
Hypergraph Partitioning for Compiling
Pseudo-Boolean Formulae

Romain Wallon
ROADEF’21, Session Partitionnement des Graphes – April 29, 2021

Laboratoire d’Informatique de l’X (LIX), École Polytechnique, X-Uber Chair



Symbolic AI and Boolean Reasoning

We consider Boolean (i.e., {0, 1}) variables to represent knowledge

Most of the time, knowledge is encoded using conjunctions of clauses,
a.k.a. CNF formulae

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

The problem is often to check whether such a formula is satisfiable, i.e.,
has a solution

1/18



Symbolic AI and Boolean Reasoning

We consider Boolean (i.e., {0, 1}) variables to represent knowledge

Most of the time, knowledge is encoded using conjunctions of clauses,
a.k.a. CNF formulae

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

The problem is often to check whether such a formula is satisfiable, i.e.,
has a solution

1/18



Symbolic AI and Boolean Reasoning

We consider Boolean (i.e., {0, 1}) variables to represent knowledge

Most of the time, knowledge is encoded using conjunctions of clauses,
a.k.a. CNF formulae

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

The problem is often to check whether such a formula is satisfiable, i.e.,
has a solution

1/18



Dual Hypergraph of CNF Formulae

It is often convenient to use (hyper)graph representations of CNF
Formulae to get some information about the structure of the formula

γ1 ≡ a ∨ b̄ γ2 ≡ ā ∨ c γ3 ≡ b ∨ d̄ ∨ ē γ4 ≡ b̄ ∨ e ∨ f

Its dual hypergraph has as hypervertices the clauses of the formula and
as hyperedges the variables of this formula

A hyperedge covers the clauses containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

2/18



Dual Hypergraph of CNF Formulae

It is often convenient to use (hyper)graph representations of CNF
Formulae to get some information about the structure of the formula

γ1 ≡ a ∨ b̄ γ2 ≡ ā ∨ c γ3 ≡ b ∨ d̄ ∨ ē γ4 ≡ b̄ ∨ e ∨ f

Its dual hypergraph has as hypervertices the clauses of the formula and
as hyperedges the variables of this formula

A hyperedge covers the clauses containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

2/18



Dual Hypergraph of CNF Formulae

It is often convenient to use (hyper)graph representations of CNF
Formulae to get some information about the structure of the formula

γ1 ≡ a ∨ b̄ γ2 ≡ ā ∨ c γ3 ≡ b ∨ d̄ ∨ ē γ4 ≡ b̄ ∨ e ∨ f

Its dual hypergraph has as hypervertices the clauses of the formula and
as hyperedges the variables of this formula

A hyperedge covers the clauses containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

2/18



Dual Hypergraph of CNF Formulae

It is often convenient to use (hyper)graph representations of CNF
Formulae to get some information about the structure of the formula

γ1 ≡ a ∨ b̄ γ2 ≡ ā ∨ c γ3 ≡ b ∨ d̄ ∨ ē γ4 ≡ b̄ ∨ e ∨ f

Its dual hypergraph has as hypervertices the clauses of the formula and
as hyperedges the variables of this formula

A hyperedge covers the clauses containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

2/18



Dual Hypergraph of CNF Formulae

It is often convenient to use (hyper)graph representations of CNF
Formulae to get some information about the structure of the formula

γ1 ≡ a ∨ b̄ γ2 ≡ ā ∨ c γ3 ≡ b ∨ d̄ ∨ ē γ4 ≡ b̄ ∨ e ∨ f

Its dual hypergraph has as hypervertices the clauses of the formula and
as hyperedges the variables of this formula

A hyperedge covers the clauses containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

2/18



Reasoning on CNF Formulae and Limitations

The main reason for using CNF formulae to represent knowledge is that
we can use SAT solvers to reason with such formulae

Modern SAT solvers (Silva and Sakallah, 1996; Moskewicz et al., 2001;
Eén and Sörensson, 2004) are very efficient in practice

However, they do not offer time guarantees when given an input to solve

For some applications, especially those involving interactions with users,
this is not acceptable

In such cases, it may be interesting to rely on knowledge compilation

3/18



Reasoning on CNF Formulae and Limitations

The main reason for using CNF formulae to represent knowledge is that
we can use SAT solvers to reason with such formulae

Modern SAT solvers (Silva and Sakallah, 1996; Moskewicz et al., 2001;
Eén and Sörensson, 2004) are very efficient in practice

However, they do not offer time guarantees when given an input to solve

For some applications, especially those involving interactions with users,
this is not acceptable

In such cases, it may be interesting to rely on knowledge compilation

3/18



Reasoning on CNF Formulae and Limitations

The main reason for using CNF formulae to represent knowledge is that
we can use SAT solvers to reason with such formulae

Modern SAT solvers (Silva and Sakallah, 1996; Moskewicz et al., 2001;
Eén and Sörensson, 2004) are very efficient in practice

However, they do not offer time guarantees when given an input to solve

For some applications, especially those involving interactions with users,
this is not acceptable

In such cases, it may be interesting to rely on knowledge compilation

3/18



Reasoning on CNF Formulae and Limitations

The main reason for using CNF formulae to represent knowledge is that
we can use SAT solvers to reason with such formulae

Modern SAT solvers (Silva and Sakallah, 1996; Moskewicz et al., 2001;
Eén and Sörensson, 2004) are very efficient in practice

However, they do not offer time guarantees when given an input to solve

For some applications, especially those involving interactions with users,
this is not acceptable

In such cases, it may be interesting to rely on knowledge compilation

3/18



Reasoning on CNF Formulae and Limitations

The main reason for using CNF formulae to represent knowledge is that
we can use SAT solvers to reason with such formulae

Modern SAT solvers (Silva and Sakallah, 1996; Moskewicz et al., 2001;
Eén and Sörensson, 2004) are very efficient in practice

However, they do not offer time guarantees when given an input to solve

For some applications, especially those involving interactions with users,
this is not acceptable

In such cases, it may be interesting to rely on knowledge compilation

3/18



Knowledge Compilation

Given a formula written in a specific language (e.g., CNF), some
operations may be too expensive in practice to be performed online

Compiling a formula is translating it (offline) into another language to
obtain an equivalent formula on which performing the wanted (online)

operations is easier

4/18



Knowledge Compilation

Given a formula written in a specific language (e.g., CNF), some
operations may be too expensive in practice to be performed online

Compiling a formula is translating it (offline) into another language to
obtain an equivalent formula on which performing the wanted (online)

operations is easier

4/18



Targetting the d-DNNF Language

The language of d-DNNF is the language of deterministic and
decomposable NNF

NNF is the language of Boolean circuits in Negation Normal Form, in
which negations are only applied on variables

Deterministic means that, for any disjunction φ ∨ ψ, there is no common
model between φ and ψ (i.e., φ ∧ ψ |= ⊥)

Decomposable means that, for each conjunction φ ∧ ψ, there is no
common variable between φ and ψ (i.e., var(φ) ∩ var(ψ) = ∅)

These two properties allow the efficient computation of different queries

5/18



Targetting the d-DNNF Language

The language of d-DNNF is the language of deterministic and
decomposable NNF

NNF is the language of Boolean circuits in Negation Normal Form, in
which negations are only applied on variables

Deterministic means that, for any disjunction φ ∨ ψ, there is no common
model between φ and ψ (i.e., φ ∧ ψ |= ⊥)

Decomposable means that, for each conjunction φ ∧ ψ, there is no
common variable between φ and ψ (i.e., var(φ) ∩ var(ψ) = ∅)

These two properties allow the efficient computation of different queries

5/18



Targetting the d-DNNF Language

The language of d-DNNF is the language of deterministic and
decomposable NNF

NNF is the language of Boolean circuits in Negation Normal Form, in
which negations are only applied on variables

Deterministic means that, for any disjunction φ ∨ ψ, there is no common
model between φ and ψ (i.e., φ ∧ ψ |= ⊥)

Decomposable means that, for each conjunction φ ∧ ψ, there is no
common variable between φ and ψ (i.e., var(φ) ∩ var(ψ) = ∅)

These two properties allow the efficient computation of different queries

5/18



Targetting the d-DNNF Language

The language of d-DNNF is the language of deterministic and
decomposable NNF

NNF is the language of Boolean circuits in Negation Normal Form, in
which negations are only applied on variables

Deterministic means that, for any disjunction φ ∨ ψ, there is no common
model between φ and ψ (i.e., φ ∧ ψ |= ⊥)

Decomposable means that, for each conjunction φ ∧ ψ, there is no
common variable between φ and ψ (i.e., var(φ) ∩ var(ψ) = ∅)

These two properties allow the efficient computation of different queries

5/18



Targetting the d-DNNF Language

The language of d-DNNF is the language of deterministic and
decomposable NNF

NNF is the language of Boolean circuits in Negation Normal Form, in
which negations are only applied on variables

Deterministic means that, for any disjunction φ ∨ ψ, there is no common
model between φ and ψ (i.e., φ ∧ ψ |= ⊥)

Decomposable means that, for each conjunction φ ∧ ψ, there is no
common variable between φ and ψ (i.e., var(φ) ∩ var(ψ) = ∅)

These two properties allow the efficient computation of different queries

5/18



Ensuring Determinism

To ensure determinism, each disjunction node in the circuit will be a
decision node

∨

∧ ∧

x A B x̄

For more readablity, we will represent the decision node above as

x

A B

The d-DNNFs we obtain in this case are called Decision-DNNF

6/18



Ensuring Determinism

To ensure determinism, each disjunction node in the circuit will be a
decision node

∨

∧ ∧

x A B x̄

For more readablity, we will represent the decision node above as

x

A B

The d-DNNFs we obtain in this case are called Decision-DNNF

6/18



Ensuring Determinism

To ensure determinism, each disjunction node in the circuit will be a
decision node

∨

∧ ∧

x A B x̄

For more readablity, we will represent the decision node above as

x

A B

The d-DNNFs we obtain in this case are called Decision-DNNF

6/18



Ensuring Decomposability

To ensure decomposability, a partition of the dual hypergraph of the CNF
to compile is computed, to extract independent connected components

This operation yields a cutset, which is a set of hyperedges (i.e.,
variables) that must be removed (i.e., assigned) to get disjoint
components

By construction, each connected component do not share variables

The connected components can then be compiled independently, before
adding their conjunction to the build d-DNNF

7/18



Ensuring Decomposability

To ensure decomposability, a partition of the dual hypergraph of the CNF
to compile is computed, to extract independent connected components

This operation yields a cutset, which is a set of hyperedges (i.e.,
variables) that must be removed (i.e., assigned) to get disjoint
components

By construction, each connected component do not share variables

The connected components can then be compiled independently, before
adding their conjunction to the build d-DNNF

7/18



Ensuring Decomposability

To ensure decomposability, a partition of the dual hypergraph of the CNF
to compile is computed, to extract independent connected components

This operation yields a cutset, which is a set of hyperedges (i.e.,
variables) that must be removed (i.e., assigned) to get disjoint
components

By construction, each connected component do not share variables

The connected components can then be compiled independently, before
adding their conjunction to the build d-DNNF

7/18



Ensuring Decomposability

To ensure decomposability, a partition of the dual hypergraph of the CNF
to compile is computed, to extract independent connected components

This operation yields a cutset, which is a set of hyperedges (i.e.,
variables) that must be removed (i.e., assigned) to get disjoint
components

By construction, each connected component do not share variables

The connected components can then be compiled independently, before
adding their conjunction to the build d-DNNF

7/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d e

c ⊤ ē

a

c

⊤ f

∧

∧

∧

f

b

a d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d e

c ⊤ ē

a

c

⊤ f

∧

∧

∧

f

b

a d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d e

c ⊤ ē

a

c

⊤ f

∧

∧

∧

f

b

a d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a

d e

c ⊤ ē

a

c

⊤ f

∧

∧

∧

f

b

a

d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a

d e

c

⊤

ē

a

c

⊤ f

∧

∧

∧

f

b

a

d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a

d e

c ⊤

ē

a

c

⊤ f

∧

∧

∧

f

b

a

d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d

e

c ⊤

ē

a

c

⊤ f

∧

∧

∧

f

b

a

d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d

e

c ⊤

ē

a

c

⊤ f

∧

∧

∧

f

b

a

d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d

e

c ⊤ ē

a

c

⊤ f

∧

∧

∧

f

b

a

d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d

e

c ⊤ ē

a

c

⊤ f

∧

∧

∧

f

b

a d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d

e

c ⊤ ē

a

c

⊤ f

∧

∧

∧

f

b

a

d

c

e

γ1

γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d

e

c ⊤ ē

a

c

⊤ f

∧

∧

∧ f

b

a

d

c

e

γ1

γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d e

c ⊤ ē

a

c

⊤ f

∧

∧

∧ f

b

a

d

c

e

γ1

γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d e

c ⊤ ē

a

c

⊤

f

∧

∧

∧ f

b

a

d

c

e

γ1 γ4

γ2

γ3

8/18



Compiling our CNF Formula

(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ d̄ ∨ ē) ∧ (b̄ ∨ e ∨ f)

b

a d e

c ⊤ ē

a

c

⊤ f

∧

∧

∧ f

b

a

d

c

e

γ1

γ4

γ2

γ3

8/18



Impact of the Quality of the Partition

Finding a good partition is crucial for compiling the input into a small
Decision-DNNF

e

⊤ f̄

∧

ē b̄

b

a ∧

ā

c

∧

ā b̄

c

⊤

a

⊤

c∧

b̄

e

f

d

Ideally, we need small cutsets and balanced partitions

9/18



Impact of the Quality of the Partition

Finding a good partition is crucial for compiling the input into a small
Decision-DNNF

e

⊤ f̄

∧

ē b̄

b

a ∧

ā

c

∧

ā b̄

c

⊤

a

⊤

c∧

b̄

e

f

d

Ideally, we need small cutsets and balanced partitions

9/18



Impact of the Quality of the Partition

Finding a good partition is crucial for compiling the input into a small
Decision-DNNF

e

⊤ f̄

∧

ē b̄

b

a ∧

ā

c

∧

ā b̄

c

⊤

a

⊤

c∧

b̄

e

f

d

Ideally, we need small cutsets and balanced partitions

9/18



Outline of D4 (Lagniez and Marquis, 2017)

1. Invoke a SAT Solver on the input
2. If the formula is UNSAT, then the compiled form is ⊥
3. If all variables are assigned, then the compiled form is ⊤
4. For each connected component φ of the formula:

a. Choose a variable v based on a cutset of φ computed with PaToH
(Çatalyürek and Aykanat, 2011)

b. Compile φ|v as φv

c. Compile φ|v̄ as φv̄

d. The compiled form of φ is ite(v, φv, φv̄)

5. The compiled form is the conjunction of the compiled forms
obtained above

D4 is available at https://github.com/crillab/d4

10/18



Outline of D4 (Lagniez and Marquis, 2017)

1. Invoke a SAT Solver on the input
2. If the formula is UNSAT, then the compiled form is ⊥
3. If all variables are assigned, then the compiled form is ⊤
4. For each connected component φ of the formula:

a. Choose a variable v based on a cutset of φ computed with PaToH
(Çatalyürek and Aykanat, 2011)

b. Compile φ|v as φv

c. Compile φ|v̄ as φv̄

d. The compiled form of φ is ite(v, φv, φv̄)

5. The compiled form is the conjunction of the compiled forms
obtained above

D4 is available at https://github.com/crillab/d4

10/18



SAT Solver Limitations

The algorithm we presented uses SAT solvers as oracles to benefit from
their practical efficiency

However, some instances remain completely out of reach for modern SAT
solvers, especially when counting capabilities are required

For instance, SAT solvers cannot prove efficiently that “n pigeons do not
fit in n − 1 holes” (Haken, 1985)

On such instances, pseudo-Boolean reasoning can offer better
performance

11/18



SAT Solver Limitations

The algorithm we presented uses SAT solvers as oracles to benefit from
their practical efficiency

However, some instances remain completely out of reach for modern SAT
solvers, especially when counting capabilities are required

For instance, SAT solvers cannot prove efficiently that “n pigeons do not
fit in n − 1 holes” (Haken, 1985)

On such instances, pseudo-Boolean reasoning can offer better
performance

11/18



SAT Solver Limitations

The algorithm we presented uses SAT solvers as oracles to benefit from
their practical efficiency

However, some instances remain completely out of reach for modern SAT
solvers, especially when counting capabilities are required

For instance, SAT solvers cannot prove efficiently that “n pigeons do not
fit in n − 1 holes” (Haken, 1985)

On such instances, pseudo-Boolean reasoning can offer better
performance

11/18



SAT Solver Limitations

The algorithm we presented uses SAT solvers as oracles to benefit from
their practical efficiency

However, some instances remain completely out of reach for modern SAT
solvers, especially when counting capabilities are required

For instance, SAT solvers cannot prove efficiently that “n pigeons do not
fit in n − 1 holes” (Haken, 1985)

On such instances, pseudo-Boolean reasoning can offer better
performance

11/18



Pseudo-Boolean (PB) Constraints

PB solvers are generalizations of SAT solvers that allow to consider

• normalized PB constraints
∑n

i=1 αiℓi ≥ δ

• cardinality constraints
∑n

i=1 ℓi ≥ δ

• clauses
∑n

i=1 ℓi ≥ 1

in which

• the coefficients αi are non-negative integers
• ℓi are literals, i.e., a variable v or its negation v̄ = 1 − v
• the degree δ is a non-negative integer

PB constraints allow in general more succinct encodings than CNF, and
are often more natural to use

12/18



Pseudo-Boolean (PB) Constraints

PB solvers are generalizations of SAT solvers that allow to consider

• normalized PB constraints
∑n

i=1 αiℓi ≥ δ

• cardinality constraints
∑n

i=1 ℓi ≥ δ

• clauses
∑n

i=1 ℓi ≥ 1

in which

• the coefficients αi are non-negative integers
• ℓi are literals, i.e., a variable v or its negation v̄ = 1 − v
• the degree δ is a non-negative integer

PB constraints allow in general more succinct encodings than CNF, and
are often more natural to use

12/18



Succinctness of PB Constraints

To illustrate the succinctness of PB constraints compared to CNF,
consider the cardinality constraint

a + b + c + d + e ≥ 3

Its CNF encoding is given by

(a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ e)
∧(a ∨ d ∨ e) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (b ∨ d ∨ e) ∧ (c ∨ d ∨ e)

In general, PB representations may be exponentially smaller than CNF
representations

13/18



Succinctness of PB Constraints

To illustrate the succinctness of PB constraints compared to CNF,
consider the cardinality constraint

a + b + c + d + e ≥ 3

Its CNF encoding is given by

(a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ e)
∧(a ∨ d ∨ e) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (b ∨ d ∨ e) ∧ (c ∨ d ∨ e)

In general, PB representations may be exponentially smaller than CNF
representations

13/18



Succinctness of PB Constraints

To illustrate the succinctness of PB constraints compared to CNF,
consider the cardinality constraint

a + b + c + d + e ≥ 3

Its CNF encoding is given by

(a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ e)
∧(a ∨ d ∨ e) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (b ∨ d ∨ e) ∧ (c ∨ d ∨ e)

In general, PB representations may be exponentially smaller than CNF
representations

13/18



Compiling PB Formulae

A first advantage of the native support of PB constraints for knowledge
compilation is that PB representations may be more succinct and more
natural than CNF representations

They allow to consider instances that are too big when represented in
CNF to be compiled

PB solvers may find exponentially shorter proofs while inheriting many of
the efficient techniques developped in SAT solvers

Using such solvers as oracles may allow to speed up the compilation time

Supporting PB constraints only requires to extend the existing algorithm,
without forcing to redesign a completely new approach

To support PB compilation, one basically needs to replace by a PB solver
the SAT solver used in the compilation procedure

14/18



Compiling PB Formulae

A first advantage of the native support of PB constraints for knowledge
compilation is that PB representations may be more succinct and more
natural than CNF representations

They allow to consider instances that are too big when represented in
CNF to be compiled

PB solvers may find exponentially shorter proofs while inheriting many of
the efficient techniques developped in SAT solvers

Using such solvers as oracles may allow to speed up the compilation time

Supporting PB constraints only requires to extend the existing algorithm,
without forcing to redesign a completely new approach

To support PB compilation, one basically needs to replace by a PB solver
the SAT solver used in the compilation procedure

14/18



Compiling PB Formulae

A first advantage of the native support of PB constraints for knowledge
compilation is that PB representations may be more succinct and more
natural than CNF representations

They allow to consider instances that are too big when represented in
CNF to be compiled

PB solvers may find exponentially shorter proofs while inheriting many of
the efficient techniques developped in SAT solvers

Using such solvers as oracles may allow to speed up the compilation time

Supporting PB constraints only requires to extend the existing algorithm,
without forcing to redesign a completely new approach

To support PB compilation, one basically needs to replace by a PB solver
the SAT solver used in the compilation procedure

14/18



Compiling PB Formulae

A first advantage of the native support of PB constraints for knowledge
compilation is that PB representations may be more succinct and more
natural than CNF representations

They allow to consider instances that are too big when represented in
CNF to be compiled

PB solvers may find exponentially shorter proofs while inheriting many of
the efficient techniques developped in SAT solvers

Using such solvers as oracles may allow to speed up the compilation time

Supporting PB constraints only requires to extend the existing algorithm,
without forcing to redesign a completely new approach

To support PB compilation, one basically needs to replace by a PB solver
the SAT solver used in the compilation procedure

14/18



Compiling PB Formulae

A first advantage of the native support of PB constraints for knowledge
compilation is that PB representations may be more succinct and more
natural than CNF representations

They allow to consider instances that are too big when represented in
CNF to be compiled

PB solvers may find exponentially shorter proofs while inheriting many of
the efficient techniques developped in SAT solvers

Using such solvers as oracles may allow to speed up the compilation time

Supporting PB constraints only requires to extend the existing algorithm,
without forcing to redesign a completely new approach

To support PB compilation, one basically needs to replace by a PB solver
the SAT solver used in the compilation procedure

14/18



Compiling PB Formulae

A first advantage of the native support of PB constraints for knowledge
compilation is that PB representations may be more succinct and more
natural than CNF representations

They allow to consider instances that are too big when represented in
CNF to be compiled

PB solvers may find exponentially shorter proofs while inheriting many of
the efficient techniques developped in SAT solvers

Using such solvers as oracles may allow to speed up the compilation time

Supporting PB constraints only requires to extend the existing algorithm,
without forcing to redesign a completely new approach

To support PB compilation, one basically needs to replace by a PB solver
the SAT solver used in the compilation procedure

14/18



Dual Hypergraph of a PB Formula

The dual hypergraph of a PB formula is defined as for CNF formulae

χ1 ≡ a+ b̄ ≥ 1 χ2 ≡ ā+c ≥ 1 χ3 ≡ b+ d̄+ ē ≥ 2 χ4 ≡ 2b̄+e+f ≥ 3

Its dual hypergraph has as hypervertices the constraints of the formula
and as hyperedges the variables of this formula

A hyperedge covers the constraints containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

15/18



Dual Hypergraph of a PB Formula

The dual hypergraph of a PB formula is defined as for CNF formulae

χ1 ≡ a+ b̄ ≥ 1 χ2 ≡ ā+c ≥ 1 χ3 ≡ b+ d̄+ ē ≥ 2 χ4 ≡ 2b̄+e+f ≥ 3

Its dual hypergraph has as hypervertices the constraints of the formula
and as hyperedges the variables of this formula

A hyperedge covers the constraints containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

15/18



Dual Hypergraph of a PB Formula

The dual hypergraph of a PB formula is defined as for CNF formulae

χ1 ≡ a+ b̄ ≥ 1 χ2 ≡ ā+c ≥ 1 χ3 ≡ b+ d̄+ ē ≥ 2 χ4 ≡ 2b̄+e+f ≥ 3

Its dual hypergraph has as hypervertices the constraints of the formula
and as hyperedges the variables of this formula

A hyperedge covers the constraints containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

15/18



Dual Hypergraph of a PB Formula

The dual hypergraph of a PB formula is defined as for CNF formulae

χ1 ≡ a+ b̄ ≥ 1 χ2 ≡ ā+c ≥ 1 χ3 ≡ b+ d̄+ ē ≥ 2 χ4 ≡ 2b̄+e+f ≥ 3

Its dual hypergraph has as hypervertices the constraints of the formula
and as hyperedges the variables of this formula

A hyperedge covers the constraints containing the corresponding variable

a

b

c

d

e

f

γ1

γ2

γ3 γ4

15/18



Outline of PBD4

1. Invoke a PB Solver on the input
2. If the formula is UNSAT, then the compiled form is ⊥
3. If all variables are assigned, then the compiled form is ⊤
4. For each connected component φ of the formula:

a. Choose a variable v based on a cutset of φ computed with KaHyPar
(Schlag, 2020)

b. Compile φ|v as φv

c. Compile φ|v̄ as φv̄

d. The compiled form of φ is ite(v, φv, φv̄)

5. The compiled form is the conjunction of the compiled forms
obtained above

PBD4 is available at https://github.com/crillab/pbd4

16/18



Outline of PBD4

1. Invoke a PB Solver on the input
2. If the formula is UNSAT, then the compiled form is ⊥
3. If all variables are assigned, then the compiled form is ⊤
4. For each connected component φ of the formula:

a. Choose a variable v based on a cutset of φ computed with KaHyPar
(Schlag, 2020)

b. Compile φ|v as φv

c. Compile φ|v̄ as φv̄

d. The compiled form of φ is ite(v, φv, φv̄)

5. The compiled form is the conjunction of the compiled forms
obtained above

PBD4 is available at https://github.com/crillab/pbd4

16/18



Conclusion

• Knowledge compilation ensures runtime guarantees for online
operations

• Hypergraph partitioning provides a heuristic to decide in which order
to assign variables when building the compiled form

• Modern and efficient SAT solvers are used as oracles to determine
whether it is worth compiling subformulae

• For compiling certain problems, using PB solvers instead may be
more efficient

17/18



Conclusion

• Knowledge compilation ensures runtime guarantees for online
operations

• Hypergraph partitioning provides a heuristic to decide in which order
to assign variables when building the compiled form

• Modern and efficient SAT solvers are used as oracles to determine
whether it is worth compiling subformulae

• For compiling certain problems, using PB solvers instead may be
more efficient

17/18



Conclusion

• Knowledge compilation ensures runtime guarantees for online
operations

• Hypergraph partitioning provides a heuristic to decide in which order
to assign variables when building the compiled form

• Modern and efficient SAT solvers are used as oracles to determine
whether it is worth compiling subformulae

• For compiling certain problems, using PB solvers instead may be
more efficient

17/18



Conclusion

• Knowledge compilation ensures runtime guarantees for online
operations

• Hypergraph partitioning provides a heuristic to decide in which order
to assign variables when building the compiled form

• Modern and efficient SAT solvers are used as oracles to determine
whether it is worth compiling subformulae

• For compiling certain problems, using PB solvers instead may be
more efficient

17/18



Perspectives

• Take advantage of native PB compilation for considering new
applications of knowledge compilation (e.g., for explaining
(binarized) neural networks)

• Use speculation techniques to speed up compilation:
• by predicting satisfiability before invoking the SAT/PB solver as an

oracle

• by predicting cutsets before computing a partition of the hypergraph

18/18



Perspectives

• Take advantage of native PB compilation for considering new
applications of knowledge compilation (e.g., for explaining
(binarized) neural networks)

• Use speculation techniques to speed up compilation:

• by predicting satisfiability before invoking the SAT/PB solver as an
oracle

• by predicting cutsets before computing a partition of the hypergraph

18/18



Perspectives

• Take advantage of native PB compilation for considering new
applications of knowledge compilation (e.g., for explaining
(binarized) neural networks)

• Use speculation techniques to speed up compilation:
• by predicting satisfiability before invoking the SAT/PB solver as an

oracle

• by predicting cutsets before computing a partition of the hypergraph

18/18



Perspectives

• Take advantage of native PB compilation for considering new
applications of knowledge compilation (e.g., for explaining
(binarized) neural networks)

• Use speculation techniques to speed up compilation:
• by predicting satisfiability before invoking the SAT/PB solver as an

oracle

• by predicting cutsets before computing a partition of the hypergraph

18/18



Hypergraph Partitioning for Compiling
Pseudo-Boolean Formulae

Romain Wallon
ROADEF’21, Session Partitionnement des Graphes – April 29, 2021

Laboratoire d’Informatique de l’X (LIX), École Polytechnique, X-Uber Chair



References i

Çatalyürek, Ü. V. and Aykanat, C. (2011). Patoh (partitioning tool for
hypergraphs). In Padua, D. A., editor, Encyclopedia of Parallel
Computing, pages 1479–1487. Springer.

Eén, N. and Sörensson, N. (2004). An extensible sat-solver. In Theory
and Applications of Satisfiability Testing, pages 502–518.

Haken, A. (1985). The intractability of resolution. Theoretical Computer
Science, 39:297 – 308. Third Conference on Foundations of Software
Technology and Theoretical Computer Science.

Lagniez, J.-M. and Marquis, P. (2017). An improved decision-dnnf
compiler. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pages 667–673.

18/18



References ii

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S.
(2001). Chaff: Engineering an Efficient SAT Solver. In Proceedings of
the 38th Annual Design Automation Conference, DAC ’01, pages
530–535, New York, NY, USA. ACM.

Schlag, S. (2020). High-Quality Hypergraph Partitioning. PhD thesis,
Karlsruhe Institute of Technology, Germany.

Silva, J. a. P. M. and Sakallah, K. A. (1996). GRASP – New Search
Algorithm for Satisfiability. In Proceedings of the 1996 IEEE/ACM
International Conference on Computer-aided Design, ICCAD ’96, pages
220–227, Washington, DC, USA. IEEE Computer Society.

18/18


	References

