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Abstract

We introduce and study qualitative multiple outcomes
games. These games are noncooperative games with qual-
itative utilities (i.e., values over an ordinal scale), strictly
qualitative uncertainty and possible coordination. By strictly
qualitative uncertainty, we mean that when there is a set of
possible events, the probability of each event is unknown.
Coordination is a way offered to the players to remove uncer-
tainty. Qualitative multiple outcomes games is a model for a
number of multi-agent problems where agents have minimal
information about the interaction effects and where proba-
bilites are unavailable. Among them is multi-agent planning
where autonomous planning agents do not share the same
goals, and have to generate plans that interact with those of
others in a way they cannot unilaterally predict or control.

1 Introduction

The aim of this work is to introduce and study qualitative
outcomes games. In this kind of games, each strategy profile
is associated with a set of possible outcomes. For any strat-
egy profile, players are given the possibility to coordinate,
that is to agree on a particular element of the associated set
of outcomes. Coordination can be achieved only if all the
players agree on it. Motivations for introducing coordina-
tion in this kind of games are very similar to the ones which
motivate the introduction of the notion of correlated equilib-
rium. The idea is that the players can (cheap) talk about the
set of outcomes associated to a strategy profile before choos-
ing their corresponding strategy, so they can coordinate to
achieve an interesting outcome for all of them.

When players do not want to (or cannot) agree on an out-
come, the outcome that will be realized is any one in the set.
One can imagine that an external agent (e.g. Nature) picks
up one outcome in the set of possible outcomes. In that case,
players do not know the probability distribution used by this
agent. Qualitative multiple outcomes games can also prove
valuable to model scenarios where it is inappropriate to use
a probability distribution on the outcomes. Halpern and Tut-
tle underline the need for such models without probabilities

in [6]. They argue in particular that ”some choices in dis-
tribued systems must be viewed as inherently nondetermin-
istic (or, perhaps better, nonprobabilistic), and that is inap-
propriate, both philosophically and pragmatically, to model
probabilistically what is inherently nondeterministic”. We
say that the players’ uncertainty about the realized outcome
is strictly qualitative. The only available piece of information
is the outcome set associated to each strategy profile.

In the following, we make the further assumption that the
players’ utilities are qualitative. It means that utilities are
defined over an ordinal scale, and not necessarily over the set
of real numbers. As a consequence, no notion of preference
intensity can be derived from the players’ utilities.

Let us illustrate the interest for qualitative outcomes
games on a modified version of the prisoner’s dilemma.

Example 1 Two suspects are arrested by the police. The po-
lice has insufficient evidence for a conviction, and offers both
prisoners the same deal: if one testifies (strategy D) for the
prosecution against the other who remains silent (strategy
C), the betrayer will only have a one year sentence (a satis-
faction of 5) and the silent accomplice receives the full 6-year
sentence (a satisfaction of 0)

If both remain silent, the prosecution will be based only
on evidences, so the result of the trial will depend of the con-
vincingness of the suspects. If they are not sufficiently con-
vincing, they will go only 3 years in jail (a satisfaction of 3),
but if they give coherent stories (by the means of any coordi-
nation process), they will go free (a satisfaction of 6).

If each betrays the other, each one will receive a 4 or 5
year sentence (a satisfaction of 2 or 1 respectively), depend-
ing of the suspects testimony during the trial. Thus, again,
they can agree on a story which does not prevent them from
going to jail but ensures them the less possible sentence.

In this scenario, players are confronted with situations
leading to different outcomes. Players can coordinate on a
particular outcome. If they do not, any possible outcome may
be realized.

In strategic form, the associated game can be represented
as in Table 1. In this game, there is some uncertainty on the
outcome obtained with the profile of strategies (C,C), and the
one obtained with the profile (D,D). This uncertainty can-
not be probabilized, and can be removed if the two agents
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C D
C (6,6) (0,5)

(3,3)
D (5,0) (1,1) (1,2)

(2,1) (2,2)

Table 1. Prisoner’s dilemma with uncertainty
and possible coordination

coordinate. Note that for most probability distributions on
outcomes sets, this game is a prisoner’s dilemma.

As we will see, coordination modifies the usuual picture
since, thanks to it, the profile (C,C), and the outcome (6,6)
are achievable.

These qualitative games can model a number of situations
from multi-agent planning problems where there is no central
planner and agents are autonomous, meaning that each one
has her own goals and is willing to coordinate only if it is of
her interest (in this respect these problems differ from task
sharing ones).

In such problems each agent (player) has a set of possi-
ble actions (moves), and goals (represented for instance by
an utility function). She can generate plans (sequences of ac-
tions) in order to reach the best possible consequence from
her point of view. When only one agent is considered, the
problem of finding the best plan is a classical planning prob-
lem, well-studied in artificial intelligence. But when several
agents must be considered, the problem of finding the best
plan for each agent is much more complex since plans may
interact, and requires tools from game theory. When agents
have to compute their plans before knowing the other play-
ers’ choice, cannot change their plans after it, do not know
the exact execution order of the actions of the whole pro-
file of plans (except for their own actions), and when several
players may agree on building mutual plans (removing the
uncertainty at the execution level, exactly as if they would
consist of one - global - agent), the planning problem can be
modeled using our qualitative games. For more details on
such multi-agent planning problems see [4].

The following example depicts such a situation.

Example 2 Two agents, a robot-painter and an robot-
electrician, operate in a single room. The bulb has to be
changed (which is the goal of the electrician) and the ceiling
has to be painted (which is the goal of the painter). The elec-
trician has a new bulb and the painter the materials needed
to paint the ceiling. Now, there is a single ladder in the room
(the ladder is thus a critical resource). Furthermore, the
painter needs some light in the room in order to make her
job. The electrician can achieve three actions: TLe (“take
the ladder”), CB (“change the bulb”), RLe (“release the
ladder”); and the painter three actions: TLp (“take the lad-
der”), P (“paint”), RLp (“release the ladder”) ; P succeeds

only if CB has been performed before. TLe and TLp suc-
ceed only if the ladder is available (i.e., it has been released
before).

The following interactions can be easily envisioned:

• If the painter takes the ladder first, then she will not
be able to achieve her goal (since the bulb has to be
changed first); if she does not release the ladder, then
the electrician will not be able to achieve her goal.

• If the electrician takes the ladder first, she will be able
to achieve her goal; then, the painter will be able to
achieve her goal if and only if the electrician releases
the ladder. Accordingly, if both agents coordinate so as
to execute the joint plan TLe.CB.RLe.TLp.P, then both
agents will be satisfied.

If the robot-painter puts forward the plan p = TLp.P.RLp,
she is only ensured that the actions of p will be executed in
the desired order. While she knows the electrician goal and
actions, she does not know which plan the electrician will
choose. Indeed, the set of feasible plans for an agent is not
a singleton in general. Even if this set is a singleton, the
painter still ignores the execution ordering, i.e., how her plan
will interact with the electrician’s one. The resulting uncer-
tainty dissapears whenever the two agents coordinate to put
forward a common plan.

The contribution of the present paper is twofold: we intro-
duce qualitative multiple outcomes games with coordination,
and show how to solve them.

The rest of the paper is as follows. In Section 2 we give
some preliminaries. Then we define qualitative multiple out-
comes games in Section 3. In Section 4 and 5 we explain how
to solve such games. We illustrate the resolution process on
examples in Sections 6 and 7. We discuss the discriminat-
ing power of our model in Section 8 by studying the size of
the evaluation scale. We also discuss connections between
qualitative multiple outcomes games and standard games in
Section 9.

2 Preliminaries

Let ≤ be a preorder on a set χ, i.e., ≤ is a reflexive and
transitive relation. The associated strict order relation < and
the equivalence relation ∼ are defined respectively by:
x ∼ y iff x ≤y and y ≤ x; and x <y iff x ≤y and y � x.

Given n relations ≤i, i ∈ [1, n] on χ, the associated lexi-
cographic relation lex(≤1, · · · ,≤n) is defined by
x ≤lex(≤1,··· ,≤n) y iff x <lex(≤1,··· ,≤n) y or
x ∼lex(≤1,··· ,≤n) y with:

• x <lex(≤1,··· ,≤n) y iff ∃j ∈ [1, n] s.t. ∀i < j x ∼i y and
x <jy.

• x ∼lex(≤1,··· ,≤n) y iff ∀i ∈ [1, n] x ∼i y.
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We denote by⊆ the inclusion relation between sets and⊂
is used for strict inclusion. For a given set χ, we denote 2χ

the power set of χ.
Let x = 〈x1, · · · , xn〉 and y = 〈y1, · · · , yn〉 be two

vectors in χn. y Pareto dominates x iff ∀i ∈ [1, n], xi ≤
yi and ∃i ∈ [1, n], xi < yi. The Pareto front of a set
E ⊆ χn is the subset of E formed by its non-Pareto dom-
inated points, noted pf(E), i.e. pf(E) = {x ∈ E | @y ∈
E y Pareto dominates x}.

We denote min(χ, ≤) the set of minima of χ and max(χ,
≤) the set of maxima of χ with respect to the relation≤, i.e.,
x ∈ min (χ,≤) iff @y ∈ χ s.t. y < x, and x ∈ max (χ,≤)
iff @y ∈ χ s.t. x < y.

Let x = 〈x1, · · · , xn〉 and y = 〈y1, · · · , yn〉 be two
vectors in χn, and let ≤ be a relation on χ, then x ≤i
y is a notation for xi ≤ yi, and x−i is a notation for
〈x1, · · · , xi−1, xi+1, · · · , xn〉.

3 Qualitative Multiple Outcomes Games

Let us now define the notion of qualitative multiple out-
comes game on which we focus. We start from the usual
notion of strategic form games.

Definition 1 (Strategic form game) A game in strategic
form is a 3-tuple Γ = (N, (Si)i∈[1,n], µ). N is a set of
players, Si is a non-empty set of strategies of a player i,
S = ×i∈NSi is the set of strategy profiles and µ : S −→ IRn

is the game utility function which associates s ∈ S to an out-
come µ(s) = (µ1(s), · · · , µn(s)). Hence, µi(s) is player i
utility for the profile s ∈ S.

In order to go from standard strategic form games to mul-
tiple outcomes games, the idea is to associate each profile to
a non-empty finite set of outcomes:

Definition 2 (Multiple outcomes game) A multiple outco-
mes game in strategic form is a 3-tuple Γ =
(N, (Si)i∈[1,n], U ). N is a set of players, Si is a non-
empty set of strategies of a player i, S = ×i∈NSi is the set
of strategy profiles and U : S −→ 2IR

n \ {∅} is the game
utility function which associates s ∈ S to a finite outcomes
set.

Since we are concerned with qualitative games, we gen-
eralize the previous definition to any qualitative utility (i.e.,
utilities do not necessarily belong to the set of real numbers).

Definition 3 (Qualitative multiple outcomes game)
Let χ1, · · · , χn be sets totally ordered by, respectively
≤1, · · · ,≤n. A multiple outcomes game in strategic form is
a 3-tuple Γ = (N, (Si)i∈[1,n], U ). N is a set of players, Si is
a non empty set of strategies of a player i, S = ×i∈NSi is
the set of strategy profiles and U : S −→ 2χ1×···×χn \ {∅}
is the game utility function which associates s ∈ S to a finite
outcomes set.

Note that the “utility scale”≤i of player i can be different
from the scales used by other players. For the ease of reading,
abusing words, we will call numbers the elements of the sets
χi.

4 Solving Qualitative Multiple Outcomes
Games

To solve qualitative multiple outcomes games, the impor-
tant point is to know how a player evaluates a given strategy
profile. When a player compares different profiles, there are
several dimensions to take into account because of their im-
pact on her evaluation. These dimensions are:
• The player utility for this profile: Remind that, in multi-

ple outcomes games, a profile does not usually give a unique
outcome, but a set of outcomes. Thus the player utility for a
given profile is not a unique number, but a set of such num-
bers, one for each possible outcome. We call this set the
player projection of the profile. In order to compare different
profiles, one thus has to be able to compare such projections
(sets of numbers). There is no unique, canonical way to do
it. This will lead to several possible definitions.
• The possibility of a coordination: We assume that the

players can remove the uncertainty associated to a profile, if
they all agree to do so (by coordinating). As the players are
supposed to be rational ones, coordination will occur only
when it benefits to all players1. So, in case of coordination, it
does not make sense to consider the whole projection set of
a player, only the possible coordination outcomes (what we
call consensus points) are important.
• The other players outcome uncertainty: Suppose that, in

a two-player game, we have the three following profiles

-a- (0,0) (1,1)

-b- (0,1) (1,1)

-c- (0,1) (1,0)

that are represented graphically on Figure 1.
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Figure 1. Possible set of outcomes

For these three profiles the projection of player 1 is the
same ({0, 1}), but the projection of player 2 is different. The
point is to determine whether player 1 has to evaluate dif-
ferently these three situations. Clearly profile c is the less

1More exactly coordination is not irrational when it benefits to some
players, and when the others are indifferent to it.
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interesting one for player 1 since there will be no possibil-
ity of coordination using this profile. Indeed, in profile c the
two players are clearly antagonistic (one player gets 0 when
the other gets 1), and there will be no hope in finding a co-
ordination. Now the point is to determine whether there is a
difference between profiles a and b for player 1. In both pro-
files, the agents can coordinate to reach the outcome (1, 1).
But, when in profile a it is of the two players interest to reach
the (1, 1) outcome, in profile b player 2 has no reason to re-
ject a coordination. Still 2 has no strong incentive to accept
it neither. So profile a is better for player 1 than the pro-
file b since player 2 will have more incentive to coordinate.
Thus, in order to discriminate these two profiles, player 1 has
to take into account player 2 outcome uncertainty when she
evaluates the profiles.

We claim that these three dimensions are the only ones
which matter in a player evaluation of a profile. We now
show how to model these dimensions, and how to take them
into account in order to solve these qualitative multiple out-
comes games.

Let us first define formally the notion of projection.

Definition 4 (Projection) Let Γ = (N, (Si)i∈[1,n], U) be a
qualitative multiple outcomes game. Let s ∈ S be a strategy
profile. The projection with respect to i ∈ [1, n] of U gives
the possible utilities of player i for each profile s ∈ S. It is a
mapping Ui : S −→ 2χi \ {∅}.

We need to identify the possibilities of coordination. This
is the aim of consensus points.

Definition 5 (Consensus points) Let Γ = (N, (Si)i∈[1,n],
U) be a qualitative multiple outcomes game. Let s ∈ S be
a strategy profile. A consensus point for s is an outcome
w ∈ U(s) s.t. ∃J ⊂ N , ∀j ∈ J, ∀w′ ∈ U(s), w′j ∼ wj
and ∀i ∈ N \ J , ∃w” ∈ U(s) s.t. w′′i < wi. The set of all
consensus points associated to s is denoted by cp(s).

Consensus points are simply outcomes such that for each
player, either there is at least a worse outcome, or all the
outcomes of the profile are equivalent. Thus, when a con-
sensus point exists, all players have an interest for coordi-
nation (since it guarantees to avoid the worst outcome), or
at least no interest to refuse it (all outcomes are equivalent).
The consensus points are strongly related to the strict indi-
vidually rational points commonly considered in bargaining
theory (see e.g. [10]). In this theory strict individual ratio-
nality SIR requires that a player considers only these points
in the bargaining set that she strictly prefers to what she can
expect if there is no agreement. This is a basic assumption
one can make about players if willing to define a rational so-
lution. SIR can be translated into our framework through the
following requirement. A player is willing to coordinate on
an outcomew belonging to some strategy profile s associated
outcomes set U(s) only if its expected reward wi is strictly
better than the minimum of her projection of the outcome

set, which is the worst reward she may obtain without coor-
dination. The second part of the above definition specifies
that a player i may coordinate on an outcome when it strictly
dominates another element of the outcomes set with respect
to her preference relation ≤i. That obviously meets the SIR
requirement.

The first part of the definition of consensus points is about
the case where all the outcomes in the outcomes set are of
equal value for a player. In this case, the player has no rea-
son to refuse coordination since there is no other outcome
that she prefers (as usual, we suppose that all the preferential
information is encoded by the utility function).

The following proposition makes explicit the relation be-
tween the consensus points of a strategy profile and the
Pareto-optimal points:

Proposition 1 Let Γ = (N, (Si)i∈[1,n], U) be a qualitative
multiple outcomes game. Let s ∈ S be a strategy profile.

pf(cp(s)) ⊆ pf(s).

We also have that:

Proposition 2 Let Γ = (N, (Si)i∈[1,n], U) be a qualitative
multiple outcomes game. Let s ∈ S be a strategy profile. If
cp(s) 6= ∅ then

cp(s) ∩ pf(s) 6= ∅.

Thus among consensus points are some Pareto-optimal
points, but not all of them in general; it is also not the case in
general that every consensus point is Pareto-optimal.

As explained above, when a coordination is possible, the
full player projection of the profile is not interesting. The set
γ(s) of relevant outcomes of a strategy s is defined as the set
of its Pareto-optimal consensus points, when this set is not
empty:

Definition 6 (Relevant outcomes) Let Γ = (N, (Si)i∈[1,n],
U) be a qualitative multiple outcomes game. Let s ∈ S be a
strategy profile.

γ(s) =
{
U(s) if cp(s) = ∅
pf(cp(s)) otherwise

The reason to select only Pareto-optimal consensus points
is obvious: if the players agree for a coordination, then they
will choose an outcome among the the most interesting ones.
One can note that we state that players will not simply agree
on any Pareto-optimal point of the outcome set. This is be-
cause one outcome can be Pareto-optimal and still unlikely
to be the result of a coordination. In Figure 2 Pareto optimal
points are a, b, c. It is obvious that player i will never agree
on point c since its projection for i is minimal. So will do
player j with point b. So the only relevant outcome in this
case is point a.

Now, suppose that we have a preorder ≤c for comparing
sets of numbers (we will give some examples of such rela-
tions in the next section). We can now use it to evaluate every

4



6
•a
•b

•c

•• i

j

-

Figure 2. Relevant outcomes

profile. More exactly, as the evaluation is qualitative, we can
evaluate each pair of profiles, by constructing a relation 4i,
that indicates how to compare profiles for player i.
≤c allows to compare the player utilities for the two pro-

files under consideration. In order to take into account possi-
ble coordination and other players outcome uncertainty, ≤c
has to be refined in two ways:
• The first one amounts to comparing different coordination
possibilities:

Definition 7 (Relevant outcomes criterion) Let ≤ci
be a

relation over sets of numbers. Then the associated relation
≤γci

is defined by: for any strategy profiles s1 and s2,

s1 ≤γci
s2 iff γ(s1) ≤ci

γ(s2).

• The second one evaluates the number of other players
which have no outcome uncertainty for a given profile:

Definition 8 (Dependence criterion) Let Γ = (N,
(Si)i∈[1,n], U) be a qualitative multiple outcomes game.
Let i be a player, s a strategy profile and E(s, i) =
{j ∈ N \ {i} s.t. ∀w,w′ ∈ U(s), w ∼j w′ and ∃w,w′ ∈
U(s), w <i w′}. The relation ≤d(i) over the strategy
profiles is defined by: let s1 and s2 be two strategy profiles,

s1 ≤d(i) s2 iff

 |E(s1, i)| ≥ |E(s2, i)|
or
cp(s1) = ∅

This refinement is only useful when there are consensus
points (this explains the second condition of the definition);
it discriminates the cases where there is a mutual interest for
coordination between all players, and the cases where some
players are indifferent (so they have no a priori reason to re-
ject coordination, but they have no strong incentive to accept
it). Clearly, the less indifferent players, the better.

On this ground, we are ready to define the final player
evaluation for the profiles:

Definition 9 (Player evaluation) Let Γ = (N, (Si)i∈[1,n],
U) be a qualitative multiple outcomes game. Let i ∈ N
and ≤ci

a preorder on sets of numbers. The evaluation by
player i of the strategy profiles of S is given by the relation
4c
i = lex(≤γci

,≤ci
,≤d(i)).

The use of lex(≤γci
,≤ci

,≤d(i)) allows us to adequately
take into account the three dimensions of the evaluation. We

first start by comparing the set of numbers corresponding to
each projection, but by focusing only on points of interest
when a coordination is possible in the profile. For profiles
that are equivalent for this first criterion, we look at the whole
projection. And when these two profiles are still equivalent,
we look at cases where other agents are indifferent in one
profile, which are less interesting than when they all really
need coordination.

With this evaluation one can now use all notions of solu-
tions from classical game theory, such as Nash equilibria, in
order to solve these games.

When the evaluation relation 4c
i is a total one, one can

represent it, and its corresponding ranking, using real num-
bers, and just solve the corresponding classical strategic form
game. Of course mixed strategies cannot be used, since pref-
erence intensities cannot be infered here (this contrasts with
usual utilities).

Proposition 3
• If ≤ci is a preorder over sets of numbers, then 4c

i is a
preorder over strategy profiles.
• If ≤ci is total then 4c

i is total.

Note that, even if the evaluation relation is partial, one
can still use game theory notions, such as Nash equilibrium,
to solve these games. This can be expressed as follows for
partial orders:

Definition 10 (Nash equilibrium) Let Γ = (N, (Si)i∈[1,n],
U) be a qualitative multiple outcomes game. A profile of
strategies s is a Nash equilibirum if no agent can get a bet-
ter evaluation by choosing another strategy, i.e., s is a Nash
equilibrium if and only if @i ∈ N @s′ ∈ Si s.t (s−i, si) ≺i
(s−i, s′).

5 Comparing two sets of numbers

In this section we address the problem of comparing two
sets of numbers. There are several different ways to define
this comparison (cf. e.g. [3]).

A first possibility is a worst-case comparison of the sets,
which is usual in strict uncertainty cases.

Definition 11 (Min criterion) Let Γ = (N, (Si)i∈[1,n], U)
be a qualitative multiple outcomes game. Let s1 and s2 be
two strategy profiles. For i ∈ [1, n],

s1 ≤mini
s2 iff min(Ui(s1),≤i) ≤i min(Ui(s2),≤i).

This min criterion is in a sense the safest one in case of
complete ignorance. It is usually known as Wald criterion
[11].

This criterion is refined by the minmax one, obtained by
lexicographically refining the min thanks to the maximal pos-
sible outcomes.
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Definition 12 Let Γ = (N, (Si)i∈[1,n], U) be a qualitative
multiple outcomes game. Let s1 and s2 be two strategy pro-
files. For i ∈ [1, n],

s1 ≤maxi
s2 iff max(Ui(s1),≤i) ≤i max(Ui(s2),≤i).

Definition 13 (Minmax criterion) Let Γ = (N, (Si)i∈[1,n],
U) be a qualitative multiple outcomes game. Let s1 and s2
be two strategy profiles.

s1 ≤minmaxi s2 iff s1 ≤lex(≤mini
,≤maxi

) s2.

The above two criteria define total preorders, so they allow
to fully rank all the profiles.

The next one is a criterion based on interval relations [5].
Its main drawback is that the corresponding preorder is only
a partial relation.

Definition 14 (Product criterion) Let Γ = (N, (Si)i∈[1,n],
U) be a qualitative multiple outcomes game. Let s1 and s2
be two strategy profiles. For i ∈ [1, n],

s1 ≤producti s2 iff s1 ≤mini s2 and s1 ≤maxi s2.

6 Solving the prisoner’s dilemma example

Let us now explain how to model and solve Example 1
using our framework.

Let us use the min criterion. For player 1 we have the
following projections of the strategy profiles:
U1((C,C)) = {3, 6}, U1((C,D)) = {0},
U1((D,C)) = {5}, U1((C,C)) = {1, 2}.
We have the following sets of relevant outcomes for the
strategy profiles:
γ((C,C)) = {(6, 6)}, γ((C,D)) = {(0, 5)},
γ((D,C)) = {(5, 0)}, γ((C,C)) = {(2, 2)}.

The first comparison of strategy profiles (using ≤γci
)

gives here directly a strict order on profiles. So the lexico-
graphic relation 41 is such that

(C,D) ≺1 (D,D) ≺1 (D,C) ≺1 (C,C).

The two players being symmetric, we deduce the following
order on strategy profiles for player 2:

(D,C) ≺2 (D,D) ≺2 (C,D) ≺2 (C,C).

It is easy to check that the profile (C,C) is the only Pareto
dominant Nash equilibrium of this game. So the solution
for this qualitative multiple outcomes game is that the play-
ers choose strategy C and coordinate (on a consistent story)
which will allow them to go free.

As the min criterion gives here a strict order on strategy
profiles, using any other criterion that refines it (such as min-
max and product criteria) leads to the same solution.

When the relations 4i are total ones, it is possible to trans-
late qualitative multiple outcomes game into classical strate-
gic form games, simply by assigning ranks to the equivalence
classes. Thus we obtain the game in strategic form of Table
2 which is no longer a prisoner’s dilemma. Our procedure
allows us to envision the situation as a coordination game.
One can easily check that (C,C) is a Nash equilibrium.

C D
C (4,4) (1,3)
D (3,1) (2,2)

Table 2. The corresponding strategic form
game

7 A more complex example

In this section we present a qualitative multiple outcomes
game where the full power of the lexicographic nature of the
evaluation function as defined earlier is at work. This exam-
ple allows us to illustrate how the three relations forming the
player evaluation work together.

Example 3 Let us use the min criterion to solve the qualita-
tive multiple outcomes game given in Table 3.

C D
A (1,3) (1,1) (1,2) (3,2)

(3,3)
B (0,3) (0,1) (1,1)

(3,3)

Table 3. A more complex example

For player 1, the first comparison of strategy profiles (us-
ing ≤γmin1

) gives here :
(B,D) <γmin1

(A,C) ∼γmin1
(A,D) ∼γmin1

(B,C).
We then use the second criterion (using ≤min1 ) which gives:
(B,C) <min1 (A,C) ∼min1 (A,D).
Finally the third criterion (using ≤d(1)) gives:
(A,C) <dep(1) (A,D)
(since |E((A,C), 1)| = 0 and |E((A,D), 1)| = 1).

So the lexicographic relation 41 is such that
(B,D) ≺1 (B,C) ≺1 (A,D) ≺1 (A,C).

For player 2, the first comparison of strategy profiles (us-
ing ≤γmin2

) gives here :
(B,D) <γmin2

(A,D) <γmin2
(A,C) ∼γmin2

(B,C).
The second criterion (using ≤min2 ) gives:
(A,C) ∼min2 (B,C).
Finally the third comparison (using ≤d(2)) gives:
(A,C) ∼d(2) (B,C).
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So the lexicographic relation 42 is such that
(B,D) ≺2 (A,D) ≺2 (A,C) ∼2 (B,C).

It is easy to check that the profile (A,C) is the only Nash
equilibrium of this game. So the solution of this game is that
player 1 chooses strategy A, player 2 chooses C, and they
coordinate on the outcome (3, 3).

8 Size of the evaluation scale

As often with solution concepts, there is no formal proof
that our model for solutions is the right one. Instead, let us
give some arguments in favour of it. In this section, we focus
on the number of equivalence classes induced by 4c

i and we
show it is big enough. Because even if the solution concept
is rational, if the preorder divides the set of strategy profiles
into a very small number of subsets it will be of little help
to a player who wants to make a decision based on it. In
the following section, we show that our notion of solution is
strongly correlated to other notions of solutions commonly
accepted in game theory.

Let us begin by considering a player evaluation of the pos-
sible profiles (with multiple outcomes), when the utilities of
the agents are binary ones, i.e., 0 (unsatisfied), and 1 (satis-
fied). For such games, with 2 players, there are 4 outcomes
(0,0), (0,1), (1,0), (1,1), and 15 different outcomes sets. They
are represented on Figure 3.
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Figure 3. All possible outcomes sets in the two-
player binary case

With the min criterion, the player evaluation ranks the 15
outcome sets in 4 different equivalence classes. With the
minmax criterion, the player evaluation ranks the 15 out-
come sets in 5 different equivalence classes. The following

straightforward propostion states that minmax and the prod-
uct criteria are always more discriminating than the min cri-
terion.

Proposition 4 Let Γ = (N, (Si)i∈[1,n], U) be a qualitative
multiple outcomes game. Let i ∈ N and s, s′ ∈ S. Then
s4minmaxi

s′ ⇒ s4mini
s′ and s4productis

′ ⇒ s4mini
s′.

We can easily compute the numbers of different equiva-
lence classes for the player evaluation when the min criterion
is used and the scales are finite:

Proposition 5 If the evaluation scale of all players is of car-
dinality m, then using the min criterion the equivalence re-
lation induced by 4mini

has m2 equivalence classes in the
2-player case, and more generally, it has n2 ∗m

2+(1− n
2 )∗m

different equivalence classes in the n-player case.

From proposition 4 it comes that with the minmax and
product criteria the number of equivalence classes cannot get
lower.

9 Links with classical game theory

In this section we give some results which illustrate the re-
lationship between qualitative multiple outcomes games and
usual strategic form games. For the sake of comparison we
suppose here that utilities are real numbers.

The first proposition is a straightforward one, stating that
qualitative multiple outcomes games are a generalisation of
(qualitative) strategic form games.

Proposition 6 When in a qualitative multiple outcomes
games Γ, there is only one outcome associated to each strat-
egy profile, the (pure) Nash equilibria of Γ viewed as a qual-
itative multiple outcomes game are exactly the (pure) Nash
equilibria of Γ viewed as a classical game.

In qualitative multiple outcomes games, the uncertainty
on the exact outcome can be modeled by adding an addi-
tional player, say Nature, which chooses the exact outcome
for each profile with a given probability, unknown by the
players, when they do not coordinate. Let us call this repre-
sentation of the problem the associated extended game, and
let us explore some results about this representation.

Proposition 7 Let Γ be a qualitative multiple outcomes
game. If a strategy profile is a Nash equilibrium of the as-
sociated extended game for any probability distribution on
the outcomes then this strategy profile is a Nash equilibrium
of Γ.

This result means that if a strategy profile is ”objectively”
(i.e., whatever the realized outcome) a Nash equilibrium then
it is recognized as such in the setting of qualitative multiple
outcomes game.

There is also a dual result, stating some rationality of the
Nash equilibria of the qualitative multiple outcomes games.
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Proposition 8 If a strategy profile is a Nash equilibrium of a
qualitative multiple outcomes game, then there exists a prob-
ability distribution on the outcomes such that this strategy
profile is a Nash equilibrium of the corresponding associated
extended game.

So if a profile is not a Nash equilibrium of any associ-
ated extended game then it is not a Nash equilibrium of the
qualitative outcomes game.

10 Conclusion

In this paper we have introduced qualitative multiple out-
comes games. In such games players’ utilities are qualitative
ones, there is a strict uncertainty on the outcome of each pro-
file of strategies, and this uncertainty can be removed if the
agents agree to coordinate.

Solving these games requires to evaluate the strategy pro-
files for each player. Such an evaluation needs to take three
different pieces of information into account: the utility of the
player, the possibilities of coordination, and the utility of the
other players.

Qualitative multiple outcomes games can be used to
model scenarios where an autonomous agent has to build a
plan while taking account for the uncertainty introduced by
the possible interaction with other agents’ plans. In this set-
ting, the solution of the game should be an optimal plan for
the agent. Due to the lack of space, we cannot elaborate more
on this point here. But we refer the reader to [4] for the case
where agents have dichotomous preferences.

Several works addressed the problem of decision making
under strict uncertainty (cf. e.g. [1, 9, 8]). But it seems that
there are no such works in game theory. It should be inter-
esting to see how these approaches apply in our qualitative
games framework. In particular, the different evaluations we
propose in this paper all satisfy Arrow-Hurwicz conditions
[1] (if we consider only one player). So Arrow-Hurwicz strict
uncertainty decision framework can be seen as the underlying
decision theory behind qualitative multiple outcomes games,
just like Von Neumann and Morgenstern expected utility is
for classical game theory.

An underlying hypothesis of this work is that there is no
coordination cost, since if a player is indifferent between all
the outcomes, we suppose that she does not refuse coordina-
tion. Things would change if this assumption was removed
and a (even small) cost for coordination must be considered.
In this case an agent which is indifferent between all the out-
comes should refuse coordination if she is rational. Refining
our framework for taking account for such coordination costs
is a perspective for further research.

Another direction for future work is to study the links be-
tween the setting of qualitative multiple outcomes games and
that of games with strict type uncertainty used in [2] and [7].

Finally, we have so far modelled situations where players
have strict qualitative uncertainty on the outcomes sets. We

think that qualitative multiple outcomes games can be used
to study the more general case of partial knowledge by tak-
ing inspiration from hurwicz proposal in the decision mak-
ing problem to model partial knowledge by eliminating some
probability distributions on the possible states of the world
from the set of all possible ones (c.f. [8] for a discussion).
The resulting subset (which contains ”plausible” probability
distributions) can then be considered as a set of new states
on which the agent has a strict uncertainty. We plan to adapt
this proposal to our setting where the probabilities are on out-
comes sets.
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