Forward chaining and change operators

Hassan Bezzazi, Stéphane Janot, Sébastien Konieczny and Ramén Pino Pérez

LIFL U.A. 369 du CNRS, Université de Lille 1
59655 Villeneuve d’Ascq, FRANCE

E-mail: {bezzazi,janot konieczn,pino } @lifl.fr

Abstract. We investigate three change operators which are defined us-
ing forward chaining. We prove that one of them is an update operator in
the Katsuno-Mendelzon sense. Concerning the other two operators one
of them is a revision operator in the Alchourrén-Gardenfors-Makinson
sense; the other one satisfies the basic postulates for revision.

Introduction

Revision is the process of according an old knowledge base with a new evidence.
It has been formally studied [1, 8, 10] and several operators have already been
proposed [4, 7]. The problem is that, in general, revision is a complex process
[6] and is not efficiently computable.

In this paper, we investigate three change operators based on forward chain-
ing. The use of forward chaining provides us with an efficient way for computing
the revision of a knowledge base.

Furthermore these operators are readily suitable for expert systems based on
the same kind of inference namely forward chaining. Thus, we have an easy way
to include non-monotonic reasoning in such systems. Such operators may have
numerous other applications, in diagnosis systems for example.

Our approach is close to REVISE [5] and Revision Programming [13] but is
less complex, since we use only forward chaining on propositional formulae.

We propose three knowledge change operators. The first one, called factual
revision, updates a set of facts with another set of facts coding a new evidence,
according to a set of rules which can be seen as integrity constraints of the
system. The second one, called ranked revision, is based on a hierarchy over the
rules which denotes how the rules are exceptional, and when a new evidence
arrives, it finds the least exceptional rules consistent with this new information.
The last one, called hull revision, uses the two approaches above and computes
maximal sets of rules that are consistent with the new information.

We also study properties of these operators. We prove that the factual re-
vision can be seen as an update operator, satisfying Katsuno and Mendelzon
postulates and that it has good iteration properties. In the same way, ranked
revision can be seen as a revision operator, according to Alchourrén-Gardenfors-
Makinson (AGM) postulates. Concerning hull revision we prove only the basic
postulates of change.

The paper is organized as follows: section 1 contains the basic definitions;
in section 2 we define factual revision and we give an algorithm to compute it;

section 3 is devoted to definitions of ranked revision and hull revision; in section
4 we study the properties of these knowledge change operators. And, finally, we
conclude with some remarks and some perspectives for future work.

1 Preliminaries

Our framework is propositional logic.

A literal (or fact) is an atom or a negation of an atom. The set of literals will
be denoted Lit. A rule is a formula of the shape [y AloA---Al, — I, 41 where l; is
aliteral for 2 = 1,...,n+1. A rule as before will be denoted l3,la,...,l, = lh41.
We admit rules of the form — [which actually code facts.

Let R and F' be a finite set of rules and a finite set of literals respectively. A
program P is the set of the form R U F and we will say that the elements of R
are the rules of P and the elements of F' are the facts of P.

Let P = RUF be a program. We define the set of consequences by forward
chaining of P, denoted Cf(P), as the smallest set of literals F’ such that:

(i) Fcr.
(i) Ifly,la,...,lp > lisin Rand l; € F' fori=1,...,n then [l € F'.
(iii) If F’ contains two opposite literals then F’ = Lit

A program P is said to be consistent iff C'y.(P) does not contain two opposite
literals, i.e. an atom and its negation.

Let R, F and F' be a finite set of rules and two finite sets of literals res-
pectively. F' is said to be R-consistent iff R U F' is consistent (with respect to
forward chaining). F' is said to be RU F'-consistent iff RU (F'U F') is consistent.

Let L and P be a set of literals and a program as previously defined we say
that L is a fc-consequence of P iff L C C(P).

1.1 Revision and update postulates

Let ¢ be a formula representing a knowledge base and let i be a formula repre-
senting a new piece of information. ¢ o p will denote a formula representing the
changes that u produces in . The operator o is a revision operator [1, 10] if it
satisfies the following postulates:
(R1) p is a consequence of ¢ o p.
(R2) If » A p is consistent then ¢ o u is equivalent to ¢ A p.
(R3) If p is consistent then ¢ o u is consistent.
(R4) If 1 = w9 and py = pg then @1 0 g = @g 0 po.
(R5) wo (u A @) is a consequence of (¢ o p) A ¢.
(R6) If (¢ o) A ¢ is consistent then (o u) A ¢ is a consequence of p o (u A).
An operator satisfying all postulates above except R4 is said to be a syntac-
tical revision operator.
The operator o is an update operator [11] if it satisfies the following postu-
lates:
(U1) p is a consequence of o .
(U2) If p is a consequence of ¢ then ¢ o p is equivalent to .

(U3) If both ¢ and u are consistent then ¢ o u is also consistent.
(U4) If 1 = @9 and gy = pg then @1 0 g = o 0 po.
(U5) po (A @) is a consequence of (¢ o p) A ¢.
(U6) If ps is a consequence of (¢ o py1) and gy is a consequence of (¢ o uig) then
@ o uy is equivalent to ¢ o us.
(U7) If ¢ is complete then g o (u1 V p2) is a consequence of (¢ o p1) A (¢ o pa).
(U8) (p1 V ¢2) o u is equivalent to (p1 o) V (2 o p).

An operator satisfying the postulates U1l to U8 except U4 is said to be a
syntactical update operator.

Note that in those postulates the notions of consequence, consistency and
equivalence are the classical ones. But we can instantiate these postulates to
different logics. We will see some examples in section 4.

2 Factual revision

Let R be a fixed set of rules which in this context can be seen as our background
theory or our integrity constraints. Let F' be a set of facts which can be seen as
our beliefs about the world. We would like to define the change produced by a
set of facts F’ coding a new information about the world. This is the object of
the following definition:

! if F' is not R-consistent

r_

Fopl™ = (FLUF' ... F,UF'y where {Fi,..., F,} is the set of subsets of F
which are maximal and R U F'-consistent

So more generally than a set of facts I we are considering n-tuples of sets of

facts (F1,..., Fy) called flocks in the literature [7].

We put (Fy, ..., F,)-(F!,.. F' Y (F, ... F, F!,... F')and

(Fi,...,F)or F' & (Fyop F') - (Fy o F') - (Fy or F)

In order to investigate the relation between ¢g and the postulates of change
we need to define the intensional content (the consequences) of a flock F =
(F1,..., Fy). So we define the consequences by forward chaining (with respect
to R) of such a flock, denoted C’ﬁ(}'), by the following;:

CR(F) = CrlFi UR)

i=1

In section 4 we will show that ¢g is an update operator

2.1 Update algorithm

For the sake of completeness in this subsection we give an algorithm to compute
FogrF'. This is computed in two steps: first, we compute sets of facts that lead to
inconsistency, called contradictory sets. Then, given the set SC' of contradictory
sets, we compute the minimal hitting sets of SC'. The maximal subsets of F' such
that F'U F”is R-consistent are the sets '\ H, where H is a minimal hitting set
of SC.

First step. A contradictory set C' is a subset of F' corresponding to a way of
proving a pair of opposite literals from RU FU F’ : C is a contradictory set if C
is a subset of F' and there exists a minimal subset R’ of R such that R UCUF’
is not consistent and, for each ! in C, [appears in the body of a rule of R'.

We assume that, for every atom a that appears in the knowledge base, we
have an implicit rule a,—~a — L.

To compute the contradictory sets when updating F' with F’, we build a
contradiction tree T g, starting from L : a node is a pair(L; C'), where L is a
list of literals to prove to obtain contradiction and C' is a partial contradictory
set. We start with the node (L;{}) . Let N = (l1,la2,... ,{n;C) be a node of

TF . The successors of N are computed as follows:

—ifly € F' or if l; is already in C, then (I3, ... ,l,; C) is the only successor of
N

— else for each rule g1,92,... ,9p = b1, (91,92, -, 9p, 12, ... ,1n ; CU{L1}) is a
successor of N and if [y € F', then ({5, ... ,1,; C U{l1}) is a successor of N.

A branch terminates with an empty list of literals or with a node that cannot
be developed. If a branch ends with (#; C), then C' is a contradictory set of facts.
Note that if we suppose that F’ is consistent with R, we can’t obtain (#;).
TF p» doesn’t give only the minimal contradictory sets, but all the ways to entail
a pair of opposite literals from R and F U F’.

Example. We consider the program RU F, with R = {a,b — ¢; a,d — ¢}
and F' = {a, b, d}. When updating F' with {—c}, we obtain two contradictory sets
{a,d} and {a, b}. Fig 1 shows the contradiction tree (to simplify, we consider only
the rule —¢, ¢ —_L at the first step, since the only pair of contradictory literals
that actually appears in this case is ¢, —c¢).

Second step. The contradiction tree produces a set of contradictory sets SC' =
{C4,...,Cy}. To update F' with F’ we compute all the maximal subsets S of F
such that S U F’ is R-consistent. The subsets S of F' are obtained by removing
from F' at least one element of each contradictory set: if H is a set of facts such
that, for each element C; of SC, SNC; # 0 , then (F\ H)U F’ is consistent. H
is usually called a hitting set of SC'. To find the maximal consistent subsets of
F, we need all the minimal hitting sets (by set inclusion) of SC.

The figure 2 illustrates the algorithm we implemented in Prolog to compute
the minimal hitting sets. This algorithm is very close to the one given by Reiter

in [14]. Let SC = {C1,Cs,...,C,}. We try to construct a hitting set of SC' by

Fig. 1. Contradiction tree
Li{}

{e,meh: {}

{e}i{}

{a,b}; {} {a,d}; {}

{b}; {a} {d};{a}

{};{a b} {};:{a, d}

examining the elements of SC' one by one: if the current set C; is not already
hit by the partial hitting set HS, we add one of the literals of C; in HS. To
know if a hitting set is minimal, we maintain a set of justifications J(!) for each
literal [of the hitting set: J(!) contains all the sets of literals that are hit only
by {. When a new literal ! must be added to the hitting set, the justification
sets are updated by removing all the sets containing [. If one of the justification
sets becomes empty, the current hitting set is not minimal anymore and so the
construction fails.

Concerning the relationships between our algorithm and Reiter’s one notice
that we construct the same kind of HS-tree, where nodes are labeled with ele-
ments of SC' and edges are labeled with elements of the hitting sets. The main
difference is the use of justification sets instead of tree pruning. Tree pruning is
used in Reiter’s algorithm in order to compute not all the hitting sets but only
the minimal ones. In our algorithm, this is done with justification sets and each
minimal hitting set is computed in a unique branch.

3 Ranked revision and hull revision

In the case of factual revision the set of rules is fixed. When it is not the case a
natural question that one may ask is how to change a set of rules when a new
piece of information arrives. The aim of this section is to give an answer to this
question when the new piece of information is a set of facts.

Fig. 2. Minimal hitting sets

SC; {{aab}a{aae}:{bac}a{cae}} {a’b}
J(a) = {{a,b}} J(b) = {{a,b}}

{a,e} {a,e}

J(a) = {{a7 b}v {a7 8}}

J(e) = {{a,e})
{b, ¢} fail {b, ¢}
J(@) = {a,e}}

J((b) = {{b,c}} b
J(b) = {{a7 b}v {bv c}}

{e,e} {e.e} {c, e}

Jb)={} J(a) ={} J(e) ={{a,e},{c,e}

fail fail L {a,c} L1 {b,e}

Minimal Hitting sets: {a,c} and {b,e}

The change operators introduced in this section are inspired from the duality
existing between revision and rational inference relations [9]. So the first operator
can be seen as the ‘relativization’ of the rational closure [12] to the forward
chaining logic. The second operator is an extension of the first one and it is
aimed to satisfy a little bit more of transitivity (see [2, 3]).

Let R be a set of rules.

Definition1 (Exceptional sets of literals and rules). A set of literals L is
said to be exceptional with respect to R iff L is not R-consistent and a rule
L — [l of R is said to be exceptional in R iff L is exceptional in R.

A similar definition of exceptionality for a formula can be found in [12].

Let (R;)icw be the decreasing sequence defined by: Ry is R and R;41 is the
set of all exceptional rules of R;. Since R is finite there is a smallest integer ng
such that for all m > ng we have R,, = R,,,,.

Definition2 (Base). Let ng be as before. If R,,, # () we say that (Ro, ..., Rn,, #)
is the base of R. If R,,, = 0 we say that (R, ..., Ry,) is the base of R.

Definition 3 (Completely exceptional). Let (Rq, ..., R,) be the base of R.
L is said completely exceptional if it is exceptional in all R; for 0 < i < n (thus
an inconsistent set of literals is completely exceptional).

Definition4 (Rank function). Let (Rg,..., R,) be the base of R. Let p :
P(Lit) — [1..n] be the rank function defined as follows: p(L) = min{i € [1..n] :
L is R;-consistent} if L is consistent, otherwise p(L) = n. It is a fact that if
LC I then p(L) < p(L)

Definition 5 (Ranked revision). Let R and L be a set of rules and a set of
literals respectively. We define the ranked revision of R by L, denoted R o, L,
as follows:

ROTkL:Rp(L)UL

In other words we take in the base of rules the first set of rules that agrees with
the new information.

Let I(L) be the set of maximal subsets of R which are consistent with L
and which contain R,z) when L is not completely exceptional and (otherwise.

Define h : Pyin(Lit) — P(R) by h(L) = I(L)

Definition 6 (Hull revision). The hull revision of a set of rules R by a set of
literals L denoted R op L is defined as follows

Rop, L=h(L)UL
Remark. By the definitions it is easy to see that
Cfc(R Ork L) g CfC(R Oop L)

Thus one can say that op is a conservative extension of o, .

3.1 Examples

In this subsection we give examples that illustrate the behaviour of ranked revi-
sion and hull operators and at the same time the differences between them.

In the following examples we are interested in facts one can infer from the
rule base R according to the inference relation defined by L+ 1 iff{ € Cp.(Ro L)
when o is o, or op.

Consider R = {b — f,b — w,0 = b,0 — —f} where b,0, f, w stand respec-
tively for birds, ostriches, fly and have wings. It is easy to see that the base is
< Ry, R1, Ry > where Rg = R and Ry = {0 — b,0 — —f} and Ry = (. Notice
that p(b) = 0 so I(b) = Ry = R and therefore Ro,; {b} = Roj {b} = RU {b}
and Cp.(Roy {b}) = {b, f, w}.

For the same R, an easy computation shows that p(o) = 1. Since the set
{0 = b,0—= ~f, b= w} is the unique extension of R; consistent with {0} we
have h(o) = {o = b,0 = ~f,b = w} so Roj {o} = {o—=bo— ~f b= w}U
{o}. Since p(o) = 1 we have R o, {0} = {0 —b,0— —~f} U {o}. Therefore
Ct.(Rop {o}) = {b,0,~f, w} but Cp(Rox {o}) = {b,0,~f}.

Another classic taxinomic example (the calculations are left to the reader)
is given by R = {m — s,¢c = m,¢c — —s,n — ¢,n — s} where m,s,c,n
stand respectively for mollusc, shell, cephalopod and nautili. The base is <
Ro, Ry, Rs, R3 > where Ro = R, Ry = {¢ = m,¢c = —s,n = ¢,n — s} and
Ry ={n—c¢,n— s} and Rz = 0.

We have Cy.(Rop{n}) = {n,¢,s,m} and Cr(R o {n}) = {n,c,s}; this
shows that the hull revision allows more inferences. In some other cases the revi-
sions coincide, for instance C'g.(R op, {c,n}) = {¢, ~n,m,—s} = Cp(R ork {c, n}).

3.2 Computing hull revision

In this subsection we show how, via a simple coding, we can compute the hull
revision by using the factual revision defined in section 2.

The base < Ry, ..., Ry > of R is easily computed.

To compute the class of maximal subsets of R which are consistent with L
and which contain Ry we use our update algorithm in the following way.

Let £/ : R — {r1,...,rm} be a bijection where the r; are new atoms. Define
£:RUL — {r1,...,rm} UL by £(r) = t/(r) if r € Rand £(a) = a ifa € L.
Let M(R) be the modification of R in the following way: each rule L — [of R
is replaced by the rule r,L. — | where r = (L — [). Note that the maximal
subsets of & which are consistent with L and which contain R,y are then those
corresponding to the maximal subsets of the base of facts £(R) computed as being
its possible updatings with respect to M (R) by L U£(R,(ry). More precisely we
have:

Rop L=L7"{ [\Il(R) orr(ry (LUL(Ry1)))]}

In order to illustrate this method take the following example: R = {b —
fib—=w,0—b,0o— —f}. Let L ={o}. Define £: RUL — {1,2,3,4} U L such
that M()_{1 b—f,2b—=w,30—=b,4,0— —f} We have seen above
that R,y ={0—b,0— —|f} so L(Ry)) = {3 4} Therefore

K(R) M(R) (L Uf()) - {1 3’4} OM(R) {0} U {3’4} = <{2737470}>

and so Rthzﬁ_l({2,3,4,0}) ={o—=bo—=—fb—w}lU{o}.

4 Change properties for ¢, 0,; and o,

Let R, L and F be a set of rules, a set of literals and a flock respectively. We
say that L is a R-consequence of F iff L C C’}Z(T).
Let F = (F1,...,F,) be a flock. Weput FUL=(FyUL,...,F,UL)

Theorem 7. The operator o is a syntactical update operator. More precisely,
it satisfies the relativized versions of U1, U3, Ub, U6 and U8 to the notions of
R-consequence and R-consistency. Moreover o satisfies a weak version of U2
n which we suppose that the old knowledge L is R-consistent.

Proof: Ul: We want to show that L’ is a R-consequence of L og L', i.e. that L'
is a subset of C’ﬁ(L og L'). Assume that Log L' = (Fy, ..., F,). By definition of
og, we have L' C Fj fori=1,...,n. Therefore L' C N_,Cy(RU F;) = Log L'.
U2 weak: Assume that L is R-consistent. Suppose that L’ is a R-consequence
of L. We want to show that the R-consequences of L and L og L’ are equal, i.e.
Cw(RUL) = C’ﬁ(l} og L'). By the assumption, it is clear that LogL’ = (L U L').
But Cﬁ((L UL"Y) = Cr(RULUL') = Cg(RUL), the last equality is true by
the supposition. We conclude by transitivity.

U3: If L and L' are R-consistent by definition it is clear that L og L' is R-
consistent. In fact if L’ is R-consistent then L og L’ is R-consistent.

U5: We want to show that the R-consequences of L op (L' U L") are a subset
of the R-consequences of (L og L') U L"”. If L' U L" is not R-consistent there is
nothing to prove. Thus suppose that L' U L” is R-consistent. By definition we

have
Log (L'UL"Y=(Ly,...,Ly)UL UL
(Lop L'YUL" =(Ky,...,K,)UL UL"

where L; is a maximal subset of L such that L; U L’ U L” is R-consistent, for
i=1,...,n,and K; is a maximal subset of L such that K; UL’ is R-consistent,
for j = 1,...,p. Thus, for each K; we have either K; U L' U L" is not R-
consistent and Cp(RUK; UL UL") = Lit or K; = L; for one i. Therefore if
le Mo Cre(RUL; UL'UL") then L € (Y_, Cpe(RUK; UL UL").

U6: Suppose that L, C C’ﬁ(L op L1) and L; C Cﬁ(L or La). We want to see
that Cfi(L op L1) = Cf(L o La). Put

LORL1:<L%,...,L}LI>UL1
LORL2:<L%,...,LTZL2>UL2

where L} is a maximal subset of L such that L} U L; is R-consistent for i =
1,...,n7; and L? is a maximal subset of L such that LJQ» U Ly is R-consistent for
j=1,...,n9. From the hypothesis it is easy to see that:

(a) Ly U L? is R-consistent for j = 1,...ny and

(b) Ly U L} is R-consistent for i = 1,...n;.

From (b) we have Vi € {1,...,n1} 3 j € {1,...,na} such that L} C L? and
from (a) we have V j € {1,...,na} 3 i € {1,...,n1} such that L? C L}. But
this implies, by maximality of sets L} and LJZ, that ny = ns and there is a
permutation ¢ of {1,...,n1} such that L} = Li ;- Without loss of generality
we can suppose that ¢ is the identity. Finally note that

CR((LY, ..., LL YU L)) = CE(LL, ..., L}) ULy ULy)
=CR((LY,...,L3) ULy U Ly)
=CR(LY, ..., L) U L)

US8: It is trivially verified by definition. a

Note that the postulate U7 does not make sense in our setting because we
have no disjunction of facts.

Remark also that the operator og satisfies R3 (if the new information is
consistent, the result is consistent) and this is in fact incompatible with the whole
version of U2. This observation can be seen as an advantage of the operator ¢pg.

Theorem 8. The operator o, is a syntactical revision operator. More precisely,
it satisfies the relativized versions of R1, R2, R3, R5 and R6 to the notions
of consequence and consistency by forward chaining.

The operator oy, satisfies the relativized versions of R1, R2 and R3.

Proof: We do the verifications for o concerning the postulates R1, R2, R3
(the postulates for o, are verified in an analogous way). Then we verify R5 and
R6 for Opk

R1: We want to show that L is a fc-consequence of Roj L. This is true because
either Rop L = h(L)UL or Rop, L = L and Cf(R o, L) contains L in both
cases.

R2: Suppose that L is R-consistent. We want to show that Rop, L = RU L. This
is straightforward by definition.

R3: Suppose L consistent. We want to show that R op L is also consistent. This
is true because either Roy L = h(L) U L and Cp(h(L)U L) is consistent by
definition or Rop L = L and L is consistent by hypothesis.

R5 and R6 for o,;: We suppose that (R o,; L) U L’ is fc-consistent (otherwise
R5 is trivial). It is enough to show that Ro,; (L UL') = (Ro,; L)U L. By
hypothesis (R) U L) U L' is fc-consistent. Thus p(L U L') < p(L) and then
p(LUL") = p(L). From this we conclude easily. O

Observation 9 The hull operator does not satisfy neither R5 nor R6.

Proof: In order to show that R5 does not hold it is enough to consider the
following example: the set of rules R is defined by R = {b - w,w — v’ v’ —
f,o = byo — —f}. The base is in this case (Rg, Ry, R2) with Ry = R, Ry =
{o—=>b,o—>~f} and Ry = 0. Put L = {o} and L' = {w'}. It is not hard
to establish that A(L) = R; and A(LUL') = Ry U {b— w,w— w'}. Thus
Ci((Rop LYUL) = {o,w',b,~f} and Cp(Rop (LUL)) = {o,uw,b,—f w}.
Therefore Cr.(Rop (LUL')) € Cr((Rop L) U L'), that is R5 does not hold.

To prove that R6 does not hold we consider the following example: Put
R = {rg,r1,r2} where o = a = ¢, 71 = e = —¢, 1o = b — —c¢. Put L = {a, ¢}
and L' = {b}. The base for R is (R, (). Then it is easy to see that R,y =
Rp(LUL’) = Q) and

I(L) = {{ro, 72}, {r1,r2}} and
I(LUL)={{ro} {r1,r2}}

Thus h(L) = {r2} and h(L U L') = 0. Therefore ~¢ € Cr((Rop L)UL') and
ac ¢ Cp(Rop (LUL')), so R6 fails. m]

Conclusion

We have proposed in this paper three knowledge change operators based on for-
ward chaining. The aim of this work was to study change operators with nice
logical properties and a simple (operational) semantics. We have shown that the
three operators defined have desirable properties. In particular we have proved
that factual update can be seen as an update operator, in the Katsuno and
Mendelzon sense, and that ranked revision is, up to syntax independence ax-
iom, a revision operator, in the Alchourrén-Mendelzon-Gardenfors sense. These
operators, based on forward chaining, are easily computable, in particular the
operator of ranked revision is polynomial. The hull revision is a bit more com-
plicated but it can be computed with the help of the two other operators.

It would be interesting to extend the factual revision definition to allow rule
revision when no factual revision is possible.

References

1. C.E. Alchourrén, P. Gardenfors, and D. Makinson. On the logic of theory change.
Journal of Symbolic Logic, 50:510-530, 1985.

2. H. Bezzazi and R. Pino Pérez. Rational transitivity and its models. In Proc. of
the Twenty-Sizth International Symposium on Multiple- Valued Logic, Santiago de
Compostela, Spain, May, 1996, pp. 160-165, IEEE Computer Society Press.

3. H. Bezzazi, D. Makinson, and R. Pino Pérez. Beyond rational monotony: some
strong non-horn rules for nonmonotonic inference relations. Journal of Logic and
Computation, 1997. To appear.

4. M. Dalal. Investigations into a theory of knowledge base revision: Preliminary
report. In Proc. of the Seventh National Conference on Artificial Intelligence
(AAAIS8), pp. AT5-479, 1988.

5. C. Damasio, W. Nedjdl, and L. M. Pereira. Revise: An extended logic program-
ming system for revising knowledge bases. In Proc. of the 4th International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 607-618,
Morgan Kaufmann, 1994.

6. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base re-
vision, updates and counterfactuals. In Proc. of 11th Symposium on Principles of
Database Systems, pp. 261-273, ACM Press, 1992.

7. R. Fagin, G. Kuper, J.D. Ullman, and M.Y. Vardi. Updating logical databases.
Advances in Computing Research, 3:1-18, 1986.

8. P. Gardenfors. Knowledge in Flux: modeling the dynamics of epistemic states.
MIT press, Cambridge, MA, 1988.

9. P. Gardenfors and D. Makinson. Relations between the logic of theory change and
nonmonotonic logic. In The Logic of Theory Change, Workshop, Konstanz, FRG,
Octuber 1989, pages 185-205. Springer-Verlag, 1989. Lecture Notes in Artificial
Intelligence 465.

10. H. Katsuno and A.O. Mendelzon. Propositional knowledge base revision and min-
imal change. Artificial Intelligence, 52:263-294, 1991.

11. H. Katsuno and A.O. Mendelzon. On the difference between updating a knowledge
database and revising it. In P. Gardenfors, editor, Belief Revision. Cambridge Uni-

versity Press, Cambridge, 1992. Cambrigde tracts in theoretical computer science,
29.

12. D. Lehmann and M. Magidor. What does a conditional knowledge base entail?
Artificial Intelligence, 55:1-60, 1992.

13. V. Marek and M.Truszczynski. Revision programming, Database Updates and
Integrity Constraints. In Proc. of 5th International Conference of Database Theory,
Prague, Czech Republic, January 11-13, 1995. Lecture Notes in Computer Science,
Vol. 893, Springer, 1995, pages 368-382.

14. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57—
95, 1987.

This article was processed using the IATpX macro package with LLNCS style

