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Abstract. When several agents operate in a common environment, their
plans may interfere so that the predicted outcome of each plan may
be altered, even if it is composed of deterministic actions, only. Most
of the multi-agent planning frameworks either view the actions of the
other agents as exogeneous events or consider goal sharing cooperative
agents. In this paper, we depart from such frameworks and extend the
well-known single agent framework for classical planning to a multi-agent
one. Focusing on the two agents case, we show how valuable plans can be
characterized using game-theoretic notions, especially Nash equilibrium.

1 Introduction

In classical planning, one is interested in computing plans enabling an agent to
reach her goals when performed. Among the standard assumptions in classical
planning are that the initial state of the world is known by the agent, that each
possible action is deterministic and its outcome can be perfectly predicted, that
the goals are binary ones (i.e., each state of the world is either a fully satisfactory
one or is fully unsatisfactory), and that the world is static in the sense that the
only way to change it is to perform one of the agent’s actions (thus, not only
exogeneous events cannot take place but the world has no intrinsic dynamics).

More sophisticated planning frameworks are obtained by relaxing some of the
assumptions above. In particular, in conformant planning, goals are still binary
ones and the considered plans are unconditional ones, but it is not assumed that
the initial state of the world is fully known or that the available actions are
deterministic ones.

In this paper, we extend the classical planning setting to a multi-agent plan-
ning one. We consider a group of agents where each agent has its own actions
and goals. Agents operate in a common environment. In this new setting, the
standard assumptions of classical planning are made. Nevertheless, such asump-
tions (especially, the static world one and the deterministic actions one) are not
enough to allow an agent to predict how the world will evolve after her plan is
executed. Indeed, agents’ plans interaction introduces some uncertainty. Each
agent generally ignores which plans the other agents will point out and how her
plan will be interleaved with theirs. We suggest to handle this issue thanks to
concepts from game theory; in the new setting we put forward, we show how
any agent can achieve a strategic diagnosis of the scenario under consideration,
from its game representation.
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Our approach to classical, yet multi-agent planning is meaningful in scenarios
where it is not possible to sense/observe during plan execution (a usual assump-
tion in classical planning), or when constraints (on time or ressources) prevent
from online re-planning. As a matter of example, consider autonomous high-
speed flying robots or infobots working on highly volatile markets. For the sake
of simplicity, we focus on the case where each agent knows the goals of each
agent from the group, as well as the set of all plans each agent can point out.
Those are standard assumptions in game theory. We also assume that the agents
have the possibility to coordinate, which means that they can decide to build a
common plan. In this case the uncertainty of the execution is removed. Let us
consider a (toy) example as an illustration:

Example 1. Two agents, a robot-painter and an robot-electrician, operate in a
single room. The bulb has to be changed (which is the goal of the electrician) and
the ceiling has to be painted (which is the goal of the painter). The electrician
has a new bulb and the painter the materials needed to paint the ceiling. Now,
there is a single ladder in the room (the ladder is thus a critical resource).
Furthermore, the painter needs some light in the room in order to make her job.
The electrician can achieve three actions: TLe (“take the ladder”), CB (“change
the bulb”), RLe (“release the ladder”); and the painter three actions: TLp (“take
the ladder”), P (“paint”), RLp (“release the ladder”) ; P succeeds only if CB has
been performed before. TLe and TLp succeed only if the ladder is available (i.e.,
it has been released before).

The following interactions can be easily envisioned:

– If the painter takes the ladder first, she will not be able to achieve her goal
(since the bulb has to be changed first); if she does not release the ladder,
then the electrician will not be able to achieve her goal.

– If the electrician takes the ladder first, she will be able to achieve her goal;
then, the painter will be able to achieve her goal if and only if the electrician
releases the ladder. Accordingly, if both agents coordinate so as to execute
the joint plan TLe.CB.RLe.TLp.P, then both agents will be satisfied.

The key questions we address in this paper are the two following ones: for each
agent of the group, what are her “best” plans? And does a given plan require
coordination to be achieved in a satisfying way? Focusing mainly on the two
agents case, we show how a game can be associated to any multi-agent planning
problem; accordingly, the “best” plans for a rational agent can be characterized
using game-theoretic notions, especially Nash equilibrium. We also identify the
scenarios for which a cooperation between agents is likely to occur and show
how many strategic information can be derived from the corresponding game.
We finally show that several important settings where interacting agents are con-
sidered can be cast in our framework, including conformant planning [13,6,7,12]
and Boolean games [10,9,8,3].
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2 A Framework for Multi-agent Classical Planning

We consider a group of agents N = {1, 2, . . . , k}, where each agent is identified
by an integer. Let S be a finite (and non-empty) set of (abstract) states. Let us
denote by s0 the initial state, assumed to be the actual state of the world. s0 is
known by each agent from N .

Each agent of N is associated to a finite set of available actions:

Definition 1. (action) An action α is a mapping from S to S. The set of
actions of agent i is denoted by Ai.

In the following, an action will be denoted by a small Greek letter. Note that
the previous definition means that actions are deterministic and fully executable.
This last assumption is not very demanding, since if one wants to model that an
action is not executable in a state s, then this can be typically represented by
an action that does not change the world when performed in s, i.e. α(s) = s, or
that leads to a “sink” state, i.e., α(s) = s⊥, with s⊥ a non-goal state such that
β(s⊥) = s⊥ for every action β.

From her set of available actions, each agent can build some plans:

Definition 2. (plan) Let A be a set of actions. A plan p on A is denoted by
a (possibly empty) sequence of actions of A, i.e., p = α1.α2. · · · .αn, where each
αi ∈ A. Semantically, it is a mapping from S to S, defined from sequential
composition of its actions, i.e., for any s ∈ S, p(s) = s if p = ε (the empty
sequence), and p(s) = αn(. . . (α1(s)) . . .) otherwise. The set of all plans on A is
denoted by A∗.

Let p = α1. · · · .αn be a plan. A subplan of p is a subsequence of it, i.e., p′ =
α′

1. · · · .α′
m is a subplan of p if and only if there exists a strictly increasing

mapping t from {1, . . . , m} to {1, . . . , n} s.t. ∀q ∈ {1, . . . , m}, α′
q = αt(q).

Let p′ = β1. · · · .βr be another plan. p.p′ denotes the concatenation of p and
p′, i.e., p.p′ = α1. · · · .αn.β1. · · · .βr.

Definition 3. (solution plan) Let Gi ⊆ S be the set of goal states for agent
i1. Let s0 ∈ S be the initial state. A plan p is a solution plan for i iff p(s0) ∈ Gi.

In many cases, it is reasonable to assume that only a non-empty subset Πi of
Ai∗ is envisioned by agent i; in particular, due to computational limitations,
plans whose length exceeds a given preset bound can be discarded. Nevertheless,
it makes sense to assume that Πi is closed under subplan, i.e., when a plan p
belongs to Πi, then every subplan of it belongs to Πi as well; in particular, the
empty plan ε always belongs to Πi.

We are now ready to define the notions of agent representation and of multi-
agent planning problem:

Definition 4. (agent representation) Each agent i ∈ N is characterized by a
triple A i = 〈Ai, Πi, Gi〉 consisting of a set of actions Ai, a set of plans Πi ⊆ Ai∗

and a set of goal states Gi.
1 We also write Gi(s) = 1 when s ∈ Gi and Gi(s) = 0 otherwise.
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Definition 5. (multi-agent planning problem) A multi-agent planning
problem (MAPP) for a set N of agents is a triple 〈S, s0, {A i | i ∈ N}〉 consisting
of a set of states S, an initial state s0 ∈ S and a set of agent’s representations
A i (one per agent).

When several plans operating on a common environment are furnished (one plan
per agent), the final course of events corresponding to their joint execution is one
of their shuffles, unless a coordination is achieved. We denote by ⊕ the mapping
from A∗ × A∗ to 2A∗

that associates to any pair of plans pi and pj , the set
containing all their shuffles:

Definition 6. (shuffle, shuffle set) Let pi =αi
1. · · · .αi

n ∈ Ai∗, pj = αj
1. · · · .αj

p

∈ Aj∗. Then pi ⊕ pj is the set of plans p which are permutations of pi.pj for which
both pi and pj are subplans. Each p is said to be a shuffle of pi and pj, and pi ⊕ pj is
called the shuffle set of pi and pj.

Observe that ⊕ is a permutative function (i.e., it is associative and commutative),
so the previous definitions of shuffle and shuffle set can readily be extended to the
case of more than 2 agents. Observe also that ε (the empty sequence) is a neutral
element for ⊕. Note that such an execution model based on plans shuffling is at
work in concrete MAS, like Open Real-Time Strategy Games, see [5].

Example 2. Let us consider again the scenario given in Example 1. Let us call
p1 the robot-electrician plan: TLe.CB and p2 the robot-painter plan: TLp.P.
Then p1 ⊕ p2 = {TLe.CB.TLp.P, TLe.TLp.CB.P, TLe.TLp.P.CB, TLp.TLe.P.CB,
TLp.P.TLe.CB, TLp.TLe.CB.P}.
In the deterministic single agent case, evaluating a plan is quite easy. It is enough
to look at the predicted state resulting from the (virtual) execution of the plan:
what the agent forsees is what she gets. Characterizing the best plans is an easy
task for the agent under consideration: the better the reached state, the better
the plan. In the non-deterministic single agent case, the agent has to consider
all possible reached states, and to aggregate their scores in order to evaluate
a plan (many aggregation functions can be used, e.g. min (Wald criterion) for
reflecting the behaviour of a pessimistic agent, or using expected utility when
the scores are quantitative ones and non-deterministic actions are given by sets
of probability distributions).

In the multi-agent (deterministic) case, which is the case we consider in this
paper, the situation is similar to the non-deterministic single agent case in the
sense that each agent has to consider all possible reached states in order to
evaluate her plans. The main difference comes from the nature of uncertainty: in
our setting, the uncertainty results from the interaction with the plans furnished
by the other agents. Accordingly, each agent has to exploit the fact that she
knows the other agents’ goals and feasible plans in order to figure out what
are her “best” plans. Contrastingly, in the non-deterministic single agent case,
the need for handling non-determinism mainly comes from the impossibility to
predict in a precise way the result of some actions, like “tossing a coin”.
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Example 3. If the robot-painter from Example 1 puts forward the plan p =
TLp.P.RLp, she is only ensured that the actions of p will be executed in the
desired order. While she knows the electrician representation, she does not know
which plan the electrician will choose (indeed, the set of feasible plans is not
a singleton in general). Even if this set is a singleton, the painter still ignores
the execution ordering, i.e., how her plan will interact with the electrician’s one.
Suppose that the electrician puts forward the plan p′ = TLe.CB.RLe. The joint
plan that will be finally executed can be any plan from p ⊕ p′. The resulting
uncertainty dissapears whenever the two agents coordinate to put forward a
common plan p′′= TLp.P.RLp.TLe.CB.RLe.

In our setting, a key issue for each agent is to evaluate the interaction of her
plans with the plans of the other agents. Formally, this calls for an evaluation
of each shuffle set. To this purpose, we define the notion of satisfaction profile
(SP), which is an abstract, summarized, view of shuffle sets evaluation for all
the agents of the group. Let us explain how we construct a SP in the two agents
situation. Given a pair of plans pi ∈ Πi and pj ∈ Πj, each shuffle from the
shuffle set pi ⊕ pj is a plan built from the actions of both agents; the execution
of such a plan leads to a specific final state which is more or less satisfactory
for each agent. The evaluation of a plan depends on the state resulting from
its execution. We can depict the evaluation of this shuffle set by agent i using
a 2-axis representation associating a dot on coordinate (x,y) to a shuffle p iff
Gi(p(s0)) = x and Gj(p(s0)) = y. Note that such a representation can be easily
generalised to a n-player situation.

Definition 7. (satisfaction profile) Given a MAPP for a set N = {1, . . . , m}
of agents, with an initial state s0, a satisfaction profile (SP) for the shuffle set
p1⊕p2⊕ . . .⊕pm where each pi ∈ Πi (with i ∈ {1, . . . , m}) is a set SP (p1⊕p2⊕
. . .⊕pm) of vectors (x1, . . . , xm) such that (x1, . . . , xm) ∈ SP (p1⊕p2⊕. . .⊕pm) if
and only if ∃p ∈ p1⊕p2⊕. . .⊕pm such that for all i ∈ {1, . . . , m}, Gi(p(s0)) = xi.

When we consider only two agents i and j, the set of all possible SPs is given on
Figure 1.

Numerous conclusions can be drawn from such SPs. Thus, some SPs are clearly
better for an agent than other ones. Clearly, SP 2, where all shuffles lead to
states that agent i evaluates to 1, is more interesting for her than SP 10, where
all shuffles lead to non-goal states (i.e., states that agent i evaluates to 0). Let
us also consider SP 3: for each of the two agents, at least one shuffle leads to a
bad state (i.e., a non-goal state), and at least one shuffle leads to a goal state.
This SP also shows the existence of at least one win-win shuffle (leading to the
(1, 1) vector). In such a case, if both agents are rational ones (i.e., they act so as
to make the world change to a goal state), then they have to coordinate. Indeed,
coordination is a way to get rid of uncertainty. If the two agents i and j put
forward two plans pi ∈ Πi and pj ∈ Πj in an independent way, they risk that
the joint execution from pi ⊕ pj leads to a state evaluated as (1, 0) or as (0, 1),
in which case one of the two agents will be unsatisfied. Contrastingly, if they
coordinate and jointly put forward a plan corresponding to a win-win shuffle,
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Fig. 1. All possible SPs

they are guaranteed to be both satisfied. So, when a shuffle leads to SP 3, both
agents have interest in offering (and accepting) a coordination.

In absence of further information (especially, a probability distribution on the
shuffle set), it makes sense to classify all the SPs w.r.t. an ordered scale reflecting
the agent’s opportunities. Let us take the point of view of agent i and show how
the SPs can be gathered and ordered:

Always Satisfied. SPs 1, 2, 5. For all those SPs, agent i is ensured to reach
her goals even if agent j does not accept any coordination. This is the most
favourable case for agent i.

Mutual Interest. SPs 3, 4, 9, 13, 14. For any of those SPs, some joint execu-
tions do well and others do bad (for both agents), but they all share the
(1, 1) vector, meaning that if the two agents coordinate, they can both reach
their goals.

Dependence. SPs 8, 11. For those SPs, the evaluation of the shuffle set for
the other agent does not depend on the joint execution. This means that, a
priori, there is no “objective” reason for the other agent to accept/decline a
coordination in order to help agent i to reach her goal.

Antagonism. SPs 12, 15. Those SPs reflect more problematic scenarios than
the previous ones since the interests of the two agents are clearly distinct.
This means that if one is satisfied, then the other one is not (in particular
the coordination (1, 1) is never an option). In such cases, agent i can just
hope that the joint execution will be good for her.

Always Dissatisfied. SPs 6, 7, 10. In every course of event, agent i will be
dissatisfied (no joint execution allows the agent’s goals to be reached). Such
SPs are clearly the worst ones for agent i.

Our claim is that, in absence of further information, such a classification is
the most rational one. Hence, we consider that each agent i has the following
preferences on the evaluations of shuffle sets:
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Always Satisfied > Mutual Interest >

Dependence > Antagonism > Always Dissatisfied

where X > Y meaning that SPs of class X are strictly prefered to SPs of class
Y , and that all SPs in a given class are indifferent. We can easily encode such a
total pre-order in a concise way, using numbers. Thus, we write ei(pi ⊕pj) = 4 if
and only if SP (pi ⊕ pj) ∈ Always Satisfied(i), . . ., ei(pi ⊕ pj) = 0 if and only
if SP (pi ⊕ pj) ∈ Always Dissatisfied(i) (see Table 1).

Table 1. SPs evaluation

Class Evaluation

Always Satisfied 4

Mutual Interest 3

Dependence 2

Antagonism 1

Always Dissatisfied 0

Such evaluations ei(pi ⊕ pj) can be roughly seen as utilities, but they do not
depend solely on the goals of agent i. Note also that the exact numbers that
are used are not really important, just the order matters (our setting is not
quantitative at all).

Note finally that, while the definitions to come will use those evaluations
ei(pi ⊕ pj) and ej(pi ⊕ pj), such definitions are still meaningful when other
evaluations are used. Thus, if one disagrees with the proposed scale, the following
definitions still apply (as soon as all the possible pairs of plans can be evaluated
and totally ordered by the agents).

3 Solving the Game and Generating Strategic Diagnoses

From the previous construction we are now able to associate to each shuffle set
an evaluation for each agent. This allows us to model the interaction between
agents’ plans as a game in strategic form. Note that extensive form game cannot
work here since it cannot handle the shuffle situation (more exactly, it would
lead to awful games in extensive form since there are too many possibilities).

Indeed, to each MAPP for a set of two agents N = {1, 2}, one can associate
a game in strategic form, defined by the set N of players, the set of strategies
for each player (the sets Π1 and Π2 of plans in our case), and by an evaluation
function for each player that associates an evaluation to each profile of strategies
(the evaluations e1(p1 ⊕ p2) and e2(p1 ⊕ p2) of each shuffle set p1 ⊕ p2 in our
case).

Example 4. Let us consider the following MAPP: 〈S, s0, {A i | i ∈ {1, 2}}〉. A 1

= 〈A1, Π1 = {p1, p
′
1}, G1〉. A 2 = 〈A2, Π2 = {p2, p

′
2}, G2〉. Suppose that the

obtained SPs are the ones given in Figure 2.
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We can now associate to this MAPP the game in strategic form given in
Table 2.

Table 2. Associated game

p2 p′
2

p1 (3,3) (0,4)

p′
1 (4,0) (1,1)

In such a setting there are several candidates for the notion of “best plan”.
One of them is based on the security level of the plans.2

Definition 8. (security level of a plan) Given a MAPP for N = {1, 2}, the
security level of a plan pi of an agent i (i ∈ N) facing the set Πj of plans of
agent j (j 	= i) is defined as the minimum evaluation of the shuffle set between
plan pi and a plan of player j, i.e.,

SΠj (pi) = min
pj∈Πj

ei(pi ⊕ pj).

From the security levels of plans of an agent one can define the security level of
the agent:

Definition 9. (security level of an agent) Given a MAPP for N = {1, 2},
the security level of agent i facing the set Πj of plans of agent j, is the greatest
security level of agent i’s plans, i.e.,

SΠj (i) = max
pi∈Πi

SΠj (pi).

A solution of the game associated to a given MAPP can be defined as a pair of
plans 〈p1 ∈ Π1, p2 ∈ Π2〉 such that p1 (resp. p2) maximizes the security level of
agent 1 (resp. 2) facing Π2 (resp. Π1).

Such a notion of solution makes sense in our framework since it can be roughly
seen as a worst case analysis of the strategic interaction. Indeed, SPs are a
(summarized view of the) set of possible results, and as the SP classification we

2 While we focus on the 2-agent case, the following notions can be straightforwardly
extended to the n-agent case.
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pointed out mainly relies on worst case analysis, it is sensible to use security
levels as well to compare shuffles.

Nevertheless, security levels do not take into account all agents’ opportunities.
A much more widely accepted concept of solution is Nash equilibrium [11].

Definition 10. (Nash equilibrium) Given a MAPP for N = {1, 2}, a pair of
plans 〈p1 ∈ Π1, p2 ∈ Π2〉 is a Nash equilibrium if none of the agents can get a
better evaluation by choosing another plan, i.e., 〈p1, p2〉 is a Nash equilibrium if
and only if �p ∈ Π1 s.t e1(p ⊕ p2) > e1(p1 ⊕ p2) and �p ∈ Π2 s.t. e2(p1 ⊕ p) >
e2(p1 ⊕ p2).

Example 5. Let us step back to the game given in Table 2. And let us consider
the pair 〈p′1, p′2〉. Agent 1 has no incentive to deviate alone from this pair. Indeed,
〈p1, p

′
2〉 leads her to a less favorable situation (e1(p1⊕p′2) < e1(p′1⊕p′2)). Similarly,

〈p′1, p2〉 is clearly less profitable to agent 2 than 〈p′1, p′2〉. Thus, we can conclude
that 〈p′1, p′2〉 is a Nash equilibrium. It is easy to check that it is the only Nash
equilibrium of this game.

In our setting, as in the general case in game theory, it may happen that no Nash
equilibrium (in pure strategies) exists, or that several Nash equilibria exist. When
there are several Nash equilibria, other criteria, such as Pareto optimality,3 can
be used so as to discriminate them further. The following propositions give two
sufficient conditions for the existence of such equilibria.

Proposition 1. Let us consider a MAPP for two agents 1 and 2 such that
G1 = G2. Then the associated game exhibits a Nash equilibrium.

In particular, if the agents share the same goals and if there exists a joint plan
that can achieve one of these goals, then our model will point it out as a solution.

Proposition 2. Let us consider a MAPP for two agents 1 and 2. Let us denote
by G1,+ (resp. G2,+) the subset of G1 (resp. G2) of states reachable using plans
on A1 (resp. A2) and by G1,2,+ (resp. G2,1,+) the subset of G1 (resp. G2) of states
reachable using plans on A1 ∪ A2. If G1,+ = G2,+ = ∅ and G1,2,+ = G2,1,+ 	= ∅,
then the game associated to MAPP exhibits a Nash equilibrium.

Note that, in our setting, the “prisoner’s dilemma” situation, a particular game
situation widely studied (see e.g. [1,2]), can also be reached. Like in Example 4
(see Table 2): 〈p′1, p′2〉 is a Nash equilibrium, but the pair 〈p1, p2〉 which Pareto-
dominates (i.e. is more profitable for both agents than) 〈p′1, p′2〉 is not a Nash
equilibrium (so each agent is tempted to use the other plan).

Interestingly, each of the two agents i and j involved in the MAPP under con-
sideration can derive a number of strategic information from the corresponding
game. Due to space limitations, let us only focus on the notions of robust plan,
synergetic effect and independence, successively
3 A vector Pareto-dominates another one if each of the components of the first one is

greater or equal to the corresponding component in the second one.
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– A plan pi for agent i is robust with respect to agent j if and only if its joint
execution with any plan from agent j is ensured to reach the goals of i. In
the game in strategic form, such a plan corresponds to a row (or a column)
for which all the evaluations for this agent are 4: ∀pj ∈ Πj , ei(pi ⊕ pj) = 4.
Clearly enough, such a plan maximizes the security level of agent i. If a
robust plan exists for agent i, then no coordination is needed with agent j.

– The existence of a synergy between the two agents can also be easily derived
from the game in strategic form. Indeed, a synergetic effect for agents i
and j is possible if and only if there exist pi ∈ Πi and pj ∈ Πj such that
ei(pi ⊕ pj) > maxp∈Πiei({p}) and ej(pi ⊕ pj) > maxp∈Πj ej({p}). Clearly
enough, no synergetic effect is possible when at least one of the two agents
has a robust plan.

– A notion of independence between agents, reflecting the fact that no inter-
action occurs, can also be easily derived from the game in strategic form.
Indeed, the two agents are independent if and only if ∀pi ∈ Πi, ∀pj ∈
Πj , ei(pi ⊕ pj) = ei({pi}) and ej(pi ⊕ pj) = ej({pj}).

4 Generality of the Framework

4.1 Conformant Planning

In conformant planning (see e.g. [13,6,7,12]), one is interested in determining
whether a sequence of actions (i.e., a plan) is robust (or conformant), i.e., whether
it will achieve the goal for all possible contingencies.

Definition 11. (conformant planning)

– A non-deterministic action α over a finite and non-empty set S of states is
a mapping from S to 2S \ {∅}.

– A non-deterministic plan π on a set A of non-deterministic actions (over S)
is a finite sequence of elements of A.

– A trajectory for a non-deterministic plan π = α1. · · · . αn given an initial
state s0 ∈ S is a sequence of states s0, . . . , sn+1 s.t. for every i ∈ 0 . . . n,
si+1 ∈ αi(si).

– A non-deterministic plan π = α1. · · · .αn on A is conformant for a goal
G ⊆ S given an initial state s0 ∈ S if and only if for every trajectory
s0, . . . , sn+1 for π, sn+1 ∈ G.

This problem can be easily cast into our framework. The key idea is to consider
every possible trajectory attached to a non-deterministic plan as the result of
a possible shuffle with a plan supplied by a second agent who plays the role of
Mother Nature; consider the first action α of the plan and assume it has at most
k possible outcomes. In this case, the second agent’s plan will start with actions
α′

1, ..., α
′
k wher each α′

j is the void action if α has not been executed (which is
encoded using a specific fluent) and achieves the jth outcome of α otherwise. It
mainly remains to repeat it for every action of the first plan and to update the
second agent’s plan by concatening it with the subplan obtained at each step.
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4.2 Boolean Games

Definition 12. (Boolean game)[10,9,8,3] A Boolean game is a 4-tuple G =
〈N, V, Π, Φ〉 where N = {1, · · · , n} is a set of agents, V is a set of propositional
variables (decision variables), Π : N → 2V a control assignment function that
induces a partition {π1, · · · , πn} of V with πi the set of variables controlled by
agent i, Φ = {φ1, · · · , φn} a set of formulas.

For a player i ∈ N , a strategy is a truth assignment of her controlled variables
(i.e., a mapping from Π(i) to {0, 1}). A strategy profile consists of the assign-
ments of all the considered agents, and can be viewed as a truth assignment on
V (i.e., a mapping from V to {0, 1}). Agent i is satisfied by a strategy profile P
if and only if P is a model of φi.

We can cast this framework into our one by associating to each variable v ∈ V
a deterministic action v+ which sets variable v to 1. To each boolean game
G = 〈N, V, Π, Φ〉 we can associate a MAPP 〈S, s0, {A i | i ∈ N}〉 where S is the
set of all truth assignments on V , s0 is the truth assignment s.t. s0(v) = 0 for
all v ∈ V . For every agent i, Ai = {v+ | v ∈ πi}, Πi is the subset of plans from
Ai∗ such that every action has at most one occurrence in each plan and Gi is
the set of models of φi.

5 Related Work and Conclusion

While much work has been devoted for the past few years to multi-agent plan-
ning, they typically assume that agents share some common goals. Relaxing this
assumption has a major impact on the possible approaches to tackle the problem
and calls for game-theoretic notions.

A closely related approach to our own one is described in [4]. In this paper,
policies at the group level are evaluated w.r.t. each agent and the “best ones”
are characterized as Nash equilibria, as it is the case in our work. The approach
nevertheless departs from our own one by a number of aspects:

– The framework under consideration is planning under uncertainty with full
observability and not classical planning. Non-deterministic actions are con-
sidered and a set of possible initial states (and not a single state) is known
by each agent. Policies are mappings associating actions to states and not
linear plans (sequences of actions), and the quality of a plan is not binary in
essence (contrariwise to what happens in the classical framework).

– Policies at the group level are part of the input and policies at the agent level
are not (while possible plans at the group level are characterized as shuffles
from plans at the agent level in our setting).

– Finally, no notion of strategical diagnosis is considered (especially, the need
for coordination cannot be derived from the input since policies at the agent
level are not relevant).

In this work we have proposed a framework to model multi-agent planning
problems. This framework allows to draw strategic conclusions about specific
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interactions, and also allows to solve many situations. A main point is to show
how each MAPP into consideration can be associated to a suitable representation
(SP) which can be evaluated (as a number), and this allows for exploiting easily
notions and results from game theory. As far as we know, there is no similar
notions of SP and evaluations in the literature. Representation and algorithmic
aspects are issues for further research.
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