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Abstract—Conceptual knowledge, encoded in ontologies or
knowledge graphs, plays an essential role in many areas, includ-
ing Semantic Web, Information Retrieval, and Natural Language
Processing. Considerable attention has recently been devoted
to the problem of unifying and linking available ontologies.
While the vast majority of existing work focuses on matching or
aligning resources, in this paper, we investigate the application
of belief merging theory to ontology merging to obtain a unique
perspective. We consider the setting where different ontologies
share the same terminology (i.e., assuming that they are already
mapped to each other). However, they express knowledge in
different and potentially conflicting ways. In order to get a unified
view of the knowledge conveyed by the different ontologies, we
start by providing a semantic-based merging model. Our method
retrieves all the interpretations in which the outcome can be
found. We support demonstrating the method’s effectiveness by
an experimental evaluation of the method on existing open-
domain ontologies.

Index Terms—Belief Merging, Ontology, Semantic Conflicts,
Open-Domain, Description Logics.

I. INTRODUCTION

Structured knowledge about concepts and properties com-

monly uses in fields such as natural language processing

(NLP) [1], and Semantic Web [2]. They are typically encoded

using ontologies or knowledge graphs. The critical difference

between these two frameworks is that knowledge graphs are

considerably less expressive than ontologies, and therefore can

be thought of as a more straightforward form of ontologies. 1

An important point, however, is that many ontologies shar-

ing the same knowledge are available. Several open domain

ontologies, such as SUMO, OpenCyc, Wikidata, Babelnet, and

others, are available on the Web. Therein, they often express

knowledge of a particular domain such as food, sport, dance,

and so on, using different terminology. This observation has

led to several methods aiming at unifying and link ontologies

to each other. Therefore, ontology integration approaches,

such as ontology matching, mapping, and alignment, have

emerged (e.g., [3]–[7]). Alignment methods offer the different

correspondences between ontologies. Ontology matching is the

process of automatically generating correspondences between

terms of different ontologies. Some recent studies, including

[3], [8], [9], focus on these aspects.

Naturally, when expressing knowledge of a given domain

and assuming that the same terminology (i.e., individual,

concept and role names are the same), many points of view

are possible. Therefore many types of conflicts may arise. By

1In this paper, we shall use ontologies to refer to knowledge graphs as well.

conflict, they do not only refer to logical inconsistency but

also to semantic conflicts that might appear in the knowledge

structured in different ways. Consider, for instance, the con-

cept “Process” as defined by the following three ontologies:

SUMO, WikiData, and BabelNet. i.e., Wikidata: “Procedure”

is a “Technique”, and “Technique” is a “Process”. SUMO:

“Technique” is a Procedure, and “Technique” is a “Process”.

Babelnet: “Technique” and “Procedure” are a “Process”. In

this example, the three ontologies are already matched to

each other. While there is no logical inconsistency between

these ontologies, the emerging problem is that they structure

the knowledge about the domain in different and potentially

conflicting ways. (i.e., WikiData says that “Procedure” is a

“Technique” while SUMO states that “Technique” is a “Proce-
dure”. Then, one issue that occurs is whether the statements of

Wikidata or SUMO should be selected in terms of merging).

Hence, ontology merging combines two (or more) ontology

sources into a target ontology while solving (semantic and

logical) conflicts between them. In this paper, we focus on

the disputes/conflicts that arise when the ontologies sources

express, using the same terminology, the knowledge about

a particular domain in different incompatible ways. In the

example mentioned above, one possible solution to deal with

semantic conflicts would be to consider all the concepts as

equivalent (e.g., “Procedure” ≡ “Technique”). However, we

would prefer to avoid this solution as it leads to flattening

the hierarchy of the output ontology (i.e., the result of merg-

ing), which means lose all the information provided by the

ontologies. Recall that the primary purpose of an ontology is

to structure conceptual knowledge hierarchically. A solution

one can consider the majority, for instance, if five ontologies

agree that “Procedure” is a “Technique” while the only one

says that “Technique” is a “Procedure”, then the majority will

be followed.

In order to solve those problems, we propose an ontology

merging method that relies on the solid theoretical foundations

of propositional belief merging (e.g., [10], [11]). Therein,

several merging operators have been proposed (e.g., [12]–

[15]). Recently, several studies related to ontologies merging

have been proposed [16]–[21]. In this paper, we introduce

semantic-based ontology-merging operators as an approach to

solving conflicts. Notice that we focus crucially on handling

the semantic conflicts between sources, and we assume that

these sources have already been matched to each other before

the merging process conducts.
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Syntax Semantics

C � D CI ⊆ DI

r rI ⊆ ΔI × ΔI

a aI ∈ ΔI

C � D CI ∩ DI

� ΔI

∃r.C {x ∈ ΔI | ∃y ∈ ΔIs.t.(x, y) ∈ rI , y ∈ CI}

TABLE I: Syntax and semantics of description logic EL

II. BACKGROUND

To introduce our method, we choose description logics,

as they provide the formal foundations of ontologies. For

simplicity, we will consider EL [22], which is one of the most

basic description logics.

Let NC , NR, NI be three pairwise disjoint sets where NC

denotes a set of atomic concepts, NR denotes a set of atomic

relations (roles), and NI denotes a set of individuals. The

EL concept expressions are built according to the following

grammar: C ::= �| NC | C � C | ∃r.C where r ∈ NR.

An EL ontology (a.k.a. knowledge base) consists of a set of

general concept inclusion (GCI) axioms of the form C � D.

Furthermore, a set of equivalence axioms of the form C ≡ D
means that the two general concept inclusions C � D and

D � C hold. There is also a set of concept assertions of

the form C(a), and a set of role assertions of the form

r(a, b). In this paper, we consider assertion free ontologies.

Moreover, given A,B,A1, A2 ∈ NC , an EL TBox T is in the

normal form [23], [24] if it consists of inclusions of the form:

A � B,A1 �A2 � B,A � ∃r.B, ∃r.A � B. We assume that

all ontologies in this paper are in normal form.

The semantics is in terms of interpretations I = (ΔI , ·I)
which consist of a non-empty interpretation domain ΔI and an

interpretation function ·I that maps each individual aI ∈ NI

into an element aI ∈ ΔI , each concept A ∈ NC into a subset

AI ⊆ ΔI and each role r ∈ NR into a subset rI ⊆ ΔI ×
ΔI . Table 1 summarizes the syntax and semantics of EL. An

interpretation I is said to be a model of (or satisfies) a GCI

axiom, denoted by I |= C � D, if CI ⊆ DI . Similarly, I
satisfies a concept (resp. role) assertion, denoted I |= C(a)
(resp. I |= r(a, b)), if aI ∈ CI (resp. (aI , bI) ∈ rI). An

interpretation I is a model of an ontology O if it satisfies all

the axioms in O. An ontology is said to be consistent if it

has a model. Otherwise, it is inconsistent. In this work, for

simplicity, we assume that every ontology is consistent. An

axiom Φ is entailed by an ontology, denoted by O |= Φ, if Φ
is satisfied by every model of O.

III. SEMANTIC-BASED ONTOLOGY MERGING

Given a profile of ontologies describing a particular domain

knowledge using the same signature (same concept, role, and

individual names), one can distinguish two possible cases: (1)

the case where the ontologies agree on the same claims (e.g.,

all ontologies claim that a concept A is subsumed by B) and

(2) the other case where there is a disagreement (or conflict)

on how to express knowledge.

In the first case, there is no conflict, and the result of

merging should contain the common statements. In the second

Fig. 1: A general framework of the merging process

case, a solution that appropriately solves the conflicts needs to

find all possible statements and select the most plausible one,

in which the different sources agree. This case could be in the

form of semantic disagreement (e.g., “Technique” is subsumed

by “Procedure” in SUMO ontology whereas Wikidata state

that “Procedure” is subsumed by “Technique”).

Definition 1 (Semantic Conflict): Let {O1, . . . ,On} be a
profile of ontologies that share the same signature. Let A � B
be an axiom of Oi (Oi |= A � B). We say that A � B is in
a semantic conflict if Oi 	|= B � A and there is an ontology
Oj , s.t. Oj |= B � A.

In this paper, we follow a semantic (model-based) approach

for merging, by first computing the set of statements which are

close to the input ontologies. When this result is obtained, we

compute from the set of selected statements an ontology that

gives us the merging result. Intuitively, given the signatures of

the different ontologies, we generate all possible statements,

which will be encoded using a set of interpretations. Once

these interpretations are found, we select the most plausible

interpretations that agree with the sources. We propose an

ontology merging framework to outline the merging process

and deal with the existing conflicts. Our merging framework is

summarized in Figure 1. The framework splits into three main

parts: (1) applying an existing mapping process to generate a

list of synchronized names. (2) extracting the axioms with

synchronized names (i.e., rewrite all ontologies with the same
signature) from the sources. (3) applying an ontology merging

method. The steps of the third part are the following: (i) we

enumerate all possible ways to express knowledge (Intuitively

one possible way will be the result of merging). (ii) We express

these possible ways semantically in terms of interpretations.

(iii) We apply merging theory to measure the satisfaction of

each solution w.r.t. the ontology profile. In the following, we

will describe the merging steps in detail.

A. Generating Possible Merging Solutions

Given the set of axioms, we first rewrite them in the normal

form [22]. Then, these rules are rewritten by a combination

between the relations and the set of concept names, called

patterns.2 We define the patterns as follows:

2We can see these patterns as second-order is-a relations, whose instances
are the concepts from the ontologies.
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Definition 2 (Pattern): Let the symbols �, 
 be the represen-
tative placeholders of the concepts names. We will use π to
denote a pattern. The patterns are as follows: subsumption
(� � 
), intersection (� � 
), existence (� � ∃r.
, ∃r.� � 
).
The set of patterns is denoted as ξ.

In order to have an axiom, we collect concept pairs from

the set of concepts defined as follows:

Definition 3 (Concept Pair): Let NC be the set of concept
names. A pair of concept names is an element of NC ×NC .
For brevity, we shall often write a pair (A,A′) as AA′. The
set of concept name pairs is defined as N2

C .
We use Definition 3 to generate the concept names for the

combination per each pattern. In other words, let (A,B) ∈ N2
C

and π be a pattern. The instantiation of π with AB, denoted

πAB , is the result of replacing � with A and 
 with B in π.

For example, given the pattern π = (� � ∃r.
) and the concept

name pair AB, then πAB = A � ∃r.B. The replacement of the

concept names with the placeholders in the patterns is called

“a concept pattern”. The set of concept patterns is defined as:

Definition 4 (Concept Pattern): Let ξ be the set of patterns
and let N2

C be the set of concept name pairs. Let × be a
combination between the patterns and the concept name pairs.
The set of concept patterns is α = N2

C × ξ.
Now, we combine the concept patterns called a combination.

These “combinations” will allow us to generate all possible

ways to express knowledge.

Definition 5 (Combination): Let α be the set of concept
patterns. The set of combinations is H =

⋃
2≤n≤|α|{X | X ⊆

α and |X| = n}.
We use Definitions 4 and 5 to generate all the possible com-

binations that can be expressed using the same terminology.

Next, we need to generate the interpretations corresponding to

the combination. We first introduce a closure definition which

is also the foundation of collecting all possible interpretations.

Let I=〈ΔI , ·I〉 with AI={A(a) | a ∈ NI and I |= A(a)} ∪
{r(a, b) | a, b ∈ NI and I |= r(a, b)}. We denote AI as the

pseudo-ABox induced by I. The closure definition is as:

Definition 6 (Closure): Let Φ be an axiom, B be a concept, r
be a role and {a, b} be individuals. The closure of Φ is defined
as follows: ClΦ(AI)={B(a) | 〈Φ,AI〉 |= B(a)} ∪ {r(a, b) |
〈Φ,AI〉 |= r(a, b)}.

An illustration to explain the closure is as follows: assuming

we have an axioms Φ including A � B, and S={AI= {a},
BI= {b}, CI= {c}}, then the closure of Φ is ClΦ(S)=
{AI={a}, BI= {a, b}, CI= {c}}.
Definition 7: Let H be a set of combinations and AI be the
pseudo-ABox. The closure of Φi ∈ H is denoted as ClΦi

(AI).
The universe of interpretations is U =

⋃
1≤i≤|H| ClΦi

(AI).
Consider Φ1= {C � B,C � A}, then the closure of

Φ1 is ClΦ1(AI)={AI={a, c},BI={b, c},CI={c}}. Finally, we

aggregate them (using Definitions 6 and 7) to collect the set

of interpretations.

Regarding the restrictions, there are three constraint cases as

follows: (1) the interpretation does not contain the empty set.

(2) each concept has at least one representative (or typical)

individual that belongs to it. (3) the interpretation is not

duplicated. We focus crucially on generating the interpreta-

tions in which each concept will store completely individuals,

e.g., U={AI={a},BI={a, b, c},CI={a, c}}. More formally,

we call the interpretations that are restricted by the constraints

as “spurious” interpretations.

Definition 8: Let I be an interpretation. We say I is spurious
if one of the following three conditions holds:
− There is A ∈ NC s.t. AI = ∅; or
− There is a ∈ NI s.t. for every A ∈ NC , a

I /∈ AI; or
− There is I ′ and I ′ 	= I s.t. ΔI=ΔI′

and ·I = ·I′
.

With SP we denote the set of all spurious interpretations.
Finally, we generate “useful” interpretations by eliminating

the “spurious” interpretations from the set of “universal”

interpretations. The set of useful interpretations is defined as:

Definition 9: Let U be the set of universal interpretations and
SP be the set of spurious interpretations. The set of useful
interpretations is defined as W = U \ SP .
Example 1: We consider an example of a profile �1 of three
ontologies {O1,O2,O3} in which three concepts A, B, C
have the same names (A,B,C ∈ O1,2,3): �1 := { O1 :
C � B,A � B,O2 : A � B,B ≡ C,O3 : A � C � B }.
First of all, the combination between the concept names
N2

C = {A,B,C} and six forms (corresponding to the concept
patterns) will generate 6× |N2

C | = 6× 3 = 18 patterns. Next
step, we apply Definition 4 to collect the set of combinations.
(e.g., {A � B,A � C}, {A � C, ∃r.C � B})). Next, all
interpretations are also generated by the initial interpretation
(AI={a}, BI={b}, CI={c}, rI=(a, b)) and the set of combi-
nations H. Applying Definition 7, the total number of collected
interpretations are (Σk∈H|(NI)k |)=104 interpretations.

B. Selection of the Best Interpretation

In this section, we provide ontology merging operators.

The aim is to seek the interpretations that are the best

representatives of the sources ontologies. First of all, let �
be a profile of ontologies sources (� = {O1, ...,On}). Let ⊕
be an ontology merging operator that assigns each ontology

set � to a set of selected interpretations, denoted by ⊕(�).
A model-based operator is defined by selecting the closest

interpretations to the ontology sources. First, we compute the

distance between the interpretation I and the ontology O
through axioms Φi ∈ O as follows:

Definition 10: Let I be an EL interpretation and let O be
an ontology. The distance between I and O is defined as:
dist(I,O) = |{Φi ∈ O | I 	|= Φi}|

The distance from I to O is the number of axioms in

O that are not satisfied by I. We call dissatisfaction as the

disagreement of I with O. In this work, the disagreement will

be computed particularly at axiom level. Notice that, when

calculating the distance of an interpretation to the ontology O,

we consider both explicit and implicit knowledge. Namely, if

only explicit knowledge is considered, then the distance of an

interpretation to two equivalent ontologies could be different.
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Algorithm 1 SIF algorithm

Input in IntpList=[]: List of Interpretations (the closest distance)
Output in SIF={}
1: Let OneI ← ∅
2: for each concept, indivList : IntpList do
3: N ← getConceptName(concept)
4: OneInpt[N] ← OneInpt[N] ∪ getIndividuals(indivList)
5: end for
6: for each nameConcept, valueList : OneInpt do
7: F ← Frequency(valueList)
8: T ← size(IntpList)/2
9: for each i, v : F do

10: if v > T then
11: SIF[nameConcept] ← SIF[nameConcept] ∪ i
12: end if
13: end for
14: end for
15: return SIF

Consider the following example where O1={A � B,B � C}
and O2 = {A � B,B � C,A � C}. It is clear that the

two ontologies are equivalent, but O1 contains fewer axioms

than O2. Given an interpretation I = {AI = {a, b, c}, {BI =

{b}, {CI = {c}}, then dist(I,O1) = dist(I,O2) = 2 when

considering the closure, but it is not the case if we only

consider explicit knowledge (i.e., dist(I,O1) = 2 is different

from dist(I,O2) = 3).

Next, ontology merging operators are based on the ag-

gregation of these distances. The idea is to find the closest

information to the overall profile. Suppose that we have an

aggregation function g [25], then we define:

Definition 11 (⊕g): Let I be an interpretation, let � be a set
of ontologies, and g be an aggregation function. We define the
distance distg(I,�) = gO∈�(dist(I,O)).

In this paper, we will focus on the aggregation functions g ∈
{max,Σ, leximax}3, that echoes the most usual propositional

merging operators. We have an assignment that maps each

knowledge base set � to a pre-order ≤� over interpretations

(on W), referring to [14]. And finally, we define our ontology

merging operators ⊕g as follows:

Definition 12: Let � be a profile of ontologies, g be an
aggregation function, and I,J ∈ W . We define the ontology
merging operator ⊕g as

I ≤g
� J iff distg(I,�) ≤ distg(J ,�)
Mod(⊕g(�)) = min(W,≤g

�)

Example 2: Let us continue with example 1 for illustra-
tion. Assuming we have the interpretation I1 = {AI1 =
{a, b, c}, BI1 = {b}, CI1 = {b, c}, rI1 = (a, b)}. Computing
the distance from I to �1 as follows: dist(I1,O1) = dI1

O1

= 2 because an axiom of O1 is unsatisfied by I1 (namely
I1 	|= A � B and I1 	|= C � B); similarly, dI1

O2
=

2, since for I1 	|= A � B and I1 	|= B ≡ C; dI1

O3

= 1 due to I1 	|= A � C � B. Accordingly, we have
the distance between I and �1 by applying Definitions 11
and 12 as follows: distmax(I1,�1)= max(dI1

O1
, dI1

O2
, dI1

O3
)=

3We will write Gmax instead of leximax like in [11].

Dataset Type Number of
Concept

Number of
Axiom

Number of
is-a relation

SUMO (1) 4558 587842 5330
(2) 3432 2138 2138

Wikidata (1) 69188843 2941036 2941036
(2) 119152 16876 16876

Babelnet (1) 6113467 277036611 15831054
(2) 119957 165121 165121

TABLE II: The number of Concepts, Axioms, i-a Relations of three
ontologies sources. (1) is the number of the original ontology, (2) is
the number after the mapping process.

max(2, 2, 1)= 2, distΣ(I1,�1) =
∑3

i=1(d
I1

Oi
) = (2+2+1) = 5,

distGmax(I1,�1)=(2, 2, 1). For this example, there are three
selected closest interpretations: Mod(⊕g(�1))= {{AI={a},
BI={a, b, c}, CI= {a, b, c}}; {AI= {a, b}, BI= {a, b, c},
CI= {a, b, c}}; {AI= {a, c}, BI= {a, b, c}, CI= {a, b, c}}.

C. Expressing the Result of Merging

Once the set of closest interpretations from the profile is

computed, we build an ontology that corresponds to these

interpretations. In fact, we need only one interpretation to

represent the outcome of merging since we can not model

disjunction in this framework. Hence, we built a Selected In-
terpretation Frequency (SIF) algorithm based on the frequency

of individuals of each concept to decide the selection. The

algorithm’s idea is to collect/put all individuals (of the selected
interpretations) into one interpretation. Next, we compute

the frequency of individuals using the majority technique to

select the final result. An individual is selected if it is in the

majority of the interpretations. Notice that we only consider

assertions free open-domain ontologies, and we only focus on

merging terminological knowledge. A pseudo-ABox is then

assumed in this paper. Notably, when there is a real ABox,

it could certainly help us to solve the semantic conflict and

to choose between the candidate interpretations, which is the

good one. This improvement of the framework is left for future

work. However, in the next sections, we will show with the

experiments that even without this real ABox, we obtain very

sensible results.

Definition 13: f⊕ is called a full ontology merging oper-
ator if ⊕ is an ontology merging operator and f⊕(�) =
SIF (Mod(⊕g(�))).

The input of the SIF algorithm is the list of closest inter-

pretations, and the output is the most plausible interpretation.

Explaining as follows: assume that there are the individuals

in each concept including a ∈ A, b ∈ B, c ∈ C.4 Firstly,

(continue with Example 2) we collect all the individuals of

interpretations (line 2 to 5), the outcome is {A:{a, a, a, b, c},
B:{a, a, a, b, b, b, c, c, c}, C:{a, a, a, b, b, b, c, c, c}}. Secondly,

we computed the frequency of the individuals in each concept,

the result includes: {AI={a:3, b:1, c:1}, BI={a:3, b:3, c:3},
CI={a:3, b:3, c:3}} (line 7). The purpose of the next step is to

select a unique interpretation. Hence we use simple majority

voting (line 8) to filter out the individuals in each concept

and select the most plausible interpretation (lines 9 to 13).

4All interpretations contain these individuals.
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Fig. 2: The computation time of the merging process (seconds).

In the case of the example �1, the selected result using the

SIF algorithm is as follows: f⊕(�1)= {AI={a}, BI={a, b, c},
CI={a, b, c}}. In the following, we show how to translate the

chosen interpretation into an ontology:

Definition 14: Let H be the set of combinations (axioms)
and f⊕ be the full ontology merging operator. The syntactic
ontology merging result is defined as Y = {M | M ∈
H and f⊕(�) |= M}

Applying Definition 14, we seek an ontology M in the

combinations H, such that M is satisfied by f⊕(�). In other

words, one interpretation f⊕(�) corresponds to one ontology

M . Therefore, the syntactic ontology merging outcome of the

example �1 is: Y = {A � C,B � C}.

IV. EXPERIMENTAL EVALUATION

This section experimentally evaluates our approach. First of

all, we collected the concepts from the three ontologies

(SUMO5, Wikidata6, and Babelnet7). We provide statistics of

the ontologies before and after the mapping process in Table II.

We use the mapping process between the three sources to seek

correspondences between them. We create a synchronization

of the new names of concepts based on those mappings.

The mapping process includes the following steps: At step 1,

for each concept name in SUMO, we extract its WordNet given

in the annotation of the concept. For step 2, we implement two

methods to collect Wikidata ID: (1) First, we use WordNet ID

(extracted at step 1) to determine the synset of Babelnet. After

that, we use BabelNet API to retrieve the Wikidata ID. (The
correspondences between Wikidata and Babelnet are available
in the BabelNet dataset). (2) The second one uses the SUMO

concept name to seek Wikidata ID through BabelSynset. In

step 3, we check and collect the label/name of Wikidata ID

through the Qwikidata library. This work is to ensure that

the concept names are the same.8 Notably, a synchronization

process of the concept names is conducted before merging.

Namely, we assign a new name at the end position of each

mapping. The synchronization is essential because the concept

names are not the same in practice.

5http://www.adampease.org/OP.
6https://www.wikidata.org.
7https://babelnet.org.
8The datasets and the implementation of the merging operator are available

at https://github.com/ontologymerging/beliefmerging.

Fig. 3: Structure of concepts in Example 3

For the evaluation of our merging method, we consider the

top-10-levels of the three ontologies. The purpose of splitting

the considered levels is to evaluate the computation time

needed to generate the combinations/interpretations as well as

to determine the number of conflicts at each level. For each

level, we output the number of axioms, conflicts and computed

interpretations. The experimental results are provided in Figure

2, where we show the time needed to compute the result of

merging. Overall we can see that our model of merging is

fully efficient in solving conflicts. We focus on the axioms that

express knowledge in different ways. Next, we compute the

interpretations needed to determine the result of merging. Note

that all concepts are handled based on the synchronized names

between the three sources. We have run an experiment in order

to test our proposal based on the number of conflicts and the

processing time. The conflicts start to appear in level 2 with

783859 concepts. Subsequently, the number of contradictions

increases when increasing the number of levels. The time

of processing is fast and effective. A piece of evidence is

at level 10 with 15802 conflicts, and the processing time is

around 180,54 minutes (10832,55 seconds). Also, the result

of merging is quite expected because it solves the problem

of heterogeneous and ambiguous information well. The most

plausible interpretation satisfied all the axioms and obtained

the information entirely from the three ontologies.

As a matter of illustration, we show in the following a real

example, and how our method performs merging.

Example 3: Consider the three concepts (Procedure,
Technique, Process) represented as in Figure 3. This ex-
ample presented in the introduction section.

The merging upshot is: Mod(⊕(�Ex3))= {ProcedureI=
{proced, tech}, TechniquesI= {tech, proced}, ProcessI=
{tech, proced, procce} }. The syntactic result is the same
as Wikidata because the expressing knowledge of Wikidata
contained and satisfied the semantic merging result well.

V. CONCLUDING REMARKS

We deal with merging problems existing when conflicts

arise between knowledge coming from multiple open-domain

ontology sources. To this end, we provided a formal definition

of a semantic-based merging operator. We then demonstrated

our approach using real examples of open-domain ontologies.

A framework of ontology merging and how the mapping

between different sources is developed and made available

online. Finally, we also provide experimental results as well

as the practical example to demonstrate our method.
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