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Abstract
Change in abstract argumentation frameworks
(AFs) is a very active topic. Especially, the prob-
lem of enforcing a set E of arguments, i.e., ensur-
ing that E is an extension (or a subset of an exten-
sion) of a given AF F , has received a particular at-
tention in the recent years. In this paper, we define
a new family of enforcement operators, for which
enforcement can be achieved by adding new argu-
ments (and attacks) to F (as in previous approaches
to enforcement), but also by questioning some at-
tacks (and non-attacks) of F . This family includes
previous enforcement operators, but also new ones
for which the success of the enforcement operation
is guaranteed. We show how the enforcement prob-
lem for the operators of the family can be modeled
as a pseudo-Boolean optimization problem. Inten-
sive experiments show that the method is practical
and that it scales up well.

1 Introduction
Dung’s seminal work on abstract argumentation [Dung,
1995] is the origin of a simple yet powerful setting to rep-
resent and reason about arguments. In this setting arguments
are associated with the vertices of a directed graph, called an
abstract argumentation framework (AF), and the correspond-
ing arcs encode attacks. Several acceptability semantics have
been defined in the objective of discriminating the arguments
which can be jointly accepted.

AFs are useful for modeling and solving many problems,
for instance to represent and reason about dialogs in a multi-
agent system. Whatever the problem under consideration, the
dynamics of AFs, i.e., how to make an AF evolve in light
of new information, is an important issue. As such it has
been addressed in many works in the recent years [Cayrol
et al., 2010; Bisquert et al., 2011; Booth et al., 2013; 2014;
Coste-Marquis et al., 2014a; Coste-Marquis et al., 2014b].

In this paper the focus is laid on the enforcement prob-
lem: the key question is to determine whether it is possible
to change an AF to ensure that a particular set of arguments
is an extension, or at least is included in an extension. This
problem has been studied in [Baumann and Brewka, 2010;
Baumann, 2012]. In these works, there are some constraints

on the allowed changes to the given AF: enforcing a set of ar-
guments is achieved via the addition of some new arguments
and some attacks between them and the arguments of AF;
however no change amongst the attacks of AF is permitted.

Such enforcement operators are useful in many scenarios,
especially when we consider an argumentative debate be-
tween several agents since the incoming of new arguments in
the debate typically questions the existing extensions, and an
agent can thus be interested in determining arguments to be
added in order to enforce the set of arguments she likes. How-
ever, in many other scenarios, no new arguments are available
for explaining the change, and one thus has to question the
attacks between the arguments [Coste-Marquis et al., 2014a;
Coste-Marquis et al., 2014b].

In this paper, we define a new family of enforcement oper-
ators, for which enforcement can be achieved by adding new
arguments (and attacks) to the given AF F (as in previous
approaches to enforcement), but also by questioning some at-
tacks (and non-attacks) of F . This family includes previous
enforcement operators as special cases, but also new ones for
which the success of the enforcement operation is guaranteed.
We show how the enforcement problem for the operators of
this family can be modeled and achieved as a pseudo-Boolean
optimization problem. Intensive experiments show that the
method is practical and that it scales up well.

The paper is organized as follows. Some background on
abstract argumentation is recalled in Section 2. Section 3
presents the definitions of the main families of enforcements
defined in previous works from Baumann and Brewka, points
out some of their limits in term of impossibility results and
then defines a new family of enforcement operators, called
argument-fixed enforcement, for which success is guaranteed.
In Section 4, we explain how to achieve enforcement opera-
tions by solving optimization problems. Before the conclud-
ing section, Section 5 discusses the method used to imple-
ment enforcement operators, and gives experimental results.

2 Background
The following definitions come from [Dung, 1995].

Definition 1. An abstract argumentation framework (AF) F
is a directed graph 〈A,R〉 where A is a set of atomic entities
called arguments and R ⊆ A×A is the attack relation.

The intuitive meaning of the attack relation is that
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(ai, aj) ∈ R if when ai is accepted by the agent, then aj
has to be rejected. A set of arguments E ⊆ A is said to attack
an argument ai if and only if ∃aj ∈ E such that (aj , ai) ∈ R.
An argument ai (respectively a set of arguments E) defends
the argument aj against ak such that (ak, aj) ∈ R if ai (re-
spectively E) attacks ak.

In order to characterize the arguments to be accepted, Dung
pointed out several acceptability semantics, which aim at
defining extensions: an extension is a set of arguments which
can be jointly accepted by the agent. Whatever the semantics
σ,Extσ(F ) denotes the set of σ-extensions of the AF F . The
various semantics reflect some properties which ought to be
satisfied by the extensions. For instance, E ⊆ A is a conflict-
free set in F = 〈A,R〉 if and only if there is no ai, aj ∈ E
such that (ai, aj) ∈ R. Then, E ⊆ A is a complete extension
of F = 〈A,R〉 if and only if E is conflict-free and E con-
taints each ak ∈ A which is defended by E. The grounded
extension is the minimal (with respect to ⊆) complete exten-
sion. E ⊆ A is a stable extension of F = 〈A,R〉 if and only
ifE is conflict-free andE attacks every argument ak ∈ A\E.

3 Extension Enforcement
Enforcing a set of arguments E is defined in [Baumann and
Brewka, 2010] as a change from an AF F to another one F ′
such that E is an extension of F ′ or is included in an ex-
tension of F ′. Several enforcement methods are presented,
based on the notion of expansion of an AF. An expansion is
the addition of new arguments and new attacks to an AF, re-
specting some constraints. The enforcement ofE in F is then
defined as an expansion of F such that E is an extension of
it. Three kinds of expansion are considered:
• Normal expansion: some arguments are added, with

some new attacks such that at least one of the new ar-
guments is concerned by each new attack (there is no
change in the attacks between former arguments).
• Weak expansion is a normal expansion such that no new

attack is directed from a new argument to a former one.
• Strong expansion is a normal expansion such that no new

attack is directed from a former argument to a new one.
Beyond the nature of the expansion, two additional param-

eters must be made precise in order to define enforcement
operators. First, enforcement can be strict when the expected
set of arguments has to be exactly an extension of the out-
put AF or non-strict when the set of arguments has to be in-
cluded in an extension of the output AF. Then, enforcement
can be conservative when the semantics stays the same one
or liberal when the semantics may change. In the following,
we define enforcement operators which can be used for both
conservative and liberal enforcement, since the semantics as-
sociated with the input AF is not specified in the definition of
the operators. For the sake of brevity, we focus only on the
conservative enforcement situation.
Definition 2. Let F = 〈A,R〉 be an AF, σ an acceptabil-
ity semantics, and E ⊆ A a set of arguments. The nor-
mal (respectively normal strict) enforcement operator +N

σ
(resp. +N

σ,s) is defined as a mapping from F and E to an AF
F ′ = 〈A ∪ A′, R ∪ RA′〉, with RA′ a set of attacks (ai, aj)

such that ai ∈ A′ or aj ∈ A′, and such that E is included in
(resp. is exactly) an extension of F ′. Moreover,

• if RA′ ∩ (A′ × A) = ∅, then +N,W
σ (resp. +N,W

σ,s ) is a
weak (resp. strict weak) enforcement operator;

• if RA′ ∩ (A × A′) = ∅, then +N,S
σ (resp. +N,S

σ,s ) is a
strong (resp. strict strong) enforcement operator.

Let us illustrate the strong enforcement approach.

Example 1. Let F be the AF given in Figure 1(a). Its set of
stable extensions is Extst(F ) = {{a1, a4}}. The expected
extension to be enforced is E = {a2, a3}. A possible strong
enforcement is presented in Figure 1(b): the stable extensions
of F1 are Extst(F1) = {{a2, a3, b}}, which contains E.

a1

a2

a3

a4

(a) Input AF F

a1

a2

a3

a4

b

(b) Enforced AF F1

Figure 1: Strong enforcement process

Importantly, whatever the normal enforcement operator
under consideration, it must be noted that enforcement may
fail. As a simple example, let us consider E = {a1, a2} in an
AF F = 〈A,R〉 such that (a1, a2) ∈ R. It is obviously im-
possible to enforce E with any of the enforcement operators
described previously. Theorem 2 and Theorem 3 from [Bau-
mann and Brewka, 2010] give some more elaborated impos-
sibility results about strict enforcement. An interesting result
from [Baumann and Brewka, 2010] states that for each AF
F , it is possible to enforce any set of arguments E which is
conflict-free in F with a non-strict strong enforcement, and
also guarantees that adding a single new argument is enough.
This means that a non-strict strong enforcement can be per-
formed with any singleton A′. This will be useful to define
logical encodings suited to enforcement (see Section 4).

Note that the presence of conflicts in the setE of arguments
to be enforced is a sufficient, yet unnecessary condition for
normal enforcement to fail. In order to make it more formal,
let us first introduce the notion of non-trivial set of arguments
with respect to a given semantics:

Definition 3. Let F = 〈A,R〉 be an AF, and σ a semantics.
E ⊆ A is a σ non-trivial set of arguments in F if and only if
E is conflict-free in F and E /∈ Extσ(F ).

Assuming the set E of arguments to be enforced to be σ
non-trivial is a way to avoid the trivial cases when enforce-
ment is already satisfied because E is a σ-extension of F or
impossible because of conflicts. However, it does not prove
sufficient for preventing from failure for every semantics:

Proposition 1. For every F = 〈A,R〉 and E ⊆ A a stable
non-trivial set in F , there is no strict enforcement of E in F
with respect to the stable semantics.

Proposition 2. For every F = 〈A,R〉, and E ⊆ A a com-
plete non-trivial set in F ,
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1. if E does not defend itself against each attacker, then
there is no strict enforcement of E in F with respect to
the complete semantics.

2. else, if E defends some argument ai ∈ A\E, then
(a) there is no strict weak enforcement of E in F with

respect to the complete semantics.
(b) if odd-length cycles are not allowed, then there is

no strict strong enforcement of E in F with respect
to the complete semantics.

Proposition 3. For every F = 〈A,R〉 and E ⊆ A a
grounded non-trivial set in F , if Extgr(F ) = {∅}, then
there is no strict enforcement of E in F with respect to the
grounded semantics.

Argument-Fixed Enforcement. In the previous ap-
proaches for enforcing a set of arguments, it is supposed
that new arguments can be added, and that interactions
between the existing arguments do not change. This method
is particularly sensible when enforcement is supposed to be
the result of a dialog: given an AF representing the state
of a dialog, an agent adds new arguments if she wants to
convince the other agent to accept a given set of arguments as
an extension. Forbidding any change over the initial attacks
of the framework is the reason of the above impossibility
results. Interestingly, the converse case, i.e., considering
situations where the set of arguments cannot change, but the
attack relation is subject to evolutions, also makes sense. It
is sensible, for instance, when a set of arguments is observed
to be an extension in the output of an argumentation process,
but does not correspond to the output of the own AF of
an agent. In such a case, without the knowledge of some
new arguments, the agent has to change her beliefs about
the attack relation to be consistent with the observed set of
arguments.
Definition 4. Let F = 〈A,R〉 be an AF, σ an acceptability
semantics, and E ⊆ A a set of arguments. The argument-
fixed (resp. strict argument-fixed) enforcement operator +A

σ
(resp. +A

σ,s) is defined as a mapping from F and E to an AF
F ′ = 〈A,R′〉, with R′ ⊆ A×A, and such that E is included
in (resp. is exactly) an extension of F ′.

The argument-fixed operators guarantee the success of en-
forcement, even in the strict case:
Proposition 4. Let F = 〈A,R〉 be an AF, σ and acceptability
semantics and E ⊆ A a set of arguments. There is a a strict
enforcement F ′ of E in F .

Of course, both ideas (adding arguments, and changing the
attacks) can be combined:
Definition 5. Let F = 〈A,R〉 be an AF, σ an acceptability
semantics, and E ⊆ A a set of arguments. The general (resp.
strict general) enforcement operator +σ (resp. +σ,s) is de-
fined as a mapping from F andE to an AF F ′ = 〈A∪A′, R′〉,
with R′ ⊆ A × A′, and such that E is included in (resp. is
exactly) an extension of F ′.
Example 2. Let us consider again the AF F described in
Figure 1(a). We gave an example of non-strict strong en-
forcement, but as shown by Proposition 1, it is impossible to

perform a strict enforcement under the stable semantics us-
ing Baumann’s approaches (normal, strong and weak). Let
us use the argument-fixed enforcement operator to obtain a
strict enforcement of the set of argument E = {{a2, a3}}. A

a1

a2

a3

a4

(a) The AF F2

a1

a2

a3

a4

(b) The AF F3

Figure 2: Two possible results of the argument-fixed enforce-
ment

possible result is the AF F2 described in Figure 2(a), whose
stable extensions are Extst(F2) = {{a1, a4}, {a2, a3}}, and
so E is enforced as a stable extension of the result. Another
one is F3 given in Figure 2(b), whose set of stable extensions
is the same one: Extst(F3) = {{a1, a4}, {a2, a3}}.

Minimal Change. As explained in Proposition 4, the pos-
sibility to enforce a set of argument is ensured when changes
on the attack relation are allowed. From a practical point of
view, it offers a success guarantee, which is a valuable prop-
erty for an enforcement operator. Another expected property
is minimal change, borrowed from belief revision. Enforce-
ment processes can lead to several results, and the enforce-
ment operators defined previously have to select one of the
possible AFs as the result. Considering minimal change dur-
ing the enforcement means that the chosen AF has to be as
close as possible to the initial AF. [Baumann, 2012] already
studies such a notion of closeness for the normal enforcement
approaches. He defines minimal change as minimization of
the number of attacks which are added to the AF during the
enforcement process. We generalize this notion of minimal
change, using the well-known Hamming distance to measure
how much two AFs are different.

Definition 6. The Hamming distance dh between two AFs
F = 〈A,R〉 and F ′ = 〈A′, R′〉 is defined by:

dh(F, F ′) = |(R\R′) ∪ (R′\R)|

For every enforcement operator +, the minimal change ver-
sion +

min
is such that the selected output AF F ′ minimizes the

Hamming distance from the input AF F amongst the set of
AFs which are possible outputs of +.

4 Enforcement as Satisfaction and
Optimization

A first observation is that enforcing a set of arguments while
limiting the number of allowed changes in the attack relation
is computationally demanding in the general case:

Proposition 5. Let F = 〈A,R〉 be an AF, E ⊆ A, and an in-
teger k. Determining whether it is possible to enforce E in F
under the stable semantics with at most k changes (addition
or removal) of attacks is NP-hard.
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Proposition 5 ensures that (unless P = NP) there is no
polynomial-time algorithm to perform minimal change en-
forcement in the general case. For this reason, it makes sense
to tackle the enforcement (resp. minimal change enforce-
ment) issue using algorithms developed for solving (resp. op-
timizing) NP-hard problems. This is what we do in the fol-
lowing: we reduce enforcement to a propositional satisfiabil-
ity problem, and minimal change enforcement to a pseudo-
Boolean optimization problem.

Enforcement as Boolean Satisfaction. Our translation-
based approach is based on the possibility to associate an AF
F and a semantics σ with a propositional formula such that
the models of the formula correspond exactly to σ-extensions
of F .

Definition 7. Given F an AF and σ a semantics, ΦFσ is a
propositional formula built upon the set of Boolean variables
{xa | a ∈ A}, such that {xa1 , . . . , xak} is a model of ΦFσ if
and only if {a1, . . . , ak} is a σ-extension of F .

In the following, for a matter of simplification and since no
ambiguity is possible, we write the formulae using ai symbols
instead of xai . We focus on the encoding Φst of the stable
extension, as given in [Besnard and Doutre, 2004]. Given
F = 〈A,R〉, Φst is defined by

Φst =
∧
ai∈A

[ai ⇔ (
∧

aj :(aj ,ai)∈R

¬aj)]

Then, checking if a set of arguments E is a stable extension
of F is equivalent to checking the satisfiability of the for-
mula ΦEst,s = Φst∧ (

∧
ak∈E ak)∧ (

∧
al /∈E ¬al). To perform

non-strict enforcement, a way to determine whether E is in-
cluded in an extension is required. Dropping the conjunct
(
∧
al /∈E ¬al) from the formula ΦEst,s gives precisely the for-

mula ΦEst we need.
In order to link the semantics with the structure of the graph

in the models of the formula, we introduce Boolean variables
attai,aj meaning that there is an attack from ai to aj in F .
The previous formulae are generalized into:

ΦA,Est =
∧
ai∈A[ai ⇔ (

∧
aj∈A(attaj ,ai ⇒ ¬aj)]

∧(
∧
ak∈E ak)

and

ΦA,Est,s =
∧
ai∈A[ai ⇔ (

∧
aj∈A(attaj ,ai ⇒ ¬aj)]

∧(
∧
ak∈E ak) ∧ (

∧
al /∈E ¬al)

Clearly, propagating the truth values of the variables
attai,aj in those formulae is enough to recover the previous
formula ΦEst,s and the non-strict counterpart. This formula
is the basis of our propositional encoding of extension en-
forcement operators. It remains to introduce two functions
allowing to ”decode” such a formula and get AFs:

• ProjAatt(Φ) = {m ∩ {attai,aj | ai, aj ∈ A} | m |= Φ}
is the sets of models of the formula Φ projected onto the
attai,aj variables.

• argA(m) = 〈A,R〉 such that (ai, aj) ∈ R if and only
if attai,aj ∈ m, with m a model projected onto the
attai,aj variables, is the AF corresponding to the assign-
ment of the attai,aj variables. Then, with M a set of
such models, argA(M) = {argA(m) | m ∈M}.

We also need an encoding for the structure of an AF F =
〈A,R〉:

structA′(F ) = (
∧

(ai,aj)∈R

attai,aj ) ∧ (
∧

(ai,aj)/∈R

¬attai,aj )

where ai, aj ∈ A ∪ A′. struct(F ) is a notation for
struct∅(F ).

Finally, δ : {F1, . . . , Fk} → Fj such that Fj ∈
{F1, . . . , Fk} is a tie-break rule which selects a single AF
from a set of AFs.

Now, every enforcement operator defined in the previous
section can be encoded as a satisfaction problem on a propo-
sitional formula. Indeed, by construction, every model of
the formula ΦA∪A

′,E
σ , when projected onto the attai,aj vari-

ables, gives an AF which is a normal enforcement of E. We
only need to state the right constraints for ensuring that strong
(resp. weak) enforcement operators are reached. In order to
avoid the introduction of new arguments and get argument-
fixed operators, considering the formula ΦA,Eσ as the encod-
ing proves enough. Similarly, the formulae ΦA∪A

′,E
σ,s and

ΦA,Eσ,s can be used to define the strict counterparts of the en-
forcement operators.

Definition 8. For any AF F = 〈A,R〉, any set of arguments
E ⊆ A, any semantics σ, and X = σ or X = σ, s:
F +N

X E = δ(argA∪A
′
(ProjA∪A

′

att (ΦA∪A
′,E

X ∧ struct(F )))

F +N,W
X E = δ(argA∪A

′
(ProjA∪A

′

att (ΦA∪A
′,E

X ∧ struct(F )
∧(

∧
(ai,aj)∈A′×A ¬attai,aj ))))

F +N,S
X E = δ(argA∪A

′
(ProjA∪A

′

att (ΦA∪A
′,E

X ∧ struct(F )
∧(

∧
(ai,aj)∈A×A′ ¬attai,aj ))))

F +A
X E = δ(argA(ProjAatt(Φ

A,E
X )))

F +X E = δ(argA∪A
′
(ProjA∪A

′

att (ΦA∪A
′,E

X ))).

For any of these enforcement operators +, any AF F and
any set of argumentsE, Enc(F+E) denotes the correspond-
ing propositional encoding. For instance, Enc(F +N

σ E) is
the propositional formula ΦA∪A

′,E
σ ∧ struct(F ). Using any

SAT solver to find a model of Enc(F +E) and then decoding
the truth values of the attai,aj variables is a way to determine
an enforcement of E in F .

Minimal Change Enforcement as Pseudo-Boolean Opti-
mization. As explained previously, [Baumann, 2012] con-
siders a notion of minimal change enforcement. In his work,
minimality refers to the minimality of the number of attacks
to be added to the AF when performing the normal expan-
sion. A possible way to ensure minimal change is to define
a particular tie-break rule δ for selecting one of the resulting
AFs which is minimal. In order to take advantage of some
available optimization software, an alternative approach is to
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encode the minimality criterion via a pseudo-Boolean objec-
tive function:

newAtt(A ∪A′) =
∑

(ai,aj)∈((A∪A′)×(A∪A′))\(A×A)

attai,aj

Of course, for strong and weak enforcement operators, this
representation of the objective function can be simplified
since the attai,aj variables corresponding to the forbidden at-
tacks are known to be false.

Minimal change for argument-fixed and general enforce-
ment is not easy to be encoded directly using the available
Boolean variables. In order to get the expected encoding, we
consider additional variables representing the state of the AF
before the enforcement; one then minimizes the number of
differences between the truth values of these variables and the
corresponding ones in the new AF. Formally, for every pair
of arguments (ai, aj) ∈ (A ∪ A′) × (A ∪ A′), the Boolean
variable prevai,aj is true if and only if (ai, aj) ∈ R. So,
prevai,aj ⊕ attai,aj , where ⊕ is the usual exclusive-or con-
nective, gives the information about the change on the at-
tack (ai, aj): if there was previously an attack from ai to
aj , and this attack is no longer present after the enforcement,
prevai,aj ⊕ attai,aj is true . It is also true if there was no
attack before the enforcement, and there is one after the en-
forcement. The encoding of the structure of the AF F must
thus be updated to take account for the prevai,aj variables:

structprevA′ = (structA′(F )|attai,aj
←prevai,aj

)

Once this is done, minimizing the differences on the attack
relation is equivalent to minimizing the objective function

attChange(A∪A′) =
∑

a∈(A∪A′),b∈(A∪A′)

prevai,aj⊕attai,aj

Clearly, this sum counts 1 for every attack (ai, aj) in the out-
put AF concerning an argument of A′, because prevai,aj is
always false if ai ∈ A′ or aj ∈ A′. So the approach can be
used in the case of general enforcement.

We now sum up the definitions of the minimal change ver-
sions of the enforcement operators:

Definition 9. For any AF F = 〈A,R〉, any set of arguments
E ⊆ A,

• if + is any enforcement operator among the normal,
strong and weak enforcement operators (and their strict
counterparts), then enforcing the set of arguments E in
F is equivalent to satisfying Enc(F + E) while mini-
mizing newAtt(A ∪A′);

• if + is any enforcement operator among the argument-
fixed and general enforcement operators (and their
strict counterparts), then enforcing the set of arguments
E in F is equivalent to satisfying Enc(F + E) ∧
structprevA′ (F ) while minimizing attChange(A ∪A′).

We notice that using the second optimization problem
would prove enough for each enforcement operator. But
since this approach requires the addition of Boolean variables
prevai,aj , we do not use it when it is not mandatory, to avoid
any loss of computational efficiency.

The formal setting suited to our optimization problem is
pseudo-Boolean (PB) optimization, which is an extension of
Boolean satisfiability.

Definition 10. Given a set of Boolean variables V =
{x1, . . . , xn} and a mapping O : {0, 1}n 7→ R, a PB-Opt
problem P = (C = {c1, . . . , cm},O) on V is the search for
an assignment of every variable in V such that the contraints

c1 : w1
1x1 + · · ·+ w1

nxn ≥ k1
...

...
cm : wm1 x1 + · · ·+ wmn xn ≥ km

are satisfied and the objective function O reaches its optimal
value.

In our case, the optimal value of the objective function is
its minimal value. It is well-known that any propositional
formula can be turned into an equivalent conjunctive normal
form formula (CNF), and any clause of a CNF formula can
be rewritten as a PB constraint: the clause x1 ∨ x2 ∨ · · · ∨ xn
is satisfied if and only if the PB constraint x1 + x2 + · · · +
xn ≥ 1 is satisfied. Thus the optimization problem described
previously can be rewritten easily in the PB setting.

5 Experimental Results
In our experimental study, we focused on the minimal change
enforcement problem. We implemented the family of en-
forcement operators described in this paper, using the well-
known tool CPlex [IBM, 2014] as the underlying optimiza-
tion engine. For space reasons, we present only the obtained
results for three approaches: the non-strict strong operator
from [Baumann and Brewka, 2010], and both the strict and
non-strict versions of our argument-fixed enforcement opera-
tor. In each case, the semantics used is the stable one.

The empirical protocol we considered is as follows. We
focused on some random AFs [Dvorák et al., 2011; 2014].
Given a set of n arguments, each attack between two argu-
ments is generated using a fixed probability p. In our exper-
iments n varies up to 500 arguments. For each n, the graphs
are divided into four families, corresponding to four values
of p. We used families of AFs from [Dvorák et al., 2011],
where p ∈ {0.4, 0.65, 0.9}. We also generated AFs with a
probability p = 0.1. It appears in the experiments that this
choice of p does not change significantly the performances of
the translation-based enforcement algorithm, so the reported
results are for p = 0.1 only.

We have computed the minimal change enforcement of sets
E of arguments in AFs F containing n arguments with n ∈
{200, 300, 400, 500}. For each AF F with n arguments, we
considered sets E of arguments to be enforced of cardinality
m, m varying between 1 and 35

100n. For each pair of values
(n,m), we generated 10 enforcement requests.1 On Figure 3,
the y-coordinate of each point of the curves corresponds to
the average computation time over all the pairs (F,E) which
have been considered, where the number n of arguments of
F is reported on the x-axis.

1We call ”enforcement request” the set E of arguments expected
to be an extension.
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The first interesting result stemming from our experimen-
tations is that enforcement looks feasible in practice on such
randomly generated AFs, which was not obvious given that
enforcement is NP-hard. As illustrated by Figure 3, the com-
putation time increases reasonably with the number n of ar-
guments, up to a mean value of 13.76 seconds (std = 0.48)
obtained for AFs with 500 arguments, when strict argument-
fixed enforcement is considered (+-curve), and up to a mean
of 16.61 seconds (std = 5.31) when strong enforcement is
considered (×-curve).

Figure 3: Average time for strong (×-curve) and strict
argument-fixed (+-curve), n varying from 200 to 500

Then, we compared the three different approaches on fam-
ilies of AFs with 200 arguments, letting the cardinality m of
E to vary from 1 to 70. The aim of this comparison is to
study the impact of the cardinality of E on the enforcement
operators behaviors. We did not discard trivial sets from the
experiments, since our approaches can delete attacks, render-
ing a conflicting set conflict-free. This allows us to illustrate
the failure rate of strong enforcement, which is unsurprisingly
high, since enforcement is impossible as soon as the enforce-
ment request is not conflict-free in the input AF. Indeed, with
a probability p for an attack to occur between two arguments,
the probability for a set of arguments E of cardinality m to
be conflict-free is (1 − p)m. So, the greater the cardinality
of the enforcement request, the lower the probability for en-
forcement to be possible. In particular, in our experiments
strong enforcement always fails when m > 20; clearly, the
failure rate of strong enforcement grows exponentially with
m.

We compared the enforcement computing times for the
three approaches (see Figure 4). The ×-curve represents
the average time to realize the strong enforcement, while the
�-curve corresponds to the time needed by the algorithm to
report the failure when enforcement is impossible. For strong
and strict argument-fixed (+-curve) enforcement, it appears
that the time needed for computing the result is almost always
the same whatever the cardinality of the enforcement request
and the probability of attacks in the graph: between 2 and 3
seconds. The cardinality has more influence on the non strict
argument-fixed enforcement operator, the smallest enforce-
ment requests being harder to compute. When the cardinality
grows, the computing time decreases to a few seconds.

Lastly, we have measured the effort required in term of
change (i.e., the number of attacks to be added or deleted)
for enforcing E in the AF (see Figure 5). Clearly, the effort

(a) Strict argument-fixed (+-curve) enforcement, and
success (×-curve) and failure (�-curve) for strong en-
forcement

(b) Non strict argument-fixed enforcement

Figure 4: Average time, n = 200, m varying from 1 to 70

needed grows up with the cardinality of the enforcement re-
quest for strong (×-curve) and non strict argument-fixed en-
forcement (4-curve). The curve for strong enforcement stops
much before the other ones (at 14 arguments) because of the
high failure rate we mentioned. Until this point, as one can
observe, the×-curve is almost identical to the4-curve. Strict
argument-fixed enforcement (+-curve) requires much more
change on the attack relation. As the enforced set is expected
to be exactly a stable extension, even a small set of arguments
requires the addition of many attacks to be enforced. For in-
stance, withE = {ai}, it is required that ai attacks each other
argument to ensure that E is a stable extension. When the
cardinality m of E grows up, the efforts required by the strict
and by the non strict versions of the argument-fixed operator
come closer.

6 Conclusion
In this work, we have investigated the problem of enforcing a
set of arguments as an extension of an AF. Our contribution
is manyfold. First, we have shown that existing approaches to
enforcement may fail, even when the set of arguments to be
enforced is conflict-free. To overcome this weakness, new en-
forcement methods for which the success of the process can
be guaranteed have been defined. For each of these methods,
we designed some Boolean encodings which allow to take
advantage of satisfaction and optimization solvers for the en-
forcement purpose. We used a well-known optimization tool
to implement a library of enforcement operators, and we ex-
perimented some of them on a large class of benchmarks. The
experimentations showed the approach to be practical and to
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Figure 5: Average change for strong (×-curve), strict
argument-fixed (+-curve) and non-strict argument-fixed (4-
curve) enforcement

scale up well.
It is worth noticing that some other kinds of change opera-

tions are specific extension enforcements. For instance, cred-
ulous explanation in [Booth et al., 2014] is the enforcement
of a singleton. Similarly, some goal-oriented changes from
[Kontarinis et al., 2013] and some revision operators from
[Coste-Marquis et al., 2014a; Coste-Marquis et al., 2014b]
are enforcement operators. Our enforcement approach thus
proves also useful for achieving such kinds of changes in AFs.

This work opens several perspectives for further research.
As far as we know, none of the existing works about change
in argumentation frameworks has led to the implementation
of some (quite efficient) piece of software. However, imple-
menting practical argumentation systems is currently a hot
topic for the community (in the same vein, see the organiza-
tion of a competition of argumentation solvers [Thimm and
Villata, 2015]). Indeed, the design of our enforcement soft-
ware comes from the same will to make available argumen-
tation reasoning tools, which is nowadays a necessary step
to push forward the domain. So, we plan to encode and im-
plement enforcement operators for other semantics. Some
further extensions of the setting will also be envisioned, like
minimal change on arguments statuses or the addition of in-
tegrity constraints.

Acknowledgments
This work benefited from the support of the project
AMANDE ANR-13-BS02-0004 of the French National Re-
search Agency (ANR).

References
[Baumann and Brewka, 2010] Ringo Baumann and Gerhard

Brewka. Expanding argumentation frameworks: Enforc-
ing and monotonicity results. In COMMA’10, pages 75–
86, 2010.

[Baumann, 2012] Ringo Baumann. What does it take to en-
force an argument? Minimal change in abstract argumen-
tation. In ECAI’12, pages 127–132, 2012.

[Besnard and Doutre, 2004] Philippe Besnard and Sylvie
Doutre. Checking the acceptability of a set of arguments.
In NMR’04, pages 59–64, 2004.

[Bisquert et al., 2011] Pierre Bisquert, Claudette Cayrol,
Florence Dupin de Saint Cyr Bannay, and Marie-Christine

Lagasquie-Schiex. Change in argumentation systems: ex-
ploring the interest of removing an argument. In SUM’11,
pages 275–288, 2011.

[Booth et al., 2013] Richard Booth, Souhila Kaci, Tjitze
Rienstra, and Leendert van der Torre. A logical theory
about dynamics in abstract argumentation. In SUM’13,
pages 148–161, 2013.

[Booth et al., 2014] Richard Booth, Dov M. Gabbay,
Souhila Kaci, Tjitze Rienstra, and Leendert W. N. van der
Torre. Abduction and dialogical proof in argumentation
and logic programming. In ECAI’14, pages 117–122,
2014.

[Cayrol et al., 2010] Claudette Cayrol, Florence Dupin de
Saint Cyr Bannay, and Marie-Christine Lagasquie-Schiex.
Change in abstract argumentation frameworks: Adding
an argument. Journal of Artificial Intelligence Research,
38:49–84, 2010.

[Coste-Marquis et al., 2014a] Sylvie Coste-Marquis, Sébas-
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