial MaxSAT solver is more quickly reached under max�,
leading to a memory fault. On the one hand, the decrease

of performance with respect to the previously examined cri-
teria is also explained by the fact that additional constraints
of preference must be represented and taken into account for
each clause or source in S .

For max#ac, as the number of constraints is signifi-
cantly increased in the transformed instance, it does not
come as a surprise that, globally, the number of solved in-
stances is lower than all the above criteria (it ranges from
117 to 102, depending on n). Interestingly, the combina-
tion of max#(max#ac) allowed to solve almost the same
number of instances than max#ac alone (a difference of
at most 4 instances, only). This does neither come as
a surprise since the max# criterion does not require cop-
ing with additional clauses when it is considered together
with max#ac. max#(max#ac(max#100%�i

)) allowed to
solve between 60 and 35 instances, only. The combination
max[�1<···<�n](max#) allowed us to extract one consensus
for a somewhat smaller number of instances, only (except
for n = 3 for a reason already explained). These numbers
might appear low, but remember that we are addressing here
huge hard benchmarks allowing for very small -hard to find-
consensuses, only. These results show the viability of the ap-
proach and its scalability, at least provided that the number of
strata or preference levels that must be obeyed remains small.

9 Conclusion and Perspectives

The contribution of this paper is twofold. On the one hand,
we have proposed a logic-based concept of consensus that
does not merely amount to computing some shared informa-
tion. On the other hand, we have shown how this consensus
concept augmented with various preference paradigms can be
computed in practice. Noticeably, the approach circumvents
-at least to some extent- the computational blow-up due to the
investigation of all orders between formulas that is necessary
to guarantee maximality, and to the necessity to check satisfi-
ability with each source separately. Mainly, the whole task is
rewritten into one single optimization problem. Interestingly,
we have shown how to allow various preference criteria to be
combined and computed in this framework, too.

We envision various promising paths for further research.
First, group-CNF algorithms could be explored to extend the
computational approach from clauses to all formulas. The
practical handling of preferences that define a large number
of levels or strata for large sources remains an open problem.
Adapting the approach into an efficient multi-steps optimiza-
tion process to address this issue is a promising path worth
exploring. From an application perspective, consensuses can
play a role in various AI fields.

For instance, our approach could be exported to argumen-
tation frameworks. Caminada and Pigozzi [2011] consider
a notion of consensus between the positions of agents ex-
pressed by a labeling, given a common abstract argumenta-
tion. Since abstract argumentation can be encoded in propo-
sitional logic [Besnard and Doutre, 2004], it would be inter-
esting to check whether our specific approach to consensus
and its computational counterpart could open new perspec-
tives for such investigations about abstract argumentation.
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