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Abstract

Belief revision games (BRGs) are concerned with the dyna-
mics of the beliefs of a group of communicating agents.
BRGs are “zero-player” games where at each step every agent
revises her own beliefs by taking account for the beliefs of
her acquaintances. Each agent is associated with a belief state
defined on some finite propositional language. We provide a
general definition for such games where each agent has her
own revision policy, and show that the belief sequences of
agents can always be finitely characterized. We then define a
set of revision policies based on belief merging operators. We
point out a set of appealing properties for BRGs and investi-
gate the extent to which these properties are satisfied by the
merging-based policies under consideration.

Introduction
In this paper, we introduce belief revision games (BRGs),
that are concerned with the dynamics of the beliefs of a
group of communicating agents. BRGs can be viewed as
“zero-player” games: at each step of the game each agent
revises her current beliefs (expressed in some finite proposi-
tional language) by taking account for the beliefs of her ac-
quaintances. The aim is to study the dynamics of the game,
i.e., the way the beliefs of a group of agents evolve depen-
ding on how agents are ready to share their beliefs. BRGs
could be useful to model the evolution of beliefs in a group
of agents in social networks, and to study several interesting
notions such as influence, manipulation, gossip, etc. In this
paper we mainly focus on the definition of BRGs, using for-
mal tools coming from belief change theory, and investigate
their behavior with respect to a set of expected logical pro-
perties. Let us introduce a motivating example of a BRG.

Example 1 Consider a group of three undergraduate stu-
dents, Alice, Bob and Charles, following the same CS cur-
riculum. Bob is a friend of both Alice and Charles, but
Alice and Charles do not know each other. Alice, Bob and
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Charles want to prepare the final exam of the ”Basics of pro-
gramming” course. Each student has some feelings about
the topics which will be considered by their teacher for
this exam. At start, Alice believes that ”Binary search” will
not be among the topics of the final exam, unlike ”Bubble
sort”; Bob believes that ”Binary search” will be kept by
the teacher, and that if ”Bubble sort” is kept then ”Quick
sort” will be chosen as well by the teacher; finally, Charles
just feels that ”Binary search” will not be considered by
the teacher. Each pair of friends exchange their opinions
by sending e-mails in the evening. Each student is ready
to make her opinion evolve by adopting the opinions of her
friends when this does not conflict with hers, and by conside-
ring as most plausible any state of affairs which is as close
as possible to the set of opinions at hand (her own one plus
her friends’ ones) in the remaining case. At the end of each
day, Alice e-mails to Bob with her feelings, Bob to both Alice
and Charles, and Charles to Bob. One is asked now about
what can be inferred from this description. Some of the key
questions are: (1) How beliefs must be updated? (2) Will
agents always agree on some pieces of belief if they agree
on it at the beginning of the game? (3) Will they eventually
stop changing their beliefs?

In the following, we present a formal setting for BRGs.
Our very objective is to provide some answers to the ques-
tions above. Thus, we address question (1) by putting for-
ward a set of revision policies which are based on exis-
ting belief merging operators from the literature and the in-
duced belief revision operators. We identify a set of valu-
able properties for BRGs. They include unanimity preser-
vation which models question (2) and convergence which
models question (3). For each revision policy under consi-
deration, we determine whether such properties are satisfied
or not. An extended version (including proofs) is available
at http://www.cril.fr/brg/brg-long.pdf.

Belief Revision Games
Belief sets are represented using a propositional language
LP defined from a finite set of propositional variables P and
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the usual connectives. ⊥ (resp. >) is the Boolean constant
always false (resp. true). An interpretation is a total function
from P to {0, 1}. The set of all interpretations is denoted
W . An interpretation ω is a model of a formula ϕ ∈ LP
if and only if it makes it true in the usual truth functional
way. Mod(ϕ) denotes the set of models of the formula ϕ,
i.e., Mod(ϕ) = {ω ∈ W | ω |= ϕ}. |= denotes logi-
cal entailment and ≡ logical equivalence, i.e., ϕ |= ψ iff
Mod(ϕ) ⊆Mod(ψ) and ϕ ≡ ψ iff Mod(ϕ) = Mod(ψ). A
profile K = 〈ϕ1, . . . , ϕn〉 is a finite vector of propositional
formulae. Two profiles of formulae K1 = 〈ϕ1

1, . . . , ϕ
1
n〉

and K2 = 〈ϕ2
1, . . . , ϕ

2
n〉 are said to be equivalent, denoted

K1 ≡ K2 if there is a permutation f over {1, . . . , n} such
that for every i ∈ 1, . . . , n, ϕ1

i ≡ ϕ2
f(i). Let us now intro-

duce the formal definition of a Belief Revision Game.
Definition 1 (Belief Revision Game) A Belief Revision
Game (BRG) is a 5-tuple G = (V,A,LP , B,R) where
• V = {1, . . . , n} is a finite set;
• A ⊆ V × V is an irreflexive binary relation on V ;
• LP is a finite propositional language;
• B is a mapping from V to LP ;
• R = {R1, . . . , Rn}, where each Ri is a mapping

from LP × LP in(i) to LP with in(i) = |{j |
(j, i) ∈ A}| the in-degree of i, such that for all for-
mulae ϕ1

0, ϕ
1
1, . . . , ϕ

1
in(i), ϕ

2
0, ϕ

2
1, . . . , ϕ

2
in(i), if ϕ1

0 ≡
ϕ2

0 and 〈ϕ1
1, . . . , ϕ

1
in(i)〉 ≡ 〈ϕ2

1, . . . , ϕ
2
in(i)〉, then

Ri(ϕ
1
0, ϕ

1
1, . . . , ϕ

1
in(i)) ≡ Ri(ϕ

2
0, ϕ

2
1, . . . , ϕ

2
in(i)), and

such that if in(i) = 0, then Ri is the identity function.
Let G = (V,A,LP , B,R) be a BRG. The set V repre-

sents the set of agents under consideration in G. The set A
represents the set of acquaintances between the agents. In-
tuitively, if (i, j) ∈ A then agent j is “aware” of the be-
liefs of agent i in the sense that agent i communicates her
beliefs to agent j during the game. The set B represents
each agent’s beliefs expressed by a formula from LP : for
each i ∈ V , the formula B(i) (noted Bi for short) is called
a belief state and represents the initial beliefs of agent i.
Lastly, each element Ri ∈ R is called the revision policy
of agent i. Let us denote Ci the context of i, defined as the
sequence Ci = Bi1 , . . . , Biin(i)

where i1 < · · · < iin(i) and
{i1, . . . , iin(i)} = {ij | (ij , i) ∈ A}. Then Ri(Bi, Ci) is the
belief state of agent i once revised by taking into account her
own current beliefsBi and her current context. It is assumed
by definition that all beliefs are considered up to equivalence
(i.e., the syntactical form of the beliefs does not matter) and
that an agent’s beliefs do not evolve spontaneously when she
has no neighbor.

Playing a BRG consists in determining how the beliefs of
each agent evolve each time a revision step is performed.
This calls for a notion of ”belief sequence”, which makes
precise the dynamics of the game:
Definition 2 (Belief Sequence) Given a BRG G = (V, A,
LP , B, R) and an agent i ∈ V , the belief sequence of i,
denoted (Bsi )s∈N, states how the beliefs of agent i evolve
while moves take place. (Bsi )s∈N is inductively defined as
follows:

• B0
i = Bi;

• Bs+1
i = Ri(B

s
i , Csi ) for every s ∈ N, where Csi is the

context of i at step s.

Bsi denotes the belief state of agent i after s moves.
Since LP is a finite propositional language, there exists

only finitely many formulae up to equivalence, hence only
finitely many belief states can be reached. To make it formal,
we need the concept of belief cycle:

Definition 3 (Belief Cycle) A sequence (Ks)s∈N of for-
mulae from LP is cyclic if there exists a finite subse-
quence Kb, . . . ,Ke such that for every j > e, we have
Kj ≡ Kb+((j−b)mod(e−b+1)). In this case, the (characte-
ristic) belief cycle of (Ks)s∈N is defined by the subsequence
Kb, . . . ,Ke for which b and e are minimal.

By the above argument, it is easy to prove that:

Proposition 1 For every BRG G = (V, A, LP , B, R) and
every agent i ∈ V , the belief sequence of i is cyclic.

As a consequence, each agent i is associated with a be-
lief cycle which we simply denote Cyc(Bi): the belief se-
quence of every agent i (which is an infinite sequence) can
always be finitely described, since it is entirely characterized
by its initial segment B0

i , B
1
i , . . . , B

b−1
i and its belief cycle

Cyc(Bi) = Bbi , B
b+1
i , . . . , Bei , which will be repeated (up

to equivalence) ad infinitum in the sequence.
In the following, we are interested in determining the

pieces of beliefs which result from the interaction of the
agents in a BRG, focusing on the agents’ belief cycles. A
formula ϕ is considered accepted by an agent when it holds
in every state of its belief cycle, which means that from some
step s, ϕ will always hold. Then we define the notion of ac-
ceptability at the agent level and at the group level:

Definition 4 (Acceptability) LetG = (V, A, LP , B,R) be
a BRG and ϕ ∈ LP . ϕ is accepted by i ∈ V if and only if for
every Bsi ∈ Cyc(Bi), we have Bsi |= ϕ. ϕ is unanimously
accepted in G if and only if ϕ is accepted by all i ∈ V .

A case of interest is when |Cyc(Bi)| = 1, i.e., the belief
cycle of agent i has length 1. In such a case, the beliefs of
agent i “stabilize” once the belief cycle is reached. A specific
case is achieved by stable BRGs:

Definition 5 (Stability) Let G = (V,A,LP , B,R) be a
BRG. A belief state Bi ∈ B is said to be stable in G if
|Cyc(Bi)| = 1. The BRG G is said to be stable iff each
Bi ∈ B is stable in G.

Stability of a game is an interesting property, since it says
in a sense that we reach some equilibrium point, where no
agent further changes her belief. These two concepts will
take part of some further properties on BRGs which we will
introduce and investigate in the following.

Merging-Based Revision Policies
While all kinds of possible revision policies are allowed for
BRGs, we now focus on revision policies R that are ra-
tionalized by theoretical tools from Belief Change Theory
(see e.g. (Alchourrón, Gärdenfors, and Makinson 1985)), in
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particular belief merging and belief revision operators. Be-
fore introducing specific classes of revision policies of in-
terest, let us introduce some necessary background on be-
lief merging and belief revision. Formally, given a propo-
sitional language LP a merging operator ∆ is a mapping
from LP × LPn to LP . It associates any formula µ (the in-
tegrity constraints) and any profile K = 〈K1, . . . ,Kn〉 of
belief states with a new formula ∆µ(K) (the merged state).
A merging operator ∆ aims at defining the merged state as
the beliefs of a group of agents represented by the profile,
under some integrity constraints. A set of nine standard pro-
perties denoted (IC0)–(IC8) are expected for merging ope-
rators (Konieczny and Pino Pérez 2002). Such operators are
called IC merging operators. For space reasons, we just re-
call those used in the rest of the paper:

(IC0) ∆µ(K) |= µ;

(IC1) If µ 6|= ⊥, then ∆µ(K) 6|= ⊥;

(IC2) If
∧
K∈KK ∧ µ 6|= ⊥, then ∆µ(K) ≡

∧
K∈KK ∧ µ;

(IC3) If K1 ≡ K2 and µ1 ≡ µ2, then ∆µ1(K1) ≡
∆µ2(K2);

(IC4) If K1 |= µ, K2 |= µ and ∆µ(〈K1,K2〉) ∧K1 6|= ⊥,
then ∆µ(〈K1,K2〉) ∧K2 6|= ⊥.

A couple of additional postulates have been investigated
in the literature, which are appropriate for some merging
scenarios. We recall below one of them, Disjunction (Ev-
eraere, Konieczny, and Marquis 2010):

(Disj) If
∨
K ∧ µ is consistent, then ∆µ(K) |=

∨
K.

(Disj) is not satisfied by all IC merging operators but is
expected in the case when it is assumed that (at least) one of
the agent is right (her beliefs hold in the actual world), but
we do not know which one.

Distance-based merging operators ∆d,f are characterized
by a pseudo-distance d (i.e., triangular inequality is not
mandatory) between interpretations and an (aggregation)
function f from R+ × · · · × R+ to R+ (some basic con-
ditions are required on f , including symmetry and non-
decreasingness conditions, see (Konieczny, Lang, and Mar-
quis 2004) for more details). They associate with every for-
mula µ and every profile K a belief state ∆d,f

µ (K) which sa-
tisfies Mod(∆d,f

µ (K)) = min(Mod(µ),≤d,fK ), where ≤d,fK
is the total preorder over interpretations induced by K de-
fined by ω ≤d,fK ω′ if and only if df (ω,K) ≤ df (ω′,K),
where df (ω,K) = fK∈K{d(ω,K)} and d(ω,K) =
minω′|=K d(ω, ω′). Usual distances are dD, the drastic dis-
tance (dD(ω, ω′) = 0 if ω = ω′ and 1 otherwise), and dH
the Hamming distance (dH(ω, ω′) = n if ω and ω′ differ on
n variables).

IC merging operators include some distance-based ones.
We mention here two subclasses of them: the summa-
tion operators ∆d,Σ (i.e., the aggregation function is the
sum Σ) and the GMin operators ∆d,GMin. GMin opera-
tors1 associate with every formula µ and every profile K

1Here we give an alternative definition of ∆d,GMin by means of
lists of numbers. However using Ordered Weighted Averages, one

ω K1 K2 K3 dΣ
H(ω,K) dGMin

H (ω,K)

11 0 2 2 4 (0,2,2)
10 1 1 1 3 (1, 1, 1)
01 1 1 1 3 (1, 1, 1)

Table 1: The merging operators ∆dH ,Σ and ∆dH ,GMin.

a belief state ∆d,f
µ (K) which satisfies Mod(∆d,f

µ (K)) =

min(Mod(µ),≤K), where≤d,GMin
K is the total preorder over

interpretations induced by K defined by ω ≤d,GMin
K ω′ if

and only if dGMin(ω,K) ≤lex dGMin(ω′,K) (where ≤lex
is the lexicographic ordering induced by the natural order)
and dGMin(ω,K) is the vector of numbers d1, . . . , dn ob-
tained by sorting in a non-decreasing order the multiset
〈d(ω,Ki) | Ki ∈ K〉.
Example 2 Let P = {a, b}, K = 〈K1,K2,K3〉 where
K1 = a ∧ b, K2 = K3 = ¬a ∧ ¬b, and µ = a ∨ b. We
consider both summation and GMin operators based on the
Hamming distance. Table 1 shows for each interpretation
ω ∈ Mod(µ) the distances dH(ω,Ki) for i ∈ {1, 2, 3},
and the distances dΣ

H(ω,K) and dGMin
H (ω,K) (interpreta-

tions ω are denoted as binary sequences following the or-
dering a < b). We get that ∆dH ,Σ

µ (K) ≡ (a∧¬b)∨ (¬a∧ b)
and ∆dH ,GMin

µ (K) ≡ a ∧ b.
Noteworthy, summation operators and GMin operators

satisfy all (IC0)–(IC8) postulates (whatever the pseudo-
distance under consideration), and additionally, GMin ope-
rators satisfy (Disj), as well as the operator ∆dD,Σ =
∆dD,GMin ((Disj) is not satisfied by ∆dH ,Σ).

Belief revision operators can be viewed as belief merging
operators restricted to singleton profiles: the revision
K1 ◦ K2 of a belief state K1 by another belief state K2

consists in “merging” the singleton profile 〈K1〉 under the
integrity constraints K2. Accordingly, if ∆ is an IC merging
operator then the revision operator ◦∆ induced by ∆ defined
for all states K1,K2 as K1 ◦∆ K2 = ∆K2(〈K1〉)
satisfies the standard AGM revision postulates
(Alchourrón, Gärdenfors, and Makinson 1985;
Katsuno and Mendelzon 1992).

We are now ready to introduce several classes of revision
policies Ri which are parameterized by an IC merging ope-
rator ∆ and for some of them, by the corresponding revi-
sion operator ◦∆.2 Let G = (V,A,LP , B,R) be a BRG. In
the following, we assume for the sake of simplicity that all
agents i ∈ V apply the same revision policy, i.e., given an
IC merging operator ∆, for all Ri ∈ R, Ri = R∆. Then let
us consider the following revision policies, defined at each
step s for any agent i who has a non-empty context Ci:
Definition 6 (Merging-Based Revision Policies)

• R1
∆(Bsi , Csi ) = ∆(〈Csi 〉);

could fit the definition of a distance-based operator (Konieczny,
Lang, and Marquis 2004).

2When using a merging operator without integrity constraints
we just note ∆(K) instead of ∆>(K) for improving readibility.
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step i Bi1 Bi2 Bi3
0 ¬s ∧ b s ∧ (b⇒ q) ¬s
1 b ∧ q ¬s ∧ b ∧ q b⇒ q
≥ 2 ¬s ∧ b ∧ q ¬s ∧ b ∧ q ¬s ∧ b ∧ q

Table 2: The belief sequences of Alice, Bob and Charles.

• R2
∆(Bsi , Csi ) = ∆∆(〈Csi 〉)(〈B

s
i 〉) [= Bsi ◦∆ ∆(〈Csi 〉)];

• R3
∆(Bsi , Csi ) = ∆(〈Bsi , Csi 〉);

• R4
∆(Bsi , Csi ) = ∆(〈Bsi ,∆(〈Csi 〉)〉);

• R5
∆(Bsi , Csi ) = ∆Bs

i
(∆(〈Csi 〉)) [= ∆(〈Csi 〉) ◦∆ Bsi ];

• R6
∆(Bsi , Csi ) = ∆Bs

i
(〈Csi 〉).

First of all, please note that since (IC3) requires ∆ to
be syntax-independent (i.e., profiles and integrity constraints
are considered up to equivalence), these revision policies are
all consistent with the conditions given in Definition 1.

Intuitively, these strategies are ranked according to the re-
lative importance given to each agent’s beliefs compared to
her neighbors’ opinion. ForR1

∆, only the aggregated opinion
of the neighbors is relevant. For R2

∆, the current opinion of
the agent is revised by the aggregated opinion of the neigh-
bors; doing so, an agent is ready to adopt the part of the
merged beliefs of her neighbors which are as close as pos-
sible to her own current beliefs. For R3

∆ the agent considers
that her opinion is as important as each one of her neighbors.
For R4

∆ the agent considers that her opinion is as important
as the aggregated opinion of her neighbors. ForR5

∆ andR6
∆,

the agent does not give up her current beliefs and just accepts
additional information compatible with them. Noteworthy,
R5

∆ and R6
∆ are not equivalent: for R5

∆ the agent first ag-
gregates her neighbors’ opinion, and then revise the merged
result by her own opinion; for R6

∆ the agent proceeds with
her neighbors’ opinion and her own one in a single step.3

Example 1 (continued) We formalize the example pre-
sented in the introduction as the BRGG = (V,A,LP , B,R)
defined as follows. Let V = {1, 2, 3} where 1 cor-
responds to Alice, 2 to Bob, and 3 to Charles. A =
{(1, 2), (2, 1), (2, 3), (3, 2)} expresses that Alice and Bob
are connected, and that Bob and Charles are connected.
LP is built up from the set of propositional variables P =
{s, b, q}, where s stands for “Binary Search ”, b for “Bubble
Sort” and q for “Quick Sort”. The initial beliefs of agents
are expressed as B1 = ¬s ∧ b, B2 = s ∧ (b ⇒ q) and
B3 = ¬s. Since in the case of conflicting beliefs, each
agent considers to merge her friends’ opinions and her own
one together, revision policies R3

∆ are appropriate candi-
dates for each agent. Let us consider the summation opera-
tor based on the Hamming distance. We have R1 = R2 =
R3 = R3

∆dH,Σ . The belief sequences associated with the
three agents are given in Table 2: the belief cycle of agent
1 (resp. 2, 3) is given by (B2

1) (resp. (B1
2), (B2

3)). G is a
stable game. Note that ¬s ∧ b ∧ q is unanimously accepted
in G (as well as all formulae entailed by it).

3Consider for instance Ci = p ∧ q,¬p,¬p ∧ ¬q and Bi = p.
Then R5

∆dD,Σ(Bi, Ci) ≡ p∧¬q whereas R6
∆dD,Σ(Bi, Ci) ≡ p∧q.

Logical Properties for Belief Revision Games
We introduce now some expected logical properties for
BRGs, and investigate which BRGs satisfy them depending
on the chosen revision policy. While the properties here-
after are relevant to all BRGs, we focus on BRGs which
are instantiated with revision policies from the six classes
defined in the previous section, and assume that the same
revision policy is applied for each agent. Given a revision
policy Rk∆, G(Rk∆) is the set of all BRGs (V,C,LP , C,R)
where for each Ri ∈ R, Ri = Rk∆. Additionally, Rk∆ is
said to satisfy a given property P on BRGs if all BRGs from
G(Rk∆) satisfy P .

We start with a set of “preservation” properties which are
counterparts of some postulates on belief merging operators
(cf. previous section). These properties express the idea that
the interaction between agents should not lead them to “de-
grade” their belief states.

Definition 7 (Consistency Preservation (CP)) A BRG
G = (V, A, LP , B, R) satisfies (CP) if for each Bi ∈ B, if
Bi is consistent then all beliefs from (Bsi )s∈N are consistent.

(CP) requires that agents with consistent initial beliefs
never become self-conflicting in their belief sequence. It is
the direct counterpart of (IC1) for merging operators:

Proposition 2 For every k ∈ {1, . . . , 6}, Rk∆ satisfies (CP)
if ∆ satisfies (IC1).
Definition 8 (Agreement Preservation (AP)) A BRG G =
(V, A, LP , B, R) satisfies (AP) if given any consistent for-
mula ϕ ∈ LP , if for each Bi ∈ B, ϕ |= Bi then for each
Bi ∈ B and at every step s ≥ 0, ϕ |= Bsi .

(AP) requires that if all agents initially agree on some al-
ternatives, then they will not change their mind about them.
It corresponds to (IC2) for merging operators:

Proposition 3 For every k ∈ {1, . . . , 6}, Rk∆ satisfies (AP)
if ∆ satisfies (IC2).
Definition 9 (Unanimity Preservation (UP)) A BRG G =
(V, A, LP , B, R) satisfies (UP) if given any formula ϕ ∈
LP , if for each Bi ∈ B, Bi |= ϕ then for each Bi ∈ B and
at every step s ≥ 0, Bsi |= ϕ.

(UP) states that every formula which is a logical con-
sequence of the initial agents’ beliefs should remain so in
their belief sequence; note that in such a case, the formula
is unanimously accepted in the BRG under consideration
(cf. Definition 4). It is interesting to note that the statements
of (AP) and (UP) have quite a similar structure. However,
(AP) expresses a unanimity on models whereas (UP) is con-
cerned with unanimity on formulae. The corresponding pro-
perties for merging operators have been presented in (Ev-
eraere, Konieczny, and Marquis 2010), where the authors
also showed that the corresponding postulate of unanimity
on formulae for merging operators is equivalent to (Disj)
(cf. previous section).

Proposition 4 For every k ∈ {1, . . . , 6}, Rk∆ satisfies (UP)
if ∆ satisfies:
• (IC0) when k ∈ {5, 6};
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• (Disj) when k ∈ {1, 3, 4};
• (IC0) and (Disj) when k = 2.

In the general case, revision policies Rk∆ with k ∈
{1, 2, 3, 4} do not satisfy (UP) for merging operators ∆
which do not satisfy (Disj). This is because such merging
operators may produce new beliefs absent from the states of
the profile under consideration: some interpretations that do
not satisfy any of the input belief states can be models of the
merged state. However, for R5

∆ and R6
∆, ∆ is not required

to satisfy (Disj) since in the presence of (IC0) alone these
policies are the most change-reluctant ones: each agent who
accepts ϕ at some step will keep accepting ϕ at the next step
since she will only refine her own beliefs. We address pre-
cisely the behavior of all merging-based revision policies in
terms of agents’ responsiveness to their neighbors:

Definition 10 (Responsiveness (Resp)) A BRG G = (V,
A, LP , B, R) satisfies (Resp) if for each Bi ∈ B such
that Ci is not empty, for every step s ≥ 0, if (i) for every
Bsij ∈ C

s
i , Bsij ∧ B

s
i |= ⊥, and (ii)

∧
Bs

ij
∈Csi

Bsij 6|= ⊥, then

Bs+1
i 6|= Bsi .

Informally, (Resp) demands that an agent should take into
consideration the beliefs of her neighbors whenever (i) her
beliefs are inconsistent with the beliefs of each one of her
neighbors, and (ii) her neighbors agree on some alternatives.
Accordingly, (Resp) is not satisfied by R5

∆ and R6
∆:

Proposition 5 If ∆ satisfies (IC0), then R5
∆ and R6

∆ do not
satisfy (Resp).

But (Resp) is satisfied by most of the remaining revision
policies Rk∆ under some basic conditions on ∆:

Proposition 6 For every k ∈ {1, 2, 4}, Rk∆ satisfies (Resp)
if ∆ satisfies:

• (IC2) when k = 1;
• (IC0) and (IC2) when k = 2;
• (IC2) and (IC4) when k = 4.

Intuitively, R3
∆ seems to be less change-reluctant than

R4
∆, since for R3

∆ the agent considers her beliefs as being as
important as each one of her neighbors whereas for R4

∆, she
considers her beliefs as being as important as the aggregated
beliefs of her neighbors. However, surprisinglyR3

∆ does not
satisfy (Resp) even when some “fully rational” IC merging
operators ∆ are used:

Proposition 7 R3
∆dH,Σ does not satisfy (Resp).

Recall that the merging operator ∆dH ,Σ satisfies all the
standard IC postulates (IC0)–(IC8). Thus, the fact that ∆
satisfies those postulates is not enough for R3

∆ to satisfy
(Resp). However, we show below that these postulates are
consistent with (Resp), in the sense that there exists a mer-
ging operator ∆ satisfying (IC0)–(IC8) (and (Disj)) which
makes R3

∆ a responsive policy:

Proposition 8 For any aggregation function f , R3
∆dD,f sa-

tisfies (Resp).

In particular, the revision policy R3
∆dD,Σ = R3

∆dD,GMin

satisfies (Resp).
Given a BRG G = (V, A, LP , B, R), a formula ϕ and

an agent i ∈ V , let us denote Gi→ϕ the BRG (V , A, LP ,
B′, R) defined as B′i = B′i ∧ ϕ and for every j ∈ V , j 6= i,
B′j = Bj .

Definition 11 (Monotonicity (Mon)) A BRG G = (V, A,
LP , B, R) satisfies (Mon) if whenever ϕ is unanimously
accepted in G, ϕ is also unanimously accepted in Gi→ϕ for
every i ∈ V .

(Mon) is similar to the monotonicity criterion in Social
Choice Theory. It is expressed in (Woodall 1997) as the
condition where a candidate should not be harmed if she is
raised on some ballots without changing the orders of the
other candidates. In the BRG context, a formula ϕ which is
unanimously accepted should still be unanimously accepted
if some agent’s initial beliefs were “strengthened” by ϕ.

For each revision policy Rk∆, k ∈ {1, . . . , 6}, (Mon) is
not guaranteed even when the merging operator under con-
sideration satisfies the postulates (IC0)–(IC8):
Proposition 9 For every k ∈ {1, . . . , 6}, Rk

∆dH,Σ does not
satisfy (Mon).

The existence of revision policies Rk∆ which satisfy
(Mon) remains an open issue. However, one conjectures that
for every k ∈ {1, . . . , 6}, Rk

∆dD,Σ satisfies (Mon). This
claim is supported by some empirical evidence. We have
conducted a number of tests when four propositional sym-
bols are considered in the language LP , for various graph
topologies up to 10 agents and for k ∈ {1, . . . , 6}. All the
tested instances supported the claim.

The last property we provide concerns the stability issue:
Definition 12 (Convergence) A BRG satisfies (Conv) if it is
stable.
Proposition 10 The revision policies R5

∆ and R6
∆ satisfy

(Conv) if ∆ satisfies (IC0).
None of the remaining revision policies Rk∆, k ∈

{1, 2, 3, 4} satisfy (Conv) in the general case. In fact, for
these policies the stability of BRGs cannot be guaranteed as
soon as the merging operator under consideration satisfies
some basic IC postulates.
Proposition 11 For every k ∈ {1, 2, 3, 4}, Rk∆ does not sa-
tisfy (Conv) if ∆ satisfies:
• (IC2) when k = 1;
• (IC0) and (IC2) when k = 2;
• (IC1), (IC2) and (IC4) when k ∈ {3, 4}.

All the results are summarized in Table 3. For each class
Rk∆ of revision policies and each property on revision poli-
cies, for some (set of) postulate(s) (P) on merging operators
or directly for some merging operators,

√
(P) (resp. ×(P))

means that Rk∆ satisfies (resp. does not satisfy) the corres-
ponding property when ∆ satisfies (P) or is one of the mer-
ging operators which are specified. One can observe that un-
der some basic conditions on ∆, for k ∈ {1, 2, 4} the re-
vision policies Rk∆ are well-behaved in terms of responsive-
ness but do not guarantee the stability of all BRGs, while the
converse holds for the revision policies R5

∆ and R6
∆.
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(CP) (AP) (UP) (Resp) (Mon) (Conv)
R1

∆

√
(IC1)

√
(IC2)

√
(Disj)

√
(IC2) ×(∆dH,Σ) ×(IC2)

R2
∆

√
(IC1)

√
(IC2)

√
(IC0) & (Disj)

√
(IC0) & (IC2) ×(∆dH,Σ) ×(IC0) & (IC2)

R3
∆

√
(IC1)

√
(IC2)

√
(Disj)

√
(∆dD,f ) / ×(∆dH,Σ) ×(∆dH,Σ) ×(IC1) & (IC2) & (IC4)

R4
∆

√
(IC1)

√
(IC2)

√
(Disj)

√
(IC2) & (IC4) ×(∆dH,Σ) ×(IC1) & (IC2) & (IC4)

R5
∆

√
(IC1)

√
(IC2)

√
(IC0) ×(IC0) ×(∆dH,Σ)

√
(IC0)

R6
∆

√
(IC1)

√
(IC2)

√
(IC0) ×(IC0) ×(∆dH,Σ)

√
(IC0)

Table 3: Properties satisfied by the revision policies Rk∆ for k ∈ {1, . . . , 6}.

Before closing the section, we go further in the investiga-
tion of the convergence property by considering a subclass
of so-called directed acyclic BRGs (V,A,LP , B,R) which
require the underlying graph (V,A) not to contain any cycle:

Proposition 12 For k ∈ {1, 2, 3, 4}, all directed acyclic
BRGs from G(Rk∆) satisfy (Conv) when k = 1 or if:
• when k = 2, ∆ satisfies (IC0) and (IC2);
• when k = 3, ∆ is a distance-based merging operator;
• when k = 4, ∆ satisfies (IC2), (IC4) and (Disj), or ∆ is

a distance-based merging operator.

Related Work
Belief revision games are somehow related to many set-

tings where some interacting ”agents” are considered, in-
cluding cellular automata (Wolfram 1983), Boolean net-
works (Kauffman 1969; 1993; Aldana 2003), opinion dy-
namics (Hegselmann and Krause 2005; Riegler and Dou-
ven 2009; Tsang and Larson 2014), and many complex sys-
tems (Latane and Nowak 1997; Kacpersky and Holyst 2000;
Olshevsky and Tsitsiklis 2009; Bloembergen et al. 2014;
Ranjbar-Sahraei et al. 2014). We focus here on related work
strongly connected to Belief Revision Games.

In (Delgrande, Lang, and Schaub 2007), the authors in-
troduce a general framework for minimizing disagreements
among beliefs associated with points connected through a
graph. They define a completion operator which consists in
revising the belief state of each point with respect to the be-
lief states of its “neighbors”. This operator outputs a new
graph where each belief state is strengthened and restricted
to the models which are the closest ones to the neighbor
states. Suitable applications include the case when points in
the graph are interpreted as regions in space (Würbel, Jean-
soulin, and Papini 2000). Though the idea of embedding be-
lief states into a graph structure is similar to our approach,
it differs from BRGs on several aspects. First, only undi-
rected graphs are considered. Second, their completion ope-
rator is idempotent so it cannot be used iteratively. Third, be-
lief states are strengthened by the operation of completion,
whereas in BRGs agents can “give up” beliefs (e.g., when
considering responsive policies such as R1, R2 and R4).

In (Gauwin, Konieczny, and Marquis 2007), the authors
introduce and study families of so-called iterated merging
conciliation operators. Such operators are considered to rule
the dynamics of the profile K of belief states associated
with a group of agents. At each step the state Bi of agent
i is modified, by revising the merged state ∆(K) by Bi

(skeptical approach), or by revising Bi by the merged state
∆(K) (credulous approach). Such merge-then-revise change
functions are closely related to our merging-based revision
policies R2 (for the credulous one) and R5 (for the skep-
tical one). They do not coincide with them nevertheless
since in our approach Bi does not belong to its context Ci;
clearly enough, this amounts to giving more importance to
Bi when majoritarian merging operators are considered, and
as a consequence the states obtained after the “revision” of
Bi may differ. Notwithstanding the merging-based revision
policies used, such conciliation processes correspond to spe-
cific BRGs where the topology is the clique one. One of the
main issues considered in (Gauwin, Konieczny, and Marquis
2007) is the stationarity of the process (i.e., the convergence
of the policies), which is proved in the skeptical approach;
however, preservation issues, as well as responsiveness and
monotonicity are not studied.

Conclusion
In this paper, we formalized the concept of belief revi-
sion game (BRG) for modeling the dynamics of the be-
liefs of a group of agents. We pointed out a set of proper-
ties for BRGs which address several preservation issues, as
well as responsiveness, monotonicity and convergence. As
a first attempt to investigate the behavior of BRGs with re-
spect these properties, we introduced several classes of re-
vision policies which are based on belief merging opera-
tors. We considered the case where all agents use the same
revision policy and investigated the extent to which the
BRGs concerned with these policies satisfy the properties.
Additionally, we developed a software available online at
http://www.cril.fr/brg/brg.jar. It consists of graphical inter-
face which allows one to play BRGs considering any of
the 18 revision policies from {Rk∆ | k ∈ {1, . . . , 6},∆ ∈
{∆dD,Σ,∆dH ,Σ,∆dH ,Gmin}}. Some instances of BRGs are
provided together with the software, including the BRG
from our motivating example (Example 1) and the counter-
examples used in the proofs of some propositions.

Practical applications of the BRG model are numerous.
For instance, in brand crisis management, negative content
regarding a brand could disseminate rapidly over social me-
dia and generate negative perceptions (Dawar and Pillutla
2000). In such a case, identifying how information is pro-
pagated within a social network and which are the influen-
tial agents (the opinion leaders) is a hot research topic. As
a consequence, our general framework leaves the way open
to many extensions and additional theoretical studies. Pers-
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pectives include a further investigation of the robustness of
BRGs in terms of belief manipulation.
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