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Abstract. In this paper we introduce and study credibility-limited
improvement operators. The idea is to accept the new piece of infor-
mation if this information is judged credible by the agent, so in this
case a revision is performed. When the new piece of information is
not credible then it is not accepted (no revision is performed), but
its plausibility is still improved in the epistemic state of the agent,
similarly to what is done by improvement operators. We use a gen-
eralized definition of Darwiche and Pearl epistemic states, where to
each epistemic state can be associated, in addition to the set of ac-
cepted formulas (beliefs), a set of credible formulas. We provide a
syntactic and semantic characterization of these operators.

1 INTRODUCTION
In the logic of theory change, the AGM [1] model has acquired the
status of standard model. The AGM model aims at characterizing the
dynamics of beliefs of a rational agent. A change consists in adding
or removing a sentence from a set of beliefs to obtain a new set of
beliefs. This change obeys the following principles: 1. Primacy of
new information: the new information is always accepted. 2. Coher-
ence: the new set of beliefs has to be logically consistent. 3. Minimal
change: a minimal loss of information contained in the previous be-
liefs, i.e., it attempts at retaining as much of the old beliefs as possi-
ble.

Even though the AGM model is considered as a standard model,
it is not adequate in all contexts. Consequently, in the last 30 years
extensions and generalizations of AGM have been proposed [10].

Among these extensions, we can mention: 1. Non-prioritized be-
lief revision: The AGM model always accepts the new information
(success condition). This feature can appear unrealistic in some con-
texts, since rational agents, when confronted with information that
strongly conflicts with their current beliefs, often reject it altogether
or accept only parts of it. In non-prioritized revision, the success pos-
tulate is relaxed by weaker conditions that do not accept the new in-
formation in certain cases. 2. Iteration: A drawback of the AGM
definition of revision is that the conditions for the iteration of the
process are very weak, and this is caused by the lack of expressive
power of logical belief sets. In order to ensure good properties for the
iteration of the revision process, a more complex structure is needed.
So shifting from logical belief sets to epistemic states and additional
postulates were proposed in [9].

The following example shows a case where these two extensions
are needed:

Example 1 Assume that you are an amateur painter and just fin-
ished a painting. There exists the possibility of submitting it to a con-
test. However, you do not believe that your painting is good. Later,
you show successively the painting to different people, and all of them
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agree that you made a good job. At the beginning you still believe
that your painting is not good enough, but, at some point in the pro-
cess, you come to accept the possibility of your painting being good
enough. From this moment on, it is enough for you to receive another
positive judgement of your painting in order to change your mind
completely and believe that your painting is good.

Among the extensions proposed in the literature we are interested
particularly in two:

1. Credibility-Limited Revision: This is based on the assumption
that some inputs are accepted, others not. Those that are potentially
accepted constitute the set C of credible sentences. If α is credible,
then α is accepted in the revision process, otherwise no change is
made to the belief set. This model was proposed and characterized for
a single revision step in [11] and extended to cover iterated revision
in [5].

2. Improvement operators: These operators do not (necessar-
ily) satisfy the success postulate, although still improving the plau-
sibility of the new information [15, 14]. This idea is quite intuitive
since usual iterated belief revision operators can be considered as
too strong: after revising by a new information, this information will
be believed. Most of the time this is the desired behavior for the re-
vision operators. But in some cases it may be sensible to take into
account the new information more cautiously. Maybe because we
have some confidence in the source of the new information, but not
enough to accept it unconditionally. This can be seen as a kind of
learning/reinforcement process: each time the agent receives a new
information (from independent sources), this formula will gain in
plausibility in the epistemic state of the agent. And if the agent re-
ceives the same new information many times, then he will finally
believe it.

Credibility-limited revision operators are a quite natural formal-
ization of non-prioritized revision, with a set of credible formulas
that encodes which changes the agent can directly accept or not. But
when the new information is not credible, it is simply rejected, so it
does not change anything in the epistemic state. This can be seen as
too drastic a position. Suppose that an agent receives many evidences
from reliable (and independent) sources that a non-credible informa-
tion is true. As inconceivable as this information could be for him at
the beginning, the agent will surely finally reconsider its credibility.

So in this paper we propose to define a formal model of the previ-
ously described situation. This is done via the credibility-limited im-
provement operators where, when the new information is not credi-
ble, the agent performs an improvement. So the plausibility of this in-
formation increases, and sufficiently many iterations can finally lead
to acceptance of this information.

The structure of the paper is as follows: we begin with a section
of preliminary concepts. Section 3 is devoted to the rationality postu-
lates. Section 4 contains the main result of the paper: a representation
theorem5. In Section 5 we give some examples in order to illustrate

5 The proof is quite long and for space reasons we don’t include it in this



the behavior of these operators. We finish in Section 6 with some
concluding remarks and perspectives.

2 PRELIMINARIES
We extend the epistemic states approach of Darwiche and Pearl [9]
(see also [4]). Actually we are going to give a richer notion of epis-
temic state. We consider, further to the beliefs, the credible formulas.

Our basic framework is finite propositional logic. This allows us
to encode beliefs and credible formulas of an epistemic state by a
single formula. More precisely we have the following:

Definition 1 An epistemic state is an object Ψ to which we associate
a consistent propositional formulaB(Ψ) that denotes the current be-
liefs of the agent in the epistemic state, and a consistent propositional
formula C(Ψ) that determines the credible formulas of the agent in
the epistemic state and is such that B(Ψ) ` C(Ψ).

C(Ψ) represents the credible formulas of the epistemic state Ψ .
Actually, the encoding of credible formulas via C(Ψ) is done as fol-
lows:

Definition 2 α is a credible formula in the epistemic state Ψ if and
only if α ∧ C(Ψ) 6` ⊥.

In previous work on (iterated) credibility-limited revision [5], stan-
dard Darwiche and Pearl epistemic states were used, and credible
formulas appear as a consequence of the postulates. But we think
that it is more sensible to consider the set of credible formulas as a
(explicit) part of the epistemic state, since it defines how easily an
agent can accept very unplausible new pieces of information. This
propensity to accept unplausible pieces of information can be quite
different for different agents, and defines the behavior of the agent.
So it should be explicitly represented in the description of the agent,
i.e., the epistemic state.

We denote the set of epistemic states by E and the set of consistent
formulas by L∗. We are going to consider change operators ◦ which
are total mappings ◦ : E × L∗ −→ E . As usual, ◦(Ψ , α) is denoted
by Ψ ◦ α.

In order to avoid a cumbersome treatment, we will assume the
consistency of epistemic states Ψ , that is B(Ψ) 6` ⊥ and also the
consistency of the new piece of information α.

Definition 3 Given an operator ◦ and a natural number n, we define
◦n by recursion in the following way:

Ψ ◦0 α = Ψ
Ψ ◦n+1 α = (Ψ ◦n α) ◦ α

Now we define the operator ? as Ψ ? α = Ψ ◦n α, where n is the
first integer such that B(Ψ ◦n α) ` α.

Note that the operator ? could be partial, that is, there might exist
an epistemic state Ψ and a formula α such that for every natural
number n, we haveB(Ψ◦nα) 6` α. In such a case Ψ?α is undefined.
The fact that ? is total (i.e. defined for all the entries in E × L∗) will
depend on properties of the operator ◦.

We denote by Ω the set of all interpretations. The set of models
of a formula α is denoted by [[α]]. We denote by αω1,...,ωn a formula
whose set of models is exactly {ω1, . . . , ωn}, i.e. s.t. [[αω1,...,ωn ]] =
{ω1, . . . , ωn}.

Let ≤ be a a total preorder, i.e., a transitive ((x ≤ y ∧ y ≤ z) →
x ≤ z) and total (x ≤ y∨y ≤ x) relation over Ω. The corresponding
strict relation < is defined as x < y iff x ≤ y and y 6≤ x, and
the corresponding equivalence relation ' is defined as x ' y iff
x ≤ y and y ≤ x. We write w � w′ to denote when w < w′ and

paper. The interested reader can find it in [6]. However we give the main
intuitions behind the proof.

there is no w′′ such that w < w′′ < w′. We also use the notation
min(A,≤) = {w ∈ A | @w′ ∈ A w′ < w}.

When a set Ω is equipped with a total preorder ≤, then this set
can be split in different levels, that gives the ordered sequence of its
equivalence classes Ω = 〈L0, . . . , Ln〉. So ∀x, y ∈ Li, x ' y. We
say in that case that x and y are at the same level of the preorder.
And ∀x ∈ Li, ∀y ∈ Lj , if i < j then x < y. We say in this case
that x is in a lower level than y. We extend straightforwardly these
definitions to compare subsets of equivalence classes, i.e if A ⊆ Li
and B ⊆ Lj then we say that A is in a lower level than B if i < j.

3 CREDIBILITY-LIMITED IMPROVEMENT
Let us first start by defining the logical properties we expect for
credibility-limited improvement operators. Most of these proper-
ties are related to the ones of improvement [15, 14] and (iterated)
credibility-limited revision [5]. The difficulty is to find how to obtain
the wanted behavior.

We will need an additional notion (limit of non-credibles) for
defining postulate (CLI13), that describes the dynamics of credible
formulas:
Definition 4 Suppose that ? is total. Given an epistemic state Ψ ,
such that C(Ψ) 6≡ >, we call a consistent formula λΨ the limit of
non-credibles of Ψ if the following properties hold: λΨ ∧C(Ψ) ` ⊥
and for all β such that β ∧ C(Ψ) ` ⊥, B(Ψ ? (λΨ ∨ β)) ≡ λΨ .

When there are non-credible formulas and the operator ◦ satisfies
enough properties (see Proposition 1), this limit formula exists. This
limit formula is actually the non credible formula closest to C(Ψ).

Now we can give the postulates characterizing credibility-limited
improvement operators. We will split them in thematic subgroups
for a clearer exposition. For ease the reading we will use the follow-
ing abusive shortcut: we say “revision” instead of “credibility-limited
improvement”, and “we revise” instead of “we perform a credibility-
limited improvement”. Our first, basic, group of postulates is as fol-
lows.

(CLI0) There exists an integer n such that B(Ψ ◦n α) ` α
(Iterative success)

(CLI1) If α ∧ C(Ψ) 6` ⊥ then B(Ψ ◦ α) ` α,
else B(Ψ ◦ α) ≡ B(Ψ) (Relative success)

(CLI2) If B(Ψ) ∧ α 6` ⊥ then B(Ψ ◦ α) ≡ B(Ψ) ∧ α
(Vacuity)

(CLI3) B(Ψ ◦ α) 6` ⊥ (Strong coherence)
(CLI4) For all positive integers n if αi ≡ βi for all i ≤ n and
µ ≡ µ′ thenB((Ψ ◦α1 ◦· · ·◦αn)?µ) ≡ B((Ψ ◦β1 ◦· · ·◦βn)?µ′)

(Syntax irrelevance)

A first remark is that, as non-prioritized revision operators,
credibility-limited revision operators do not satisfy the success pos-
tulate6, but (CLI0) and (CLI1) are two weakenings of success. (CLI0)
says that if we iterate enough we finally obtain success. This postu-
late has an important consequence: the corresponding ? operator is
total. (CLI1) uses explicitly the credible formulas7 to decide if the
new piece of information is credible enough to perform a classical
AGM revision.

(CLI2), (CLI3), (CLI4) are standard revision postulates. (CLI2) is
the vacuity postulate, that says that when the new piece of informa-
tion is consistent with the beliefs of the agent, then the revision is
just the conjunction. (CLI3) ensures that we always obtain a consis-
tent result8. (CLI4) is the irrelevance of syntax condition for iteration

6 (Success) B(Ψ ◦ α) ` α
7 Compared to [5] where there is no explicit set of credible formulas.
8 Recall that we assume that the new piece of information α is always con-

sistent.



(that comes from [15]).
Our second group of postulates deal with revising by conjunctions

and disjunctions.

(CLI5) B(Ψ ? α) ∧ β ` B(Ψ ? (α ∧ β)) (R5)
(CLI6) IfB(Ψ ?α)∧β 6` ⊥, thenB(Ψ ?(α∧β)) ` B(Ψ ?α)∧β

(R6)

(CLI7) B(Ψ ◦ (α ∨ β)) ≡

 B(Ψ ◦ α) or
B(Ψ ◦ β) or
B(Ψ ◦ α) ∨B(Ψ ◦ β)

(Trichotomy)

It is interesting to note that (CLI5) and (CLI6) are ?-translations
of usual properties on revision by conjunctions [15], but that we also
need the trichotomy property (CLI7) on the ◦ operator.

The next group of postulates deal with the behavior ofB(Ψ) under
iterated application of ◦.

(CLI8) If α ` µ, then B((Ψ ◦ µ) ? α) ≡ B(Ψ ? α) (DP1)
(CLI9) If α ` ¬µ, then B((Ψ ◦ µ) ? α) ≡ B(Ψ ? α) (DP2)
(CLI10) If B(Ψ ? α) 6` ¬µ, then B((Ψ ◦ µ) ? α) ` µ (P)
(CLI11) If B(Ψ) 6` α then ∃β s.t. B((Ψ ◦ α) ? β) 6≡ B(Ψ ? β)

(Non-triviality)

(CLI8),(CLI9) and (CLI10) are close to standard iteration postu-
lates. They correspond to the postulates of rigidity of Darwiche and
Pearl called (DP1) and (DP2) [9] and to postulate (P) of Booth and
Meyer [7] and Jin and Thielscher [12]. Our formulation is differ-
ent because we have to define them for sequences (?-version of ◦).
(CLI8) says that starting a sequence of revisions by a less precise
formula (µ) does not change the obtained beliefs. (CLI9) says that
starting a sequence of revisions by a conflicting formula (µ ` ¬α)
does not change the obtained beliefs. (CLI10) says that if a sequence
of revision is not sufficient to imply the negation of a formula, then
the increase of plausibility obtained by beginning the sequence by a
revision by this formula is enough to ensure to imply it. Postulate
(CLI11) says that any revision by a formula α that is not a con-
sequence of the epistemic state modifies the epistemic state of the
agent.

The next group of postulates constrain the dynamics of C(Ψ) un-
der ◦.
(CLI12) If α ` ¬µ and α ∧ C(Ψ) ` ⊥, then α ∧ C(Ψ ◦ µ) ` ⊥

(CLCD)
(CLI13) If α∧C(Ψ) ` ⊥ and α∧λΨ 6` ⊥, then α∧C(Ψ ◦ α) 6` ⊥

(Enrichment of credible)

Postulate (CLI12) says that when we revise by a formula µ then
the formulas implying its negation can not enter the credible set. This
postulate comes from [5]. Postulate (CLI13) says that non-credible
formulas can become credible when we revise by a formula that is
not credible but belongs to the limit of non-credibles.

The final postulate again deals with dynamics ofB(Ψ) but specif-
ically in the non-credible revision case, so it limits the change in the
epistemic state:

(CLI14) If µ ∧ C(Ψ) ` ⊥ and B(Ψ ? α) ` ¬µ then
B((Ψ ◦ µ) ? α) 6` µ (Soft)

(CLI14) imposes a limitation on the plausibility increase for non-
credible formulas. It has to be compared to (CLI10). It says that if µ
is not a credible formula, then the increase of plausibility caused by
its revision is not enough for rejecting its negation that is obtained
after some sequence of revisions (by α). This property comes from
the soft improvement operators of [14].

Definition 5 An operator ◦ satisfying CLI0-CLI14 is called a

credibility-limited improvement operator.

Let us now prove that the limit of non-credibles for credibility-
limited improvement is well defined:

Proposition 1 Suppose that the operator ◦ satisfies (CLI0), (CLI2-
CLI6). Suppose that C(Ψ) 6≡ >. Then there exists a formula λΨ

satisfying the properties of Definition 4. Moreover this formula is
unique up to logical equivalence.

It is interesting to note the generality of this family of operators,
since usual (admissible) iterated revision operators and (soft) im-
provements operators are subclasses of credibility-limited improve-
ment operators:

Proposition 2 Suppose that ◦ is a credibility-limited improvement
operator. We obtain the following two special cases:

• If ∀Ψ C(Ψ) ≡ > then ◦ is an admissible iterated revision opera-
tor [7, 12].

• If ∀Ψ C(Ψ) ≡ B(Ψ) then ◦ is a soft improvement operator [14].

4 REPRESENTATION THEOREM
Let us now give a representation theorem for credibility-limited im-
provement operators in terms of plausibility preorders on interpreta-
tions (faithful assignments [13, 9]).

An assignment is a function mapping epistemic states into total
preorders over Ω. The assignments are denoted Ψ 7→ ≤Ψ , which
means, as usual, that the image of the epistemic state Ψ under the
assignment is the total preorder ≤Ψ .

Given an assignment and a change operator ◦ we define a num-
ber of properties. First, regarding the relationship between ≤Ψ and
B(Ψ):

(SCLI1) If ω |= B(Ψ) and ω′ |= B(Ψ), then ω 'Ψ ω′

(SCLI2) If ω |= B(Ψ) and ω′ 6|= B(Ψ), then ω <Ψ ω′

Conditions (SCLI1) and (SCLI2) just say that the models of B(Ψ)
are the minimal elements of ≤Ψ . The next postulates are about the
relationship between ≤Ψ and ≤Ψ◦α

(SCLI3) For all positive integers n if αi ≡ βi for all i ≤ n then
≤Ψ◦α1◦···◦αn= ≤Ψ◦β1◦···◦βn

(SCLI4) If ω, ω′ |= α then ω ≤Ψ ω′ ⇔ ω ≤Ψ◦α ω
′

(SCLI5) If ω, ω′ |= ¬α then ω ≤Ψ ω′ ⇔ ω ≤Ψ◦α ω
′

(SCLI6) If ω |= α, ω′ |= ¬α and ω ≤Ψ ω′, then ω <Ψ◦α ω
′

(SCLI7) If min(≤Ψ ) 6⊆ [[α]] then ≤Ψ 6=≤Ψ◦α

(SCLI3) is the semantical counterpart of irrelevance of the syntax.
(SCLI4) and (SCLI5) are the conditions of rigidity: the relative order
of models of α is preserved after revision; the same happens with the
models of ¬α. (SCLI6) guarantees that the plausibility of models of
the new information is improved with respect to the countermodels
of this information after revision (see Proposition 3). So if a model
and a countermodel of α have the same plausibility, after revision
the model will be more plausible than the countermodel. (SCLI7)
guarantees that something changes after revision if the current beliefs
doesn’t already contain the new piece of information.

Our last group of postulates deal with howC(Ψ) and its dynamics
under ◦ are reflected in the assignment Ψ 7→ ≤Ψ .

(SCLI8) If ω |= C(Ψ) and ω′ 6|= C(Ψ) then ω <Ψ ω′

(SCLI9) If ω �Ψ ω′, ω |= C(Ψ), ω′ ∈ [[α]] and [[α]]∩ [[C(Ψ)]]=∅
then ω′ |= C(Ψ ◦ α)



(SCLI10) If ω |= ¬α and ω 6|= C(Ψ) then ω 6|= C(Ψ ◦ α)
(SCLI11) If [[α]] ∩ [[C(Ψ)]] = ∅, ω |= α, ω′ |= ¬α then ω′ <Ψ

ω ⇒ ω′ ≤Ψ◦α ω

(SCLI8) says that credible interpretations are more plausible than
non-credible interpretations. (SCLI9) says that a non-credible model
of revision formula α becomes credible after revision if it is amongst
the most plausible non-credible interpretations. (SCLI10) forbids the
models of the negation of the revision formula to become credible
after the revision. (SCLI11) expresses that the plausibility change is
a small (soft) one for the interpretations of a non-credible new piece
of information.

Definition 6 An assignment Ψ 7→ ≤Ψ satisfying the properties
SCLI1-SCLI11 for the operator ◦ is called a CLI-faithful assignment
for ◦.

Note that the condition (SCLI6) (which was proposed in [7, 12])
implies both of the conditions (CR3) and (CR4) of Darwiche and
Pearl [9]:

(CR3) If ω |= α, ω′ |= ¬α then ω <Ψ ω′ ⇒ ω <Ψ◦α ω
′

(CR4) If ω |= α, ω′ |= ¬α then ω ≤Ψ ω′ ⇒ ω ≤Ψ◦α ω
′

These conditions are important in order to guarantee that there is
no loop when we iterate the revisions by α and that after enough
iterations of α the minimal elements of the associated preorder are
models of α. Let us give a proposition that will be useful to show that
property:

Proposition 3 If Ψ 7→ ≤Ψ is a CLI-faithful assignment for ◦, then
the following condition holds:

(SM) If α 0 ⊥ and [[¬α]] ∩min(≤Ψ ) 6= ∅ then at least one of the
following conditions holds:

(i) ∃ω1, ω2 s.t. ω1 |= α, ω2 |= ¬α, ω1 'Ψ ω2 and ω1 <Ψ◦α ω2

(ii) ∃ω1, ω2 s.t. ω1 |= α, ω2 |= ¬α,ω2 <Ψ ω1 and ω1 ≤Ψ◦α ω2

This proposition expresses the fact that when the beliefs do not
imply a formula α, the plausibility of at least one model of α is im-
proved after revision: either a model that was equivalent to a coun-
termodel is now strictly more plausible, or a model that was strictly
less plausible than a countermodel is now equivalent to this counter-
model.

Let us now give the representation theorem for credibility-limited
improvement operators.

Theorem 1 Let ◦ be a change operator. The operator ◦ is a
credibility-limited improvement operator only if there is a CLI-
faithful assignment for ◦, Ψ 7→ ≤Ψ , such that the following con-
ditions hold:

(i) If α ∧ C(Ψ) 0 ⊥ then [[B(Ψ ◦ α)]] = min([[α]],≤Ψ ).
(ii) If α ∧ C(Ψ) ` ⊥ then [[B(Ψ ◦ α)]] = [[B(Ψ)]].
(iii) For all α, [[B(Ψ ? α)]] = min([[α]],≤Ψ ).

Conversely, suppose we have a CLI-faithful assignment for ◦ such
that the conditions (i) and (ii) above are satisfied. Then the operator
◦ is a credibility-limited improvement operator and condition (iii) is
satisfied.

The detailed proof of this result is quite long and for space rea-
sons cannot be included here. The interested reader can find it in [6].
However, we give below the main lines of reasoning.

Sketch of the proof of Theorem 1: From the syntactical side to the
semantical side. Assume that ◦ is a credibility-limited improvement
operator. For each epistemic state Ψ define a binary relation ≤Ψ in
the following way: ω ≤Ψ ω′ ⇔ ω |= B(Ψ ? αω,ω′). First we prove
that ≤Ψ is a total preorder. This part of the proof, using the pos-
tulates (CLI0) and (CLI2-CLI6), follows the techniques in [15]. In
order to prove that the assignment Ψ 7→ ≤Ψ is indeed a CLI-faithful
assignment for ◦, we verify each condition of Definition 6. Condi-
tions (SCLI1) and (SCLI2) follow from (CLI2). Condition (SCLI3)
follows from (CLI4). With postulates (CLI0) and (CLI2-CLI6) and
their derivable condition (SCLI1) we prove condition (iii) of the The-
orem, i.e. [[B(Ψ ? α)]] = min([[α]],≤Ψ ).

We continue the sketch of verification of the other conditions of
CLI-faithful assignment. Condition (SCLI4) follows from (CLI8)
and condition (iii). Condition (SCLI5) follows from (CLI9) and con-
dition (iii). Condition (SCLI6) follows from (CLI0), (CLI3), (CLI10)
and condition (iii). Condition (SCLI7) follows from (CLI11) and
Condition (iii). Condition (SCLI8) follows from (CLI1), (CLI7) and
condition (iii). Condition (SCLI9) follows from (CLI13), (SCLI4),
(SCLI8) and condition (iii). Condition (SCLI10) follows from
(CLI12). Condition (SCLI11) follows from (CLI14) and condition
(iii).

It remains to prove condition (i) and condition (ii). First we verify
that condition (i) holds. Suppose α ∧ C(Ψ) 6` ⊥. Then, by (CLI1),
B(Ψ◦α) ` α. Thus, by definition of ?,B(Ψ◦α) = B(Ψ?α). Then,
by condition (iii), [[B(Ψ ◦ α)]] = min([[α]],≤Ψ ), that is, condition
(i) holds. Condition (ii) follows straightforwardly from (CLI1).

From the semantical side to the syntactical side. The first step will
be to prove postulate (CLI0) and then that property (iii) holds. In
order to do this first task, we adapt some techniques introduced re-
cently in [16]. This is the most elaborate part of the proof. After
that and once property (iii) is established, checking that the other
postulates hold is a relatively painless task. The main idea in or-
der to prove (CLI0) is very intuitive. Note that to prove (CLI0) is
equivalent to prove that there exists a positive integer i such that
[[B(Ψ ◦i α)]] ⊆ [[α]]. We associate to each model ω of α the number
`i(ω) which is the number of levels in the preorder ≤Ψ◦iα such that
there exists ω′ ∈ [[¬α]] satisfying ω′ ≤Ψ◦iα ω. Then we associate to
α the vector vi(α) consisting of the numbers `i(ω) for each ω |= α
ordered increasingly. It is easy to see that [[B(Ψ ◦i α)]] ⊆ [[α]] if,
and only if, the first coordinate of vector vi(α) is 0 (actually in
such a case [[B(Ψ ◦i α)]] is the set {ω ∈ [[α]] : `i(ω) = 0}). What
the conditions of CLI-faithful assignment allow to prove is that, as
long as the first coordinate of the vector vi(α) is different from 0,
then there exists an integer j > 0 such that vi(α) >lex vi+j(α),
where >lex is the strict lexicographic order. Finally, since the strict
lexicographic order is well founded, necessarily there exists an inte-
ger n such that the first coordinate of the vector vn(α) is equal to
0. From the conditions of rigidity it is not hard to see that for all i,
min([[α]],≤Ψ ) = min([[α]],≤Ψ◦iα) and from this and the previous
discussion it is relatively easy to see that condition (iii) holds.

It remains to check postulates (CLI1-CLI14). Here, we give the
conditions involved in the proof of each postulate. Postulate (CLI1)
follows from conditions (i) and (ii). Postulate (CLI2) follows from
conditions (SCLI1) and (SCLI2). Postulate (CLI3) is trivial by our
assumptions of consistency of both α and B(Ψ). Postulate (CLI4)
follows from conditions (SCLI3) and (iii). Postulates (CLI5) and
(CLI6) follow from condition (iii). Postulate (CLI7) follows from
conditions (i) and (SCLI8). Postulate (CLI8) follows from conditions
(SCLI4) and (iii). Postulate (CLI9) follows from conditions (SCLI5)
and (iii). Postulate (CLI10) follows from conditions (SCLI6) and
(iii). Postulate (CLI12) follows from condition (SCLI10). Postu-
late (CLI11) follows from conditions (SCLI7) and (iii). Postulate



(CLI13) follows from condition (SCLI9). Postulate (CLI14) follows
from conditions (SCLI11) and (iii).

We have to note that this representation theorem has some sim-
ilarities and differences with the usual ones for iterated revision
[9, 7, 15, 5]. The part leading from syntactical postulates to the as-
signment is quite similar to the same part in the representation the-
orems of previous works. However the converse, unlike those previ-
ous representation theorems, requires a more elaborate and complex
proof. This is due to the fact that we want to merge the behavior
of (admissible) iterated revision operators and of (soft) improvement
operators. In particular, we have to face a double difficulty. First, we
don’t have the ? operator because we don’t know, a priori, if the pos-
tulate of Iterated success (CLI0) holds. Second, and as consequence
of the first difficulty, we can’t assume condition (iii). The solution of
this double difficulty is what was mainly sketched above.

5 ILLUSTRATIVE EXAMPLE
Let us define a concrete credibility-limited improvement operator in
order to illustrate their behavior.

The idea is to use a particular improvement operator, the one-
improvement operator [14] in order to increase the plausibility of
the new piece of information. We will use this operator for both
credible and non-credible formulas. But for credible formulas we
have to make a revision, so after the one-improvement we will ap-
ply Boutilier’s natural revision operator [8], which will ensure that
the most plausible models of the new piece of information become
the most plausible models for the agent. Let us use • to denote this
operator, which is defined intuitively as follows.

Definition 7 Let ◦N be Boutilier’s natural revision operator [8],
and let � be the one-improvement operator [14]

Ψ • α =

{
Ψ�α If α ∧ C(Ψ) ` ⊥

(Ψ�α ) ◦N α Otherwise

In order to make formal the previous definition in our setting, we
have to define the credible formulas of each epistemic state, which
indeed are absent for natural revision as well as for one-improvement
operators.

Let us see now how to define this operator directly using the se-
mantical definition of the credibility-limited operators. We will use
a concrete representation of the epistemic states: total preorders over
interpretations. So suppose from here that an epistemic state Ψ is
represented by a preorder ≤Ψ and a set of credible interpretations
CΨ formed by the the union of the first kΨ levels L0, . . . , LkΨ of
the preorder ≤Ψ , that is CΨ = ∪kΨj=0Lj and Ψ = (≤Ψ , CΨ ).
This is an acceptable representation of epistemic state. In this setting,
B(Ψ) and C(Ψ) are formulas whose set of models are respectively
min(≤Ψ ) and CΨ .

So now we define the • CLI operator as a transition func-
tion between these epistemic states. Take any epistemic state
Ψ = (≤Ψ , CΨ ), and any formula α, and let us define Ψ • α =
(≤Ψ•α, CΨ•α). We must then specify ≤Ψ•α and CΨ•α.

Turning first to ≤Ψ•α, as indicated above this will be defined in
terms of one-improvement and natural revision. The definition of the
preorder ≤Ψ�α given by one-improvement is as follows.

Definition 8 Let Ψ = (≤Ψ , CΨ ) be an epistemic state and α be a
formula.

• If ω, ω′ ∈ [[α]] then ω ≤Ψ ω′ ⇔ ω ≤Ψ�α ω
′

• If ω, ω′ ∈ [[¬α]] then ω ≤Ψ ω′ ⇔ ω ≤Ψ�α ω
′

• If ω ∈ [[α]], ω′ ∈ [[¬α]] then

– ω <Ψ ω′ ⇒ ω <Ψ�α ω
′

– ω 'Ψ ω′ ⇒ ω <Ψ�α ω
′

– ω′�Ψ ω ⇒ ω′ 'Ψ�α ω
– ω′ <Ψ ω and ω′ 6�Ψ ω ⇒ ω′ <Ψ�α ω

The next proposition ensures that the preorder transition function
in the above definition is well-defined:

Proposition 4 There is a single relation ≤Ψ�α that satisfies the
conditions in Definition 8. Moreover ≤Ψ�α is a total preorder.

Now let us define Boutilier’s natural revision on this representa-
tion. The idea is to keep the same preorder, except that the most plau-
sible models of the formula α become the most plausible models of
the epistemic state:

Definition 9 Let Ψ = (≤Ψ , CΨ ) be an epistemic state and α be
a formula, then the definition of the preorder ≤Ψ◦

N
α given by the

natural revision operator is as follows.:

• If ω, ω′ ∈ min([[α]],≤Ψ ) then ω ≤Ψ◦
N
α ω
′ ⇔ ω ≤Ψ ω′

• If ω, ω′ 6∈ min([[α]],≤Ψ ) then ω ≤Ψ◦
N
α ω
′ ⇔ ω ≤Ψ ω′

• If ω ∈ min([[α]],≤Ψ ), ω′ 6∈ min([[α]],≤Ψ ) then ω <Ψ◦
N
α ω
′

Now we can define ≤Ψ•α:

Definition 10 Let Ψ = (≤Ψ , CΨ ) be an epistemic state and α be a
formula.

≤Ψ•α=

{
≤Ψ�α if [[α]] ∩ CΨ = ∅
≤(Ψ�α)◦

N
α otherwise

Let us turn now to the evolution of credible interpretations:
Definition 11 Let Ψ = (≤Ψ , CΨ ) be an epistemic state and α be
a formula. Define CΨ•α as CΨ•α = CΨ ∪ {ω ∈ [[α]] : ω 6∈
CΨ and ∃ω′ ∈ CΨ ω′ �Ψ ω}.
We are now able to define the • CLIO operator in our concrete frame-
work:
Definition 12 Let Ψ = (≤Ψ , CΨ ) be an epistemic state and α be a
formula. Ψ • α = (≤Ψ•α, CΨ•α)

As expected, with this concrete representation of epistemic states,
the definition of the • operator adheres to the intuitive definition
given in Definition 7. And of course this operator is built as an ex-
ample of a credibility-limited improvement operator:
Proposition 5 The operator • is a credibility-limited improvement
operator, i.e. it satisfies (CLI0-CLI14).

This operator can also be defined using a representation close to
Ordinal Conditional Functions (see [15]).

Let us now illustrate the behavior of this credibility-limited revi-
sion operator on a concrete example.
Example 2 Bob is a citizen of a country under a dictatorship who
is skeptical about the efficacy of demonstrations in order to obtain
a change towards more freedom and democracy. After the positive
changes in Cosivia and Guyostan which followed some demonstra-
tions, he is less skeptical and thinks that it might be plausible that
demonstrations produce changes towards more freedom and democ-
racy. After further positive events in Austropia, he is finally convinced
that demonstrations can make changes to more freedom or more
democracy or both. This example can be modelled by the following
logical representation: we take three propositional variables, p, f
and d in this order, encoding respectively demonstrations (protests),
more freedom and more democracy. The formula α representing the
new information is p ∧ (p→ f ∨ d). Thus, [[α]] = {101, 110, 111}.
The initial epistemic state Ψ = (≤Ψ , CΨ ) is represented as follows
(in black the models ofCΨ and in gray the other interpretations (that
are not credible), the models of α are encircled):



101 110 111 α
011

010 001
000 100

≤Ψ

CΨ

λΨ

The credible worlds CΨ are the first two levels, i.e. CΨ =
{010, 001, 000, 100}, and [[B(Ψ)]] = {000, 100}. The sequence of
iterations Ψ • α, Ψ •2 α and Ψ •3 α is represented as follows:

101 110 111 α011
010 001
000 100

≤Ψ•α
CΨ•α

λΨ•α

101 110 111 α
011

010 001
000 100

≤Ψ•2α CΨ•2α

λΨ•2α

101 110 111 α

011
010 001
000 100≤Ψ•3α CΨ•3α

λΨ•3α

Note that CΨ = CΨ•α, then the models of α enter the set of cred-
ible interpretations during •2. Then CΨ•2α = CΨ•3α but CΨ•2α is
formed by the first two levels of ≤Ψ•2α whereas CΨ•3α is formed
by the first three levels of ≤Ψ•3α. The epistemic state Ψ • α repre-
sents the state of the citizen after the events in Cosivia. The epistemic
state Ψ •2 α represents the state of the citizen after the events in
(Cosivia and) Guyostan. Note that at this step α becomes credible,
which means that at the next iteration α will be accepted by the agent
(i.e. the revision will be successful). So finally, the epistemic state
Ψ •3 α represents the state of the citizen after the events in (Cosivia,
Guyostan and) Austropia, where the agent makes a revision by this
credible formula, and finally believes it.

6 CONCLUSION AND DISCUSSION
In this paper, we proposed a new model of belief change, credibility-
limited improvement operators, based on credibility-limited revision
and improvement operators. The outcome is a large family of opera-
tors, which have the particularity of being non-prioritized and well-
behaved with respect to iteration. The new information is either ac-
cepted or gains in plausibility in the epistemic state of the agent.

As usual for iterated revision operators, several different repre-
sentation frameworks can be used to encode credibility-limited im-
provement operators, such as Ordinal Conditional Functions [17], or
conditionalizations in possibilistic logic bases [3, 2]. Even if none
of the existing operators on these representations can directly en-
code credibility-limited improvement operators, some combinations
of operators can achieve this. However there is no logical characteri-
zation of operators in these settings.

Our distinction between non-credible and credible interpretations
can be related to the distinction between impossible and plausible in-
terpretations in possibility distributions. The difference is that in pos-
sibility distributions all the impossible interpretations are equivalent,
whereas we still rank the non-credible interpretations, that can be
sensible (as advocated in [?]) if we consider the dichotomy as reflect-
ing a (strong) difference of certainty, and not as a knowledge/belief
frontier like in possibilistic logic. So possibility distributions can be
seen as a particular case of our epistemic states.
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‘Taxonomy of improvement operators and the problem of minimal
change’, in Proceedings of the 12th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2010), pp. 161–
170, (2010).
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