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Abstract

This paper presents BeliefFlow, a novel framework for repre-
senting how logical beliefs spread among interacting agents
within a network. In a Belief Flow Network (BFN), agents
communicate asynchronously. The agents’ beliefs are rep-
resented using epistemic states, which encompass their cur-
rent beliefs and conditional beliefs guiding future changes.
When communication occurs between two connected agents,
the receiving agent changes its epistemic state using an im-
provement operator, a well-known type of rational iterated
belief change operator that generalizes belief revision opera-
tors. We show that BFNs satisfy appealing properties, leading
to two significant outcomes. First, in any BFN with strong
network connectivity, the beliefs of all agents converge to-
wards a global consensus. Second, within any BFN, we show
that it is possible to compute an optimal strategy for influenc-
ing the global beliefs. This strategy, which involves control-
ling the beliefs of a least number of agents through bribery,
can be identified from the topology of the network and can be
computed in polynomial time.

Introduction
Consider the following scenario with three individuals: Al-
ice, Bob and Charles. Each initially holds distinct beliefs.
Alice got a memo about a lockdown happening tomorrow.
Bob lacks any information regarding the impending lock-
down, yet he assumes that all aspects of daily life, especially
transportation services, will continue without interruption.
Charles, in contrast to Alice’s viewpoint, does not believe
a lockdown will take place. However, he does hold a con-
ditional belief: if a lockdown were indeed implemented, he
expects that transportation services would stop. Alice, Bob,
and Charles frequently engage in private one-on-one conver-
sations, and they are about to dive into a discussion about the
upcoming lockdown and transportation situation.

Our focus lies in predicting the outcome of their forth-
coming discussion. More precisely, we are interested in the
following issue: will the group of agents collectively attain
a stable state of beliefs, thus achieving consensus? This is
a challenging question, given that multiple variable param-
eters come into play. Each of the three individuals, when
presented with new information from their two friends, may
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have varying levels of skepticism, differing immediate or de-
layed responses to conflicting information. Moreover, while
it is possible for friends to communicate with each other,
we do not make the assumption that the order in which each
communication pair occurs is known.

In this paper, we introduce a new framework to model
these interactions, named Belief Flow Networks (BFNs). In
a BFN, the communication protocol within a set of agents is
characterized by an acquaintance graph and a stochastic pro-
cess that is used to trigger communication pairs randomly,
in a sequence of steps. At each step, an agent sends their
currently held beliefs (a propositional formula) to a con-
nected agent, who receives it and modifies their belief state
in light of this new information using an improvement op-
erator (Konieczny and Pino Pérez 2008; Konieczny, Medina
Grespan, and Pino Pérez 2010), a general form of iterated
belief change operator (Alchourrón, Gärdenfors, and Makin-
son 1985; Gärdenfors 1988; Darwiche and Pearl 1997).

BFNs share similarities with many settings for modelling
the belief dynamics of a group of agents, including Boolean
networks (Kauffman 1969, 1993; Aldana 2003), opinion dy-
namics (Hegselmann and Krause 2005; Riegler and Douven
2009; Tsang and Larson 2014; Grandi, Lorini, and Perrus-
sel 2015; Novaro et al. 2018, 2019), and many other com-
plex systems. But the most closely related work to our pro-
posal is the framework of Belief Revision Games (BRGs)
(Schwind et al. 2015, 2016), a comparable logical frame-
work involving a network of interacting agents. However,
our approach deviates from BRGs in several significant as-
pects. The first noteworthy distinction between BFNs and
BRGs is that BRGs adopt a synchronous update scheme.
At each step, every agent receives the beliefs of all their
acquaintances, processes these beliefs using a belief merg-
ing operator, and then revises their own beliefs based on
the merged result. In contrast, our BFN approach employs
an asynchronous update scheme, and there is no overseeing
agent dictating the order with which communication pairs
are activated. Another significant difference pertains to the
revision policy employed by each agent in BRGs, that is
characterized by a classical revision operator (Katsuno and
Mendelzon 1991) and a merging operator (Konieczny and
Pino Pérez 2002), both of which align with the principles of
the AGM theory that delineates the behavior of one-step re-
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vision. But the AGM approaches suffers from limitations in
handling sequences of revisions, potentially leading to un-
desirable outcomes, which has prompted the exploration of
iteration principles in belief change, addressing those lim-
itations (Nayak 1994; Nayak et al. 1994, 1996; Darwiche
and Pearl 1997; Jin and Thielscher 2007; Rott 2009). One of
the most general classes of iterated belied change operators
is called improvement operators (Konieczny and Pino Pérez
2008; Konieczny, Medina Grespan, and Pino Pérez 2010),
that generalize iterated revision operators. They allow for the
incorporation of varying degrees of change reluctance for an
agent. So, in contrast to BRGs, in a BFN each agent uses an
improvement operator to modify their beliefs. This requires
each agent to be assigned with an epistemic state instead of a
mere propositional formula (Darwiche and Pearl 1997). This
state encodes both the agent’s beliefs at the current step and
conditional information guiding subsequent change steps.
BFNs are thus flexible enough to capture a more realistic
spectrum of belief change scenarios compared to BRGs.

Although BRGs have been shown to satisfy a number
of appealing properties, they have also shown vulnerability
to “belief cycles” (Schwind et al. 2015): even when agents
agree on certain options, they may continuously change their
beliefs ad infinitum. BRGs have also been demonstrated
to exhibit paradoxical results in terms of manipulability
(Schwind et al. 2016). The behavior of BFNs is quite differ-
ent. First, under strong network connectivity, agents within
BFNs converge towards a unanimous global consensus. Sec-
ond, we establish the feasibility of a straightforward bribery
technique for influencing collective beliefs. Indeed, identi-
fying a minimal set of agents to bribe to make a given piece
of beliefs unanimously accepted across the network can be
achieved in polynomial time.

The proofs of propositions are available online.1

Preliminaries on Iterated Belief Change
Let LP be a propositional language built up from a finite set
of propositional variables P and the usual connectives. ⊥
(resp.>) is the Boolean constant always false (resp. true). A
world is a mapping from P to {0, 1}. The set of all worlds
is denoted by Ω. A world ω is a model of a formula ϕ, de-
noted by ω |= ϕ, if it makes ϕ true. [ϕ] denotes the set of
models of ϕ. |= also denotes logical entailment and ≡ logi-
cal equivalence between formulae, i.e., ϕ |= ψ iff [ϕ] ⊆ [ψ]
and ϕ ≡ ψ iff [ϕ] = [ψ]. Given a preorder2 � over worlds,
we define min([ϕ],�) = {ω |= ϕ | @ω′ |= ϕ : ω′ ≺ ω}.

We assume that each agent processes incoming pieces of
information using an iterated belief change operator called
improvement operator (Konieczny and Pino Pérez 2008;
Konieczny, Medina Grespan, and Pino Pérez 2010; Medina
Grespan and Pino Pérez 2013). Considering this setting re-
quires the belief state of each agent to be characterized by
an epistemic state, a more general and complex object than
a simple propositional formula (Darwiche and Pearl 1997;

1https://nicolas-schwind.github.io/SIKM-AAAI24-proofs.pdf
2For each preorder�,' denotes the corresponding indifference

relation, and ≺ the strict part of �.

Schwind, Konieczny, and Pino Pérez 2022). Indeed, an epis-
temic state Ψ allows one to represent the current beliefs of
an agent, denoted byBel(Ψ) and some conditional informa-
tion guiding the change process for future changes. Given Ψ,
the beliefs of the agent can be extracted through a mapping
Bel, so that Bel(Ψ) is a propositional formula from LP .
Formally, let E be the set of all epistemic states, which is
considered fixed. Then Bel is a mapping from E to LP . An
(iterated) change operator ◦ associates an epistemic state and
a change formula with an epistemic state, i.e., it is a mapping
◦ : E × LP → E . An improvement operator is an iterated
change operator satisfying a set of nine rationality principles
(I1)-(I9) (see (Konieczny and Pino Pérez 2008; Konieczny,
Medina Grespan, and Pino Pérez 2010) for a detailed justifi-
cation of these postulates). In the following, given a change
operator ◦, Ψ ◦k ϕ is inductively defined as Ψ ◦1 ϕ = Ψ ◦ ϕ
and for each k > 1, Ψ ◦k ϕ = (Ψ ◦k−1 ϕ) ◦ ϕ. Then Ψ ? ϕ
is defined as Ψ ◦k ϕ, where k is the least integer such that
Bel(Ψ ◦k ϕ) |= ϕ (such an integer is assumed to exist from
postulate (I1) below):

(I1) ∃k ∈ N∗ s.t. Bel(Ψ ◦k ϕ) |= ϕ

(I2) If Bel(Ψ) ∧ ϕ 6|= ⊥, then Bel(Ψ ? ϕ) ≡ Bel(Ψ) ∧ ϕ
(I3) If ϕ 6|= ⊥, then Bel(Ψ ◦ ϕ) 6|= ⊥
(I4) if ϕi ≡ βi for all i ∈ {1, . . . ,m},

then Bel(Ψ ◦ϕ1 ◦ . . . ◦ϕm) ≡ Bel(Ψ ◦ β1 ◦ . . . ◦ βm)

(I5) Bel(Ψ ? ϕ) ∧ β |= Bel(Ψ ? (ϕ ∧ β))

(I6) If Bel(Ψ ? ϕ) ∧ β 6|= ⊥,
then Bel(Ψ ? (ϕ ∧ β)) |= Bel(Ψ ? ϕ) ∧ β

(I7) If ϕ |= β, then Bel((Ψ ◦ β) ? ϕ) ≡ Bel(Ψ ? ϕ)

(I8) If ϕ |= ¬β, then Bel((Ψ ◦ β) ? ϕ) ≡ Bel(Ψ ? ϕ)

(I9) If Bel(Ψ ? ϕ) 6|= ¬β, then Bel((Ψ ◦ β) ? ϕ) |= β

Among the nine set of postulates, (I1-I6) are the most ba-
sic ones, and (I7-I9) are principles ruling iteration.

Improvement operators can be characterized by associat-
ing each epistemic state with a total preorder over worlds.
Formally, a function Ψ 7→�Ψ that maps each epistemic state
Ψ to a total preorder over worlds �Ψ is called a gradual as-
signment iff:

1. If ω, ω′ |= Bel(Ψ), then ω 'Ψ ω′

2. If ω |= Bel(Ψ) and ω′ 6|= Bel(Ψ), then ω ≺Ψ ω′

3. For any positive integer n, if ϕi ≡ βi for any i ≤ n,
then �Ψ◦ϕ1◦...◦ϕn

=�Ψ◦β1◦...◦βn

4. If ω, ω′ |= ϕ, then ω �Ψ ω′ ⇔ ω �Ψ◦ϕ ω
′

5. If ω, ω′ |= ¬ϕ, then ω �Ψ ω′ ⇔ ω �Ψ◦ϕ ω
′

6. If ω |= ϕ and ω′ |= ¬ϕ, then ω �Ψ ω′ ⇒ ω ≺Ψ◦ϕ ω
′

Proposition 1 ((Konieczny, Medina Grespan, and Pino
Pérez 2010)). An operator ◦ is an improvement operator iff
there exists a gradual assignment that maps each epistemic
state Ψ to a total preorder over worlds �Ψ such that for
every formula ϕ, [Bel(Ψ ? ϕ)] = min([ϕ],�Ψ).

Notably, improvement operators satisfying the original
success postulate (R*1) (Bel(Ψ ◦ ϕ) |= ϕ) (Darwiche and
Pearl 1997) are AGM/DP iterated revision operators (Al-
chourrón, Gärdenfors, and Makinson 1985; Darwiche and
Pearl 1997).
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Figure 1: Restrained revision ◦R and one-improvement ◦I .

Let us now give two examples of improvement operators,
the one-improvement operator (Konieczny, Medina Gres-
pan, and Pino Pérez 2010) and the restrained revision op-
erator (Booth and Meyer 2006), and illustrate their behavior
through an example. For both of these operators, the set of
epistemic states E corresponds to the set of all total preorders
over worlds.

The restrained revision operator ◦R is an improvement
operator that is also a revision operator, i.e., it satisfies the
success postulate (R*1). That is, ◦R is such that for each
epistemic state Ψ and each formula ϕ, [Bel(Ψ ◦R ϕ)] =
min([ϕ],�Ψ). It also requires for all worlds ω, ω′ ∈ Ω that
if ω |= ϕ, ω 6|= Bel(Ψ ◦R ϕ) and ω′ 6|= ϕ, then ω′ ≺Ψ ω ⇒
ω′ ≺Ψ◦Rϕ ω. Thus, this operator ensures that the minimal
models of ϕ for �Ψ become the minimal models of Ψ ◦R ϕ,
and that the models of ¬ϕ that were strictly more plausible
than the models of ϕ before the revision step remain so after
the revision.

The one-improvement operator ◦I is the improvement op-
erator satisfying the following property:3 if ω |= ϕ and
ω′ 6|= ϕ, then (ω′ ≺Ψ ω ⇒ ω′ �Ψ◦Iϕ ω) and (ω′ �Ψ ω ⇒
ω �Ψ◦Iϕ ω′). Roughly speaking, this operator uniformly
“shifts” all models of ϕ one level lower in the preorder �Ψ.

Figure 1 depicts a total preorder Ψ over worlds on two
propositional variables (P = {p, q}),4 and the total pre-
orders Ψ ◦R ¬q and Ψ ◦I ¬q. We have that Bel(Ψ) ≡ p∧ q,
Bel(Ψ ◦R ¬q) ≡ p ∧ ¬q, and Bel(Ψ ◦I ¬q) ≡ p.

There are many other improvement operators (see, e.g.,
(Rott 2009)) some of which being not representable as tran-
sitions between total preorders, i.e., they require more com-
plex structures, such as OCFs (Ordinal Conditional Func-
tions) (Spohn 1988), for being formally defined (Schwind,
Konieczny, and Pino Pérez 2022).

Belief Flow Networks
We are now ready to define the setup of Belief Flow Net-
works (BFNs). Formally, a BFN is a tuple B = 〈G, ~Ψ,~◦,S〉
consisting of four components.

First,G is an acquaintance graphG = (V,A), where V =
{1, . . . , n} represents the set of agents and A ⊆ V ×V is an
acquaintance relationship between them. We requireA to be
irreflexive, i.e., if (i, j) ∈ A then i 6= j. Roughly speaking,
a pair (i, j) belongs to A if and only if communication from
i to j is “possible.”

3ω � ω′ is a shortcut for (ω ≺ ω′ and @ω′′ s.t. ω ≺ ω′′ ≺ ω′)
4A world ω is at the same or at a lower level than a world ω′

iff ω ≤Ψ ω′. So minimal (i.e., most plausible) worlds are at the
lowest level.

Second, ~Ψ is an initial epistemic state profile that cap-
tures the epistemic state of each agent at the beginning of the
game. It is represented as an n-vector ~Ψ = 〈Ψ1, . . . ,Ψn〉,
where each Ψi corresponds to the initial epistemic state of
agent i. We assume that all agents start with consistent be-
liefs, i.e., Bel(Ψi) is consistent for each agent i ∈ V .

Third, ~◦ is a change policy profile which defines the
change policy of each agent. It is represented as an n-vector
~◦ = 〈◦1, . . . , ◦n〉, where each element ◦i is an improvement
operator. For the purpose of our results in this paper, we re-
quire each operator ◦i to satisfy a slight strengthening of
(I1):

(I1*) ∃k ∈ N∗ s.t. ∀Ψ ∈ E , ∀α ∈ L, Bel(Ψ ◦k α) |= α

(I1*) requires that the number of change steps required for a
formula to be eventually entailed in the beliefs of an agent is
fixed for the agent, i.e., it does not depend on the epistemic
state. This additional restriction is quite light: it is satisfied,
e.g., by every revision operator and every improvement op-
erator defined on a finite epistemic space E , which includes
the operators ◦R and ◦I presented in the previous section,
among many others (Rott 2009).

Fourth, S is a stochastic process on A which governs
the communication protocol. It is a series of random vari-
ables S = (As)s∈N, where each random variable As has
the domain set A. We require this series to be a chain with
complete connections (Iosifescu and Grigorescu 1990), i.e.,
there exists a real number δ > 0 such that for each s ∈ N
and for all edges e0, . . . , es, Pr(As = es | As−1 =
es−1, . . . , A0 = e0) ≥ δ. Roughly speaking, S generates
some scenarios, or “runs” σ = (σs)s∈N. At each time step
s ≥ 0, σs is the specific edge to be triggered, and its value
(i.e., the value for As) is governed by S . Each agent i is as-
sociated with its epistemic state at step s in a run σ, denoted
by Ψi

σs
. At each step s, some pair (i, j) ∈ A is selected at

random with a certain positive probability which may de-
pend on the previously selected edges, i.e., on the values of
A0, . . . , As−1. Upon triggering an edge (i, j) at each step s,
agent j receives the current beliefs Bel(Ψi

σs
) of agent i and

j modifies their current epistemic state Ψj
σs

accordingly us-
ing their change policy ◦j , i.e., Ψj

σs+1
= Ψj

σs
◦j Bel(Ψi

σs
).

Note that the definition of S as a chain with complete
connections is general enough to include standard Markov
chains (Iosifescu and Grigorescu 1990) when the probabil-
ity of each edge to be selected at each step depends on the
one selected at the previous step, and Bernouilli schemes
(Shields 1973) when all random variables are independent.

Let us now introduce the various notions useful to deter-
mine how BFNs are interpreted. In what follows, we assume
given a BFN B = 〈G, ~Ψ,~◦,S〉.

A-sequences and B-runs. An A-sequence is a (possibly
infinite) sequence σ = (σs)s∈{0,...} where σs ∈ A for each
s ∈ {0, . . .}. A B-run σ is an infinite A-sequence generated
by S . Note the distinction between the notions of infinite A-
sequence and B-run. Indeed, not every infinite A-sequence
can be yielded by a B-run. It can be easily seen for instance
that for any given A′ ( A, an infinite A′-sequence is an in-
finite A-sequence but it cannot be generated by S , since this
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would otherwise imply Pr(As = (i, j)) = 0 for each k ∈ N
and for some (i, j) ∈ A \A′, which is forbidden by S being
a chain with complete connections. We will make precise
this distinction in the next section through a characterization
of the subclass of infinite A-sequences corresponding to B-
runs (cf. Proposition 3).

Epistemic profile sequences. BFNs B are interpreted in
terms of epistemic profile sequences in some specific scenar-
ios characterized by B-runs. The epistemic profile sequence
of a BFN B = 〈G, ~Ψ,~◦,S〉 given a B-run σ, denoted by ~Ψσ ,
is an infinite series of epistemic profiles ~Ψσ = ~Ψσ0

, ~Ψσ1
, . . .

where for each s ∈ N, ~Ψσs
is inductively defined as follows:

• ~Ψσ0 = 〈Ψ1
σ0
, . . . ,Ψn

σ0
〉, where for each i ∈ V , Ψi

σ0
= Ψi

• ~Ψσs+1
= 〈Ψ1

σs+1
, . . . ,Ψn

σs+1
〉, where for each i ∈ V ,

Ψi
σs+1

=

{
Ψi
σs
◦i Bel(Ψj

σs
), if σs = (j, i)

Ψi
σs
, otherwise

So, given a B-run σ, an agent i ∈ V , and a step s ∈
N, Ψi

σs
and Bel(Ψi

σs
) represent respectively the epistemic

state and the belief state of agent i at step s in the specific
communication scenario characterized by σ.

Belief sequences, outcomes, and stability. Given an epis-
temic profile sequence ~Ψσ as defined above, an agent i
and a B-run σ, the sequence Seqσ(i) = (Bel(Ψi

σs
))s∈N

is called the σ-belief sequence of i. We are specially inter-
ested in the notion of σ-outcome sequence of i in σ, de-
noted by Seq∗σ(i) and defined as the sequence Seq∗σ(i) =
arg mins{(Bel(Ψi

σs
), Bel(Ψi

σs+1
), . . .) | ∀s1 ≥ s, ∃E ⊆

N, |E| = ℵ0, ∀s2 ∈ E,Bel(Ψi
σs2

) ≡ Bel(Ψi
σs1

)} 5. In in-
formal terms, the σ-outcome sequence of i is the earliest se-
quence among all subsequences of Seqσ(i) where every for-
mula continues to appear infinitely often up to logical equiv-
alence. The notion of σ-outcome sequence bears similarities
to the notion of belief cycle introduced for Belief Revision
Games (BRGs) (Schwind et al. 2015). Outcome sequences
shed light on what an agent eventually comes to accept or
reject, and whether these beliefs remain stable. So, a key
notion based on σ-outcome sequences is the one of accep-
tance, also adapted from (Schwind et al. 2015). A formula
ϕ is accepted by i in σ if for each α ∈ Seq∗σ(i), α |= ϕ; it is
unanimously accepted in σ if it is accepted by each i ∈ V .

Since we work on a propositional language generated
from a finite set of variables, each σ-outcome sequence
can be characterized finitely: the σ-outcome of i is a for-
mula Outσ(i) such that [Outσ(i)] = {ω ∈ Ω | ∃α ∈
Seq∗σ(i), ω |= α}. That is, Outσ(i) is a formula that charac-
terizes what is accepted by i in σ: it is the logically weakest
formula that entails each formula accepted by i in σ.

When every formula from Seq∗σ(i) is equivalent to
Outσ(i), we say that i is stable in σ. Stated otherwise, i is
stable in σ whenever the beliefs of the agent i remain eventu-
ally unchanged (up to logical equivalence) in σ. The notion
of stability can be lifted to (sets of) agent(s) in a straightfor-
ward way: a set of agents V ′ ⊆ V is said to be stable in σ

5|E| = ℵ0 simply means that E is countably infinite.

if every i ∈ V ′ is stable in σ. An agent i ∈ V (resp. a set
of agents V ′ ⊆ V ) is said to be stable in B if i (resp. V ′) is
stable in every B-run σ. In the specific case when V ′ = V ,
we simply say that B is stable.

Lastly, a set V ′ ⊆ V is said to reach a consensus in a B-
run σ if V ′ is stable in σ and there is a formula α such that
for each i ∈ V ′, Outσ(i) ≡ α. And V ′ is said to be strongly
consensual in B if V ′ reaches a consensus in every B-run.

Let us formalize and develop the example sketched in the
introduction to illustrate all notions introduced thus far.
Example 1. Let P = {l, t}, where l stands for “lockdown
will take place”, and t stands for “transportation will not
be interrupted”. We consider a BFN B = 〈G, ~Ψ,~◦,S〉 as
follows. Let G = (V,A), with V = {1, 2, 3} where 1
(resp. 2, 3) corresponds to Alice (resp. Bob, Charles), and
A = {(1, 2), (2, 3), (1, 3), (3, 1)}, i.e., Alice is not influ-
enced by (or does not receive messages from) Bob, and Bob
is not influenced by Charles. Let E be the set of all total pre-
orders over worlds, ~Ψ = 〈Ψ1,Ψ2,Ψ3〉 and~◦ = 〈◦1, ◦2, ◦3〉.
Bob uses a restrained revision operator ◦3 = ◦R, whereas
Alice and Charles are a bit more change-reluctant and use
a one-improvement operator ◦1 = ◦2 = ◦I . Let Alice’s ini-
tial epistemic state Ψ1 be the two-level preorder over worlds
lt 'Ψ1 lt̄ ≺Ψ1 l̄t 'Ψ1 l̄t̄. As to Bob and Charles, let
Ψ2 = lt 'Ψ2 l̄t ≺Ψ2 lt̄ 'Ψ2 l̄t̄, and Ψ3 = l̄t 'Ψ3

l̄t̄ ≺Ψ3 lt̄ ≺Ψ3 lt. We have for instance Bel(Ψ3) ≡
¬l, which captures Charles’ initial belief that a lockdown
won’t occur tomorrow; and lt̄ ≺Ψ3 lt represents his con-
ditional belief that if he were to believe in a lockdown oc-
curring, the world where transportation is disrupted is more
plausible than the one where transportation remains unaf-
fected. Consider the B-run σ starting with the A-sequence
((1, 2), (1, 3), (3, 1), (1, 2), (2, 3)), which is interpreted as
the scenario where Alice sends a message to Bob first (σ0 =
(1, 2)), then to Charles (σ1 = (1, 3)), then Charles replies
to Alice (σ2 = (3, 1)), and so on. In this scenario, at the
first step Alice sends her initial beliefs that she heards about
the upcoming lockdown to Bob, who revises his epistemic
state accordingly: Ψ2

σ1
= Ψ2

σ0
◦2 Bel(Ψ1

σ0
) = Ψ2 ◦R l,

which corresponds to the preorder Ψ2
σ1

= lt ≺Ψ3 l̄t ≺Ψ3

lt̄ ≺Ψ3 l̄t̄ andBel(Ψ2
σ1

) ≡ l∧t. After this first step, the epis-
temic states of both Alice and Charles remain unchanged
Ψ1
σ1

= Ψ1
σ0

= Ψ1 and Ψ3
σ1

= Ψ3
σ0

= Ψ3. Then, by building
the epistemic profile sequence iteratively, it is not difficult to
verify in this scenario that at step 5, the three agents reach a
consensus: Bel(Ψ1

σ5
) ≡ Bel(Ψ2

σ5
) ≡ Bel(Ψ3

σ5
) ≡ l ∧ ¬t.

In particular, each agent is stable in σ, and the formula l∧¬t
and any weaker formula is unanimously accepted in σ.

Basic Properties
Let us first show that a set of basic properties, introduced and
discussed in (Schwind et al. 2015) and satisfied by Belief
Revision Games (BRGs), are also satisfied by BFNs. A BFN
B = 〈G, ~Ψ,~◦,S〉 satisfies (CP) (resp. (AP), (UP)) if for
every B-run σ, every step s ∈ N and every formula ϕ:
(CP) ∀i ∈ V Bel(Ψi

σs
) 6|= ⊥

(AP) (∀i ∈ V ϕ |= Bel(Ψi))⇒ (∀i ∈ V ϕ |= Bel(Ψi
σs

))

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10699



(UP) (∀i ∈ V Bel(Ψi) |= ϕ)⇒ (∀i ∈ V Bel(Ψi
σs

) |= ϕ)
(CP) (Consistency Preservation) requires that agents

(who initially have consistent beliefs as required by
BFNs) never become self-conflicting in any B-run. (AP)
(Agreement Preservation) asks that if all agents initially
agree on some alternatives, they will not change their mind
about them. And (UP) (Unanimity Preservation) states that
every piece of beliefs which is initially entailed by every
agent’s beliefs should remain so in their belief sequence.

We can show that:
Proposition 2. Every BFN satisfies (CP), (AP) and (UP).

Another property called monotonicity was considered in
(Schwind et al. 2015) and discussed further in (Schwind
et al. 2016). This property was used as a basis for defining
further notions related to control issues and bribery, but it
was shown not to be satisfied by BRGs in the general case.
Our BFNs do not satisfy this property either, but as opposite
to BRGs, this property is not necessary to derive interesting
results on bribery, which will be shown in the next sections.

Responsiveness and Stability
Two other properties were considered in (Schwind et al.
2015): responsiveness and stability. Before investigating
them in the context of BFNs, let us introduce a key prop-
erty of B-runs. An infinite A-sequence σ = (σs)s∈N is
said to be disjunctive if σ contains all possible finite A-
sequences, i.e., for each m ∈ N and every finite A-sequence
σ′ = (σ′0, . . . , σ

′
m), there exists p ∈ N such that for each

q ∈ {0, . . . ,m}, σp+q = σ′q . We can show that:
Proposition 3. For each BFN B and each B-run σ, σ is a
disjunctive A-sequence.

This observation is pivotal in our following results.

Responsiveness. In (Schwind et al. 2015) a property of
responsiveness was introduced and shown to be satisfied
by BRGs. The property states that at any given step, every
agent should modify their beliefs at the next step whenever
their beliefs are inconsistent with the beliefs of each one
of their acquaintances, and the conjunction of the beliefs
of the set of her acquaintances is consistent. It is easy to
see that this property is not satisfied by BFNs: BFNs evolve
asynchronously, i.e., only one agent modifies their epistemic
state at each step, and since the revision policy of each agent
is an improvement operator and not necessarily a revision
one, their modified belief Bel(Ψi

σs+1
) may be equivalent to

their previous beliefs Bel(Ψi
σs

) even if those beliefs were
inconsistent with the newly received ones. That being said,
the core idea underlying the notion of responsiveness is that
if an agent i is influenced by another agent j (i.e., there ex-
ists a link (j, i) ∈ A) and that j does not change their beliefs,
then there must exist a future step when i agrees with j. We
call this property (DR) (for Delayed Responsiveness):

(DR) ∀(j, i) ∈ A, ∀s ∈ N, ∃s′ ≥ s such that Bel(Ψi
σs′

) ∧
Bel(Ψj

σs′
) 6|= ⊥

We intend to show that (DR) is satisfied by every BFN.
Recall that since for each agent i ∈ V , each change policy

◦i satisfies (I1*). This means that in any B-run σ and for any
pair of agents (j, i) ∈ A, there exists a finite A-sequence
σji defined as σji = (es)s∈{1,...,ki}, where ki is the least
integer such that for each epistemic state Ψ and each formula
ϕ, Bel(Ψ ◦kii ϕ) |= ϕ and for each es ∈ σji, es = (j, i).
We call the sequence σji the control sequence from j to i.
An interesting consequence of the fact that every B-run σ is
disjunctive (cf. Proposition 3) is that for all agents i, j ∈ V
such that (j, i) ∈ A, the control sequence from j to i appears
in σ infinitely many times. This means that:
Lemma 1. Let σ be any B-run, (j, i) ∈ A, s ∈ N and
s∗ ≥ s be any step such that (σs∗ , . . . , σs∗+ki) = σji. Then
Bel(Ψi

σs∗+ki
) |= Bel(Ψj

σs∗+ki
).

And as a direct consequence of Lemma 1, we get that:
Corollary 1. Every BFN satisfies (DR).
Stability. In the context of BRGs, (Schwind et al. 2015)
gave sufficient, reasonable conditions on the revision poli-
cies used by the agents under which stability is satisfied, in
the case when G is a directed acyclic graph. We exhibit a
simple example showing that this is not the case for BFNs:
Proposition 4. Let B = 〈G, ~Ψ,~◦,S〉 be any BFN such
that V = {1, 2, 3}, A = {(1, 3), (2, 3)} and Bel(Ψ1) ∧
Bel(Ψ2) |= ⊥. Then for each B- run σ, the agent 3 is not
stable in σ.

We intend now to characterize stable BFNs based on the
topology of their acquaintance graph. Beforehand, let us in-
troduce some basic notions on graphs. A G = (V,A) is said
to be strongly connected if for all distinct x, y ∈ V , there
is a path from x to y in G. A strongly connected component
(SCC) of G is a maximal subgraph G′ = (V ′, A′) of G that
is strongly connected. In the following, we simply identify
an SCC G′ = (V ′, A′) with the set of vertices of the corre-
sponding subgraph, i.e., with V ′. The set of all SCCs VCond
of a graph G forms a partition V1, . . . , Vm of V . When each
SCC Vi of G is contracted into a single vertex, the result-
ing graph Cond(G) = (VCond, ACond) is a directed acyclic
graph (DAG) and is called the condensation of G. For each
Vi ∈ VCond, we define Parents(Vi) = {Vj ∈ VCond |
(Vj , Vi) ∈ ACond}. An SCC Vi ∈ VCond is called a source
SCC if Parents(Vi) = ∅.

Let B = 〈G, ~Ψ,~◦,S〉 be any BFN, which will be re-
ferred to in the rest of this section. Recall that a set of agents
V ′ ⊆ V is strongly consensual in B when for every B-run
σ, V ′ is stable in σ and there is a formula α such that for
each agent i ∈ V ′, Outσ(i) ≡ α. So, a set V ′ is strongly
consensual only if V ′ is stable. We intend to show that the
converse is also true for SCCs. Our result is based on the
following strengthening of Lemma 1 on control sequences
(see Lemma 2 below). Let V ′ ⊆ V , and p = (i1, . . . , im)
be any V ′-path, i.e., a path in G such that for each it ∈ p,
it is an agent from V ′. Define σp as the concatenation of all
control sequences σilil+1 for each l ∈ {1, . . . ,m − 1}, i.e.,
σp = σi1i2 · . . . · σim−1im . The sequence σp is called a con-
trol path from i1 to im. Note that the same agent may appear
several times in the path p, and in particular one may have
that i1 = im. Based on a similar argument as the one used
to prove Lemma 1, we get that:
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Lemma 2. Let V ′ ⊆ V , i be an agent from V ′, p =
(i1, . . . , im) be any V ′-path such that im = i, σ be
any B-run, s ∈ N and s∗ ≥ s be any step such that
(σs∗ , . . . , σsp∗) = σp, where sp∗ = s∗ + |σp| − 1. Then for
each agent j ∈ V ′, Bel(Ψi

σs
p
∗
) |= Bel(Ψj

σs
p
∗
).

Proposition 5. If V ′ is an SCC ofG, then V ′ is stable if and
only if V ′ is strongly consensual.

Another interesting consequence of Lemma 2 is that:

Proposition 6. If V ′ is a source SCC ofG, then V ′ is stable.

And as a direct consequence of Propositions 5 and 6:

Corollary 2. IfG is strongly connected, then B is stable and
strongly consensual.

It is interesting to notice that this result strengthens the
one obtained for BRGs (Schwind et al. 2016), which re-
quired very specific conditions to conclude stability and
strong consensus, i.e., for G be a complete graph and for
every agent i to use a revision policy parameterized by a
specific (belief merging) operator, i.e., the drastic distance-
based IC merging operator (Konieczny and Pino Pérez
2002).

We now intend to characterize the class of stable BFNs,
based on the topology of the acquaintance graph.

Proposition 7. If V ′ is an SCC ofG, Parents(V ′) = {V ′′}
and V ′′ is stable, then V ′ is stable.

We are now ready to give a characterization of the class
of stable BFNs, based on the topology of the acquaintance
graph only. Given a graph G = (V,A), we denote by B(G)

the class of BFNs B = 〈G, ~Ψ,~◦,S〉, i.e., the class of BFNs
having G as acquaintance graph. We say that a class of
BFNs is stable whenever all BFNs from the class are sta-
ble. Now, Proposition 4 tells us that with an SCC V ′ with
Parents(V ′) ≥ 2, it is possible to build a BFN instance
such that V ′ is not stable. Taking this observation together
with Propositions 6 and 7, we get that:

Corollary 3. The class B(G) is stable if and only if
Cond(G) is a tree.

In other words, when one has no information about the
beliefs of the agents in a given graph, one can guarantee that
a given BFN is stable precisely when the condensation of its
acquaintance graph has a tree-like structure.

Bribery
In this section, we are interested in whether the agents in
a BFN can be influenced, i.e., whether a given formula can
be made unanimously accepted by modifying a BFN, and
whether this can be done through a “bribery” of a specific
subset of influential agents.

Let us call an influence scheme IS a pair IS = (V ′, α),
where V ′ is a set of agents and α is a propositional for-
mula. Given a BFN B = 〈G, ~Ψ,~◦,S〉, an influence scheme
in B is simply an influence scheme IS = (V ′, α) such that
V ′ ⊆ V . An influence scheme IS is interpreted as a set of
agents that one intends to influence (bribe) by sending them

α. This implies the modification of a given BFN, which is
made precise through the notion of bribed BFN.

Given a BFN B = 〈G, ~Ψ,~◦,S〉 and an influence scheme
IS = (V ′, α) in B, a bribed BFN B by IS is a BFN BIS =

〈GIS , ~ΨIS ,~◦IS ,S〉, where:
• GIS = (VIS , AIS), with VIS = V ∪{n+ 1} and AIS =
A ∪ {(n+ 1, i) | i ∈ V ′}

• ~ΨIS = 〈Ψ1, . . . ,Ψn,Ψn+1〉, with Bel(Ψn+1) ≡ α
• ~◦IS = 〈◦1, . . . , ◦n, ◦n+1〉

So, a bribed BFN BIS is interpreted as an extension of B by
“applying” an influence scheme IS = (V ′, α) on it, which
consists in adding a new agent n+1 to V with beliefs equiv-
alent to α and adding acquaintance relations from the newly
added agent n+ 1 to all agents in V ′.

Now, we are interested in the extent to which an influence
scheme can make certain beliefs ϕ unanimously accepted
in a BFN. Given a propositional formula ϕ, an influence
scheme IS on B is said to be successful for ϕ in B if ϕ
is unanimously accepted in every BFN BIS . We extend the
notion to classes of BFNs as follows: recall that B(G) de-
notes the class of BFNs B = 〈G, ~Ψ,~◦,S〉, i.e., the class of
BFNs having G as acquaintance graph. Then we say that IS
is successful for ϕ in B(G) if IS is successful for ϕ in every
BFN B ∈ B(G).

We have the following characterization result of the suc-
cessful influence schemes in classes B(G).
Proposition 8. Let IS = (V ′, α) be an influence scheme
and ϕ be a propositional formula such that [ϕ] ( Ω. Then
IS is successful for ϕ in B(G) if and only if (α |= ϕ and for
each source SCC Vsource of G, Vsource ∩ V ′ 6= ∅).

This result means that, to make a certain formula ϕ unan-
imously accepted in a BFN, it is enough to bribe one agent
per source SCC by sending them ϕ or a formula that is
logically stronger. This has an interesting consequence on
the computational cost of applying an “optimal” influence
scheme on a BFN. Let us assume that all agents in a graph
have the same bribery “cost”, which is reflected by the fact
that the cost of an influence scheme IS = (V ′, α) is simply
defined as Cost(IS) = |V ′|. Then a direct consequence of
Proposition 8 and of the fact the set of all source SCCs in any
graph can be computed in polynomial time (Tarjan 1972) is
that:
Corollary 4. An influence IS of minimal cost and that is
successful for any formula ϕ in B(G) can be computed in
time polynomial in |G|.

Empirical Study
This section aims to experimentally emphasize the tendency
of BFNs to converge to a stable state (Proposition 3) and
unanimous acceptance of some pieces of beliefs in bribed
BFNs (Proposition 3) within a reasonable number of steps.

We considered various BFN instances B = 〈G, ~Ψ,~◦,S〉,
altering the structure of the acquaintance graph while main-
taining the other parameters constant: n = |V | = 20 agents,
|P| = 4 propositional variables (i.e., |Ω| = 16 worlds),
E was the set of all total preorders over worlds, and each
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Figure 2: Number of steps necessary to reach a stable state
for each BFN instance class.

agent’s belief change policy was set to ◦i = ◦I , the one-
improvement operator. Our focus was on a stochastic pro-
cess S activating communication pairs (i, j) ∈ A follow-
ing a Bernoulli scheme with a uniform probability distri-
bution on A × A. In other words, at each step s ∈ N,
Pr(As = (i, j)) = 1/|A|. The epistemic state Ψi of each
agent was generated as follows: we defined a set of worlds
W , where each world ω ∈ Ω had a probability p of be-
longing to W equal to 0.2. Each Ψi was then defined as a
two-level total preorder with [Bel(Ψi)] = W .

We considered the following acquaintance graph types:

• R7, R10, R20, C: four classes of random graphs, where
each potential edge from V × V appears in A indepen-
dently with a specific probability p. The values of p were
chosen from the set 7%, 10%, 20%, 100%. When p = 100,
it results in complete graphs, which are denoted by “C”.

• BA: Barabasi-Albert preferential attachment graphs (Al-
bert and Barabasi 2002), generated with an initial sample
vertex size of 3 and the addition of two vertices at each
iteration step in the generation procedure.

• K: Kleinberg small-world graphs (Kleinberg 2000), char-
acterized by 4 rows and 5 columns, with a clustering ex-
ponent of 2.

• P: graphs consisting of a single path (1, . . . , n).
• L: graphs consisting of a single loop (1, . . . , n, 1).
• P+ (resp. L+): the symmetric closure of P (resp. L).

For all instances except P and L, the graphs were sym-
metrically closed (i.e., an edge (j, i) was added to the ac-
quaintance graph whenever (i, j) belonged to it). This en-
sured that all instances had a strongly connected acquain-
tance graph, i.e., all corresponding BFNs were indeed stable
(cf. Corollary 2).

We have conducted two kinds of experiments, performed
on 10,000 instances for each instance type. For each instance
B, we simulated a B-run σ. In the first experiment, we com-
puted the number of steps required to reach a stable state
with global consensus (cf. Corollary 2). In the second one,
we considered a bribed BFN BIS with IS = ({n + 1}, α),
α being a formula generated at random similarly to each
agent’s beliefs, with probability p = 0.5; for each bribed
BFN, we computed the number of steps necessary to ensure
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Figure 3: Number of steps necessary to reach a unanimous
acceptance of a beliefs held by an additional agent.

that α is unanimously accepted in BIS , which is guaranteed
by Proposition 8. The results are reported through Tukey’s
box plots in Figures 2 and 3, corresponding respectively to
the first and the second experiment. Outliers were ignored
for the sake of readability.

Our findings indicate a correlation between steps needed
for stability in BFNs and unanimous acceptance of a piece
of beliefs, except for non-symmetric loops (L). While a thor-
ough empirical analysis of BFNs awaits future exploration,
our current focus centers on demonstrating proof of concept:
our theoretical reachability results demonstrate practical ap-
plicability with observable scaling in a few thousand steps.
Notably, for complete graphs, Barabasi-Albert preferential
influence graphs, and Kleinberg small-world graphs — rep-
resenting artificial models of real-world social networks —
the target state was reached within 500 steps in half of the
instances, a reasonable outcome given the inherent stochas-
ticity of the process.

We have created a software application, available online.6
It includes a user-friendly graphical interface that allows
users to run multiple instances of BFNs, covering all the in-
stance types used in our empirical study.

Conclusion
We introduced Belief Flow Networks (BFNs), a framework
marking a step forward in accurately modeling how beliefs
change within social networks. BFNs are arguably more
realistic than previous logical-based approaches for agents
communicating within a network: they allow asynchronous
communication among agents, consider the iterative nature
of belief change, and we have demonstrated the ability to
predict when a group’s beliefs will reach a stable consensus.
These practical outcomes underscore the usefulness of BFNs
as a powerful tool for understanding how beliefs spread
in complex interconnected systems. We have also demon-
strated that identifying an optimal bribery policy is achiev-
able in polynomial time. So, as a next step, it will be es-
sential to explore strategies that increase the complexity of
bribery and other manipulative actions, in an effort to coun-
teract and mitigate manipulations and the spread of fake
news within social networks.

6https://github.com/nicolas-schwind/BFN-gui
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