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Abstract

In this paper, the problem of deriving sensible information from a collection of
argumentation systems coming from different agents is addressed. The underlying
argumentation theory is Dung’s one: each argumentation system gives both a set of
arguments and the way they interact (i.e., attack or non-attack) according to the
corresponding agent. The inadequacy of the simple, yet appealing, method which
consists in voting on the agents’ selected extensions calls for a new approach. To
this purpose, a general framework for merging argumentation systems from Dung’s
theory of argumentation is presented. The objective is achieved through a three-
step process: first, each argumentation system is expanded into a partial system
over the set of all arguments considered by the group of agents (reflecting that
some agents may easily ignore arguments pointed out by other agents, as well as
how such arguments interact with her own ones); then, merging is used on the
expanded systems as a way to solve the possible conflicts between them, and a
set of argumentation systems which are as close as possible to the whole profile is
generated; finally, voting is used on the selected extensions of the resulting systems
so as to characterize the acceptable arguments at the group level.

Key words: Argumentation frameworks, Argument in agent system

1 Introduction

Argumentation is based on the exchange and the evaluation of interacting
arguments which may represent information of various kinds, especially beliefs

? This paper is an extended and revised version of a paper entitled “Merging Argu-
mentation Systems” that appeared in the Proceedings of AAAI’05, pages 614–619.
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or goals. Argumentation can be used for modelling some aspects of reasoning,
decision making, and dialogue; as such, it has been applied to several domains,
including law. For instance, when an agent has conflicting beliefs (viewed as
arguments), a (nontrivial) set of plausible consequences can be derived through
argumentation from the most acceptable arguments for the agent (additional
information like a plausibility ordering are often taken into account in the
evaluation phase). Much work has been devoted to this reasoning issue (see
for example (13; 21; 26; 25; 1; 27)).

Several theories of argumentation exist; many of them make explicit the na-
ture of arguments, the way arguments are generated, how they interact and
how to evaluate them, and finally a characterization of the most acceptable
arguments. A key issue is the interaction between arguments which is typically
based on a notion of attack; for example, when an argument takes the form
of a logical proof, arguments for a statement and arguments against it can be
put forward. In that case, the attack relation relies on logical inconsistency.

Dung’s theory of argumentation includes several formal systems developed
so far for commonsense reasoning or logic programming (13). It is abstract
enough to manage without any assumptions on the nature of arguments or
the attack relation. Indeed, an argumentation system à la Dung consists of a
set of (abstract) arguments, together with a binary relation on it (the attack
relation). Several semantics can be used for defining interesting sets of argu-
ments (so-called extensions) from which acceptable sets of arguments (i.e., the
derivable sets) can be characterized.

In a multi-agent setting, argumentation can also be used to represent (part of)
some information exchange processes, like negotiation, or persuasion (see for
example (22; 28; 18; 24; 3; 4; 5)). For instance, a negotiation process between
two agents about whether some belief must be considered as true given some
evidence can be modelled as a two-player game where each move consists in
reporting an argument which attacks arguments given by the opponent.

In this paper, we also consider argumentation in a multi-agent setting, but
from a very different perspective. Basically, our purpose is to characterize the
set of arguments acceptable by a group of agents, when the data furnished by
each agent consist solely of an (abstract) argumentation system from Dung’s
theory.

At a first glance, a simple approach for achieving this goal consists in voting
on the acceptable sets provided by each agent: a set of arguments is considered
acceptable by the group if and only if it is acceptable for “sufficiently many”
agents from the group (where the meaning of “sufficiently many” refers to
different voting methods). No merging at all is required here. By means of
example, we show that our merging-based approach leads to results which are
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much more expected than those furnished by a direct vote on the (sets of)
arguments acceptable by each agent.

Our approach is more sophisticated. It follows a three-step process: first, each
argumentation system is expanded into a partial system over the set of all
arguments considered by the group of agents (reflecting that some agents
may easily ignore arguments pointed out by other agents, as well as how such
arguments interact with her own ones); then, merging is used on the expanded
systems as a way to solve the possible conflicts between them, and a set of
argumentation systems which are as close as possible to the whole profile is
generated; finally, the last step consists in selecting the acceptable arguments
at the group levels from the set of argumentation systems.

In order to reach this goal, we first introduce a notion of partial argumenta-

tion system, which extends Dung’s argumentation system so as to represent
ignorance concerning the attack relation. This is necessary in our setting since
all the agents participating in the merging process are not assumed to share
the same global set of arguments. Accordingly, the argumentation system fur-
nished by each agent is first expanded into a partial argumentation system,
and all such partial systems are built over the same set of arguments, those
pointed out by at least one agent. Of course, there exist many different ways
to incorporate a new argument into an argumentation system. Each agent can
have her own expansion policy. We mention some possible policies, and focus
on one of them, called the consensual expansion: when incorporating a new
argument into her own system, an agent is ready to conclude that this argu-
ment attacks (resp. is attacked by) another argument whenever all the other
agents who are aware of both arguments agree with this attack; otherwise, she
concludes that she ignores whether an attack takes place or not.

Once all the expansions of the input argumentation systems have been com-
puted, the proper merging step can be achieved; it consists in computing all
the argumentation systems over the global set of arguments which are “as close
as possible” to the partial systems generated during the last stage. Closeness is
characterized by a notion of distance between an argumentation system and a
profile of partial systems, induced from a primitive notion of distance between
partial systems and an aggregation function. Several primitive distances and
aggregation functions can be used; we mainly focus on the edit distance (which
is, roughly speaking, the number of insertions/deletions of attacks needed to
turn a given system into another one), and consider sum, max and leximax as
aggregation functions.

Like the input of the overall merging process, the result of the merging step is
a set of argumentation systems. However, while the first one reflects different
points of view (since each system is provided by a specific agent), the second
set expresses some uncertainty on the merging due to the presence of conflicts.
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The last step of the process consists in defining the acceptable arguments for
the group under the uncertainty provided by this set of argumentation systems.
Once again, several sensible definitions are given. We show that the sets of
arguments considered acceptable when the input is the set of argumentation
systems primarily furnished by the agents may drastically differ from the sets
of arguments considered acceptable after the merging step, and by means
of example, we show that the latter ones are more in accordance with the
intuition.

The rest of the paper is organized as follows. After a refresher on Dung’s
theory of argumentation (in which our approach takes place), we give a simple
motivating example (Section 3) which shows that voting on the arguments
accepted by each agent is not adequate for defining the arguments accepted
by the group. Then we introduce a notion of partial argumentation system
(Section 4) which extends the notion of argumentation system and enables to
handle the case when agents do not share the same set of arguments. On this
ground, we define a family of merging operators for argumentation systems
(Section 5) and we study the properties of some of them (especially, those
based on the edit distance) (Section 6). Then, we focus on acceptability for
partial argumentation systems (Section 7). Finally, we conclude the paper
and give a short presentation of some possible refinements of our framework
(Section 8).

2 Dung’s Theory of Argumentation

Let us present some basic definitions at work in Dung’s theory of argumenta-
tion (13). We restrict them to finite argumentation frameworks.

Definition 1 (Argumentation system (AF))
A (finite) argumentation system AF = 〈A, R〉 over A is given by a finite set
A of arguments and a binary relation R on A called an attack relation. aiRaj

means that ai attacks aj (also denoted by (ai, aj) ∈ R).

For our study, we are not interested in the structure of arguments and we
consider an arbitrary attack relation.

〈A, R〉 defines a directed graph G called the attack graph.

Example 2 The argumentation system AF = 〈A = {a1, a2, a3, a4}, R =
{(a2, a3), (a4, a3), (a1, a2)}〉 defines the following graph G:

Acceptability is about the selection of the most acceptable arguments. Two
mainstream approaches exist:
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a1 a2

a3

a4

AF

• Individual acceptability : acceptability of an argument depends only on its
properties (see (16; 2));

• Collective acceptability: an argument can be defended by other arguments;
in this case, the acceptability of a set of arguments is considered (see (13)).

Dung’s theory is concerned with the second approach. Whether an argument
can be accepted depends on the way arguments interact. Collective accept-
ability is based on two key notions: lack of conflict between arguments and
collective defense.

Definition 3 ((13)) Let 〈A, R〉 be an argumentation system.

Conflict-free set A set E ⊆ A is conflict-free if and only if @a, b ∈ E such
that aRb.

Collective defense Consider E ⊆ A, a ∈ A. E (collectively) defends a if
and only if ∀b ∈ A, if bRa, then ∃c ∈ E such that cRb (a is said acceptable
w.r.t. E). E defends all its elements if and only if ∀a ∈ E, E collectively
defends a.

Dung defines several semantics for collective acceptability based on those two
notions (13). Among them the admissible semantics, the preferred semantics,
the stable semantics and the grounded semantics.

Definition 4 ((13)) Let 〈A, R〉 be an argumentation system.

Admissible semantics A set E ⊆ A is admissible if and only if E is
conflict-free and E defends all its elements.

Preferred semantics A set E ⊆ A is a preferred extension if and only if E

is maximal for set inclusion among the admissible sets.
Stable semantics A set E ⊆ A is a stable extension if and only if E is

conflict-free and every a ∈ A \ E is attacked by an element of E.
Grounded semantics The grounded extension of 〈A, R〉 is the smallest sub-

set of A with respect to set inclusion among the subsets of A which are
admissible and coincide with the set of arguments acceptable w.r.t. itself.

Note that in all the above definitions, each attacker of a given argument is
considered independently of the other attackers (there is no way to represent
synergetic effects and the possibility to quantify all attackers as a whole is
not considered – there exist other works which are concerned with this aspect,
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see (19; 8; 6; 9; 10; 23)).

Definition 5 (Well-founded argumentation system (13))
An argumentation framework AF = 〈A, R〉 is well-founded if and only if there
does not exist an infinite sequence a0, a1, . . . , an . . . of arguments from A, such
that for each i, ai+1Rai.

Among other things, It is shown in (13) that:

• Any admissible set of 〈A, R〉 is included in a preferred extension of 〈A, R〉.
• Each 〈A, R〉 has at least one preferred extension.
• Each 〈A, R〉 has exactly one grounded extension of 〈A, R〉 and this extension

is included in each preferred extension.
• If 〈A, R〉 is well-founded then it has a unique preferred extension which is

also the only stable extension and the grounded extension.
• Any stable extension of 〈A, R〉 is also a preferred extension (the converse is

false).
• Some 〈A, R〉 do not have a stable extension.

The acceptability status of each subset of arguments can now be defined by
the following relation:

Definition 6 (Acceptability relation) An acceptability relation, denoted
by Acc

AF
, for a given argumentation system AF = 〈A, R〉, is a total function

from 2A to {true, false} which associates each subset E of A with true if E is
an acceptable set for AF and with false otherwise.

Usually, an acceptability relation is based on a specific semantics (plus a selec-
tion principle). For instance, a set of arguments can be considered acceptable
if and only if it is included in one extension (credulous selection) or in every
extension (skeptical selection). Alternatively, a set of arguments can be con-
sidered acceptable if and only if it coincides with one extension for the chosen
semantics. Whatever the way it is defined, an acceptability relation can be
viewed as a choice function among the elements of 2A. In this context, the
“acceptability of an argument” a can correspond either to the acceptability of
the singleton {a}, or to the membership of a to an acceptable set (see (12)).

3 Simple is not so Beautiful

Given a profile (i.e., a vector) P = 〈AF1, . . . , AFn〉 of n AFs (with n ≥ 1)
where each AFi = 〈Ai, Ri〉 represents the data given by Agent i, our purpose
is to determine the subsets of

⋃
i Ai which are acceptable by the group of n

agents. Voting is one way to achieve this goal.
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3.1 Voting is not enough

Indeed, a simple approach to address the problem consists in considering a
set of arguments acceptable for the group when it is acceptable for “suffi-
ciently many” agents of the group. The voting method under consideration
makes precise what “sufficiently many” means: it can be, for instance, simple
majority. Let us illustrate such an approach on an example:

Example 7 Consider the three following argumentation systems:

• AF1 = 〈{a, b, e, f}, {(a, b), (b, a), (e, f)}〉,
• AF2 = 〈{b, c, d, e, f}, {(b, c), (c, d), (f, e)}〉,
• AF3 = 〈{e, f}, {(e, f)}〉.

a

b

f

e

AF1

b

c

d f

e

AF2

f

e

AF3

Whatever the chosen semantics (among Dung’s ones), c does not belong to
any extension of AF2. As c is not known by the two other agents, it cannot
be considered as acceptable by the group whatever the voting method (under
the reasonable assumption that it is a choice function based on extensions, i.e.,
only subsets of an extension of an AFi are eligible as acceptable sets). However
since c (resp. a) is not among the arguments reported by the first agent and
the third one (resp. the second and the third ones), it can be sensible to as-
sume that the three agents agree on the fact that a attacks b, b attacks a and b

attacks c. Indeed, this assumption is compatible with any of the three argumen-
tation systems reported by the agents. Under this assumption, it makes sense
to consider {c} credulously acceptable for the group given that c is considered
defended by a against b by Agent 1 and there is no conflicting evidence about
it in the AFs provided by the two other agents.

As this example illustrates it, our claim is that, in general, voting is not a
satisfying way to aggregate the data furnished by the different agents under
the form of argumentation systems. Two problems arise:

Problem 1 Voting makes sense only if all agents consider the same set of
arguments A at start (otherwise, the set 2A of alternatives is not common to
all agents). However, it can be the case that the sets of arguments reported
by the agents differ from one another.

Problem 2 Voting relies only on the selected extensions: the attack relations
(from which extensions are characterized) are not taken into consideration
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any more once extensions have been computed. This leads to much signifi-
cant information being set aside which could be exploited to define the sets
of acceptable arguments at the group level.

3.2 Union is not merging (in general)

In order to solve both problems, a simple approach (at a first glance) consists in
forming the union of the argumentation systems AF1, ..., AFn, i.e., considering
the argumentation system denoted AF =

⋃n
i=1 〈Ai, Ri〉 and defined by AF =

〈
⋃n

i=1 Ai,
⋃n

i=1 Ri〉. Unfortunately, such a merging approach to argumentation
systems cannot be taken seriously. Let us illustrate it on our running example:

Example 7 (continued) The resulting AF is
⋃3

i=1 AFi = 〈{a, b, c, d, e, f}, {(a,

b), (b, a), (b, c), (c, d), (e, f), (f, e)}〉.

Example 7 shows that the union approach to merging argumentation systems
suffers from a major problem: it solves conflicts by giving to the explicit attack
information some undue prominence to implicit non-attack information. Thus,
when a pair of arguments (like, say (f, e)) does not belong to the attack relation
furnished by an agent (say, Agent 1) while both arguments (f and e) belong to
the set of arguments she points out, the meaning is that for Agent 1, argument
f does not attack argument e. Imagine now that in the considered profile of
argumentation systems, 999 agents report the same system as Agent 1, and
the 1000th agent is Agent 2. In the resulting argumentation system considered
at the group level, assuming that union is used as a merging operator, it will
be the case that f attacks e while 999 agents over 1000 believes that it is not
the case!

4 Partial Argumentation Systems

The example introduced in the previous section has illustrated that different
cases must be taken into account:

• an argument exists in the argumentation system AF1 of one of the agents
and does not exist in the argumentation system AF2 of at least another
agent;

• an interaction between two arguments exists in the argumentation system
AF1 of one agent and does not exist in the argumentation system AF2 of at
least another agent.
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In the first case, the new argument can be added to AF2 but the question
is what to do for the interactions between this new argument and the other
arguments of AF2.

In the second case, things are different: if an interaction between two argu-
ments a and b exists in a system AF1 and not in another system AF2, even
when a and b are in AF2, we cannot add the interaction in AF2 (that Agent
2 did not include this attack in AF2 is on purpose). Indeed, if an interaction
is not present in an AF, it means that this interaction does not exist for the
corresponding agent. The consequence of this is the necessity to discriminate
among several cases whenever an argument a has to be added to an AF. Let b

be an argument of the AF under consideration, three cases must be considered:

• the agent believes that the interaction (a, b) exists (attack);
• the agent believes that the interaction (a, b) does not exist (non-attack);
• the agent does not know whether the interaction (a, b) exists (ignorance).

The first two cases express the fact that the knowledge of the agent is sufficient
for computing the new interaction concerning a. The third case expresses that
the agent is not able to compute the new interaction concerning a and the
arguments she pointed out (several reasons can explain it, especially a lack of
information, or a lack of computational resources).

Handling these different kinds of information within a uniform setting calls
for an extension 1 of the notion of argumentation systems, that we call partial
argumentation systems.

Definition 8 (Partial argumentation system (PAF)) A (finite) partial
argumentation system over A is a quadruple PAF = 〈A, R, I, N〉 where

• A is a finite set of arguments,
• R, I, N are binary relations on A:

· R is the attack relation,
· I is called the ignorance relation and is such that R ∩ I = ∅,
· and N = (A × A) \ (R ∪ I) is called the non-attack relation.

N is deduced from A, R and I, so a partial argumentation system can be fully
specified by 〈A, R, I〉. We use both notations in the following.

Each AF is a particular PAF for which the set I is empty (we say that such
an AF is equivalent to the associated PAF). In an AF, the N relation also

1 In (11), a new binary relation on the arguments is also introduced in Dung’s
argumentation framework : however, this new relation represents a notion of support
between arguments. Clearly enough, this is unrelated with the relation introduced
here representing the ignorance about the attack between arguments.
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exists even if it is not given explicitly (I = ∅ and N = A×A \R). So, an AF
could also be denoted by 〈A, R, N〉.

Each PAF over A can be viewed as a compact representation of a set of AFs
over A, called its completions:

Definition 9 (Completion of a PAF) Let PAF = 〈A, R, I〉. Let AF = 〈A,

S〉. AF is a completion of PAF if and only if R ⊆ S ⊆ R ∪ I.

The set of all completions of PAF is denoted C(PAF).

Example 10 The partial argumentation system PAF = 〈A = {a, b, c, d}, R =
{(a, b), (a, c)}, I = {(c, a), (b, d)}, N = {(a, a), (b, b), (c, c), (d, d), (b, a), (b, c),
(c, b), (a, d), (d, a), (d, b), (c, d), (d, c)}〉 is illustrated on the following figure (solid
arrows represent the attack relation and dotted arrows represent the ignorance
relation; non-attack relations are not represented explicitly as in the AF case):

a

b

c

d

PAF

The completions of this PAF are:

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Now, Problem 1 can be addressed by first associating each argumentation
system AFi with a corresponding PAFi so that all PAFi are about the same set
of arguments

⋃n
i=1 Ai. To this end, we introduce the notion of expansion of an

AF:

Definition 11 (Expansion of an AF) Let P = 〈AF1, . . . , AFn〉 be a profile
of n AFs such that AFi = 〈Ai, Ri, Ni〉. Let AF = 〈A, R〉 be an argumentation
system. An expansion of AF given P is any PAF exp(AF,P) defined by 〈A∪⋃

i Ai, R
′, I ′, N ′〉 such that R ⊆ R′ and (A × A) \ R ⊆ N ′. exp is referred to

as an expansion function.

In order to be general enough, this definition does not impose many constraints
on the resulting PAF: what is important is to preserve the attack and non-
attack relations from the initial AF while extending its set of arguments. Many
policies can be used to give rise to expansions of different kinds, reflecting the
various attitudes of agents in light of “new” arguments; for instance, if a is
any argument considered by Agent i at the start and a “new” argument b has
to be incorporated, Agent i can (among other things):
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• always reject b (e.g., adding (b, b) to her relation R′
i),

• always accept b (adding (a, b), (b, a) and (b, b) to her non-attack relation
N ′

i),
• just express her ignorance about b (adding (a, b), (b, a) and (b, b) to her

ignorance relation I ′
i).

Each agent may also compute the exact interaction between a and b when the
attack relation is not primitive but defined from more basic notions (as in the
approach by Elvang-Gøransson et al., see e.g., (15; 16; 17)). Note that if she
has limited computational resources, Agent i can compute exact interactions
as far as she can, then express ignorance for the remaining ones.

In the following, we specifically focus on consensual expansions. Intuitively,
the consensual expansion of an argumentation system AF = 〈A, R〉 given a
profile of such systems is obtained by adding a pair of arguments (a, b) (where
at least one of a, b is not in A) into the attack (resp. the non-attack relation)
provided that all other agents of the profile who know the two arguments agree
on the existence of the attack 2 (resp. the non-attack); otherwise, it is added
to the ignorance relation.

This expansion policy is sensible as soon as each agent has a minimum level
of confidence in the other agents: if a piece of information conveyed by one
agent is not conflicting with the information stemming from the other agents,
every agent of the group is ready to accept it.

Definition 12 (Consensual expansion) Let P = 〈AF1, . . . , AFn〉 be a pro-
file of n AFs such that AFi = 〈Ai, Ri〉. Let AF = 〈A, R, N〉 be an argumentation
system. Let conf(P) = (

⋃
i Ri) ∩ (

⋃
i Ni) be the set of interactions for which

a conflict exists within the profile. The consensual expansion of AF over P is
the tuple denoted by expC = 〈A′, R′, I ′, N ′〉 with:

• A′ = A ∪
⋃

i Ai,
• R′ = R ∪ ((

⋃
i Ri \ conf(P)) \ N),

• I ′ = conf(P) \ (R ∪ N),
• N ′ = (A′ × A′) \ (R′ ∪ I ′).

The next proposition states that, as expected, the consensual expansion of an
argumentation system over a profile is an expansion:

Proposition 13 Let P = 〈AF1, . . . , AFn〉 be a profile of n AFs such that
AFi = 〈Ai, Ri〉. Let AF = 〈A, R, N〉 be an argumentation system. The consen-
sual expansion expC of AF over P is an expansion of AF over P in the sense
of Definition 11.

2 i.e., if a, b ∈ Ai, then (a, b) ∈ Ri.
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Proof : Consider (a, b) ∈ A′ × A′. There are several cases:

• if (a, b) ∈ R then (a, b) ∈ R′ and (a, b) 6∈ I ′ ∪ N ′ (so, R ⊆ R′);
• if (a, b) 6∈ R and (a, b) ∈ N then (a, b) 6∈ I ′∪R′ and (a, b) ∈ N ′ (so, N ⊆ N ′);
• if (a, b) 6∈ R ∪ N then there are two cases:
· if @AFi ∈ P such that a, b ∈ Ai then (a, b) 6∈ conf(P); so, (a, b) ∈ N ′ and

(a, b) 6∈ R′ ∪ I ′;
· if ∃AFi ∈ P such that a, b ∈ Ai then we have 4 possible cases:

if (a, b) ∈ Ri and @AFj ∈ P such that (a, b) ∈ Nj then (a, b) 6∈
conf(P); so, (a, b) ∈ R′ and (a, b) 6∈ N ′ ∪ I ′;
if (a, b) ∈ Ri and ∃AFj ∈ P such that (a, b) ∈ Nj then (a, b) ∈
conf(P); so, (a, b) ∈ I ′ and (a, b) 6∈ R′ ∪ N ′;
if (a, b) ∈ Ni and @AFj ∈ P such that (a, b) ∈ Rj then (a, b) 6∈
conf(P); so, (a, b) ∈ N ′ and (a, b) 6∈ R′ ∪ I ′;
if (a, b) ∈ Ni and ∃AFj ∈ P such that (a, b) ∈ Rj then (a, b) ∈
conf(P); so, (a, b) ∈ I ′ and (a, b) 6∈ R′ ∪ N ′.

So, R′, I ′ and N ′ form a partition of A′ × A′ which satisfies R ⊆ R′ and
N ⊆ N ′. 2

The consensual expansion is among the most cautious expansions one can
define since it leads to adding a pair of arguments in the attack (or the non-
attack relation) associated with an agent only when all the other agents agree
on it.

Example 14 Consider the profile consisting of the following four argumen-
tation systems:

• AF1 = 〈A1 = {a, b}, R1 = {(a, b), (b, a)}〉,
• AF2 = 〈A2 = {b, c, d}, R2 = {(b, c), (c, d)}〉,
• AF3 = 〈A3 = {a, b, d}, R3 = {(a, b), (a, d)}〉,
• AF4 = 〈A4 = {a, b, d}, R4 = {(b, d), (b, a)}〉.

a

b

AF1

b

c

d

AF2

a

b

d

AF3

a

b

d

AF4

For each i, the consensual expansion PAFi of AFi is given by:

• PAF1 = 〈{a, b, c, d}, {(a, b), (b, a), (b, c), (c, d)}, {(a, d), (b, d)}〉,
• PAF2 = 〈{a, b, c, d}, {(b, c), (c, d)}, {(a, b), (b, a), (a, d)}〉,
• PAF3 = 〈{a, b, c, d}, {(a, b), (a, d), (b, c), (c, d), {}}〉,
• PAF4 = 〈{a, b, c, d}, {(b, d), (b, a), (b, c), (c, d), {}}〉.
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a

b

c

d

PAF1

a

b

c

d

PAF2

a

b

c

d

PAF3

a

b

c

d

PAF4

When the expansion policies considered by each agent are the same one exp,
for any profile P = 〈AF1, . . . , AFn〉 we shall often note exp(P) the profile of
PAFs 〈exp(AF1,P), . . . , exp(AFn,P)〉.

5 Merging Operators

In order to deal with Problem 2, we propose to merge interactions instead of
sets of acceptable arguments. The goal is to characterize the argumentation
systems which are as close as possible to the given profile of argumentation
systems, taken as a whole.

A way to achieve this consists in defining a notion of “distance” between an
AF and a profile of AFs, or more generally between a PAF and a profile of
PAFs. This calls for a notion of pseudo-distance between two PAFs, and a
way to combine such pseudo-distances:

Definition 15 (Pseudo-distance) A pseudo-distance d between PAFs over
A is a mapping which associates a non-negative real number to each pair of
PAFs over A and satisfies the properties of symmetry (d(x, y) = d(y, x)) and
minimality (d(x, y) = 0 if and only if x = y).

d is a distance if it satisfies also the triangular inequality (d(x, z) ≤ d(x, y) +
d(y, z)).

Definition 16 (Aggregation function) An aggregation function is a map-
ping ⊗ from (R+)n to (R+) (strictly speaking, it is a family of mappings, one
for each n), that satisfies

• if xi ≥ x′
i, then ⊗(x1, . . . , xi, . . . , xn) ≥ ⊗(x1, . . . , x

′
i, . . . , xn)
(non-decreasingness)

• ⊗(x1, . . . , xn) = 0 if ∀i, xi = 0 (minimality)
• ⊗(x) = x (identity)

The merging of a profile of AFs is defined as a set of AFs:
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Definition 17 (Merging of n AFs) Let P = 〈AF1, . . . , AFn〉 be a profile
of n AFs. Let d be any pseudo-distance between PAFs, let ⊗ be an aggregation
function, and let exp1, . . . , expn be n expansion functions. The merging of P
is the set of AFs

∆⊗
d (〈AF1, . . . , AFn〉, 〈exp1, . . . , expn〉) =

{AF over
⋃

i

Ai | AF minimizes ⊗n
i=1 d(AF, expi(AFi,P))}.

In order to avoid heavy notations, we shall sometimes identify the resulting
set of AFs {AF

′
1, . . . , AF

′
k} with the profile 〈AF

′
1, . . . , AF

′
k〉 (or any other per-

mutation of it).

Thus, merging a profile of AFs P = 〈AF1, . . . , AFn〉 is a two-step process:

expansion: An expansion of each AFi over P is first computed. Note that
considering expansion functions specific to each agent is possible. What is
important is that expi(AFi,P) is a PAF over A =

⋃
i Ai.

fusion: The AFs over A that are selected as the result of the merging process
are the ones that best represent P (i.e., that are the “closest” to P w.r.t.
the aggregated distances).

In the following, we assume that each agent uses consensual expansion. In
order to lighten the notations, we remove 〈exp1, . . . , expn〉 from the list of
parameters of merging operators.

Note that it would be possible to refine Definition 17 so as to include in-
tegrity constraints into the picture. This can be useful if there exists some
(unquestionable) knowledge about the expected result (some attacks between
arguments which have to hold for the group). It is then enough to look only
to the AFs which satisfy the constraints, similarly to what is done in proposi-
tional belief base merging (see e.g., (20)). In contrast to the belief base merging
scenario, constraints on the structure of the candidate AFs can also be set. In
particular, considering only acyclic AFs can prove valuable since (1) such AFs
are well-founded, (which implies that only one extension has to be considered
whatever the underlying semantics – among Dung’s ones), and (2) this exten-
sion (which turns out to be the grounded one, see (13)) can be computed in
time polynomial in the size of the AF (while computing a single extension is
intractable for the other semantics in the general case – under the standard
assumptions of complexity theory – see (14)).

Now, many pseudo-distances between PAFs and many aggregation functions
can be used, giving rise to many merging operators. Usual aggregation func-
tions include the sum Σ, the max Max and the leximax Leximax 3 but using

3 When applied to a vector of n real numbers, the leximax function Leximax gives
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non-symmetric functions is also possible (this may be particularly valuable
if some agents are more important than others). Some aggregation functions
(like the sum) enable the merging process to take into account the number of
agents believing that an argument attacks or not another argument:

Example 7 (continued) Two agents over three agree with the fact that e

attacks f and f does not attack e. It may prove sensible that the group agrees
with the majority.

The choice of the aggregation function is very important for tuning the oper-
ator behaviour with the expected one. For example, sum is a possible choice
in order to solve conflicts using majority. Otherwise, the leximax function can
prove more valuable if the aim is to behave in a more consensual way, trying to
define a result close to the AF of each agent of the group. The distinction be-
tween majority and arbitration operators as considered in propositional belief
base merging (20) also applies here.

In the following, we focus on the edit distance between PAFs:

Definition 18 (Edit distance) Let PAF1 = 〈A, R1, I1, N1〉 and PAF2 = 〈A,

R2, I2, N2〉 be two PAFs over A.

• Let a, b be two arguments ∈ A. The edit distance between PAF1 and PAF2

over a, b is the mapping dea,b such that:
· dea,b(PAF1, PAF2) = 0 if and only if (a, b) ∈ R1∩R2 or I1∩I2 or N1∩N2,
· dea,b(PAF1, PAF2) = 1 if and only if (a, b) ∈ R1 ∩ N2 or N1 ∩ R2,
· dea,b(PAF1, PAF2) = 0.5 otherwise.

• The edit distance between PAF1 and PAF2 is given by

de(PAF1, PAF2) = Σ(a,b)∈A×Adea,b(PAF1, PAF2).

The edit distance between two PAFs is the (minimum) number of addi-
tions/deletions which must be made to render them identical. Ignorance is
treated as halfway between attack and non-attack.

It is easy to show that:

Proposition 19 The edit distance de between PAFs is a distance.

Proof : We show that de and dea,b, ∀(a, b) ∈ A×A are distances, i.e. they
are (1) symmetric, they satisfy (2) the minimality requirement and (3) the
triangular inequality:

(1) Obvious.

the list of those numbers sorted in a decreasing way. Such lists are compared w.r.t.
the lexicographic ordering induced by the standard ordering on real numbers.
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(2) (⇒) Consider PAF1 = 〈A, R1, I1, N1〉 and PAF2 = 〈A, R2, I2, N2〉 such
that PAF1 = PAF2. For all (a, b) ∈ A × A, if PAF1 = PAF2 then (a, b) ∈
R1 ∩ R2 or (a, b) ∈ I1 ∩ I2 or (a, b) ∈ N1 ∩ N2. So, ∀(a, b) ∈ A × A,
dea,b(PAF1, PAF2) = 0, and de(PAF1, PAF2) = 0.

(⇐) Suppose de(PAF1, PAF2) = 0 and make a reductio ad absurdum: if
PAF1 6= PAF2 then ∃(a, b) ∈ A×A such that (a, b) 6∈ R1∩R2, (a, b) 6∈ I1∩I2

and (a, b) 6∈ N1 ∩ N2; so, dea,b(PAF1, PAF2) 6= 0; so, de(PAF1, PAF2) 6= 0
which is a contradiction with the hypothesis; so, PAF1 = PAF2. The same
reasoning can be achieved with dea,b(PAF1, PAF2) = 0 and the same result
is obtained: PAF1 = PAF2.

(3) Consider PAF1 = 〈A, R1, I1, N1〉, PAF2 = 〈A, R2, I2, N2〉 and PAF3 =
〈A, R3, I3, N3〉. ∀(a, b) ∈ A×A, we compute and compare dea,b(PAF1, PAF2),
dea,b(PAF1, PAF3) and dea,b (PAF3, PAF2), respectively denoted by x, y, z.
We have three possible cases:
• x = 0: ∀y, z, we have x ≤ y + z;
• x = 0.5: x ≤ y + z is false if and only if y = z = 0; however, y =

z = 0 implies that (a, b) ∈ R1 ∩ R2 ∩ R3 or (a, b) ∈ I1 ∩ I2 ∩ I3 or
(a, b) ∈ N1 ∩ N2 ∩ N3 which also implies x = 0 (contradiction with the
hypothesis); so, x ≤ y + z;

• x = 1: we have (a, b) ∈ R1 ∩ N2 or (a, b) ∈ N1 ∩ R2; suppose that
(a, b) ∈ R1 ∩ N2 then there are 3 possible cases:

· (a, b) ∈ R3: so, y = 0, z = 1 and we have x ≤ y + z;
· (a, b) ∈ I3: so, y = 0.5, z = 0.5 and we have x ≤ y + z;
· (a, b) ∈ N3: so, y = 1, z = 0 and we have x ≤ y + z.

The same reasoning can be achieved if (a, b) ∈ N1 ∩ R2. So, ∀(a, b) ∈
A × A: dea,b(PAF1, PAF2) ≤ dea,b(PAF1, PAF3) + dea,b(PAF3, PAF2);

summing over all (a, b) ∈ A × A, we get:
de(PAF1, PAF2) ≤ de(PAF1, PAF3) + de(PAF3, PAF2).

2

Let us now illustrate the notion of edit distance as well some associated merg-
ing operators on Example 14.

Example 14 (continued) We consider the following argumentation system
AF

′
1 = 〈{a, b, c, d}, {(a, b), (b, a), (b, c), (c, d)}〉.

The edit distance between AF
′
1 and each of the PAFs PAF1, PAF2, PAF3, PAF4

obtained by consensual expansion from the profile 〈AF1, AF2, AF3, AF4〉 is:

• de(AF
′
1, PAF1) = 1,

• de(AF
′
1, PAF2) = 1.5,

• de(AF
′
1, PAF3) = 2,

• de(AF
′
1, PAF4) = 2.

Taking the sum as the aggregation function, we obtain:
Σ4

i=1de(AF
′
1, PAFi) = 6.5.
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Taking the max, we obtain: Max
4
i=1de(AF

′
1, PAFi) = 2.

Taking the leximax, we obtain: Leximax4
i=1de(AF

′
1, PAFi) = (2, 2, 1.5, 1).

By computing such distances for all candidate AFs (i.e., all AFs over {a, b, c, d}),
we can compute the result of the merging:

∆Σ
de(〈AF1, . . . , AF4〉) is the set containing the two following AFs:

• AF
′
1 = 〈{a, b, c, d}, {(a, b), (b, a), (b, c), (c, d)}〉,

• AF
′
2 = 〈{a, b, c, d}, {(a, b), (b, a), (b, c), (a, d), (c, d)}〉.

a

b

c

d

AF
′
1

a

b

c

d

AF
′
2

∆Max

de (〈AF1, . . . , AF4〉) is the set containing AF
′
1 and AF

′′
2 = 〈{a, b, c, d}, {(b, a),

(b, c), (a, d), (c, d)}〉.

a

b

c

d

AF
′
1

a

b

c

d

AF
′′
2

∆Leximax
de (〈AF1, . . . , AF4〉) is the singleton containing AF

′
1.

a

b

c

d

AF
′
1

The discrepancies between the merging obtained with the various aggregation
operators can be explained in the following way:

• AF
′
1 is the most consensual AF obtained as it is almost equidistant from

each PAF;
• AF

′
2 is much closer to PAF1, PAF2 and PAF3 than to PAF4, thus it is selected

with the sum as an aggregation operator but it is too far from PAF4 for being
selected with the Max or Leximax operators.
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• AF
′′
2 is nearly equidistant from all four PAFs of the profile but less consensual

than AF
′
1, thus it is selected neither with Σ nor with Leximax but only with

Max as it is not far from any of the given PAFs.

Having AF
′
1 in all mergings - whatever the aggregation function chosen - seems

very intuitive. Indeed, whenever an attack (or a non-attack) is present in the
(weak) majority of the initial AFs, it is also in AF

′
1. This is not the case for

the two others AFs belonging to the above mergings.

Here is another simple example:

Example 20 Consider the two following argumentation systems:

• AF1 = 〈{a, b, c, e}, {(b, a), (c, b), (c, e)}〉
• AF2 = 〈{a, d, e, c}, {(d, a), (e, d), (e, c)}〉

a

b c

e

AF1

a

d e

cAF2

Note that the attack from c to e is known by Agent 1 but not by Agent 2 and
the attack from e to c is known by Agent 2 but not by Agent 1. This illustrates
the fact that the agents do not share the same attack relation.

AF1 has a unique preferred extension: {c, a}. AF2 has a unique preferred ex-
tension: {e, a}.

The consensual expansions of AF1 and AF2 are respectively:

• PAF1 = 〈{a, b, c, d, e}, {(b, a), (c, b), (c, e), (d, a), (e, d)}, ∅〉,
• PAF2 = 〈{a, b, c, d, e}, {(d, a), (e, d), (e, c), (b, a), (c, b)}, ∅〉.

The result of merging the profile 〈AF1, AF2〉 with de and ⊗ = Max (or ⊗ =
Leximax) is:

∆Max

de (〈AF1, AF2〉) = ∆Leximax
de (〈AF1, AF2〉) = {AF

′
1, AF

′
2} with

• AF
′
1 = 〈{a, b, c, d, e}, {(b, a), (c, b), (c, e), (d, a), (e, d), (e, c)}〉,

• AF
′
2 = 〈{a, b, c, d, e}, {(b, a), (c, b), (d, a), (e, d)}〉.

Using the sum as an aggregation function, two additional AFs are generated:
∆Σ

de(〈AF1, AF2〉) = {AF
′
1, AF

′
2, AF

′
3, AF

′
4}, with

• AF
′
3 = 〈{a, b, c, d, e}, {(b, a), (c, b), (c, e), (e, d), (d, a)}〉,

• AF
′
4 = 〈{a, b, c, d, e}, {(b, a), (c, b), (e, c), (e, d), (d, a)}〉.
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a

b c

d e

AF
′
1

a

b

d e

cAF
′
2

a

b c

d e

AF
′
3

a

b

d e

cAF
′
4

Each of the resulting mergings contains an argumentation system from which
argument a can be derived, as it is the case in AF1 and AF2. Using the sum
as an aggregation function leads to the most consensual result here since it
preserves the initial AFs of the different agents. Indeed, AF

′
3 is equivalent to

PAF1 and AF
′
4 is equivalent to PAF2.

6 Some Properties

Let us now present some properties of consensual expansions and merging
operators based on the edit distance, showing them as interesting choices.

6.1 Properties of PAFs and consensual expansions

Intuitively speaking, a natural requirement on any AF resulting from a merg-
ing is that it preserves all the information which are shared by the agents
participating in the merging process, and more generally, all the information
on which the agents participating in the merging process do not disagree.

In order to show that our merging operators satisfy those requirements, one
first need the notions of clash-free part and of common part of a profile of
PAFs:

Definition 21 (Clash-free part of a profile of PAFs)
Let P = 〈PAF1, . . . , PAFn〉 be a profile of PAFs. The clash-free part of P is
denoted by CFP (P) and is defined by:

CFP (P) = 〈
⋃

i

Ai,
⋃

i

Ri \
⋃

i

Ni, ICFP ,
⋃

i

Ni \
⋃

i

Ri〉

where ICFP = (
⋃

i Ai ×
⋃

i Ai) \ ((
⋃

i Ri \
⋃

i Ni) ∪ (
⋃

i Ni \
⋃

i Ri)).
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The clash-free part of a profile of PAFs represents the pieces of information
(attack / non-attack) that are not questioned by any other agent. As they are
not the source of any disagreement, they are expected to be included in each
AF resulting from the merging process.

Example 14 (continued) With P = 〈AF1, AF2, AF3, AF4〉, CFP (P) = 〈{a, b,

c, d}, {(b, c), (c, d)}, {(a, b), (b, a), (a, d), (b, d), (a, c), (c, a)}〉.

Note that with expC(P) = 〈expC(AF1,P), . . . , expC(AF4,P)〉, CFP (expC(P))
= 〈{a, b, c, d}, {(b, c), (c, d)}, {(a, b), (b, a), (a, d), (b, d)}〉 (now (a, c) and (c, a)
are non-attacks); so CFP (P) 6= CFP (expC(P)).

Definition 22 (Common part of a profile of PAFs)
Let P = 〈PAF1, . . . , PAFn〉 be a profile of PAFs. The common part of P is
denoted by CP (P) and is defined by: CP (P) = 〈

⋂
i Ai,

⋂
i Ri,

⋂
i Ii,

⋂
i Ni〉.

The common part of a profile of PAFs is a much more demanding notion than
the clash-free one. It represents the pieces of information on which all the
agents agree. There is no doubt that those pieces of information must hold in
any consensual view of the group’s opinion, so the common part of the profile
must be included in each AF of the result of the merging process.

Example 14 (continued) With P = 〈AF1, AF2, AF3, AF4〉, CP (P) = 〈{b},
∅, ∅, {(b, b)}〉.

We have the following easy property:

Proposition 23 Let P = 〈PAF1, . . . , PAFn〉 be a profile of PAFs. The com-
mon part of P is pointwise included into the clash-free part of P, i.e.:

•
⋂

i Ri ⊆
⋃

i Ri \
⋃

i Ni;
•

⋂
i Ii ⊆ ICFP ;

•
⋂

i Ni ⊆
⋃

i Ni \
⋃

i Ri.

Proof : The proof is straightforward:

•
⋂

i Ri ⊆
⋃

i Ri is obvious; and we also have ∀(a, b) ∈
⋂

i Ri, (a, b) 6∈ Nj for
all j (otherwise, ∃PAFk such that (a, b) ∈ Rk ∩ Nk that is impossible by
definition), so

⋂
i Ri ⊆

⋃
i Ri \

⋃
i Ni.

• In the same way, we can prove
⋂

i Ni ⊆
⋃

i Ni \
⋃

i Ri.
• if ∀(a, b) ∈

⋂
i Ii then, by definition, (a, b) 6∈ Ri and (a, b) 6∈ Ni for all i ; so,

(a, b) ∈ (
⋃

i Ai ×
⋃

i Ai) \ ((
⋃

i Ri \
⋃

i Ni) ∪ (
⋃

i Ni \
⋃

i Ri)).

2

The common part of a profile of n PAFs (resp. AFs) is not always a PAF
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(resp. an AF). Contrastingly, the clash-free part of a profile of n PAFs is a
PAF (however, the clash-free part of a profile of n AFs is not always an AF).

There exists an interesting particular case: if the various PAFs of the profile are
based on the same set of arguments and if for each ordered pair of arguments
(a, b) such that (a, b) belongs to the ignorance relation in one PAF, this pair
belongs to the attack relation for another PAF of the profile and to the non-
attack relation for at least a third PAF of the profile, then the clash-free part
of the profile and its common part are identical:

Proposition 24 Let P = 〈PAF1, . . . , PAFn〉 be a profile of n PAFs over the
same set of arguments A. Consider the clash-free part of P denoted by CFP (P)
= 〈ACFP , RCFP , ICFP , NCFP 〉 and the common part of P denoted by CP (P)
= 〈ACP , RCP , ICP , NCP 〉. If

⋃
i Ii ⊆ conf(P) = (

⋃
i Ri) ∩ (

⋃
i Ni), we have:

• ACFP = ACP ,
• RCFP = RCP ,
• NCFP = NCP .

Proof : All the PAFs are over the same set of arguments, so we have
A =

⋃
i Ai =

⋂
i Ai and ACFP = ACP .

First, we prove that RCFP = RCP .

• RCFP ⊆ RCP : consider (a, b) ∈ RCFP ; so (a, b) ∈
⋃

i Ri \
⋃

i Ni; suppose that
(a, b) 6∈ RCP ; so ∃PAFk such that (a, b) 6∈ Rk; so (a, b) ∈ Nk or (a, b) ∈ Ik;

In the first case, we have (a, b) 6∈
⋃

i Ri \
⋃

i Ni: contradiction with the
hypothesis (a, b) ∈ RCFP ;

In the second case, we retrieve the first case because
⋃

i Ii ⊆ conf(P) =
(
⋃

i Ri) ∩ (
⋃

i Ni).
Thus (a, b) ∈ RCP .

• RCFP ⊇ RCP : given by Proposition 23.

NCFP = NCP is proven in the same way. 2

This result is interesting since this situation always holds (by definition) if
consensual expansion is used as an expansion policy by each agent.

Example 14 (continued) With P = 〈AF1, AF2, AF3, AF4〉 and expC(P) =
〈expC (AF1, P), expC(AF2,P), expC(AF3,P), expC(AF4,P)〉, we have:

• CFP (expC(P)) = 〈{a, b, c, d}, {(b, c), (c, d)}, {(a, b), (b, a), (a, d), (b, d)},
{(a, a), (b, b), (c, c), (d, d), (a, c), (c, a), (d, a), (d, b), (d, c), (c, b)〉

• CP (expC(P)) = 〈{a, b, c, d}, {(b, c), (c, d)}, ∅,
{(a, a), (b, b), (c, c), (d, d), (a, c), (c, a), (d, a), (d, b), (d, c), (c, b)}〉.

A valuable property of any consensual expansion over a profile of AFs is that
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it preserves the clash-free part of the profile:

Proposition 25 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. For each i, we
have:

• ACFP (P) = Aexp
C

(AFi,P)
,

• RCFP (P) ⊆ Rexp
C

(AFi,P)
,

• NCFP (P) ⊆ Nexp
C

(AFi,P)
.

Proof : Consider AFi, denoted by 〈Ai, Ri, Ni〉, and the set conf(P) =
(
⋃

i Ri) ∩ (
⋃

i Ni). Each expC(AFi,P) is denoted by 〈A′
i, R

′
i, I

′
i, N

′
i〉.

• By definition, the set of arguments is the same for CFP (AF1, . . . , AFn) and
for each expC(AFi,P), ∀AFi: it is equal to

⋃
i Ai.

• Consider a, b ∈
⋃

i Ai such that (a, b) ∈ RCFP (P) = (
⋃

i Ri) \ (
⋃

i Ni) ; so,
we have (a, b) 6∈ conf(P) and (a, b) 6∈ Ni. So, (a, b) ∈ R′

i = Ri ∪ (((
⋃

i Ri) \
conf(P)) \ Ni).

• Consider a, b ∈
⋃

i Ai such that (a, b) ∈ NCFP (P) = (
⋃

i Ni) \ (
⋃

i Ri) ; so, we
have (a, b) 6∈ conf(P) and (a, b) 6∈

⋃
i Ri. So, (a, b) 6∈ I ′

i, and (a, b) 6∈ R′
i. So,

(a, b) ∈ N ′
i .

2

Now, concordance between AFs can be defined as follows:

Definition 26 (Concordance) Let AF1 = 〈A1, R1〉, AF2 = 〈A2, R2〉 be two
AFs. AF1, AF2 are said to be concordant if and only if ∀(a, b) ∈ (A1 ∩ A2) ×
(A1 ∩A2), (a, b) ∈ R1 if and only if (a, b) ∈ R2. Otherwise they are said to be
discordant.
Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. P is said to be concordant if
and only if all its AFs are pairwise concordant. Otherwise it is said to be
discordant.

Of course, concordance is related to the set conf(P) representing clashs be-
tween attack and non-attack relations in the different AFs of the profile:

Proposition 27 Let P = 〈AF1, . . . , AFn〉 be a profile of argumentation sys-
tems. P is concordant if and only if conf(P) =

⋃
i Ri ∩

⋃
i Ni is empty.

Proof : P is concordant ⇔

∀AFi, AFj ∈ P, @a, b ∈ Ai ∩ Aj such that (a, b) ∈ (Ri \ Rj) ∪ (Rj \ Ri) ⇔

∀AFi, AFj ∈ P, @a, b ∈ Ai ∩ Aj such that (a, b) ∈ Ri and (a, b) ∈ Nj ⇔
⋃

i Ri ∩
⋃

i Ni = ∅. 2
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When a profile of AFs is concordant, its clash-free part is the union of its
elements, and the converse also holds:

Proposition 28 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. P is concordant
if and only if CFP (P) =

⋃
i AFi.

Proof : CFP (P) is denoted by 〈ACFP , RCFP , ICFP , NCFP 〉.

The proof for “P concordant ⇒ CFP (P) =
⋃

i AFi” is made using a reductio
ad absurdum. We suppose that CFP (P) 6=

⋃
i AFi and we have the following

possibilities:

• ∃(a, b) ∈ RCFP and (a, b) 6∈
⋃

i Ri; this case is impossible because, by defi-
nition, (a, b) ∈ (

⋃
i Ri) \ (

⋃
i Ni);

• ∃(a, b) ∈ NCFP and (a, b) 6∈
⋃

i Ni; this case is impossible because, by defi-
nition, (a, b) ∈ (

⋃
i Ni) \ (

⋃
i Ri);

• ∃(a, b) 6∈ RCFP and (a, b) ∈
⋃

i Ri; so, by definition, (a, b) ∈ (
⋃

i Ni); so,
∃AFk, AFj such that (a, b) ∈ Rk and (a, b) ∈ Nj ; so, ∃AFk, AFj such that
(a, b) ∈ Ak ∩ Aj and (a, b) ∈ Rk \ Rj; so, contradiction with the hypothesis
P concordant;

• ∃(a, b) 6∈ NCFP and (a, b) ∈
⋃

i Ni; so, by definition, (a, b) ∈ (
⋃

i Ri); so,
∃AFk, AFj such that (a, b) ∈ Rk and (a, b) ∈ Nj ; so, ∃AFk, AFj such that
(a, b) ∈ Ak ∩ Aj and (a, b) ∈ Rk \ Rj; so, contradiction with the hypothesis
P concordant.

For each possibility, we obtain a contradiction. So, if P is concordant, then
CFP (P) =

⋃
i AFi.

The proof for “P concordant ⇐ CFP (P) =
⋃

i AFi” is also made using a reduc-
tio ad absurdum. If P is discordant then ∃AFi, AFj such that ∃(a, b) ∈ Ai ∩Aj

and (a, b) ∈ (Ri \ Rj) ∪ (Rj \ Ri). So, a, b ∈
⋃

k Ak, (a, b) ∈
⋃

k Rk and (a, b) ∈⋃
k Nk; so, (a, b) appears in the attack relation and in the non-attack relation of⋃
i AFi. However, by definition, (a, b) cannot appear in the same time in RCFP

and in NCFP . So, contradiction with the hypothesis CFP (AF1, . . . , AFn) =⋃
i AFi. 2

Proposition 29 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. P is concor-
dant if and only if expC(P) = 〈expC(AF1,P), . . . , expC(AFn,P)〉 is reduced to
〈
⋃

i AFi, . . . ,
⋃

i AFi〉 (i.e., each of the n elements of the vector is
⋃

i AFi).

Proof : Consider a concordant profile of AFs P. ∀AFi = 〈Ai, Ri, Ni〉, let us
consider expC(AFi,P) = 〈A′

i, R
′
i, I

′
i, N

′
i〉. ∀a, b ∈

⋃
i Ai, there are several cases:

• if (a, b) ∈ Ri then (a, b) ∈ R′
i;

• if (a, b) 6∈ Ri and (a, b) ∈ Ai × Ai then (a, b) ∈ Ni, so (a, b) ∈ N ′
i ; with P

concordant, we also know that @AFj ∈ P such that (a, b) ∈ Rj ;
• if (a, b) 6∈ Ri and (a, b) 6∈ Ai × Ai then there are two cases:
· either ∃AFj ∈ P such that (a, b) ∈ Rj : because P is concordant, (a, b) ∈
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R′
i;

· or @AFj ∈ P such that (a, b) ∈ Rj : so, (a, b) ∈ N ′
i .

In all the cases, if (a, b) is an attack interaction for one of the AFi, (a, b) is also
an attack interaction for the consensual PAFs. So, all the consensual PAFs
are equal to

⋃
i AFi.

For the second part of the proof, consider expC(P) = 〈
⋃

i AFi, , . . . ,
⋃

i AFi〉. We
suppose that P is discordant. So, ∃AFi, AFj ∈ P such that ∃a, b ∈ Ai ∩Aj and
(a, b) ∈ (Ri \Rj)∪ (Rj \Ri). If we suppose that (a, b) ∈ Ri, then expC(AFj ,P)
cannot contain the attack (a, b); so, expC(AFj ,P) 6=

⋃
i AFi: contradiction.

And the same problem appears when we suppose that (a, b) ∈ Rj . So, P is
concordant. 2

Note that
⋃

i AFi may appear into expC(P), even if P is discordant. This is
illustrated by the following example:

Example 30 Consider the profile P = 〈AF1, AF2, AF3〉 consisting of the fol-
lowing three AFs:

• AF1 = 〈{a, b, c}, {(a, b), (a, c)}〉,
• AF2 = 〈{a, b, c}, {(a, c)}〉,
• AF3 = 〈{a, d}, {(a, d)}〉.

The profile P = 〈AF1, AF2, AF3〉 is discordant and expC(P) = 〈PAF1, PAF2,

PAF3〉 is such that:

• PAF1 = 〈{a, b, c, d}, {(a, b), (a, c), (a, d)}, ∅〉 (=
⋃

i AFi),
• PAF2 = 〈{a, b, c, d}, {(a, c), (a, d)}, ∅〉,
• PAF3 = 〈{a, b, c, d}, {(a, c), (a, d)}, {(a, b)}〉.

a

b

c

d

PAF1

a

b

c

d

PAF3

a

b

c

d

PAF2

The following proposition states that whenever the presence of an attack (a, b)
does not clash with a profile of AFs, such an attack is present in all the
corresponding PAFs obtained by consensual expansion if and only if it is
present in one of the input AFs.

Proposition 31 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. Let (a, b) be a
pair of arguments such that a, b ∈

⋃
i Ai and @AFi, AFj ∈ P such that (a, b) ∈

(Ri \ Rj) ∪ (Rj \ Ri).
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∃AFl ∈ P such that (a, b) ∈ Rl if and only if ∀AFk ∈ P, (a, b) ∈ R′
k with R′

k

denoting the attack relation of the PAF expC(AFk,P).

Proof : Consider AFk ∈ P. Since ∃AFl ∈ P such that (a, b) ∈ Rl and
@AFi, AFj ∈ P such that (a, b) ∈ (Ri\Rj)∪(Rj\Ri), (a, b) 6∈ Nk; so, (a, b) ∈ R′

k.

The second part of the proof is obvious with a reductio ad absurdum: if we
suppose that @AFl ∈ P such that (a, b) ∈ Rl then we obtain ∀AFk ∈ P,
(a, b) ∈ N ′

k which is a contradiction with ∀AFk ∈ P, (a, b) ∈ R′
k. 2

A notion of compatibility of a profile of PAFs over the same set of arguments
can also be defined:

Definition 32 (Compatibility) Let P = 〈PAF1, . . . , PAFn〉 be a profile of
PAFs over a set of arguments A. PAF1, . . . , PAFn are said to be compatible
if and only if they have at least one common completion. Otherwise they are
said to be incompatible.

Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. Let exp be an expansion function.
AF1, . . . , AFn are said to be compatible given exp if and only if exp(AFi,P),
∀i = 1 . . . n, are said to be compatible. Otherwise they are said to be incom-
patible.

There is a clear link between concordance and compatibility in the case of the
consensual expansion applied to a profile of AFs:

Proposition 33 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. P is concordant
if and only if expC(AF1,P), . . . , expC(AFn,P) are compatible.

Proof : The first part of the proof is obvious: if P is concordant then the pro-
file expC(P) = 〈expC(AF1,P), . . . , expC(AFn,P)〉 is reduced to 〈

⋃
i AFi, . . . ,⋃

i AFi〉 (see Proposition 29); so, expC(AF1,P), . . . , expC(AFn,P) are equal
and have a common completion.

The second part of the proof uses a reductio ad absurdum: if we suppose that
P is discordant then ∃AFi, AFj such that ∃(a, b) ∈ Ri ∩ Nj ; so, (a, b) ∈ R′

i

with R′
i denoting the attack relation of expC(AFi,P) and (a, b) ∈ N ′

j with N ′
j

denoting the non-attack relation of expC(AFj ,P); so, all the completions of
expC(AFi,P) must contain the attack (a, b) and no completion of expC(AFj ,P)
can contain the attack (a, b); so, AFi and AFj do not have a common comple-
tion which is in contradiction with the hypothesis of compatibility. 2

Example 34 Consider the following argumentation systems AF1, AF2 and
AF3.

The completions of their respective consensual expansions PAF1, PAF2 and
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ac

AF1

a bc

AF2

a b

AF3

PAF3 are:

ac b

ac b

Completions of AF1

a bc

Completions of AF2

c a b

c a b

Completions of AF3

AF1 and AF2 are discordant and incompatible given expC. AF3 and AF1 are
concordant and compatible given expC.

6.2 Properties of merging operators

Let us now give some properties of merging operators, focusing on those based
on the edit distance:

Proposition 35 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. Assume that
the expansion function used for each agent is the consensual one. If P is
concordant then ∆⊗

de(P) = {
⋃

i AFi}.

Proof : If P is concordant, then by Proposition 29, we have expC(〈AF1, . . . ,

AFn〉) = 〈
⋃

i AFi, . . . ,
⋃

i AFi〉. It remains to show that ∆⊗
de(〈

⋃
i AFi, . . . ,

⋃
i AFi〉)

= {
⋃

i AFi}, which is obvious since de, as a distance, satisfies the minimality
requirement (

⋃
i AFi is the unique PAF at edit distance 0 from itself). 2

Now we show an expected property: that the clash-free part of any profile P
is included in each AF from the merging of P when the edit distance is used.

Proposition 36 Let P = 〈AF1, . . . , AFn〉 be a profile of argumentation sys-
tems. Assume that the expansion function used for each agent is the consen-
sual one. For any aggregation function ⊗, we have that : ∀AF = 〈A, R, N〉 ∈
∆⊗

de(〈AF1, . . . , AFn〉):

• ACFP (P) ⊆ A,
• RCFP (P) ⊆ R,
• NCFP (P) ⊆ N .

Proof : Let CFP (P) = 〈ACFP , RCFP , NCFP 〉 (the ignorance relation does
not appear here because argumentation systems (and not partial ones) are
considered).
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• ACFP =
⋃

i Ai ⊆ A =
⋃

i Ai.
• By Proposition 25, we know that CFP (P) is pointwise included in each
expC(AFi,P). Let first consider the case (a, b) ∈ RCFP , we have (a, b) ∈
Rexp

C
(AFi,P)

, ∀AFi.

Consider AF = 〈A, R〉 ∈ ∆⊗
de(〈AF1, . . . , AFn〉). Suppose that (a, b) 6∈ R and

consider AF
′ = 〈A′ = A, R′ = R ∪ {(a, b)}〉.

∀AFi, de(AF
′, expC(AFi,P)) = de(AF, expC(AFi,P)) − 1, since (a, b) ∈

R′ ∩ Rexp
C

(AFi,P)
and 6∈ R ∩ Rexp

C
(AFi,P)

; so, since ⊗ respects mono-

tonicity, we have ⊗n
i=1de(AF

′, expC(P)) < ⊗n
i=1de(AF, expC(P)) and we ob-

tain a contradiction with AF ∈ ∆⊗
de(〈AF1, . . . , AFn〉); so, (a, b) ∈ R. Hence

RCFP (P) ⊆ R.
• In the same way, we can prove that if (a, b) ∈ NCFP then (a, b) ∈ N . So

NCFP (P) ⊆ N .

2

As a direct corollary of Propositions 23 and 36, we get that:

Corollary 37 Let P = 〈AF1, . . . , AFn〉 be a profile of argumentation sys-
tems. Assume that the expansion function used for each agent is the consen-
sual one. For any aggregation function ⊗, we have that: ∀AF = 〈A, R, N〉 ∈
∆⊗

de(〈AF1, . . . , AFn〉):

• ACP (P) ⊆ A,
• RCP (P) ⊆ R,
• NCP (P) ⊆ N .

When sum is used as the aggregation function and all AFs are over the same
set of arguments, the merging of a profile can be characterized in a concise
way, thanks to the notion of majority graph. Intuitively the majority graph
of a profile of AFs over the same set of arguments is the PAF obtained by
applying the strict majority rule to decide whether a attacks b or not, for
every ordered pair (a, b) of arguments. Whenever there is no strict majority,
an ignorance edge is generated.

Definition 38 (Majority PAF) Let P = 〈AF1, . . . , AFn〉 be a profile of
AFs over the same set A of arguments. The majority PAF MP (P) of P is
the triple 〈R, N, I〉 such that ∀a, b ∈ A: 4

• (a, b) ∈ R if and only if #({i ∈ 1 . . . n | (a, b) ∈ Ri}) > #({i ∈ 1 . . . n | (a, b) ∈
Ni});

• (a, b) ∈ N if and only if #({i ∈ 1 . . . n | (a, b) ∈ Ni}) > #({i ∈ 1 . . . n | (a, b) ∈
Ri});

4 For any set S, #(S) denotes the cardinality of S.
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• (a, b) ∈ I otherwise.

The next proposition states that, as expected, the majority PAF of a profile
of AFs over the same set of arguments is a PAF:

Proposition 39 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs over the same
set A of arguments. The majority PAF MP (P) of P is a PAF.

Proof : Obvious since by construction, R and I are disjoint sets and N is
the complement of R ∪ I into A × A. 2

Example 40 Consider AF1 = 〈{a, b, c}, {(a, b), (b, c), (a, c)}〉, AF2 = 〈{a, b, c},
{(a, b), (b, a), (a, c)}〉.

a

b

c

AF1

a

b

c

AF2

a

b

c

MP (〈AF1, AF2〉)

We have MP (〈AF1, AF2〉) = 〈{a, b, c}, {(a, b), (a, c)}, {(b, c), (b, a)}, {(a, a),
(b, b), (c, c), (c, a), (c, b)}〉.

Proposition 41 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs over the same
set A of arguments. ∆Σ

de(P) = C(MP (P)).

Proof : The key is that the edit distance between an AF denoted by AF

and a profile of AFs over A when Σ is the aggregation operator is the sum
over the AFi of the profile of the sum over every ordered pair of arguments
over A of the edit distances between AF and AFi (this is a consequence of the
associativity of the sum).

Let AF be an AF over A which minimizes
∑n

i=1 de(AF, AFi). Let a, b ∈ A. If
#({i ∈ 1 . . . n | (a, b) ∈ Ri} > #({i ∈ 1 . . . n | (a, b) ∈ Ni}, then (a, b) must
be in the attack relation of AF; otherwise, the AF AF

′ over A which coincides
with AF except that (a, b) is in the attack relation of AF

′ would be such that∑n
i=1 de(AF

′, AFi) <
∑n

i=1 de(AF, AFi). Similarly, if #({i ∈ 1 . . . n | (a, b) ∈
Ni} > #({i ∈ 1 . . . n | (a, b) ∈ Ri}, then (a, b) must not be in the attack
relation of AF.

In the remaining case, i.e., when #({i ∈ 1 . . . n | (a, b) ∈ Ri} = #({i ∈
1 . . . n | (a, b) ∈ Ni}, let AF

′ be the AF over A which coincides with AF except
that (a, b) is in the attack relation of AF

′ if and only if (a, b) is not in the
attack relation of AF. Then

∑n
i=1 de(AF

′, AFi) =
∑n

i=1 de(AF, AFi).
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This shows that every AF over A which minimizes
∑n

i=1 de(AF, AFi) is a com-
pletion of the majority PAF MP (P).

Conversely, since every completion AF
′ of MP (P) is such that

∑n
i=1 de(AF

′, AFi) =∑n
i=1 de(AF, AFi) where AF minimizes

∑n
i=1 de(AF, AFi), the conclusion follows.

2

Let us illustrate the previous proposition on Example 7:

Example 7 (continued) The consensual expansions of AF1, AF2 and AF3

are respectively:

a

b

f

ec

d a

b c

d f

e

a

b c

d f

e

So, the majority PAF of 〈AF1, AF2, AF3〉 is:

a

b

f

ec

d

Using the edit distance and sum as the aggregation function, this PAF also
represents the result of the merging in the sense that the latter is the set of all
completions of this PAF.

Computing the majority PAF of a profile of AFs over the same set of argu-
ments amounts to voting on the attack relations associated to each AF. As
explained in Section 3, this can prove more suited to our goal than the ap-
proach which consists in voting directly on the acceptable sets of arguments
for each agent. The previous proposition shows that such a simple voting ap-
proach corresponds to a specific merging operator in our framework (but many
other operators, especially arbitration ones, can also be used).

7 Acceptability for Merged AFs

Starting from a profile of AFs (over possibly different sets of arguments), a
merging operator enables the computation of a set of AFs (this time, over the
same set of arguments) which are the best candidates to represent the AFs of
the group (a kind of “consensus”).

There is an important epistemic difference between those two sets of AFs, the
first one reflects different points of view given by different agents (and it can
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be the case that two distinct agents give the same AF), while the second set
expresses some uncertainty on the merging due to the presence of conflicts.

Let us recall that the main goal of this paper is to characterize the sets of
arguments acceptable by the whole group of agents. In order to achieve it, it
remains to define some mechanisms for exploiting the resulting set of AFs.
This calls for a notion of joint acceptability.

Definition 42 (Joint acceptability) A joint acceptability relation for a pro-
file 〈AF1, . . . , AFn〉 of AFs, denoted by Acc

〈AF1,...,AFn〉
, is a total function from

2
⋃

i
Ai to {true, false} which associates each subset E of

⋃
i Ai with true if E

is a jointly acceptable set for 〈AF1, . . . , AFn〉 and with false otherwise.

For instance, a joint acceptability relation for a profile 〈AF1, . . . , AFn〉 can
be defined by the acceptability relations AccAFi

(based themselves on some
semantics and some selection principles), which can coincide for every AFi (but
this is not mandatory) and a voting method V : {true, false}n 7→ {true, false}:

Acc
〈AF1,...,AFn〉

(E) = V (Acc
AF1

(E), . . . , Acc
AFn

(E)).

Here are some instances of Definition 42 based on voting methods:

Definition 43 (Acceptabilities for profiles of AFs) Let P = 〈AF1, . . . ,

AFn〉 be a profile of n AFs over the same set of arguments A. Let Acc
AFi

be
the (local) acceptability relation associated with AFi. If n = 1, then we define
Acc

〈AF1〉
= Acc

AF1

. Otherwise, for any subset S of A, we say that:

• S is skeptically jointly acceptable for P if and only if S is included in at
least one acceptable set for each AFi:

∀AFi ∈ P, ∃Ei such that Acc
AFi

(Ei) is true and S ⊆ Ei.
• S is credulously jointly acceptable for P if and only if S is included in at

least one acceptable set for at least one AFi:
∃AFi ∈ P, ∃Ei such that Acc

AFi
(Ei) is true and S ⊆ Ei.

• S is jointly acceptable by majority for P if and only if S is included in at
least one acceptable set for at least a weak majority of AFi:

#({AFi | ∃Ei such that Acc
AFi

(Ei) is true and S ⊆ Ei}) ≥
n
2
.

Obviously enough, when none of the local acceptabilities Acc
AFi

is trivial (i.e.,
equivalent to the constant function false) for the profile under consideration,
we have that any set of arguments which is skeptically jointly acceptable is
also jointly acceptable by majority, and that any set of arguments which is
jointly acceptable by majority is also credulously jointly acceptable.

Note that skeptical (resp. credulous) joint acceptability does not require that
the skeptical (resp. credulous) inference principle is at work for defining local
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acceptabilities Acc
AFi

, which remain unconstrained.

Focusing on the preferred semantics together with credulous local acceptabil-
ities, let us re-consider some previous examples:

Example 20 (continued) Using the edit distance and ⊗ = Leximax (or
Max) as the aggregation function, we get two AFs AF

′
1 and AF

′
2 in the merging.

If the local acceptability relations are based on credulous inference from pre-
ferred extensions, we have:

• Acc
AF

′

1

(E) = true if and only if E ⊆ {c, d} or E ⊆ {b, e};

• Acc
AF

′

2

(E) = true if and only if E ⊆ {a, c, e}.

{c} and {e} are skeptically jointly acceptable and {b, e},{c, d} and {a, c, e}
(and their subsets) are credulously (and by majority) jointly acceptable for the
merging.

Using this method, the argument a can still be derived credulously, contrariwise
to what happens when the union of the two AFs AF1 and AF2 is considered.

Example 7 (continued) Using the edit distance and the sum as the aggre-
gation function, we get one AF in the merging, denoted AF:

a

b

f

ec

d

AF has two preferred extensions : {a, c, e} and {b, d, e}. So, Acc
AF

(E) = true
if and only if E ⊆ {a, c, e} or E ⊆ {b, d, e}. The three joint acceptability
relations coincide here (as there is only one AF in the result). The sets {a, c, e}
and {b, d, e} (and their subsets) are credulously, skeptically and by majority,
jointly acceptable for the merging, which is a more sensible result that the one
obtained using a voting method on the derived arguments of the initial AFs
(as explained in Section 3).

Example 14 (continued) Using the edit distance and the sum as the aggre-
gation function, we get two AFs in the merging:

a

b c

d a

b c

d

The preferred extensions for these 2 AFs coincide (they are {a, c} and {b, d}).
As the preferred extensions for the 2 AFs are the same ones, the three relations

31



of joint acceptability coincide here. Thus, the sets {a, c} and {b, d} (and their
subsets) are skeptically, credulously and by majority jointly acceptable for the
merging.

It is interesting to compare the joint acceptability relation for the input pro-
file P = 〈AF1, . . . , AFn〉 with the joint acceptability relation for the merging
∆⊗

d (P). Unsurprisingly, both predicates are not logically connected (i.e., none
of them implies the other one), even in the case when the two joint acceptabil-
ity relations are based on the same notion of local acceptability (for instance,
considering a set of arguments E as acceptable for an AF when it is included
in at least one of its preferred extensions) and the same voting method (for
instance, the simple majority rule).

Thus, it can be the case that new jointly acceptable sets are obtained after
merging while they were not jointly acceptable at start:

Proposition 44 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs over the same
set of arguments A. The set of all jointly acceptable sets for the profile P is
not necessarily equal to the set of all jointly acceptable sets for the merging of
P.

A counter-example is given by Example 14.

When each local acceptability relation corresponds exactly to the collective
acceptability proposed by Dung (for a given semantics and ∀AFi, Acc

AFi
(E) =

true if and only if E is an extension of AFi for this semantics), the following
remarks can be done:

• If a set of arguments is included in one of the acceptable sets for an agent,
it is not necessarily included into one of the acceptable sets of any AF from
the merging (and it also holds for singletons). The converse is also true.

• More surprisingly, even if a set of arguments is included into each acceptable
set for an agent, it is not guaranteed to be included into an acceptable set
of an AF from the merging. Conversely, if a set of arguments is included
into every acceptable set of the AFs from the merging, it is not guaranteed
to be included into an acceptable set for one of the agents. Intuitively, this
can be explained by the fact that if an argument is accepted by all agents
for bad reasons (for instance, because they lack information about attacks
on it), it can be rejected by the group after the merging. More formally,
this is due to the fact that nothing ensures that one of the initial AFs will
belong to the result of the merging and also to the fact that acceptability is
nonmonotonic (in the sense that adding a single attack (a, b) in an AF may
drastically change its extensions).
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8 Conclusion and Perspectives

We have presented a framework for deriving sensible information from a collec-
tion of argumentation systems à la Dung. Our approach consists in merging
such systems. The proposed framework is general enough to allow for the
representation of many different scenarios. It is not assumed that all agents
must share the same sets of arguments. No assumption is made concerning
the meaning of the attack relations, so that such relations may differ not only
because agents have different points of view on the way arguments interact
but more generally may disagree on what an interaction is. Each agent may be
associated to a specific expansion function, which enables for encoding many
attitudes when facing a new argument. Many different distances between PAFs
and many different aggregation functions can be used to define argumentation
systems which best represent the whole group.

By means of example, we have shown that our merging-based approach leads
to results which are much more expected than those furnished by a direct vote
on the (sets of) arguments acceptable by each agent. We have also shown that
union cannot be taken as a valuable merging operator in the general case. We
have investigated formally some properties of the merging operators which we
point out. Among other results, we have shown that merging operators based
on the edit distance preserve all the information on which all the agents partic-
ipating in the merging process agree, and more generally, all the information
on which the agents participating in the merging process do not disagree. We
have also shown that the merging operator based on the edit distance and the
sum as aggregation function is closely related to the merging approach which
consists in voting on the attack relations when the input profile gathers argu-
mentation systems over the same set of arguments. Finally, we have proven
that in the general case, the derivable sets of arguments when joint accept-
ability concerns the input profile may drastically differ from the the derivable
sets of arguments when joint acceptability concerns the profile obtained after
the merging step.

We plan to refine our framework in several directions:

Merging PAFs. Our framework can be extended to PAFs merging (instead of
AFs). This enables us to take into account agents with incomplete belief states
regarding the attack relation between arguments. Expansions of PAFs can be
defined in a very similar way to expansions of AFs (what mainly changes is
the way ignorance is handled). As PAFs are more expressive than AFs, an
interesting issue for further research is to define acceptability for PAFs.

Attacks strengths. Assume that each attack believed by Agent i is associ-
ated to a numerical value reflecting the strength of the attack according to the
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agent, i.e., the degree to which Agent i believes that a attacks b. It is easy to
take into account those values by modifying slightly the definition of the edit
distance over an ordered pair of arguments (for instance, viewing such values
as weights once normalized within [0, 1]). Another possibility regarding attack
strengths is, from unweighted attack relations, to generate a weighted one,
representing different degrees of accordance in the group. For instance, each
attack (a, b) in the majority PAF of a profile 〈AF1, . . . , AFn〉 can be labelled

by the ratio #({i∈1...n|(a,b)∈Ri})
n

and similarly for the non-attack relation (this
leads to consider both the attack and the non-attack relations of the majority
PAF as fuzzy relations). Corresponding acceptability relations remain to be
defined. This is another perspective of this work.

Merging audiences. In (7), an extension of the notion of AF, called valued
AF — VAF for short —, has been proposed in order to take advantage of
values representing the agent’s preferences in the context of a given audience.
A further perspective of our work concerns the merging of such VAFs.
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