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Context



The CDCL Revolution

In the early 2000s, a revolution in the architecture of SAT solvers
happened, with the wide adoption of the CDCL approach (Silva and
Sakallah, 1996) and the use of efficient heuristics and data structures
(Moskewicz et al., 2001; Eén and Sörensson, 2004)

• black box approach
• working on a wide range of (application) problems
• two order of magnitude speedup on some benchmarks compared to

previous generation

Modern SAT solvers can now deal with problems containing
millions of variables and clauses
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The CDCL Architecture

Overview of the CDCL Algorithm
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Extending the CDCL Architecture

Use of the proof system in the CDCL Algorithm
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Some CDCL Invariants

Important invariants of the CDCL algorithm in SAT solvers are:

• Constraints propagate only once
• Constraints have a single assertion level
• Combination of a reason and conflict leads to a conflict
• Syntactical assertion detection

We will break these invariants with PB solvers!
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Sat4j (Le Berre and Parrain, 2010)

• Open Source SAT solver library in Java developed since 2004
• Support for pseudo-Boolean solving and MAXSAT
• Native PB constraints support
• Various proof systems support with PB constraints
• Available from http://sat4j.org/
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Pseudo-Boolean Constraints



Why using PB Constraints?

So-called “modern” SAT solvers are very efficient in practice, but some
instances remain completely out of reach for these solvers, due to the
weakness of the resolution proof system they use internally

This is particularly for instances requiring the ability to count, such as
pigeonhole-principle formulae, stating that “n pigeons do not fit in n− 1
holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time
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Pseudo-Boolean (PB) Constraints

We consider conjunctions of linear equations or inequations over Boolean
variables of the form:

n∑
i=1

αiℓi △ δ

in which

• the coefficients αi are integers
• ℓi are literals, i.e., a variable v or its negation v̄ = 1− v
• △ is a relational operator among {<,≤,=,≥, >}
• the degree δ is an integer

For example:

−3a + 4b− 7c + d ≤ −5
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Normalized PB Constraints

Without loss of generality, we consider conjunctions of normalized PB
constraints of the form:

n∑
i=1

αiℓi ≥ δ

in which

• the coefficients αi are non-negative integers
• ℓi are literals
• the degree δ is a non-negative integer

For example:

−3a + 4b− 7c + d ≤ −5 ≡ 3a + 4b̄ + 7c + d̄ ≥ 10
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Fun Facts

The constraint 3a + 4b̄ + 7c + d̄ ≥ 10 propagates c to true

• A PB constraint can propagate truth values without any assignment

• A PB constraint can propagate multiple truth values at different
decision levels

The constraint above can be rewritten as c ∧ 3a + 4b̄ + d̄ ≥ 3
but also as c ∧ (a ∨ b̄)
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A PB Encoding for Pigeonhole-Principle Formulae

We consider Boolean variables pij denoting that pigeon i is put in hole j

“Pigeon i should be in a hole” is encoded as

n−1∑
j=1

pij ≥ 1

“Hole j cannot host more than one pigeon” is encoded as

n∑
i=1

pij ≤ 1

Let us see how to prove the unsatifiability of this formula

10/77



A PB Encoding for Pigeonhole-Principle Formulae

We consider Boolean variables pij denoting that pigeon i is put in hole j

“Pigeon i should be in a hole” is encoded as

n−1∑
j=1

pij ≥ 1

“Hole j cannot host more than one pigeon” is encoded as

n∑
i=1

pij ≤ 1

Let us see how to prove the unsatifiability of this formula

10/77



A PB Encoding for Pigeonhole-Principle Formulae

We consider Boolean variables pij denoting that pigeon i is put in hole j

“Pigeon i should be in a hole” is encoded as

n−1∑
j=1

pij ≥ 1

“Hole j cannot host more than one pigeon” is encoded as

n∑
i=1

pij ≤ 1

Let us see how to prove the unsatifiability of this formula

10/77



A PB Encoding for Pigeonhole-Principle Formulae

We consider Boolean variables pij denoting that pigeon i is put in hole j

“Pigeon i should be in a hole” is encoded as

n−1∑
j=1

pij ≥ 1

“Hole j cannot host more than one pigeon” is encoded as

n∑
i=1

pij ≤ 1

Let us see how to prove the unsatifiability of this formula

10/77



Example of a Human Proof (n = 3)

(1) p11 + p12 ≥ 1

(2) p21 + p22 ≥ 1

(3) p31 + p32 ≥ 1

(4) p11 + p21 + p31 ≤ 1

(5) p12 + p22 + p32 ≤ 1

(1) + (2) + (3) + (4) = (6) p12 + p22 + p32 ≥ 2

(5) + (6) = (7) 3 ≥ 4
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Human vs Solver, Complexity Theory vs Modeling

In theory, the input must be the same when talking about complexity

• requires, e.g., input in CNF for comparing resolution vs
cutting-planes

• does not allow efficient encodings which rely on the addition of new
variables

• rely on “recovering” the cardinality constraints using domain
knowledge

In practice, the way the constraints are expressed matters:

• easier to read, to understand the model for a human
• the number of constraints may be different ( n∗(n−1)

2 vs n− 1)
• the solver can apply new inference rules (e.g., cutting-planes) on

higher abstraction constraints

In practice, current PB solvers behave as (slow) SAT solvers when given
a CNF formula as input
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Fitting Cutting-Planes into the
CDCL architecture



Cutting Planes and Generalized Resolution

Many PB solvers have been designed based on the Generalized
Resolution (Hooker, 1988).

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

As with the resolution rule in classical SAT solvers, these two rules can
be used to learn new constraints during conflict analysis
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Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!
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Weakening

To preserve the conflict, the weakening rule must be used:

αℓ+
∑n

i=1 αiℓi ≥ δ
(weakening)∑n

i=1 αiℓi ≥ δ−α

αℓ+
∑n

i=1 αiℓi ≥ d k ∈ N 0 < k ≤ α
(partial weakening)

(α− k)ℓ+
∑n

i=1 αiℓi ≥ δ−k

5a + 3b + 3c ≥ 8

Weakening can be applied in many different ways (Le Berre et al., 2020b)
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Different Weakening Strategies

The original approach (Dixon and Ginsberg, 2002; Chai and Kuehlmann,
2003) successively weakens away literals from the reason, until the
saturation rule guarantees to derive a conflicting constraint

As the operation must be repeated multiple times,
its cost is not negligible

Another solution is to take advantage of the following property:

As soon as the coefficient of the literal to cancel is equal to 1 in at least
one of the constraints, the derived constraint is

guaranteed to be conflicting (Dixon, 2004)
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Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants

3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6− 3− 1− 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2− 1 = 1

a + b + f ≥ 1

This strategy is equivalent to that used by solvers such as SATIRE
(Whittemore and Sakallah, 2001) or Sat4j-Resolution to lazily infer
clauses to use resolution based reasoning

17/77



Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants
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3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6− 3− 1− 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2− 1 = 1

a + b + f ≥ 1

This strategy is equivalent to that used by solvers such as SATIRE
(Whittemore and Sakallah, 2001) or Sat4j-Resolution to lazily infer
clauses to use resolution based reasoning

17/77



Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants
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Weakening and Division

In RoundingSat (Elffers and Nordström, 2018), the coefficient is rounded
to one thanks to the division rule, applied after having weakened away
some unfalsified literals∑n

i=1 αiℓi ≥ δ ρ ∈ N∗
(division)∑n

i=1 ⌈
αi
ρ ⌉ℓi ≥ ⌈ δρ⌉

8a + 7b + 7c + 2d + 2e + f ≥ 11
7b + 7c + 2d + 2e ≥ 2

b + c + d + e ≥ 1

It is also possible to apply partial weakening before division to infer
stronger constraints
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Many Different Strategies
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When to Stop Conflict Analysis?

For clausal analysis:

• stop when a single literal from current decision level remains
• backjump at the deepest decision level but current one among the

literals

For PB analysis, no such syntactical detection:

• depends on the weights of the literals assigned at each decision level
• backjump at the first decision level propagating a truth value
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An Achilles Heel in the Cutting
Planes Proof System



Irrelevant Literals (Le Berre et al., 2020a)

Cutting planes rules may introduce irrelevant literals

3d + a + b + c ≥ 3 3d̄ + 2a + 2b ≥ 3
3a + 3b + c ≥ 3

A literal is said to be irrelevant in a PB constraint when its truth value
does not impact the truth value of the constraint:

irrelevant literals can thus be removed
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Production of Irrelevant Literals
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Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may
impact the strength of the derived constraints

3a + 3b + c ≥ 3 3ā + 3d + 2c ≥ 3
3b + 3c + 3d ≥ 3

b + c + d ≥ 1

Detecting irrelevant literals is NP-hard, we thus introduce an incomplete
algorithm for removing them
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Detecting Irrelevant Literals (1)

Irrelevant literals can be detected thanks to this reduction to subset-sum

ℓ is irrelevant in αℓ+
n∑

i=1
αiℓi ≥ δ

⇔
n∑

i=1
αiℓi = δ − k has no solution for k ∈ {1, . . . , α}

For instance, c is irrelevant in 3a + 3b + 2c ≥ 3 because there is no
solution for neither of the equalities

3a + 3b = 1 and 3a + 3b = 2

A dynamic programming algorithm can decide whether any of the
equalities has a solution in pseudo-polynomial time with a single run
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Detecting Irrelevant Literals (2)

As coefficients and degrees may be very big in the derived PB
constraints, solving subset-sum on the corresponding instances would be
very inefficient

We thus consider an incomplete approach for solving these instances

In our case, we want our algorithm to be exact when it detects that the
instance has no solution, since the literal is irrelevant in this case (said
differently, we accept to miss irrelevant literals, but not the contrary)

Our algorithm solves subset-sum modulo a fixed number, or even several
numbers
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Removing Irrelevant Literals

We can remove any irrelevant literal while preserving equivalence, by
taking advantage that their truth value does not affect the constraint

3a + 3b + 2c ≥ 3

First, we can locally assign the literal to 0, and simply remove it:

3a + 3b ≥ 3

Or, we can locally assign it to 1, and simplify the constraint accordingly:

3a + 3b ≥ 3− 2 = 1

In practice, we use a heuristic to decide which strategy to apply, as none
of them is better than the other
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Impact of the Removal of Irrelevant Literals on the Proof
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Focus on the Vertex-Cover Family: Experimental Results
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Focus on the Vertex-Cover Family: Sat4j’s Behavior

When given an instance of this family, the first constraint learned by
Sat4j has the form

nx + x1 + . . .+ xn−1 ≥ n

All the literals x1, . . . , xn−1 are irrelevant, and this constraint is actually
equivalent to the unit clause x

No other irrelevant literals are detected in the other constraints derived
by Sat4j

Even few irrelevant literals can lead to the production of
an exponentially larger proof
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Impact of the Removal of Irrelevant Literals on the Runtime
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Weakening Ineffective Literals

Recall that, during conflict analysis, some literal may be ineffective

3ā + 3b̄ + c + d + e ≥ 6

2a + b + c + f ≥ 2

Ineffective literals can be seen as locally irrelevant, as opposed to the
globally irrelevant literals presented before

In the context of the current partial assignment, it is easy to detect
ineffective literals, but they can only be weakened away

(as ineffective literals may be relevant)
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Adapting further PB Solvers to
CDCL



CDCL Architecture Recap

Overview of the CDCL Algorithm
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Motivation

It is well known that, in addition to conflict analysis, several features of
SAT solvers are crucial for solving problems efficiently, such as:

• branching heuristic
• learned constraint deletion strategy
• restart policy

These features are mostly reused as is by current PB solvers, without
taking into account the particular properties of PB constraints

Our main finding is that considering the size of the coefficients and the
current partial assignment allows to significantly improve the solver
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Experimental Results (Sat4j-GeneralizedResolution)
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Experimental Results (Sat4j-RoundingSat)
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Experimental Results (Sat4j-PartialRoundingSat)
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Comparison of Sat4j with RoundingSat
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Deeper Dive into Sat4j



Leveraging Properties of PB Constraints for Fine Tuning Sat4j

Let us consider again a confict analysis

3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) ≥ 5

6a(?@?) + 3b(?@?) + 3c(?@?) + 3d(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e ≥ 5 6a + 3b + 3c + 3d + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!
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3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) ≥ 5

6a(?@?) + 3b(1@1) + 3c(0@2) + 3d(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:
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(E)VSIDS for Making Decisions: Classical Implementation

All variables encountered during conflict analysis are bumped

This is the case for all the variables appearing in the previous reason:

3ā + 3̄f + d + e ≥ 5

This means that the scores of the variables a, f, d and e are incremented
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(E)VSIDS for Making Decisions: Coefficients

A first approach for adapting VSIDS to PB constraints has been
proposed in (Dixon, 2004), but it only takes into account the original
cardinality constraints, and thus not the reason we have here:

3ā + 3̄f + d + e ≥ 5

We propose to take these coefficients into account with 3 new strategies:

• bump-degree: the score of each variable is incremented by the
degree of the constraint (5 for all variables)

• bump-coefficient: the score of each variable is incremented by
their coefficients in the constraint (3 for a and f)

• bump-ratio: the score of each variable is incremented by the ratio
of the degree by their coefficient in the constraint ( 5

3 for a and f)
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3ā + 3̄f + d + e ≥ 5

We propose to take these coefficients into account with 3 new strategies:

• bump-degree: the score of each variable is incremented by the
degree of the constraint (5 for all variables)

• bump-coefficient: the score of each variable is incremented by
their coefficients in the constraint (3 for a and f)

• bump-ratio: the score of each variable is incremented by the ratio
of the degree by their coefficient in the constraint ( 5

3 for a and f)

40/77



(E)VSIDS for Making Decisions: Experiments
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(E)VSIDS for Making Decisions: Assignments

Observe also that some literals are unassigned in the reason:

3ā + 3̄f + d + e ≥ 5

In an assertive clause, all literals are assigned, and all but one are
falsified: these latter literals are those involved in the propagation

We can take the current assignement into account with 3 new strategies:

• bump-assigned: the score of each assigned variable is incremented
(a, f and d)

• bump-falsified: the score of each falsified variable is incremented
(f and d)

• bump-effective: the score of each effective variable is incremented
(f and d)
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(E)VSIDS for Making Decisions: Experiments
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Quality of Learned Constraints: Classical Implementations

In SAT solvers, evaluating the quality of learned constraints is used to
choose which constraints should be deleted and to decide when a restart
should be triggered

The quality measures used by SAT solvers do not take into account the
properties of PB constraints
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Quality of Learned Constraints: Size and Coefficients

In SAT solvers, the size of a clause is a naive measure of its quality: the
longer the clause, the lower its strength

In the PB case, the length of a constraint does not reflect its strength

However, the size of a PB constraint also takes into account its
coefficients

Consider the constraint we derived in the previous conflict analysis:

3a + 3b + 3c + 2d̄ + e ≥ 7

In practice, the coefficients may become very big, which requires the use
of arbitrary precision encodings and slows down arithmetic operations.

We consider quality measures based on the value and size of the degree
of the constraints: the lower the degree, the better the constraint
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Quality of Learned Constraints: Assignments (LBD)

In SAT solvers, the Literal Block Distance (Audemard and Simon, 2009)
measures the quality of clauses by the number of decision levels
appearing in this clause

3a(0@3) + 3b(1@1) + 3c(0@2) + 2d̄(1@3) + e(?@?) ≥ 7

There are satisfied and unassigned literals in this constraint!

We thus introduce 5 new definitions of LBD:

• lbd-a: the LBD is computed over assigned literals only
• lbd-s: the LBD is computed over assigned literals, and unassigned

literals are considered assigned at the same (dummy) decision level
• lbd-d: the LBD is computed over assigned literals, and unassigned

literals are considered assigned at different (dummy) decision levels
• lbd-f: the LBD is computed over falsified literals only
• lbd-e: the LBD is computed over effective literals only
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Quality of Learned Constraint: Deletion

Deleting constraints is required by SAT solvers to limit the memory usage
and to prevent unit propagation from slowing down

This is also true, but to a lesser extent, for PB solvers

The constraints to delete are those having a bad score w.r.t.
the quality measure used in the solver

We thus introduce the following deletion strategies, based on the
different quality measures we presented:

• delete-degree
• delete-degree-size
• delete-lbd-a
• delete-lbd-s
• delete-lbd-d
• delete-lbd-f
• delete-lbd-e
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Quality of Learned Constraints: Restarts

Restarting allows to forget all decisions made by the solver, so as to avoid
being stuck in a subpart of the search space

Following Glucose’s approach (Audemard and Simon, 2012), we consider
adaptive restarts based on the quality of recently learned constraints

Whenever the most recent constraints are of poor quality compared to all
the others, a restart is performed

We thus introduce the following restart strategies, based on the different
quality measures we presented

• restart-degree
• restart-degree-size
• restart-lbd-a
• restart-lbd-s
• restart-lbd-d
• restart-lbd-f
• restart-lbd-e
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Quality of Learned Constraints: Experiments (Deletion)
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Quality of Learned Constraints: Experiments (Restarts)
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Quality of Learned Constraints: Experiments (Del. + Restarts)
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Putting Things Together: Brief Recap

For the moment, we have observed that the following individual strategies
have the most important impact on the performance of the solver:

• bump-effective
• delete-lbd-s
• restart-degree

Let us combine all these strategies!
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Putting Things Together: Experiments
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Comparison of Sat4j with State-of-the-Art Solvers
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Recovering Cardinality
Constraints



Semantic cardinality detection

• Theory tells us that Cutting Planes should work on CNF
• Current implementations do not
• Can we find a way to help PB solvers work on CNF?
• Caution: we need a general process, not one dedicated to a given

problem or constraint
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Example of a Human Proof (n = 3) again

(1) p11 + p12 ≥ 1 (2) p21 + p22 ≥ 1 (3) p31 + p32 ≥ 1
(4a) p11 + p21 ≥ 1 (4b) p11 + p31 ≥ 1 (4c) p21 + p31 ≥ 1
(5a) p12 + p22 ≥ 1 (5b) p12 + p32 ≥ 1 (5c) p22 + p32 ≥ 1

(4a) + (4b) + (4c) = (4d) 2 ∗ p11 + 2 ∗ p21 + 2 ∗ p31 ≥ 3
(5a) + (5b) + (5c) = (5d) 2 ∗ p12 + 2 ∗ p22 + 2 ∗ p32 ≥ 3

(4d)/2 = (4) p11 + p21 + p31 ≥ 2
(5d)/2 = (5) p12 + p22 + p32 ≥ 2

(1) + (2) + (3) + (4) = (6) p12 + p22 + p32 ≥ 2

(5) + (6) = (7) 3 ≥ 4
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PHP: cardinality constraints vs. clauses

PHP: inconsistency proof computation time

• pigeons-100-hole.cnf:
• resolution → timeout (900s)
• generalized resolution (Hooker, 1988) → timeout (900s)

• pigeons-100-hole.opb:
• resolution → timeout (900s)
• generalized resolution (Hooker, 1988) → < 1s.

Representation of constraints matters
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Cardinality constraints vs. clauses

• pros :
• a cardinality constraint may replace an exponential number of

clauses or prevent the use of auxiliary variables
• allow to use strong proof systems (generalized resolution, cutting

planes)

• cons:
• difficult detection : many encoding exist to translate cardinality

constraints into CNF
• deriving cardinality constraints using Cutting Planes proof system

does not fit well with CDCL architecture
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Some known encodings

Short list of known encodings :

• Pairwise encoding (Cook et al., 1987)
• Nested encoding
• Two product encoding (Chen, 2010)
• Sequential encoding (Sinz, 2005)
• Commander encoding (Frisch and Giannaros, 2010)
• Ladder encoding (Gent and Nightingale, 2004)
• Adder encoding (Eén and Sörensson, 2006)
• Cardinality Networks (Asín et al., 2009)
• ...
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Syntactic vs. semantic detection

• Syntactic detection:
• need of an ad hoc algorithm for each {encoding,k}

• Our semantic detection (Biere et al., 2014)
• based on unit propagation
• adapted to any encoding preserving arc-consistency
• may potentially detect constraints that were not known at encoding

time
• detection may be altered by auxiliary variables

• More recent: inprocessing detection (Elffers and Nordström, 2020)
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Semantic detection of at-most-k constraint

detecting a cardinality constraint in a semantic way:

1. select a clause of size n, and translate it into an AtMost-k of degree
n− 1 :

n∨
i=1

xi ≡
n∑

i=1
¬xi ≤ n− 1

2. look for literals mj to extend this constraint:
n∑

i=1
(¬xi) + m1 + ...+ mp ≤ n− 1
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Semantic detection of at-most-k constraint: example

formula :

¬x1 ∨ ¬x2
¬x1 ∨ ¬x4

x4 ∨ ¬x3
¬x2 ∨ ¬x5

x5 ∨ ¬x3

detection of
3∑

i=1
xi ≤ 1
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Cardinality constraint extension

Cardinality constraint extension:

1. let α =
∑n

i=1 xi ≤ k
2. initialization of the propagation set γ = {vi,¬vi | v ∈ PS}
3. for each subset of k literals xi, we compute the unit propagation set

δ, and we refine the propagation set:

γ ← γ ∩ δ

4. if there exists m ∈ γ, then α =
∑n

i=1 xi + ¬m ≤ k and goto 2
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Experimental evaluation

• aim of the experiments: check that detected constraints help a
generalized resolution based solver

• solvers:
• Lingeling: able to detect pairwise encoding
• Synt.+Sat4jCP, Sem.+Sat4jCP, Sat4jCP w/o preprocessing
• SBSAT: able to detection cardinality constraints via compilation

steps

• Intel Xeon@2.66GHz, 32Go RAM, timeouts=900s
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Results

Influence of detected constraints for some encodings of PHP:
Preprocessing #inst. Lingeling Synt.(Riss) Sem.(Riss) ∅ ∅

Solver Lingeling Sat4jCP Sat4jCP SBSAT Sat4jCP

Pairwise 14 14 (3s) 13 (244s) 14 (583s) 6 (0s) 1 (196s)
Binary 14 3 (398s) 2 (554s) 7 (6s) 6 (7s) 2 (645s)

Sequential 14 0 (0s) 14 (50s) 14 (40s) 10 (6s) 1 (37s)
Product 14 0 (0s) 14 (544s) 11 (69s) 6 (25s) 2 (346s)

Commander 14 1 (3s) 7 (0s) 14 (40s) 9 (187s) 1 (684s)
Ladder 14 0 (0s) 11 (505s) 11 (1229s) 12 (26s) 1 (36s)

solved instances (computation time of solved instances)
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Results

Influence of detected constraints for balanced block design instances:
Preprocessing #inst. Lingeling Synt.(Riss) Sem.(Riss) ∅ ∅

Solver Lingeling Sat4jCP Sat4jCP SBSAT Sat4jCP

Sgen unsat 13 0 (0s) 13 (0s) 13 (0s) 9 (614s) 4 (126s)

Fixed bandwidth 23 2 (341s) 23 (0s) 23 (0s) 23 (1s) 13 (1800s)
Rand. orderings 168 16 (897s) 168 (7s) 168 (8s) 99 (2798s) 69 (3541s)

Rand. 4-reg. 126 6 (1626s) 126 (4s) 126 (5s) 84 (2172s) 49 (3754s)

solved instances (computation time of solved instances)
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Further Results

• “crossed” constraints: Sudoku grid
• Sudoku 9x9: syntactic preprocessing detects 300/324 constraints,

semantic one detects 324/324 constraints
• Sudoku 16x16: syntactic preprocessing detects 980/1024 constraints,

semantic one detects 1024/1024 constraints

• Challenge benchmark of (Van Gelder and Spence, 2010) (clasp
unable to solve within 24h): solved within a second thanks to
semantic preprocessing (AtMost-3 constraints inside)
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Some Open Questions about PB
Conflict Analysis



#1 - Improving the Backjump Level

The backjump level computed based on the 1-UIP scheme is not optimal
in general in PB solvers

8a(0@1) + 8b(1@3) + 6c(0@2) + 6d(0@3) + 4e(1@3) + 2f(0@4) + 2g(0@4) + 2m(0@4) ≥ 16

⊞ 3i(0@2) + 3j(0@4) + 2̄f(1@4) + 2ḡ(1@4) + h(1@4) ≥ 5
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#2 - Improving Conflict Detection

Consider these 4 constraints:

χ1 ≡ a + b̄ + c̄ ≥ 2
χ2 ≡ 3b + 3d + e + f ≥ 4
χ3 ≡ 2c + ē + f̄ ≥ 2
χ4 ≡ b + d̄ + e + f ≥ 1

If we choose χ4 as conflict to analyze, we have:

χ4 χ3

b + c + d̄ ≥ 1 χ2
4b + 3c + e + f ≥ 4 χ1

3a + b + e + f ≥ 4

None of the two constraints is stronger than the other
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Another Perspective on
Normalized Forms



Why do we need a normalized form?

Recall that all constraints we consider are of the form:

n∑
i=1

αiℓi ≥ δ

This normalized form is needed to apply the cancellation rule, because we
need literals to be in the same side of the relational operator:

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2 − αβ

So, why don’t we use a ≤-based normalized form?
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Why do we prefer ≥ over ≤?

The main advantage of using ≥ is that it allows to easily represent clauses

ℓ1 ∨ . . . ∨ ℓn ≡ ℓ1 + . . .+ ℓn ≥ 1

This allows to reuse many data-structures used to solve CNF formulae,
such as watched literals for instance

Here, the clause above would be written as follows in a ≤-based
normalized form

ℓ1 ∨ . . . ∨ ℓn ≡ ℓ̄1 + . . .+ ℓ̄n ≤ n− 1

and we would have needed to watched the satisfaction of the literals!

However, this normalized form is not always practical…
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Normalized Form and PB Optimization

On optimization problems, for instance, the solver is asked to minimize
an objective function of the form:

n∑
i=1

αiℓi

If the solver finds a model of the formula which makes the objective
function equal to a value o, then the following constraint is added to the
solver:

n∑
i=1

αiℓi ≤ o− 1 ≡
n∑

i=1
αiℓ̄i ≥

n∑
i=1

αi − o + 1

If the coefficients αi are big, the degree of the constraint above will
become even bigger, even if the value o is small
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The Role of the Saturation Rule

Recall that PB solver can use the saturation rule

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

This rule makes the degree of a constraint an upper bound of its
coefficients, but if the degree becomes big, then it may allow coefficients

to grow while applying consecutive cancellation step
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Another Rule for ≤ Constraints?

While the cancellation rule can easily be adapted to ≤ constraints,
saturation is only applicable on ≥-constraints…

If we want to use ≤ constraints, another rule is needed

To this end, we may borrow the following rule used in MIP preprocessing

αℓ+
∑n

i=1 αiℓi ≤ δ
∑n

i=1 αi ≤ δ(
α+

∑n
i=1 αi − δ

)
ℓ+

∑n
i=1 αiℓi ≤

∑n
i=1 αi

74/77



Another Rule for ≤ Constraints?

While the cancellation rule can easily be adapted to ≤ constraints,
saturation is only applicable on ≥-constraints…

If we want to use ≤ constraints, another rule is needed

To this end, we may borrow the following rule used in MIP preprocessing

αℓ+
∑n

i=1 αiℓi ≤ δ
∑n

i=1 αi ≤ δ(
α+

∑n
i=1 αi − δ

)
ℓ+

∑n
i=1 αiℓi ≤

∑n
i=1 αi

74/77



Another Rule for ≤ Constraints?

While the cancellation rule can easily be adapted to ≤ constraints,
saturation is only applicable on ≥-constraints…

If we want to use ≤ constraints, another rule is needed

To this end, we may borrow the following rule used in MIP preprocessing

αℓ+
∑n

i=1 αiℓi ≤ δ
∑n

i=1 αi ≤ δ(
α+

∑n
i=1 αi − δ

)
ℓ+

∑n
i=1 αiℓi ≤

∑n
i=1 αi

74/77



Recap on Normalized Constraints

• To apply the cancellation rule, we need to have literals on the same
side of the relational operator

• To easily represent clauses and extend SAT solvers, the ≥
normalization has been chosen

• However, the ≤ is sometimes preferable, e.g., on optimization
problems

• All rules used by PB solvers are not always applicable to both
representations, requiring to adapt the proof system to the
representation

Ideally, we could choose either the ≥ or the ≤ representation depending
on which is “better”, as this is done in encodings for instance
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Conclusion and Perspectives



Conclusion

• Implementations of the cutting planes proof system in PB solvers are
not fully satisfactory, as its strength is not fully exploited

• Irrelevant literals may be produced during conflict analysis, and lead
to the inference of weaker constraints

• Applying the weakening rule on ineffective literals is a possible
(aggressive) counter-measure

• Applying partial weakening and division gives better performance

• Complementary heuristics implemented in CDCL PB solvers can be
adapted to take into account properties of PB constraints and to
improve the performance of Sat4j
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Perspectives

• Find other strategies for applying cutting planes rules so as to
exploit more power of this proof system

• Design such strategies so as to prevent the production of irrelevant
literals instead of removing them

• Combine the weakening strategies to exploit their complementarity
• Identify possible interactions between the new heuristics

• Implement the new strategies in other solvers
• Consider their impact on the resolution of optimization problems

• Improve the detection of the optimal backjump level during conflict
analysis

• Improve the detection of conflicts to deal with the conflictual
reasons encountered during conflict analysis
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