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Context



Boolean Satisfiability

The satisfiability problem (SAT) is the first problem proven to be
NP-complete (Cook, 1971)

Given a CNF formula Σ, this problem is determining whether there exists
an assignment of the (Boolean) variables of Σ such that this formula
evaluates to true

(a ∨ b ∨ c̄) ∧ (a ∨ b̄ ∨ c) ∧ (ā ∨ b̄ ∨ c)

In the early 2000s, a revolution in the architecture of SAT solvers
happened, with the wide adoption of the CDCL approach (GRASP) and
the use of efficient heuristics and data structures (Chaff, MiniSat)

Modern SAT solvers (Glucose, CaDiCaL, Kissat) can now deal with
problems containing millions of variables and clauses
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Limits of SAT Solvers

So-called “modern” SAT solvers are very efficient in practice, but some
instances remain completely out of reach for these solvers, due to the
weakness of the resolution proof system they use internally

This is particularly for instances requiring the ability to count, such as
pigeonhole-principle formulae, stating that “n pigeons do not fit in n − 1
holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time

2/45



Limits of SAT Solvers

So-called “modern” SAT solvers are very efficient in practice, but some
instances remain completely out of reach for these solvers, due to the
weakness of the resolution proof system they use internally

This is particularly for instances requiring the ability to count, such as
pigeonhole-principle formulae, stating that “n pigeons do not fit in n − 1
holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time

2/45



Limits of SAT Solvers

So-called “modern” SAT solvers are very efficient in practice, but some
instances remain completely out of reach for these solvers, due to the
weakness of the resolution proof system they use internally

This is particularly for instances requiring the ability to count, such as
pigeonhole-principle formulae, stating that “n pigeons do not fit in n − 1
holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time

2/45



Pseudo-Boolean (PB) Constraints

We consider conjunctions of linear equations or inequations over Boolean
variables of the form:

n∑
i=1

αiℓi △ δ

in which

• the coefficients αi are integers
• ℓi are literals, i.e., a variable v or its negation v̄ = 1 − v
• △ is a relational operator among {<,≤,=,≥, >}
• the degree δ is an integer

For example:

−3a + 4b − 7c + d ≤ −5
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Normalized PB Constraints

Without loss of generality, we consider conjunctions of normalized PB
constraints of the form:

n∑
i=1

αiℓi ≥ δ

in which

• the coefficients αi are non-negative integers
• ℓi are literals
• the degree δ is a non-negative integer

For example:

−3a + 4b − 7c + d ≤ −5 ≡ 3a + 4b̄ + 7c + d̄ ≥ 10
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The CDCL Architecture

Figure 1: Overview of the CDCL algorithm
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Extending the CDCL Architecture

Figure 2: Use of the proof system in the CDCL algorithm
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Fitting Cutting-Planes into the
CDCL Architecture



Propagations in PB Constraints

The constraint 3a + 4b̄ + 7c + d̄ ≥ 10 propagates c to true

• A PB constraint can propagate truth values without any assignment

• A PB constraint can propagate multiple truth values at different
decision levels

The constraint above can be rewritten as c ∧ 3a + 4b̄ + d̄ ≥ 3
but also as c ∧ (a ∨ b̄)
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Cutting Planes and Generalized Resolution

Many PB solvers have been designed based on the Generalized
Resolution (Hooker, 1988).

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

As with the resolution rule in classical SAT solvers, these two rules can
be used to learn new constraints during conflict analysis
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Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄)

(conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Analyzing Conflicts

Suppose that we have the following constraints:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6

(reason for b̄) (conflict)

This conflict is analyzed by applying the cancellation rule as follows:

6b̄ + 6c + 4e + f + g + h ≥ 7 5a + 4b + c + d ≥ 6
15a + 15c + 8e + 3d + 2f + 2g + 2h ≥ 20

The constraint we obtain here is no longer conflicting!

9/45



Weakening

To preserve the conflict, the weakening rule must be used:

αℓ+
∑n

i=1 αiℓi ≥ δ
(weakening)∑n

i=1 αiℓi ≥ δ−α

αℓ+
∑n

i=1 αiℓi ≥ d k ∈ N 0 < k ≤ α
(partial weakening)

(α− k)ℓ+
∑n

i=1 αiℓi ≥ δ−k

5a + 3b + 3c ≥ 8

Weakening can be applied in many different ways (Le Berre et al., 2020b)
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Different Weakening Strategies

The original approach (Dixon and Ginsberg, 2002; Chai and Kuehlmann,
2003) successively weakens away literals from the reason, until the
saturation rule guarantees to derive a conflicting constraint

As the operation must be repeated multiple times,
its cost is not negligible

Another solution is to take advantage of the following property:

As soon as the coefficient of the literal to cancel is equal to 1 in at least
one of the constraints, the derived constraint is

guaranteed to be conflicting (Dixon, 2004)
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Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants

3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6 − 3 − 1 − 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2 − 1 = 1

a + b + f ≥ 1

This strategy is equivalent to that used by solvers such as SATIRE
(Whittemore and Sakallah, 2001) or Sat4j-Resolution to lazily infer
clauses to use resolution based reasoning
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3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6 − 3 − 1 − 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2 − 1 = 1

a + b + f ≥ 1

This strategy is equivalent to that used by solvers such as SATIRE
(Whittemore and Sakallah, 2001) or Sat4j-Resolution to lazily infer
clauses to use resolution based reasoning

12/45



Weakening and Division

In RoundingSat (Elffers and Nordström, 2018), the coefficient is rounded
to one thanks to the division rule, applied after having weakened away
some unfalsified literals∑n

i=1 αiℓi ≥ δ ρ ∈ N∗
(division)∑n

i=1 ⌈
αi
ρ ⌉ℓi ≥ ⌈ δ

ρ⌉

8a + 7b + 7c + 2d + 2e + f ≥ 11
7b + 7c + 2d + 2e ≥ 2

b + c + d + e ≥ 1

It is also possible to apply partial weakening before division to infer
stronger constraints
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Many Different Strategies
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An Achilles Heel in the Cutting
Planes Proof System



Irrelevant Literals (Le Berre et al., 2020a)

Cutting planes rules may introduce irrelevant literals

3d + a + b + c ≥ 3 3d̄ + 2a + 2b ≥ 3
3a + 3b + c ≥ 3

A literal is said to be irrelevant in a PB constraint when its truth value
does not impact the truth value of the constraint:

irrelevant literals can thus be removed
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Production of Irrelevant Literals
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Figure 3: Statistics about the production of irrelevant literals in
Sat4j-GeneralizedResolution for each family of benchmarks (logarithmic scale)
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Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may
impact the strength of the derived constraints

3a + 3b + c ≥ 3 3ā + 3d + 2c ≥ 3
3b + 3c + 3d ≥ 3

b + c + d ≥ 1

Detecting irrelevant literals is NP-hard, we thus introduce an incomplete
algorithm for removing them
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Detecting Irrelevant Literals (1)

Irrelevant literals can be detected thanks to this reduction to subset-sum

ℓ is irrelevant in αℓ+
n∑

i=1
αiℓi ≥ δ

⇔
n∑

i=1
αiℓi = δ − k has no solution for k ∈ {1, . . . , α}

For instance, c is irrelevant in 3a + 3b + 2c ≥ 3 because there is no
solution for neither of the equalities

3a + 3b = 1 and 3a + 3b = 2

A dynamic programming algorithm can decide whether any of the
equalities has a solution in pseudo-polynomial time with a single run
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Detecting Irrelevant Literals (2)

As coefficients and degrees may be very big in the derived PB
constraints, solving subset-sum on the corresponding instances would be
very inefficient

We thus consider an incomplete approach for solving these instances

In our case, we want our algorithm to be exact when it detects that the
instance has no solution, since the literal is irrelevant in this case (said
differently, we accept to miss irrelevant literals, but not the contrary)

Our algorithm solves subset-sum modulo a fixed number, or even several
numbers
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Removing Irrelevant Literals

We can remove any irrelevant literal while preserving equivalence, by
taking advantage that their truth value does not affect the constraint

3a + 3b + 2c ≥ 3

First, we can locally assign the literal to 0, and simply remove it:

3a + 3b ≥ 3

Or, we can locally assign it to 1, and simplify the constraint accordingly:

3a + 3b ≥ 3 − 2 = 1

In practice, we use a heuristic to decide which strategy to apply, as none
of them is better than the other
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Impact of the Removal of Irrelevant Literals on the Proof
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Figure 4: Comparison of the size of the proofs (number of cancellations) built
by Sat4j-GeneralizedResolution with and without the removal of irrelevant
literals on all benchmarks (logarithmic scale)
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Focus on the Vertex-Cover Family: Experimental Results
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Figure 5: Comparison of the size of the proofs (number of cancellations) built
by Sat4j-GeneralizedResolution with and without the removal of irrelevant
literals on vertex-cover instances (logarithmic scale)
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Focus on the Vertex-Cover Family: Sat4j’s Behavior

When given an instance of this family, the first constraint learned by
Sat4j has the form

nx + x1 + . . .+ xn−1 ≥ n

All the literals x1, . . . , xn−1 are irrelevant, and this constraint is actually
equivalent to the unit clause x

No other irrelevant literals are detected in the other constraints derived
by Sat4j

Even few irrelevant literals can lead to the production of
an exponentially larger proof
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Impact of the Removal of Irrelevant Literals on the Runtime
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Figure 6: Comparison of the runtime of Sat4j-GeneralizedResolution with and
without the removal of irrelevant literals on all benchmarks (logarithmic scale)
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Weakening Ineffective Literals

Recall that, during conflict analysis, some literals may be ineffective

3ā + 3b̄ + c + d + e ≥ 6

2a + b + c + f ≥ 2

Ineffective literals can be seen as locally irrelevant, as opposed to the
globally irrelevant literals presented before

In the context of the current partial assignment, it is easy to detect
ineffective literals, but they can only be weakened away

(as ineffective literals may be relevant)
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Adapting further PB Solvers to
CDCL



CDCL Architecture Recap

Figure 7: Overview of the CDCL Algorithm
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CDCL Architecture Recap

Figure 8: Use of other strategies in the CDCL Algorithm
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Motivation

It is well known that, in addition to conflict analysis, several features of
SAT solvers are crucial for solving problems efficiently, such as:

• branching heuristic
• learned constraint deletion strategy
• restart policy

These features are mostly reused as is by current PB solvers, without
taking into account the particular properties of PB constraints

Our main finding (Le Berre and Wallon, 2021) is that considering the size
of the coefficients and the current partial assignment allows to

significantly improve the solver
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Comparison of different variants (decision)
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Figure 9: Cactus plot of the best configurations of different solvers
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Comparison of different variants (optimization)
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Conclusion and Perspectives



Conclusion

• Implementations of the cutting planes proof system in PB solvers are
not fully satisfactory, as its strength is not fully exploited

• Irrelevant literals may be produced during conflict analysis, and lead
to the inference of weaker constraints

• Applying the weakening rule on ineffective literals is a possible
(aggressive) counter-measure

• Applying partial weakening and division gives better performance

• Complementary heuristics implemented in CDCL PB solvers can be
adapted to take into account properties of PB constraints and to
improve the performance of Sat4j
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Perspectives

• Find other strategies for applying cutting planes rules so as to
exploit more power of this proof system

• Design such strategies so as to prevent the production of irrelevant
literals instead of removing them

• Combine the strategies to exploit their complementarity (e.g., using
DAC)

• Identify possible interactions between the new heuristics

• Improve the detection of the optimal backjump level during conflict
analysis

• Improve the detection of conflicts to deal with the conflictual
reasons encountered during conflict analysis
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Adapting further PB Solvers



Leveraging Properties of PB Constraints for Fine Tuning Sat4j

Let us consider again a confict analysis

3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) ≥ 5

6a(?@?) + 3b(?@?) + 3c(?@?) + 3d(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e ≥ 5 6a + 3b + 3c + 3d + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!
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3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) ≥ 5

6a(?@?) + 3b(1@1) + 3c(?@?) + 3d(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:
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3ā + 3̄f + d + e ≥ 5 6a + 3b + 3c + 3d + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

33/45



(E)VSIDS for Making Decisions: Classical Implementation

All variables encountered during conflict analysis are bumped

This is the case for all the variables appearing in the previous reason:

3ā + 3̄f + d + e ≥ 5

This means that the scores of the variables a, f, d and e are incremented
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(E)VSIDS for Making Decisions: Coefficients

A first approach for adapting VSIDS to PB constraints has been
proposed in (Dixon, 2004), but it only takes into account the original
cardinality constraints, and thus not the reason we have here:

3ā + 3̄f + d + e ≥ 5

We propose to take these coefficients into account with 3 new strategies:

• bump-degree: the score of each variable is incremented by the
degree of the constraint (5 for all variables)

• bump-coefficient: the score of each variable is incremented by
their coefficients in the constraint (3 for a and f)

• bump-ratio: the score of each variable is incremented by the ratio
of the degree by their coefficient in the constraint ( 5

3 for a and f)
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(E)VSIDS for Making Decisions: Experiments
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(E)VSIDS for Making Decisions: Assignments

Observe also that some literals are unassigned in the reason:

3ā + 3̄f + d + e ≥ 5

In an assertive clause, all literals are assigned, and all but one are
falsified: these latter literals are those involved in the propagation

We can take the current assignement into account with 3 new strategies:

• bump-assigned: the score of each assigned variable is incremented
(a, f and d)

• bump-falsified: the score of each falsified variable is incremented
(f and d)

• bump-effective: the score of each effective variable is incremented
(f and d)
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(E)VSIDS for Making Decisions: Experiments
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Quality of Learned Constraints: Classical Implementations

In SAT solvers, evaluating the quality of learned constraints is used to
choose which constraints should be deleted and to decide when a restart
should be triggered

The quality measures used by SAT solvers do not take into account the
properties of PB constraints
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Quality of Learned Constraints: Size and Coefficients

In SAT solvers, the size of a clause is a naive measure of its quality: the
longer the clause, the lower its strength

In the PB case, the length of a constraint does not reflect its strength

However, the size of a PB constraint also takes into account its
coefficients

Consider the constraint we derived in the previous conflict analysis:

3a + 3b + 3c + 2d̄ + e ≥ 7

In practice, the coefficients may become very big, which requires the use
of arbitrary precision encodings and slows down arithmetic operations.

We consider quality measures based on the value and size of the degree
of the constraints: the lower the degree, the better the constraint
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Quality of Learned Constraints: Assignments (LBD)

In SAT solvers, the Literal Block Distance (Audemard and Simon, 2009)
measures the quality of clauses by the number of decision levels
appearing in this clause

3a(0@3) + 3b(1@1) + 3c(0@2) + 2d̄(1@3) + e(?@?) ≥ 7

There are satisfied and unassigned literals in this constraint!

We thus introduce 5 new definitions of LBD:

• lbd-a: the LBD is computed over assigned literals only
• lbd-s: the LBD is computed over assigned literals, and unassigned

literals are considered assigned at the same (dummy) decision level
• lbd-d: the LBD is computed over assigned literals, and unassigned

literals are considered assigned at different (dummy) decision levels
• lbd-f: the LBD is computed over falsified literals only
• lbd-e: the LBD is computed over effective literals only
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Quality of Learned Constraint: Deletion

Deleting constraints is required by SAT solvers to limit the memory usage
and to prevent unit propagation from slowing down

This is also true, but to a lesser extent, for PB solvers

The constraints to delete are those having a bad score w.r.t.
the quality measure used in the solver

We thus introduce the following deletion strategies, based on the
different quality measures we presented:

• delete-degree
• delete-degree-size
• delete-lbd-a
• delete-lbd-s
• delete-lbd-d
• delete-lbd-f
• delete-lbd-e
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Quality of Learned Constraints: Restarts

Restarting allows to forget all decisions made by the solver, so as to avoid
being stuck in a subpart of the search space

Following Glucose’s approach (Audemard and Simon, 2012), we consider
adaptive restarts based on the quality of recently learned constraints

Whenever the most recent constraints are of poor quality compared to all
the others, a restart is performed

We thus introduce the following restart strategies, based on the different
quality measures we presented

• restart-degree
• restart-degree-size
• restart-lbd-a
• restart-lbd-s
• restart-lbd-d
• restart-lbd-f
• restart-lbd-e
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Comparison of different variants (decision)
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Figure 11: Cactus plot of the best configurations of different solvers
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Comparison of different variants (optimization)
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Figure 12: Cactus plot of the best configurations of different solvers
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