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konieczny@cril.fr

Abstract—In this work we propose a family of methods that
allow to conjointly compute the reliability of a set of information
sources and the confidence of the facts on a set of objects, by
confronting the sources points of view. We use a (scoring-based)
voting method for the evaluation of the trust of the sources,
using Condorcet’s Jury Theorem arguments in order to identify
the truth and the reliable sources. We discuss general theoretical
properties that such operators should satisfy, and we study what
are the properties satisfied by our methods. We provide an
experimental study that shows that we perform better than state
of the art methods on the task of finding the truth among the
possible facts. We show that we can also adequately evaluate the
reliability of the sources of information.

Index Terms—Reliability, Truth Tracking, Voting, Trust

I. INTRODUCTION

There are numerous applications where one receives (typi-
cally conflicting) pieces of information from different sources
and have to form an opinion from these pieces of information.
In this situation, a standard way to solve conflicts is to
believe the most reliable/trustworthy sources. We propose such
an evidence-based definition of reliability (truthfulness) from
available evidences.This can be useful to evaluate the reliabil-
ity of an agent in a multi-agent system or social network, a
source on the web, any journal/media, etc.

More precisely, we consider a set of independent sources
that provide us information about different questions. Our
goal is to evaluate both the reliability of the sources, and
the confidence of the facts, which then allows us to find the
correct answers (facts) to the different questions (objects).
There are previous works that start from the same structure
(sources/facts/objects), but their main objective is to find the
correct answers [1], [2].

In order to find this true information, we rely on the idea of
Condorcet’s Jury Theorem [3], which states that it is more
likely that the majority of the individuals will choose the
correct solution. The intuition is as follows: suppose that
among 10 sources of equal reliability, 8 tell you that the
Capital of Australia is Canberra, and 2 tell you that it is
Sydney. Following what the majority says is the safest way
to find the truth. Condorcet’s Jury Theorem requires a lot of
hypotheses (that all the sources are equally reliable, that they
are all reliable (i.e. they have more than 50% chance of finding
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the truth), that they are independent, and that the choice is
between only 2 possibilities). However, all these hypotheses
can be more or less relaxed [4]–[7]. This argument is also
close to the ones that use “The wisdom of crowds” [8].

In this work, we suppose that initially we have no infor-
mation about the reliability of the sources, and we define
an iterative procedure to determine their reliability. At the
beginning, we assign the same reliability to all the sources,
then we compare the answers to the different questions, and we
use this “Condorcet’s Jury Theorem” argument to reward the
sources that provide information (facts) that are confirmed by
others, and are therefore more likely to be true. Then we iterate
the process with these adjusted reliabilities of the sources until
convergence is reached.

To illustrate this process, consider the example of Figure 1,
where four sources give information about two objects: Capital
of Brazil and Capital of Australia. Note that there is initially a
tie for Capital of Australia, with two sources giving Canberra
and two sources giving Sydney. But we can use the other ob-
ject. There is a majority for Brasilia, so Brasilia is considered
as the good fact, and the sources giving this fact are favored
over those giving Rio de Janeiro. And, in the next iteration,
we will be able to break the tie on Capital of Australia since
more reliable sources give us Canberra.

More precisely, at each iteration, sources provide some
strength to the facts they claim on the different objects. This
strength is the (current) reliability of the source. Thus, each
object can rank the corresponding facts (possible answers)
from most reliable to least reliable, just using the sum of
obtained strengths. We use scoring-based voting rules in order
to associate a number to each rank of facts. The simplest one
is the plurality rule, where only the most reliable facts provide
a score of 1 to the corresponding sources, and all the others
get nothing (0). The new reliability of each source is computed



by combining all these scores. We use two normalizations for
this step: one that favors sources that provide many claims, and
one that favors sources that are more careful and do not fail
often. Then a new iteration starts with the updated reliability
of each source.

In the following, after presenting our S&F (for Sources &
Facts) methods, we discuss logical properties for character-
izing interesting methods that aim to evaluate the reliability
of sources and facts. We review properties that have been
proposed by [2], and discuss why some of them are not
appropriate for this setting. We also propose new properties
required for all methods, and some properties that characterize
interesting subclasses. Then we check which properties are
satisfied by our methods.

Beside this formal evaluation, we also provide experimental
ones. The idea is to test if we can achieve this goal of
evaluating the reliability of sources and facts in practice. There
are not many real benchmarks that can be used for this task,
but we test our methods on two such benchmarks. Then we
also test our methods on generated benchmarks, which allows
us to evaluate more parameters.

And the results are good. We show that for the tasks related
to finding the true facts we are better than existing methods.
But, contrariwise to the existing methods, we can also give a
good evaluation of the reliability of the sources.

II. PRELIMINARIES

We consider three sets S, F and O respectively called
Sources, Facts and Objects. Sources represent the (human or
artificial) agents that provide the information. Objects are the
questions on which we would like to have information about,
and the Facts are the possible answers. Relatively to each
object, facts are distinct and exclusive: only one fact can be
claimed by each source per object.

So these objects+facts can be seen also as ques-
tions+answers or as variables+values. This is mainly a ques-
tion of vocabulary here. And we stick to the one used in
previous works [1], [2].

Definition 1. Let G = (V,E) be a directed graph with V =
S ∪ F ∪ O and E ⊆ (S × F) ∪ (F ×O), such that:

• For each fact f ∈ F there is a unique object o ∈ O with
(f, o) ∈ E.

• A source s ∈ S can claim at most one fact per object
o ∈ O (i.e. ∀s ∈ S there are no f1 ∈ F , f2 ∈ F s.t.
{(f1, o), (f2, o), (s, f1), (s, f2)} ⊆ E).

(s, f) ∈ E means that the source s claims that the fact f is
the correct answer for its corresponding object. It is possible
that a fact is not claimed by any source.

For more clarity, we will use these notations: src(f) = {s ∈
S : (s, f) ∈ E}, fct(s) = {f ∈ F : (s, f) ∈ E}, fct(o) =
{f ∈ F : (f, o) ∈ E}, obj(f) = {o ∈ O : (f, o) ∈ E}.

When it is not obvious (e.g. when we have more than one
graph), we can specify the graph, and we write, for the graph
G, srcG(f), fctG(s), fctG(o) and objG(f) instead of the
above notations.

We denote rG(s) ∈ [0, 1] the evaluation of the reliability of
a source s in the graph G and cG(f) ∈ R+ the evaluation of
the confidence of a fact f in the graph G.1

III. RELATED WORK

There are some Truth Discovery algorithms in the literature
that aim to identify the true facts.

Truth Finder [1] is an iterative algorithm, that updates the
score of sources and facts at each iteration. This work focus
on the confidence of the facts to find the truth. With Truth
Finder, the reliability of a source is the average confidence
in the facts provided by that source. For the confidence of
a fact, the authors assume that the facts can support each
other, in which case the confidence increases or decreases if
the facts contradict each other. This part is beyond the scope
of our basic setting (see [9] for a discussion of truth discovery
methods, where there are other parameters that can be taken
into account for computing the reliability).

Hubs and Authorities [10] method, defines to rank web
pages, can also be used in this setting. It is also an iterative
method, that defines two different scores for a page. Hub
(which we can identify to sources) favors pages that point
to many other pages, and authority (which we can identify to
facts) favors pages that are pointed to by many different hubs.

Sums [11] is based on Hubs and Authorities. The main
difference is the way in which the reliability of sources and
facts is normalized. For Sums, the reliability of a source is
the sum of the confidence of the facts it claims (r(s) =

Σf∈fct(s)c(f)), and the confidence of a fact f is obtained
as the sum of the reliability of the sources that claim it
(c(f) = Σs∈src(f)r(s)). These results are then normalized by
the maximal obtained value (by max(r(s))∀s ∈ S for r(s)
and by max(c(f))∀f ∈ F for c(f)). The same authors
propose three other variants of Sums: Average.Log, Investment
and PooledInvestment where the initial confidence of the facts
is different and where the reliability of the sources is computed
with different functions.

Booth and Singleton were the first to propose an axiomatic
approach to the Truth Discovery problem in [2]. They also
propose a new method, called Unbounded-Sums, which is
based on Sums, but where they do not normalize the score.

We will compare the experimental results of our methods
with the results of these algorithms and with Voting, the naive
method that chooses the fact with the most claims on each
object.

IV. S&F METHODS

In this section, we present our methods. One method is
defined by the choice of a voting method v and a normalization
function n, and is denoted vn. We use an iterative method to
compute the reliability of the sources and the confidence of
the facts. See Algorithm 1 for a given method vn.

First, we need to initialize the reliability of the sources.
Remember that we do not have information about the sources,

1We simply note r(s) and c(f), without the subscript, when the graph is
clear from the context.



Algorithm 1 S&F Algorithm for vn
Input: A graph G = (S ∪ F ∪ O, E)
Output: The reliability of the sources r(s) and the confidence
of the facts c(f).

1: r(s) = 1 ∀s ∈ S #initial reliability of the sources
2: c(f) = 0 ∀f ∈ F #initial confidence of the facts
3: # ts (resp. ts−1) is the vector of reliability of the sources during

the current (resp. last) iteration, i.e. ts = ⟨r(s) : ∀s ∈ S⟩.
4: while Euclidean distance(ts, ts−1) > 0.001 and
5: number of iterations < 30 do
6: # Evaluation of the confidence of the facts
7: for each f ∈ F do
8: c(f) =

∑
s∈src(f)

r(s)

9: end for
10: # Ranking of the facts
11: for each f ∈ F do

12: Vv(f) =

∑
{y∈Ti(o)|f∈Ti(o)}

v(≻o,y)

|T i(o)|
13: end for
14: for each s ∈ S do
15: # Evaluation of the reliability of the sources
16: rI(s) =

∑
f∈fct(s)

Vv(f)

17: # Normalization of the reliability of the sources
18: r(s) = n(rI(s))
19: end for
20: end while

so the initial reliability is the same for all the sources:
r(s) = 1 ∀s ∈ S . An iteration runs as follows: First, the
confidence of the facts is calculated (section IV-A). Then,
a voting rule is used to rank the facts and assign a score
to the facts depending on their ranking (section IV-B). After
that, the reliability of the sources is evaluated (section IV-C)
and the last step is the normalization of the reliability of
the sources (section IV-D). The algorithm stops when the
process converges, i.e. when the Euclidean distance between
the reliability of the sources of the last iteration and the current
iteration is smaller than ϵ with ϵ = 0.001 or when the number
of iterations is 30. It is important to note that the maximal
number of iterations we obtained during our experiments is 14,
and in average the convergence is obtained around 4 iterations.

A. Confidence of the facts

The confidence in a fact f is simply computed by adding
the reliability of the sources that claimed it. The more reliable
the sources that affirm it, the more confidence there will be in
this fact.

c(f) =
∑

s∈src(f)

r(s) (1)

B. Ranking of the facts

The evaluation of the reliability of the sources is obtained
by summing the rewards associated with the facts claimed.
To assign a reward to a fact, we use a scoring voting rule,

and for the evaluation of the reliability of the sources, each
fact will transmit the reward it received to its source. The
reward is given according to the rank of the fact. For each
object, we rank the corresponding facts from most confident
to least confident, and the scoring voting rule associates a
reward (number) to each rank.

But we have to make three adjustments: The first one is that
scoring voting rules are defined for linear orders, whereas we
obtain total pre-orders (some facts can have the same rank).
So we will use the average of the scores for the facts with
the same rank. The second one is that the number of options
(facts) is not the same for all objects, so we have to choose
how to normalize these scores on different scales. The third
one (section IV-D) is that, when the scores are received by the
sources, we normalize them in order to have a result in [0, 1].

Definition 2. Let M be an integer and e be a sequence of
non-decreasing integers with e1 ≥ e2 ≥ ... ≥ eM and such
that e1 > eM ≥ 0. A scoring rule v is a function that, to each
linear order > on a set of at most M facts and to each fact
f , associates a positive integer s.t. if fact f is ranked at the
ith position in the linear order >, then v(>, f) = ei.

When e1 = 1 and e2 = eM = 0, the rule is called the
plurality vote. When e1 = M − 1, e2 = M − 2, ..., eM = 0, it
is the Borda rule.

For standard voting procedures, the voters vote on a fixed
set of candidates, and M is the number of candidates. In our
case, the objects are related to different numbers of facts. So
we state that M = max(|fct(o)|)∀o ∈ O. But, we have to
do a (first) normalization by the maximal score of the facts
because we want to reward fairly every winners of the vote so
we state: best score(F) = e1. It means that for all objects,
being the most plausible fact always provide the same score
(e1), no matter how many facts are linked to the object.

Moreover, contrary to standard hypotheses for voting rules,
the ranking associated with an object is not a linear order,
but a total pre-order (some facts can have the same rank). We
have to adjust the scoring voting rules for possible ties. In this
case, we give the averaged score, i.e. the average of the scores
they were supposed to receive, as in [12]. Let us formalize this
step.

A total pre-order (a reflexive, transitive, total relation2) ≥
can be seen as a set of strata. An element x belongs to a
stratum T≥ composed of a set of equivalent elements {y|x ≃
y}. And we say that T i

≥ is the ith stratum of the pre-order if
∃x1, . . . , xi−1 such that x1 > . . . > xi−1 > y with y ∈ T i

≥.
If there is no x1 > y with y ∈ T i

≥ then i = 1.
We say that a linear order ≻ is compatible with a pre-order

≥ if ∀x ∈ T i,∀y ∈ T j , i < j ⇒ x ≻ y.

Definition 3. For each fact f , consider its corresponding
object o. Let P(o) be the pre-order given by the confidence of
the facts (i.e. f1 ≥P(o) f2 iff c(f1) ≥ c(f2)) and m the number

2From any total pre-order ≥ we define the corresponding strict order > as
x > y iff x ≥ y and y ̸≥ x, and the corresponding equivalence relation ≃
as x ≃ y iff x ≥ y and y ≥ x.



of strata in P(o). We have P(o) = {T 1(o), T 2(o),...,Tm(o)},
where T k(o) is the kth stratum in P(o). Then the score given
to f for the pre-order P(o) and the scoring rule v is defined
as (where ≻o is any linear order compatible with P(o) and
v(≻o, f) is the score that the fact f gets according to the
scoring rule v):

Vv(f) =

∑
{y∈Ti(o)|f∈Ti(o)}

v(≻o,y)

|T i(o)|

Example 1. Let G be a graph with two objects. Let v
be the Borda rule. The first object o1 and the second ob-
ject o2 have respectively 6 and 9 facts linked to them. We
have best score(F) = 9. Suppose P(o1) = {T 1(o1) =
{f1, f2}, T 2(o1) = {f3}, T 3(o1) = {f4, f5, f6}}, i.e. o1
ranked 2 facts first (in the first stratum), 1 fact second
and 3 facts third. So the score of f1 and f2 is VBorda =
(9−1)+(9−2)

2 = 7.5, the score of f3 is VBorda = (9 −
3) = 6 and the score of f4, f5 and f6 is VBorda =
(9−4)+(9−5)+(9−6)

3 = 4.

C. Reliability of the sources

The new reliability of the sources is the sum of the rewards
transmitted by the facts claimed by the source:

Definition 4. The initial reliability of a source (before nor-
malization) is:

rI(s) =
∑

f∈fct(s)

Vv(f) (2)

Let us now see the last required adjustment of the scores.

D. Normalization functions A and C

We wish to give an estimation of the reliability of a source,
i.e. the probability of this source to find the true facts. So,
we have to normalize the reliability of the sources to make
sure that this reliability is between 0 and 1. Now we define
the normalization function n. There are at least two sensible
ways to normalize the reliability. The first one rewards sources
that provide a lot of true information. The second focuses on
quality and then on the proportion of true information.

We call the first normalization function A (All objects). The
reliability of the sources is divided by the number of objects
in the graph. If a source has a score close to 1, we know that
the source is correct on almost all objects. If a source has a
low reliability, it either means that the source makes a lot of
mistakes and loses votes, or that the source is correct but only
on few objects.

Definition 5. The reliability of a source with the normalization
function A is:

rA(s) =
rI(s)

best score(F) ∗ |O|
(3)

The second normalization function is called C (Claimed
facts). The reliability of a source is divided by the number
of objects on which it claims a fact. Unlike the previous
normalization, if a source has a score close to 1, we know
that the source is correct but possibly on few objects.

Definition 6. The reliability of a source with the normalization
function C is:

rC(s) =
rI(s)

best score(F) ∗ |obj(s)|
(4)

With obj(s) = {o ∈ O : ∃f ∈ F : (s, f), (f, o) ∈ E}.
So this normalization favors sources that express with care,

while the previous one favors the sources that express a lot
(not in a silly way).

Note that the highest score a source can obtain is
best score(F), so we must multiply the denominator by this
value. In the case of a complete graph, the two normalization
functions are identical. We note r(s) the normalized reliability
of a source when there is no ambiguity about the normalization
used.

E. Example

We give the details of the iterations for the graph of Fig. 1
with the plurality rule and the normalization function A. At the
first iteration, we have a tie for the object Capital of Australia
(c(Canberra) = c(Sydney) = 2) but Brasilia wins the vote
on the object Capital of Brazil (c(Rio de Janeiro) = 1 <
c(Brasilia) = 3). During the 2nd iteration, r(1) = 0.25 and
r(2) = r(3) = r(4) = 0.75 so Canberra wins the vote now
because we have c(Canberra) = 1.5 > c(Sydney) = 1.0.
The algorithm ends at the 3rd iteration. The final reliabilities
of the sources are r(1) = 0, r(2) = r(3) = 1 and r(4) = 0.5.

V. PROPERTIES

This section is twofold. First, we want to abstract the prob-
lem, to ask what properties should be satisfied by methods that
aim to evaluate the reliability of sources and the confidence of
facts. We recall some properties proposed in [2] and discuss
them, and propose some new ones. In particular, we propose
a set of properties (the basic properties) that any method
should satisfy, as well as additional interesting properties for
characterizing interesting subclasses of methods. The second
aim of this section is to evaluate our methods with respect to
this set of properties.

Let us first give some definitions used by the properties.

Definition 7. We denote B(F) the set of facts that are ranked
first on their object in the whole graph : B(F) = {f ∈
F | ∀f ′ ∈ fct(obj(f)), c(f) > c(f ′)}

We need a definition from [2] of the notion of being “less
believable” used in their properties.

Definition 8. For Y, Y ′ ⊆ F , Y is less believable than Y’ if
there is a bijection ϕ : Y −→ Y ′ such that c(f) ≤ c(ϕ(f))
for each f ∈ Y and c(f ′) < c(ϕ(f ′)) for some f ′ ∈ Y . For
X,X ′ ⊆ S, X is less trustworthy than X’ is defined similarly.

A. Basic Properties

Now we present the properties that have to be satisfied by
any method that aims to correctly estimate the reliability of
sources and to find the truth among the facts.



If a source’s reliability is equal to 1 (the highest score for
a source), it means that all of its facts are the most plausible
i.e. they have the highest confidence on their object:

P 1 (Best). For s ∈ S, if r(s) = 1 then fct(s) ⊆ B(F).

Reliability must be at its lowest if a source has no claim:

P 2 (Null Player). For s ∈ S, if fct(s) = ∅ then r(s) = 0.

We now recall four properties and one definition from [2].
If a fact is not claimed by any source, then its confidence

is lower or equal than the confidence of all the other facts:

P 3 (Groundedness). Suppose src(f) = ∅ for f ∈ F . Then
for any other g ∈ F , c(f) ≤ c(g).

If a fact is claimed by all the sources, then its confidence
will be one of the greatest:

P 4 (Unanimity). Suppose src(f) = S for f ∈ F . Then for
any other g ∈ F , c(f) ≥ c(g).

Definition 9. Two graphs G and G′ are equivalent if there is
a graph isomorphism π between them that preserves sources,
facts, and objects such that π(s) ∈ S ′, π(f) ∈ F ′ and π(o) ∈
O′ for all s ∈ S, f ∈ F and o ∈ O.

The values computed for the reliability of the sources and
the confidence of the facts depend on the graph and not on
the element’s name. So this property states that all sources and
facts are treated in the same way:

P 5 (Symmetry). If G and G′ = π(G) are equivalent graphs,
then (rG(s1) ≥ rG(s2) iff rG′(π(s1)) ≥ rG′(π(s2))) and
(cG(f1) ≥ cG(f2) iff cG′(π(f1)) ≥ cG′(π(f2))).

The ranking of the elements in a connected component is
not influenced by the elements outside the component:

Definition 10. Let G = (V,E) and G′ = (V ′, E′) be two
graphs. We say that G and G′ are independent when there
are no links between the elements of G and the elements in
G′, i.e. V ∩ V ′ = ∅.

P 6 (PCI). Let G = (V,E), G1 = (V 1, E1), G2 = (V 2, E2)
be three graphs such that G and Gi (i ∈ {1, 2}) are
independent graphs. Then the rank of the sources and the facts
of G will be the same in G∪G1 and in G∪G2: ∀s1, s2 ∈ SG

we have rG∪G1(s1) ≥ rG∪G1(s2) iff rG∪G2(s1) ≥ rG∪G2(s2).
And ∀f1, f2 ∈ FG we have cG∪G1(f1) ≥ cG∪G1(f2) iff
cG∪G2(f1) ≥ cG∪G2(f2).

Facts from less reliable sources are less credible [2]:

P 7 (Fact Coherence). If src(f1) is less trustworthy than
src(f2) then c(f1) < c(f2).

Some additional properties seem also desirable.

Definition 11. Let G = (V,E) be a graph. We denote
dupS(G, s, n) the duplication of a source s and its claims
n times, i.e. dupS(G, s, n) = (V ′, E′) where V ′ = V ∪
{s1, s2, ...sn} and E′ = E ∪ {(si, f)|f ∈ fctG(s), i =
1, ..., n}.

If an opinion is popular enough, it has to be considered as
the truth. So if a source is duplicated sufficiently many times,
its facts should become the most plausible ones:

P8 (Majority). Let G = (V,E) be a graph and s ∈ SG. ∃n >
0 such that fctG′(s) ⊆ BG′(F) with G′ = dupS(G, s, n).

Now, a special case, where a graph has only one object:

Definition 12. Let O1 be a graph G = (S ∪ F ∪ O, E) with
only one object i.e. such that |O| = 1.

When there is only one object in a graph, a fact that is
claimed by more sources will have a better confidence than
another fact with fewer claims. This property is important
since it states that the basic strength of a fact is given by
the number of claims. But with more than one object, the
information gathered about other objects can be used to make
better decisions. So, this property is not desirable for more
than one object, since in this case we want to consider both
the number of claims and the performance of the sources on
other objects:

P 9 (Claims). If cO1
(f) > cO1

(f ′) then |srcO1
(f)| >

|srcO1
(f ′)|

B. Additional Properties

The properties of the last section were the ones that any
method should satisfy. In this section we will give additional
properties, that are not necessary for any method, but that
characterize interesting behaviors of some (subclasses of)
methods.

The next two properties are related to the (Best) property.
A source must (correctly) claim all facts if it wants to get the
highest score:

P 10 (Best A). For s ∈ S, r(s) = 1 iff fct(s) = B(F).

An alternative is to consider that a source is the most reliable
(reliability equal to 1) if it is always correct (without having
to express itself on all objects):

P 11 (Best C). For s ∈ S, r(s) = 1 iff fct(s) ⊆ B(F).

Note that both (Best A) and (Best C) imply property (Best).
If a source’s reliability is 0 (the lowest score), this means

that none of its facts (about its object) is plausible:

P 12 (Worst). For s ∈ S, r(s) = 0 iff fct(s) ⊆ F \B(F).

If a source claims more believable facts than another source,
then the reliability of the first source will be better:

P13 (Source Dominance). For two sources s and s′, if |B(F)∩
fct(s)| > |B(F) ∩ fct(s′)| then r(s) > r(s′).

When a source s claims a fact with a confidence greater
than another source s′ on every object, then the reliability of
s must be better:

P14 (Pareto). Let G = (V,E) be a complete graph and s, s′ ∈
S. If c(f) > c(f ′) with f ̸= f ′, f ∈ fct(s), f ′ ∈ fct(s′) and
obj(f) ∩ obj(f ′) = {o} ∀o ∈ O then r(s) > r(s′).



C. Questionable Properties

We put in this section some properties from [2] that we
consider questionable for any method and discuss why we
think they are not satisfactory.

The first property says that the sources that claim more
believable facts have to be more reliable:

P 15 (Source Coherence). If fct(s1) is less believable than
fct(s2) then r(s1) < r(s2).

Note that the “less believable” notion does not require facts
for being on the same objects. The problem with this property
is that we are comparing facts that are (potentially) about
different objects, whereas the evaluation of the facts is made
for each object. For example, two facts may have the same
confidence, but one is the most plausible for its object, while
the other one is the least plausible for another object.

The second property states that, when a fact receives a new
support, then its ranking should be strictly better:

P 16 (Monotonicity). Suppose a graph G, s ∈ S, f ∈ F \
fct(s). Write E for the set of edges in G, and let G’ be the
graph with edges E′ = {(s, f)}∪E\{(s, g) : g ̸= f, obj(g) =
obj(f)}. Then for all g ̸= f, cG(g) ≤ cG(f) implies cG′(g) <
cG′(f).

This property does not take into account the rest of the
graph and the changes that can occur when an edge is changed.
This property seems to be associated with a local view of the
problem, where an evaluation of the facts corresponding to one
object is independent of the other objects. But it is important
to know the performance of the sources on other objects in
order to make a decision on a given object, and changing an
edge on one object can change the credibility on other objects
and the reliability of many sources. Finally, the evaluation of
the object where the change was made will give a different
result.

Another questionable property states that the confidence
of the facts must depend only on the object to which it is
related. Note that the authors [2] also classify this property as
undesirable:

P 17 (POI). Let G,G′ two graphs and o ∈ O. Suppose
fctG(o) = fctG′(o) and srcG(f) = srcG′(f) for each
f ∈ fctG(o). Then cG(f1) ≤ cG(f2) iff cG′(f1) ≤ cG′(f2)
for all f1, f2 ∈ fctG(o).

This property has a similar problem than the previous one.
It is important to judge the performances of the sources on
other objects in order to take decision on a given object, as
illustrated in the example of the introduction, where evaluating
the performance on Capital of Brazil helps us to decide on
Capital of Australia.

D. Properties of S&F Methods

In the tables and figures, PlA and PlC stand respectively for
the S&F method with plurality vote and the normalization A
or C. BoA and BoC correspond to the methods with the Borda
rule and the normalization A and C.

TABLE I
PROPERTIES SATISFIED BY S&F METHODS.

PlA PlC BordaA BordaC
P1 Best ✔ ✔ ✔ ✔



N
ec

es
sa

ry

P2 Null Player ✔ ✔ ✔ ✔
P3 Groundedness [2] ✔ ✔ ✔ ✔
P4 Unanimity [2] ✔ ✔ ✔ ✔
P5 Symmetry [2] ✔ ✔ ✔ ✔
P6 PCI [2] ✔ ✔ ✔ ✔
P7 Fact Coherence [2] ✔ ✔ ✔ ✔
P8 Majority ✔ ✔ ✔ ✔
P9 Claims ✔ ✔ ✔ ✔
P10 Best A ✔ χ ✔ χ

 O
pt

io
na

lP11 Best C χ ✔ χ ✔
P12 Worst ✔ ✔ χ χ
P13 Source Dominance ✔ χ χ χ
P14 Pareto χ χ ✔ ✔
P15 Source Coherence [2] χ χ χ χ



U
nd

es
ir

ab
le

P16 Monotonicity [2] χ χ χ χ
P17 POI [2] χ χ χ χ

Let us check what are the properties satisfied by our
methods. We focus on the two normalizations (C and A), and
on the plurality rule and the Borda rule.

Proposition 1. PlA satisfies (P1-P9), (P10), (P12), (P13) and
(P14). It does not satisfy (P11), (P15-P17).

Proposition 2. PlC satisfies (P1-P9), (P11), and (P12). It does
not satisfy (P10), (P13), (P14) and (P15-P17).

Proposition 3. BoA satisfies (P1-P9), (P10) and (P14). It
does not satisfy (P11-P13) and (P15-P17).

Proposition 4. BoC satisfies (P1-P9), (P11) and (P14). It
does not satisfy (P10), (P12), (P13) and (P15-P17).

The results are summarized in Table I. First, it is important
to note that our methods satisfy all the basic properties,
that are the properties that are expected for all methods.
It is interesting to discuss the properties that are satisfied
by only some methods, in order to illustrate the difference
in their behaviors. First, note that Best C implies to use
normalization C for our methods, whereas Best A corresponds
to normalization A. Property Worst corresponds to the behavior
of the plurality rule, with other scoring rules it will not be
satisfied. Conversely, the Pareto property is related to the
Borda rule, and is not satisfied by plurality, that performs a
more drastic evaluation of the facts. Finally, Source dominance
is satisfied only by the plurality rule and the normalization A.

VI. EXPERIMENTAL STUDY

Beside the theoretical evaluation of our methods, we also
proceeded to an experimental evaluation of their performance
for identifying the true facts and for evaluating the reliability
of the sources. We have carried out experiments on both real
data sets and synthetic data sets.

A. Real data sets

We evaluate our methods on two data sets that come from
http : //lunadong.com/fusionDataSets.htm, namely the



Book data set and Flight data set. We abbreviate TF for Truth
Finder [1], H&A for Hubs and Authorities [10], Usums for
Unbounded-Sums [2] and Sums, AL for Average.Log, Inv for
Investment, PInv for PooledInvestment from [11]. P stands
for Precision, A for Accuracy, R for recall and C for CSI
(Critical Success Index). Precision = TP

TP+FP , Accuracy =
TP+TN

TP+TN+FN+FP , Recall = TP
TP+FN , CSI = TP

TP+FN+FP ,
see [13] for more details on these performance measures.
Book. The difficulty with this data set was to create the graph,
because the data require some text processing. After data
cleaning, the graph consists of 876 sources, 5685 facts and
1263 objects. The ground truth is composed of 100 objects
with a known true fact. We see in Table II that the S&F
method with the plurality vote and the normalization A is the
best method with this data set.
Flight. To clean this data set, we have to put all the dates and
hours in the same format. We removed the terminal of the
gate because it only appears a few times. After data cleaning,
the graph consists of 38 sources, 399 506 facts and 207 912
objects. The ground truth is composed of 16 089 objects with
a known true fact. We see in Table III that the method with
plurality vote and the normalization A is also the best method
with this data set. This method outperforms other methods
because it manages to find the truth about objects even when
the majority of sources do not claim the true fact.

So we see on these two real data sets that our S&F method
outperforms all existing methods from the literature for finding
the true facts for all performance measures (P, A, R, C).

B. Synthetic data sets

The limited number of real data sets available does not
allow us to evaluate the performance of the methods in many
different situations. We have generated synthetic data sets to
be able to perform this more precise evaluation.

All the generated graphs presented here are composed of 10
objects and 4 facts by object (we have carried out many other
experiments with similar results, but, due to space limitation,
only present this case). For each object, we randomly choose
one fact to be the true value of that object. This will be our
ground truth to evaluate our methods with the metrics.

For each source, we randomly choose a number of objects
between 1 and |O| on which this source will claim a fact.
To generate the links between the sources and the facts, we
assign to each source an a priori probability p (between 0.1
and 0.9) of choosing a true fact on each object. The false
facts have the probability 1−p, uniformly distributed, of being
chosen. The graphs generated may not be complete, it means
that the sources may not claim a fact on every object. After the
generation, we know the a posteriori probability of choosing
a true fact for all the sources. This value represents the true
reliability of these sources.

In the tests, we rank the experiments with respect to the
average reliability of the sources. We can see what happen
when the sources are globally more or less reliable. In the
graph, an average reliability of x% means that there are x% of
links between sources and true facts (and, obviously, (100 −

Fig. 2. CSI - 10 sources

x)% of links between sources and false facts). Each point
on the graphics corresponds to the mean obtained with the
generation of 1000 graphs.

We compare the results of our methods against related
methods of the literature and Voting.

Facts Credibility - Truth Discovery. We see (Fig. 2) that
the S&F methods with the plurality rule, and the two nor-
malizations, are better for CSI than other methods from the
literature when the average reliability is greater than 27%.
Compared to other methods, the method with plurality finds
the truth more often when there is an equal number of sources
claiming the true fact and the false facts. It also finds the
truth when a minority of sources claims the true fact. It is
interesting to note that the methods perform very well even
for low average reliability. Our methods have good results with
the two normalizations. Note that all the methods find the truth
when the average reliability is greater than 57%. Between 42%
and 57%, we do not show the results for better readability as
they are almost the same for all methods.

Reliability of the sources. We perform experiments with
several metrics (number of swaps, Euclidean distance, etc.),
with very convincing results, but we do not have enough space
to describe all these metrics, so we will focus on averaged
difference: we compute the averaged difference between the
computed reliability and the (a posteriori) probability of
choosing the true fact for every object. So this distance
measures how far the estimated reliability is close to the true
one (the a posteriori probability). For Voting, we define the
reliability of a source as the proportion of objects on which
the source claims the majority choice. We do not compare
the result to Unbounded-Sums here because the score always
increases for this method.

On Table IV we compare the estimated reliability obtained
with the real reliability (a posteriori probability), for the case
where the average reliability is 37% (due to space limitation,
we only show the reliability of the best methods). One can
check that the estimations provided by the plurality rule are
very close from the true probability (recall that the results are
a mean on 1000 experiments).

For a more complete picture, Fig. 3 shows the evolution of
the averaged difference for different average reliability of the
sources. The estimated reliability of the sources is closer to



TABLE II
RESULTS FOR Book DATA SET

PlA PlC BoA BoC TF H&A Sums Usums AL Inv PInv
P 78.00 76.00 71.00 76.00 72.00 74.00 74.00 72.00 75.00 74.00 75.00
A 90.98 90.16 88.11 90.16 88.52 89.34 89.34 88.52 89.75 89.34 89.75
R 78.00 76.00 71.00 76.00 72.00 74.00 74.00 72.00 75.00 74.00 75.0
C 63.93 61.29 55.04 61.29 56.25 58.73 58.73 56.25 60.00 58.73 60.00

TABLE III
RESULTS FOR Flight DATA SET

PlA PlC BoA BoC TF H&A Sums Usums AL Inv PInv
P 91.35 82.34 83.82 81.91 80.36 82.21 82.21 82.79 80.77 82.21 80.77
A 91.49 82.61 84.06 82.18 81.72 82.48 82.48 83.05 81.06 82.48 81.06
R 91,35 82.34 83.82 81.91 83.22 82.21 82.21 82.79 80.77 82.21 80.77
C 84,08 69.98 72.14 69.36 69.15 69.80 69.80 70.63 67.74 69.80 67.74

TABLE IV
SOURCE RELIABILITY - AVERAGE RELIABILITY 37%

s Probability PlA BoA Voting Sums TF
s1 0.11 0.131 0.35 0.197 0.28 0.75
s2 0.17 0.187 0.39 0.249 0.35 0.77
s3 0.21 0.233 0.42 0.288 0.41 0.78
s4 0.27 0.296 0.46 0.341 0.47 0.81
s5 0.33 0.341 0.49 0.386 0.52 0.82
s6 0.39 0.403 0.53 0.438 0.58 0.85
s7 0.47 0.476 0.58 0.503 0.66 0.86
s8 0.53 0.528 0.61 0.549 0.70 0.88
s9 0.57 0.564 0.63 0.58 0.74 0.89
s10 0.61 0.591 0.64 0.603 0.75 0.90

Fig. 3. Sources reliability - Averaged difference - 10 sources

the true reliability when the average reliability of the sources
increases. We see that we obtain exactly the true reliability
when the average reliability is better than 57% for the method
using the plurality rule. With the Borda rule, we give points to
all sources. This is why the reliability is not identical to the a
posteriori probability. The sources will also get points from the
false facts claimed. But, when the average reliability of sources
increases, the difference tends towards 0. Voting has good
results when the sources are reliable (average reliability greater
than 57%), but before that, our method with the plurality rule
is better. The iterative method helps to find the true facts even
when the sources are not really reliable compared to the use
of a basic voting method.

VII. CONCLUSION

In this paper, we have introduced the S&F methods for
evaluating the reliability of the sources conjointly to the confi-
dence of the facts in an information-based multi-agent system.
We proposed and discuss properties that such methods should

or could satisfy. And we checked which properties are satis-
fied by our methods. We also performed some experimental
evaluations. First, we show that our methods (especially with
the plurality rule) outperform methods from the literature to
identify the true facts on real and generated benchmarks. But
we also show that our methods allow to correctly estimate the
reliability of the sources. There are numerous paths for future
work. The most direct ones are to allow some similarity (or
dependence) between objects, but we could also use different
topics, and to take into account some a priori information
about the reliability of sources.
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