
Pseudo-Boolean Constraints:

Reasoning and Compilation

Romain Wallon (Advisors: Daniel Le Berre, Pierre Marquis, Stefan Mengel)

September 11, 2017

CRIL - U. Artois & CNRS

Overview

1. Reasoning with Pseudo-Boolean Constraints

2. A Knowledge Compilation Map

3. Properties of pseudo-Boolean constraints

4. PBC and CARD as compilation languages

5. What’s next?

6. Conclusion

1 / 37

Reasoning with Pseudo-Boolean

Constraints

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,

in conjunctive normal form (CNF)

pa_ b _ cq ^ pa_ b _ dq

To reason on such formulae, the resolution proof system can be used

x _ φ x _ ψ
(resolution)

φ_ ψ

l _ l _ φ
(fusion)

l _ φ

When the formula is UNSAT, this proof system is used to

find a proof of K

2 / 37

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,

in conjunctive normal form (CNF)

pa_ b _ cq ^ pa_ b _ dq

To reason on such formulae, the resolution proof system can be used

x _ φ x _ ψ
(resolution)

φ_ ψ

l _ l _ φ
(fusion)

l _ φ

When the formula is UNSAT, this proof system is used to

find a proof of K

2 / 37

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,

in conjunctive normal form (CNF)

pa_ b _ cq ^ pa_ b _ dq

To reason on such formulae, the resolution proof system can be used

x _ φ x _ ψ
(resolution)

φ_ ψ

l _ l _ φ
(fusion)

l _ φ

When the formula is UNSAT, this proof system is used to

find a proof of K

2 / 37

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,

in conjunctive normal form (CNF)

pa_ b _ cq ^ pa_ b _ dq

To reason on such formulae, the resolution proof system can be used

x _ φ x _ ψ
(resolution)

φ_ ψ

l _ l _ φ
(fusion)

l _ φ

When the formula is UNSAT, this proof system is used to

find a proof of K

2 / 37

...is not efficient on some problems!

Definition (Pigeon-Hole Principle – PHP)

You cannot put p pigeons in p ´ 1 holes!

Example

Let us consider:

• p pigeons and h holes

• xi,j meaning that pigeon i is put in hole j

The encoding is based on the following assertions:

Each pigeon is assigned at least one hole

and Each hole contains at most one pigeon

When h ă p, an exponential number of resolution steps is required to

prove unsatisfiability

3 / 37

...is not efficient on some problems!

Definition (Pigeon-Hole Principle – PHP)

You cannot put p pigeons in p ´ 1 holes!

Example

Let us consider:

• p pigeons and h holes

• xi,j meaning that pigeon i is put in hole j

The encoding is based on the following assertions:

Each pigeon is assigned at least one hole

and Each hole contains at most one pigeon

When h ă p, an exponential number of resolution steps is required to

prove unsatisfiability

3 / 37

...is not efficient on some problems!

Definition (Pigeon-Hole Principle – PHP)

You cannot put p pigeons in p ´ 1 holes!

Example

Let us consider:

• p pigeons and h holes

• xi,j meaning that pigeon i is put in hole j

The encoding is based on the following assertions:

Each pigeon is assigned at least one hole

and Each hole contains at most one pigeon

When h ă p, an exponential number of resolution steps is required to

prove unsatisfiability

3 / 37

...is not efficient on some problems!

Definition (Pigeon-Hole Principle – PHP)

You cannot put p pigeons in p ´ 1 holes!

Example

Let us consider:

• p pigeons and h holes

• xi,j meaning that pigeon i is put in hole j

A CNF encoding is:

p
ľ

i“1

h
ł

j“1

xi,j ^
p´1
ľ

i“1

p
ľ

j“i`1

h
ľ

k“1

p xi,k _ xj,kq

When h ă p, an exponential number of resolution steps is required to

prove unsatisfiability

3 / 37

...is not efficient on some problems!

Definition (Pigeon-Hole Principle – PHP)

You cannot put p pigeons in p ´ 1 holes!

Example

Let us consider:

• p pigeons and h holes

• xi,j meaning that pigeon i is put in hole j

A CNF encoding is:

p
ľ

i“1

h
ł

j“1

xi,j ^
p´1
ľ

i“1

p
ľ

j“i`1

h
ľ

k“1

p xi,k _ xj,kq

When h ă p, an exponential number of resolution steps is required to

prove unsatisfiability

3 / 37

Linear Pseudo-Boolean Constraints

A linear pseudo-Boolean constraint is of the form:

ÿ

j

aj lj B k

where:

• @j , aj P Z
• @j , lj is a literal (i.e. a boolean value)

• B P tă,ď,“,ě,ąu

• k P Z is the degree (threshold) of the constraint

4 / 37

Linear Pseudo-Boolean Constraints

A linear pseudo-Boolean constraint is of the form:

ÿ

j

aj lj B k

where:

• @j , aj P Z
• @j , lj is a literal (i.e. a boolean value)

• B P tă,ď,“,ě,ąu

• k P Z is the degree (threshold) of the constraint

4 / 37

PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

ř

j

aj lj ě k @j , aj P N, k P N

Cardinality constraints are of the form:

ř

j

lj ě k k P N

A formula of PBC (resp. CARD) is a conjunction of normalized

constraints (resp. cardinality constraints)

5 / 37

PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

ř

j

aj lj ě k @j , aj P N, k P N

Cardinality constraints are of the form:

ř

j

lj ě k k P N

A formula of PBC (resp. CARD) is a conjunction of normalized

constraints (resp. cardinality constraints)

5 / 37

PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

ř

j

aj lj ě k @j , aj P N, k P N

Cardinality constraints are of the form:

ř

j

lj ě k k P N

A formula of PBC (resp. CARD) is a conjunction of normalized

constraints (resp. cardinality constraints)

5 / 37

PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

ř

j

aj lj ě k @j , aj P N, k P N

Cardinality constraints are of the form:

ř

j

lj ě k k P N

A formula of PBC (resp. CARD) is a conjunction of normalized

constraints (resp. cardinality constraints)

5 / 37

Generalized Resolution

The proof system used to reason on PBC and CARD formulas is the

generalized resolution proof system, which is more powerful than the

resolution one [Hooker, 1988]

αl `
ř

j

aj lj ě k βl `
ř

j

bj lj ě k 1 α P N˚ β P N˚

(cancellation)ř

j

pβaj ` αbjqlj ě αk 1 ` βk ´ αβ

ř

j

aj lj ě k @j , aj ě 0 ai ą k

(saturation)
kli `

ř

j‰i

aj lj ě k

6 / 37

Is it worth the effort?

The PBC encoding of PHP is:

p
ľ

i“1

atLeastptxi,1, . . . , xi,hu, 1q ^
h
ľ

i“1

atMostptx1,j , . . . , xp,ju, 1q

By using this encoding, one can solve a PHP instance in a linear number

of steps [Haken, 1985 & Hooker, 1988]

7 / 37

Is it worth the effort?

The PBC encoding of PHP is:

p
ľ

i“1

atLeastptxi,1, . . . , xi,hu, 1q ^
h
ľ

i“1

atLeastptx1,j , . . . , xp,ju, p-1q

By using this encoding, one can solve a PHP instance in a linear number

of steps [Haken, 1985 & Hooker, 1988]

7 / 37

Is it worth the effort?

The PBC encoding of PHP is:

p
ľ

i“1

˜

h
ÿ

j“1

xi,j ě 1

¸

^

h
ľ

j“1

˜

p
ÿ

i“1

xi,j ě p ´ 1

¸

By using this encoding, one can solve a PHP instance in a linear number

of steps [Haken, 1985 & Hooker, 1988]

7 / 37

Is it worth the effort?

The PBC encoding of PHP is:

p
ľ

i“1

˜

h
ÿ

j“1

xi,j ě 1

¸

^

h
ľ

j“1

˜

p
ÿ

i“1

xi,j ě p ´ 1

¸

By using this encoding, one can solve a PHP instance in a linear number

of steps [Haken, 1985 & Hooker, 1988]

7 / 37

From CARD to CNF

Let us consider the following cardinality constraint:

a` b ` c ` d ` e ě 3

Its CNF encoding is given below:

pa_ b _ cq ^ pa_ b _ dq ^ pa_ b _ eq ^ pa_ c _ dq ^ pa_ c _ eq

^pa_ d _ eq ^ pb _ c _ dq ^ pb _ c _ eq ^ pb _ d _ eq ^ pc _ d _ eq

This CNF encoding is the smallest which does not require to introduce

new variables [Dixon, 2004]

8 / 37

From CARD to CNF

Let us consider the following cardinality constraint:

a` b ` c ` d ` e ě 3

Its CNF encoding is given below:

pa_ b _ cq ^ pa_ b _ dq ^ pa_ b _ eq ^ pa_ c _ dq ^ pa_ c _ eq

^pa_ d _ eq ^ pb _ c _ dq ^ pb _ c _ eq ^ pb _ d _ eq ^ pc _ d _ eq

This CNF encoding is the smallest which does not require to introduce

new variables [Dixon, 2004]

8 / 37

From CARD to CNF

Let us consider the following cardinality constraint:

a` b ` c ` d ` e ě 3

Its CNF encoding is given below:

pa_ b _ cq ^ pa_ b _ dq ^ pa_ b _ eq ^ pa_ c _ dq ^ pa_ c _ eq

^pa_ d _ eq ^ pb _ c _ dq ^ pb _ c _ eq ^ pb _ d _ eq ^ pc _ d _ eq

This CNF encoding is the smallest which does not require to introduce

new variables [Dixon, 2004]

8 / 37

Representing knowledge using PBC and CARD

Let us recap what we have seen

• pseudo-Boolean constraints enable to improve reasoning efficiency in

some cases

• representing a problem in this language requires less space than CNF

With PBC or CARD, modeling problems is also more natural: subset-sum

and knapsack require two normalized pseudo-Boolean constraints to be

modeled

Let us consider PBC and CARD as knowledge representation languages

9 / 37

Representing knowledge using PBC and CARD

Let us recap what we have seen

• pseudo-Boolean constraints enable to improve reasoning efficiency in

some cases

• representing a problem in this language requires less space than CNF

With PBC or CARD, modeling problems is also more natural: subset-sum

and knapsack require two normalized pseudo-Boolean constraints to be

modeled

Let us consider PBC and CARD as knowledge representation languages

9 / 37

Representing knowledge using PBC and CARD

Let us recap what we have seen

• pseudo-Boolean constraints enable to improve reasoning efficiency in

some cases

• representing a problem in this language requires less space than CNF

With PBC or CARD, modeling problems is also more natural: subset-sum

and knapsack require two normalized pseudo-Boolean constraints to be

modeled

Let us consider PBC and CARD as knowledge representation languages

9 / 37

A Knowledge Compilation Map

Knowledge compilation

Given a formula written in a specific language (e.g. CNF, DNF, etc.),

one would like to perform operations on it

But sometimes they are too expensive to be performed

Compiling a formula is translating it into an other language to obtain an

equivalent formula on which performing the wanted operations is easier

10 / 37

Knowledge compilation

Given a formula written in a specific language (e.g. CNF, DNF, etc.),

one would like to perform operations on it

But sometimes they are too expensive to be performed

Compiling a formula is translating it into an other language to obtain an

equivalent formula on which performing the wanted operations is easier

10 / 37

Some compilation languages: NNF

A circuit in Negative Normal Form is a DAG like this one:

_

_

^ t

x _

y z

11 / 37

Some compilation languages: OBDDă

Let us consider φ “ x _ py ^ xq _ pz ^ xq _ t

Given the order over the variables y ă x ă t ă z , the Ordered Binary

Decision Diagram representing φ, written OBDDăpφq, is:

y

x

t

0 1

01

1

0

1
0

12 / 37

Some compilation languages: OBDDă

Let us consider φ “ x _ py ^ xq _ pz ^ xq _ t

Given the order over the variables y ă x ă t ă z ,

the Ordered Binary

Decision Diagram representing φ, written OBDDăpφq, is:

y

x

t

0 1

01

1

0

1
0

12 / 37

Some compilation languages: OBDDă

Let us consider φ “ x _ py ^ xq _ pz ^ xq _ t

Given the order over the variables y ă x ă t ă z , the Ordered Binary

Decision Diagram representing φ, written OBDDăpφq, is:

y

x

t

0 1

01

1

0

1
0

12 / 37

Some compilation languages: IP, PI et MODS

Let us consider φ “ x _ py ^ xq _ pz ^ xq _ t

IPpφq “ pxq _ p tq

PI pφq “ x _ t

MODSpφq “ px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq

13 / 37

Some compilation languages: IP, PI et MODS

Let us consider φ “ x _ py ^ xq _ pz ^ xq _ t

IPpφq “ pxq _ p tq

PI pφq “ x _ t

MODSpφq “ px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq

13 / 37

Some compilation languages: IP, PI et MODS

Let us consider φ “ x _ py ^ xq _ pz ^ xq _ t

IPpφq “ pxq _ p tq

PI pφq “ x _ t

MODSpφq “ px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq

13 / 37

Some compilation languages: IP, PI et MODS

Let us consider φ “ x _ py ^ xq _ pz ^ xq _ t

IPpφq “ pxq _ p tq

PI pφq “ x _ t

MODSpφq “ px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

px ^ y ^ z ^ tq _ px ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq _

p x ^ y ^ z ^ tq _ p x ^ y ^ z ^ tq

13 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis

proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the

best to use w.r.t. the wanted operations

• succinctness

• queries

• transformations

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis

proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the

best to use w.r.t. the wanted operations

• succinctness

• queries

• transformations

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis

proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the

best to use w.r.t. the wanted operations

• succinctness

• queries

• transformations

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis

proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the

best to use w.r.t. the wanted operations

• succinctness

• queries

• transformations

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis

proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the

best to use w.r.t. the wanted operations

• succinctness

• queries

• transformations

14 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information

using little space

L1 is at least as succinct as L2, denoted L1 ď L2, iff there exists a

polynomial p such that for every formula α P L2, there exists an

equivalent formula β where |β| ď pp|α|q

In other words, L1 ď L2 iff any formula α P L2 can be written as a

formula β P L1 of polynomial size

Note that there is no hypothesis on the time complexity of the algorithm

needed to translate a formula from L2 to L1

15 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information

using little space

L1 is at least as succinct as L2, denoted L1 ď L2, iff there exists a

polynomial p such that for every formula α P L2, there exists an

equivalent formula β where |β| ď pp|α|q

In other words, L1 ď L2 iff any formula α P L2 can be written as a

formula β P L1 of polynomial size

Note that there is no hypothesis on the time complexity of the algorithm

needed to translate a formula from L2 to L1

15 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information

using little space

L1 is at least as succinct as L2, denoted L1 ď L2, iff there exists a

polynomial p such that for every formula α P L2, there exists an

equivalent formula β where |β| ď pp|α|q

In other words, L1 ď L2 iff any formula α P L2 can be written as a

formula β P L1 of polynomial size

Note that there is no hypothesis on the time complexity of the algorithm

needed to translate a formula from L2 to L1

15 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information

using little space

L1 is at least as succinct as L2, denoted L1 ď L2, iff there exists a

polynomial p such that for every formula α P L2, there exists an

equivalent formula β where |β| ď pp|α|q

In other words, L1 ď L2 iff any formula α P L2 can be written as a

formula β P L1 of polynomial size

Note that there is no hypothesis on the time complexity of the algorithm

needed to translate a formula from L2 to L1

15 / 37

Results from the KC map (succinctness)

Results from [DM02], [Bova-Capelli-Mengel-Slivovsky, 2016] and

[Kaleyski, 2017]

NNF DNNF d ´ DNNF sd ´ DNNF FBDD OBDD OBDDă DNF CNF PI IP MODS

NNF ď ď ď ď ď ď ď ď ď ď ď ď

DNNF ę ď ď ď ď ď ď ď ę ę ď ď

d ´ DNNF ę ę ď ď ď ď ď ę˚ ę ę ? ď

sd ´ DNNF ę ę ď ď ď ď ď ę ę ę ę ď

FBDD ę ę ę ę ď ď ď ę ę ę ę ď

OBDD ę ę ę ę ę ď ď ę ę ę ę ď

OBDDă ę ę ę ę ę ę ď ę ę ę ę ď

DNF ę ę ę ę ę ę ę ď ę ę ď ď

CNF ę ę ę ę ę ę ę ę ď ď ę ď

PI ę ę ę ę ę ę ę ę ę ď ę ę p?q

IP ę ę ę ę ę ę ę ę ę ę ď ď

MODS ę ę ę ę ę ę ę ę ę ę ę ď

16 / 37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?

IM (IMplication) Is a formula implied by a given cube/term?

EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?

CT (CounTing) How many models does a formula have?

ME (Model Enumeration) What are all the models of a formula?

17 / 37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?

IM (IMplication) Is a formula implied by a given cube/term?

EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?

CT (CounTing) How many models does a formula have?

ME (Model Enumeration) What are all the models of a formula?

17 / 37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?

IM (IMplication) Is a formula implied by a given cube/term?

EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?

CT (CounTing) How many models does a formula have?

ME (Model Enumeration) What are all the models of a formula?

17 / 37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?

IM (IMplication) Is a formula implied by a given cube/term?

EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?

CT (CounTing) How many models does a formula have?

ME (Model Enumeration) What are all the models of a formula?

17 / 37

Results from the KC map (queries) [DM02]

L CO VA CE IM EQ SE CT ME

NNF ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝

DNNF X ˝ X ˝ ˝ ˝ ˝ X

d ´ DNNF X X X X ? ˝ X X

sd ´ DNNF X X X X ? ˝ X X

BDD ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝

FBDD X X X X ? ˝ X X

OBDD X X X X X ˝ X X

OBDDă X X X X X X X X

DNF X ˝ X ˝ ˝ ˝ ˝ X

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

PI X X X X X X ˝ X

IP X X X X X X ˝ X

MODS X X X X X X X X

X Verified ˝ Not verified (unless P “ NP) 18 / 37

Transformations [DM02]

Given one or several formulas, transform them into a formula equivalent

in the considered language to the application of a logical operator

CD (ConDitioning) Compute φ|τ where τ is a consistent cube/term

SFO (Singleton FOrgetting) Compute Dx .φ ” pφ|xq _ pφ|xq

FO (FOrgetting) Compute DX .φ where X is a set of variables

^C (Closure under ^) Compute
Źn

i“1 φi

^BC (Bounded Closure under ^) Compute
Źn

i“1 φi , where n ď N

_C (Closure under _) Compute
Žn

i“1 φi

_BC (Bounded Closure under _) Compute
Žn

i“1 φi , where n ď N

 C (Closure under) Compute φ

19 / 37

Transformations [DM02]

Given one or several formulas, transform them into a formula equivalent

in the considered language to the application of a logical operator

CD (ConDitioning) Compute φ|τ where τ is a consistent cube/term

SFO (Singleton FOrgetting) Compute Dx .φ ” pφ|xq _ pφ|xq

FO (FOrgetting) Compute DX .φ where X is a set of variables

^C (Closure under ^) Compute
Źn

i“1 φi

^BC (Bounded Closure under ^) Compute
Źn

i“1 φi , where n ď N

_C (Closure under _) Compute
Žn

i“1 φi

_BC (Bounded Closure under _) Compute
Žn

i“1 φi , where n ď N

 C (Closure under) Compute φ

19 / 37

Results from the KC map (transformations) [DM02]

L CD FO SFO ^C ^BC _C _BC C

NNF X ˝ X X X X X X

DNNF X X X ˝ ˝ X X ˝

d ´ DNNF X ˝ ˝ ˝ ˝ ˝ ˝ ?

sd ´ DNNF X ˝ ˝ ˝ ˝ ˝ ˝ ?

BDD X ˝ X X X X X X

FBDD X • ˝ • ˝ • ˝ X

OBDD X • X • ˝ • ˝ X

OBDDă X • X • X • X X

DNF X X X • X X X •
CNF X ˝ X X X • X •
PI X X X • • • X •
IP X • • • X • • •

MODS X X X • X • • •

X Verified ˝ Not verified (unless P “ NP) • Not verified 20 / 37

Properties of pseudo-Boolean

constraints

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

(coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

(coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

(coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

(coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable:

(NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

21 / 37

Some interesting (but hard) problems on a single constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ` z ě 12

Dependency on a variable: (NP-hard: reduction from increasible degree)

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

21 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a` 2b ` c ě 3

3

3a` 2b ` c ě 7

7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X ? ? ? ? ? ? ?

1-PBC X ? ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a` 2b ` c ě 3

3

3a` 2b ` c ě 7

7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X ? ? ? ? ? ? ?

1-PBC X ? ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7

7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X ? ? ? ? ? ? ?

1-PBC X ? ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X ? ? ? ? ? ?

1-PBC X X ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X X X ? ? ? X

1-PBC X X X X ? ? ? X

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results

ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X X X ? X ? X

1-PBC X X X X ? ? ? X

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X X X X X ? X

1-PBC X X X X ? ? ? X

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X X X X X ? X

1-PBC X X X X ˝ ? ? X

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X X X X X ? X

1-PBC X X X X ˝ ˝ ? X

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X X X X X X X

1-PBC X X X X ˝ ˝ ? X

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Querying a single pseudo-Boolean constraint

CO VA CE IM EQ SE CT ME

1-CARD X X X X X X X X

1-PBC X X X X ˝ ˝ ˝ X

Consistency can be checked by summing the weights

3a` 2b ` c ě 3 3 3a` 2b ` c ě 7 7

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results
ř

lPL l ě k |ù
ř

l 1PL1 l 1 ě k 1 iff k 1 ď 0 or |LzL1| ď k ´ k 1

Reduction from increasible degree

There are
řn

j“k

`

n
j

˘

models of a cardinality constraint
řn

i“1 lj ě n

Reduction from subset-sum

22 / 37

Transforming a single pseudo-Boolean constraint

CD FO SFO ^C ^BC _C _BC C

1-CARD ? ? ? ? ? ? ? ?

1-PBC ? ? ? ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Dx .

˜

ax `
n
ÿ

j“0

aj lj ě k

¸

”

˜

n
ÿ

j“0

aj lj ě k ´ a

¸

_

˜

n
ÿ

j“0

aj lj ě k

¸

Negation is computable in polytime:
´

řn
j“1 aj lj ě n

¯

”
řn

j“1 aj lj ă n

Conjunctions and disjunctions are not computable in general since both

languages are not expressive enough

23 / 37

Transforming a single pseudo-Boolean constraint

CD FO SFO ^C ^BC _C _BC C

1-CARD X ? ? ? ? ? ? ?

1-PBC X ? ? ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Dx .

˜

ax `
n
ÿ

j“0

aj lj ě k

¸

”

˜

n
ÿ

j“0

aj lj ě k ´ a

¸

_

˜

n
ÿ

j“0

aj lj ě k

¸

Negation is computable in polytime:
´

řn
j“1 aj lj ě n

¯

”
řn

j“1 aj lj ă n

Conjunctions and disjunctions are not computable in general since both

languages are not expressive enough

23 / 37

Transforming a single pseudo-Boolean constraint

CD FO SFO ^C ^BC _C _BC C

1-CARD X ? X ? ? ? ? ?

1-PBC X ? X ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Dx .

˜

ax `
n
ÿ

j“0

aj lj ě k

¸

”

˜

n
ÿ

j“0

aj lj ě k ´ a

¸

_

˜

n
ÿ

j“0

aj lj ě k

¸

Negation is computable in polytime:
´

řn
j“1 aj lj ě n

¯

”
řn

j“1 aj lj ă n

Conjunctions and disjunctions are not computable in general since both

languages are not expressive enough

23 / 37

Transforming a single pseudo-Boolean constraint

CD FO SFO ^C ^BC _C _BC C

1-CARD X ? X ? ? ? ? ?

1-PBC X ? X ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Dx .

˜

ax `
n
ÿ

j“0

aj lj ě k

¸

”

˜

n
ÿ

j“0

aj lj ě k ´ a

¸

_

˜

n
ÿ

j“0

aj lj ě k

¸

Negation is computable in polytime:
´

řn
j“1 aj lj ě n

¯

”
řn

j“1 aj lj ă n

Conjunctions and disjunctions are not computable in general since both

languages are not expressive enough

23 / 37

Transforming a single pseudo-Boolean constraint

CD FO SFO ^C ^BC _C _BC C

1-CARD X X X ? ? ? ? ?

1-PBC X X X ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Dx .

˜

ax `
n
ÿ

j“0

aj lj ě k

¸

”

˜

n
ÿ

j“0

aj lj ě k ´ a

¸

_

˜

n
ÿ

j“0

aj lj ě k

¸

Negation is computable in polytime:
´

řn
j“1 aj lj ě n

¯

”
řn

j“1 aj lj ă n

Conjunctions and disjunctions are not computable in general since both

languages are not expressive enough

23 / 37

Transforming a single pseudo-Boolean constraint

CD FO SFO ^C ^BC _C _BC C

1-CARD X X X ? ? ? ? X

1-PBC X X X ? ? ? ? X

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Dx .

˜

ax `
n
ÿ

j“0

aj lj ě k

¸

”

˜

n
ÿ

j“0

aj lj ě k ´ a

¸

_

˜

n
ÿ

j“0

aj lj ě k

¸

Negation is computable in polytime:
´

řn
j“1 aj lj ě n

¯

”
řn

j“1 aj lj ă n

Conjunctions and disjunctions are not computable in general since both

languages are not expressive enough

23 / 37

Transforming a single pseudo-Boolean constraint

CD FO SFO ^C ^BC _C _BC C

1-CARD X X X • • • • X

1-PBC X X X • • • • X

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Dx .

˜

ax `
n
ÿ

j“0

aj lj ě k

¸

”

˜

n
ÿ

j“0

aj lj ě k ´ a

¸

_

˜

n
ÿ

j“0

aj lj ě k

¸

Negation is computable in polytime:
´

řn
j“1 aj lj ě n

¯

”
řn

j“1 aj lj ă n

Conjunctions and disjunctions are not computable in general since both

languages are not expressive enough

23 / 37

One constraint is not enough

In general, a propositional formula may require more than a single

pseudo-Boolean constraint to be expressed

φ “ x ‘ y

We need to use a conjunction of a set of constraints: PBC or CARD

24 / 37

One constraint is not enough

In general, a propositional formula may require more than a single

pseudo-Boolean constraint to be expressed

φ “ x ‘ y

We need to use a conjunction of a set of constraints: PBC or CARD

24 / 37

One constraint is not enough

In general, a propositional formula may require more than a single

pseudo-Boolean constraint to be expressed

φ “ x ‘ y

We need to use a conjunction of a set of constraints: PBC or CARD

24 / 37

PBC and CARD as compilation

languages

Succinctness of PBC and CARD

25 / 37

Succinctness of PBC and CARD

CARD ę PBC because translating κ “ kx `
ř2k

j“1 xj ě k into CARD

requires clauses, and there is an exponential number of them

ľ

IĂ1..2k
|I |“k`1

´

x _
ł

iPI

xi

¯

25 / 37

Succinctness of PBC and CARD

CARD ę PBC because translating κ “ kx `
ř2k

j“1 xj ě k into CARD

requires clauses, and there is an exponential number of them

ľ

IĂ1..2k
|I |“k`1

´

x _
ł

iPI

xi

¯

25 / 37

Succinctness of PBC and CARD

NNF ď PBC because a formula from PBC can be seen as an arithmetic

circuit, and such a circuit can be translated into a polysize NNF circuit

[Vollmer, 1999]

a1

ˆ

l1

`

. . .

an

ˆ

ln

ě

k

25 / 37

Succinctness of PBC and CARD

NNF ď PBC because a formula from PBC can be seen as an arithmetic

circuit, and such a circuit can be translated into a polysize NNF circuit

[Vollmer, 1999]

a1

ˆ

l1

`

. . .

an

ˆ

ln

ě

k

25 / 37

Succinctness of PBC and CARD

PBC ę IP because
Žn

i“1pxi ^ yi q requires an exponential number of

constraints to be expressed

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1

y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1

y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1

y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0

1

y y

z

0 1

1

0 1

0

0

1

0

1

25 / 37

Succinctness of PBC and CARD

PBC ę OBDDă because parity function can only be represented in PBC

with clauses

φ “ x ‘ y ‘ z

” px _ y _ zq ^ px _ y _ zq ^ p x _ y _ zq ^ p x _ y _ zq

z

x

0 1y y

z

0 1

1

0 1

0

0 1

01

25 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ? ?

PI ? ?

IP ? ?

MODS ? ?

CARD ě ě

PBC ? ě

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ? ?

PI ? ?

IP ? ?

MODS ? ?

CARD ď ?

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ? ?

PI ? ?

IP ? ?

MODS ? ?

CARD ě ě

PBC ğ ě

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ? ?

PI ? ?

IP ? ?

MODS ? ?

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ě ě

PI ? ?

IP ? ?

MODS ? ?

CARD ě ě

PBC ğ ě

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ? ?

PI ? ?

IP ? ?

MODS ? ?

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ě ě

PI ě ě

IP ? ?

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ? ?

PI ? ?

IP ? ?

MODS ? ?

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ě ě

PI ě ě

IP ? ?

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ę ę

PI ? ?

IP ? ?

MODS ? ?

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ě ě

PI ě ě

IP ? ?

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ? ?

DNNF ę ę

d ´ DNNF ę ę

sd ´ DNNF ę ę

FBDD ę ę

OBDD ę ę

OBDDă ę ę

DNF ę ę

CNF ę ę

PI ę ę

IP ę ę

MODS ę ę

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ? ?

DNF ? ?

CNF ě ě

PI ě ě

IP ? ?

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ď ď

DNNF ę ę

d ´ DNNF ę ę

sd ´ DNNF ę ę

FBDD ę ę

OBDD ę ę

OBDDă ę ę

DNF ę ę

CNF ę ę

PI ę ę

IP ę ę

MODS ę ę

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ? ?

DNNF ? ?

d ´ DNNF ? ?

sd ´ DNNF ? ?

FBDD ? ?

OBDD ? ?

OBDDă ğ ğ

DNF ? ?

CNF ě ě

PI ě ě

IP ? ?

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ď ď

DNNF ę ę

d ´ DNNF ę ę

sd ´ DNNF ę ę

FBDD ę ę

OBDD ę ę

OBDDă ę ę

DNF ę ę

CNF ę ę

PI ę ę

IP ę ę

MODS ę ę

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ğ ğ

DNNF ğ ğ

d ´ DNNF ğ ğ

sd ´ DNNF ğ ğ

FBDD ğ ğ

OBDD ğ ğ

OBDDă ğ ğ

DNF ? ?

CNF ě ě

PI ě ě

IP ? ?

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ď ď

DNNF ę ę

d ´ DNNF ę ę

sd ´ DNNF ę ę

FBDD ę ę

OBDD ę ę

OBDDă ę ę

DNF ę ę

CNF ę ę

PI ę ę

IP ę ę

MODS ę ę

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ğ ğ

DNNF ğ ğ

d ´ DNNF ğ ğ

sd ´ DNNF ğ ğ

FBDD ğ ğ

OBDD ğ ğ

OBDDă ğ ğ

DNF ? ?

CNF ě ě

PI ě ě

IP ğ ğ

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ď ď

DNNF ę ę

d ´ DNNF ę ę

sd ´ DNNF ę ę

FBDD ę ę

OBDD ę ę

OBDDă ę ę

DNF ę ę

CNF ę ę

PI ę ę

IP ę ę

MODS ę ę

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Succinctness of PBC and CARD

CARD PBC

NNF ğ ğ

DNNF ğ ğ

d ´ DNNF ğ ğ

sd ´ DNNF ğ ğ

FBDD ğ ğ

OBDD ğ ğ

OBDDă ğ ğ

DNF ğ ğ

CNF ě ě

PI ě ě

IP ğ ğ

MODS ě ě

CARD ě ě

PBC ğ ě

CARD PBC

NNF ď ď

DNNF ę ę

d ´ DNNF ę ę

sd ´ DNNF ę ę

FBDD ę ę

OBDD ę ę

OBDDă ę ę

DNF ę ę

CNF ę ę

PI ę ę

IP ę ę

MODS ę ę

CARD ď ę

PBC ď ď

B Proven B [Dixon, 2004] B Transitivity 26 / 37

Querying a set of constraints

CO VA CE IM EQ SE CT ME

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

CARD ? ? ? ? ? ? ? ?

PBC ? ? ? ? ? ? ? ?

By functional reduction, NP-hard problems for CNF are NP-hard for

CARD and PBC

PBC

CARD

CNF

Properties of pseudo-Boolean constraints give the other results

27 / 37

Querying a set of constraints

CO VA CE IM EQ SE CT ME

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

CARD ˝ ? ˝ ? ˝ ˝ ˝ ˝

PBC ˝ ? ˝ ? ˝ ˝ ˝ ˝

By functional reduction, NP-hard problems for CNF are NP-hard for

CARD and PBC

PBC

CARD

CNF

Properties of pseudo-Boolean constraints give the other results

27 / 37

Querying a set of constraints

CO VA CE IM EQ SE CT ME

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

CARD ˝ X ˝ X ˝ ˝ ˝ ˝

PBC ˝ X ˝ X ˝ ˝ ˝ ˝

By functional reduction, NP-hard problems for CNF are NP-hard for

CARD and PBC

PBC

CARD

CNF

Properties of pseudo-Boolean constraints give the other results

27 / 37

Transforming a set of constraints

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD ? ? ? ? ? ? ? ?

PBC ? ? ? ? ? ? ? ?

Arguments for CNF can be applied to PBC and CARD

ř2n
i“1 xi ‰ n can only be expressed with an exponential number of

clauses, and

2n
ÿ

i“1

xi ‰ n ”

˜

2n
ÿ

i“1

xi ă n

¸

_

˜

2n
ÿ

i“1

xi ą n

¸

28 / 37

Transforming a set of constraints

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X ? ? ? ?

PBC X ˝ ? X ? ? ? ?

Arguments for CNF can be applied to PBC and CARD

ř2n
i“1 xi ‰ n can only be expressed with an exponential number of

clauses, and

2n
ÿ

i“1

xi ‰ n ”

˜

2n
ÿ

i“1

xi ă n

¸

_

˜

2n
ÿ

i“1

xi ą n

¸

28 / 37

Transforming a set of constraints

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X ? ? ?

PBC X ˝ ? X X ? ? ?

Arguments for CNF can be applied to PBC and CARD

ř2n
i“1 xi ‰ n can only be expressed with an exponential number of

clauses, and

2n
ÿ

i“1

xi ‰ n ”

˜

2n
ÿ

i“1

xi ă n

¸

_

˜

2n
ÿ

i“1

xi ą n

¸

28 / 37

Transforming a set of constraints

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X ? • ?

PBC X ˝ ? X X ? • ?

Arguments for CNF can be applied to PBC and CARD

ř2n
i“1 xi ‰ n can only be expressed with an exponential number of

clauses, and

2n
ÿ

i“1

xi ‰ n ”

˜

2n
ÿ

i“1

xi ă n

¸

_

˜

2n
ÿ

i“1

xi ą n

¸

28 / 37

Transforming a set of constraints

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X • • ?

PBC X ˝ ? X X • • ?

Arguments for CNF can be applied to PBC and CARD

ř2n
i“1 xi ‰ n can only be expressed with an exponential number of

clauses, and

2n
ÿ

i“1

xi ‰ n ”

˜

2n
ÿ

i“1

xi ă n

¸

_

˜

2n
ÿ

i“1

xi ą n

¸

28 / 37

Transforming a set of constraints

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X • • •
PBC X ˝ ? X X • • •

Arguments for CNF can be applied to PBC and CARD

ř2n
i“1 xi ‰ n can only be expressed with an exponential number of

clauses, and

2n
ÿ

i“1

xi ‰ n ”

˜

2n
ÿ

i“1

xi ă n

¸

_

˜

2n
ÿ

i“1

xi ą n

¸

28 / 37

Transforming a set of constraints

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X • • •
PBC X ˝ ? X X • • •

Arguments for CNF can be applied to PBC and CARD

ř2n
i“1 xi ‰ n can only be expressed with an exponential number of

clauses, and

2n
ÿ

i“1

xi ‰ n ”

˜

2n
ÿ

i“1

xi ă n

¸

_

˜

2n
ÿ

i“1

xi ą n

¸

28 / 37

Recap of the results

Succinctness: PBC ă CARD ă CNF

Queries:

CO VA CE IM EQ SE CT ME

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

CARD ˝ X ˝ X ˝ ˝ ˝ ˝

PBC ˝ X ˝ X ˝ ˝ ˝ ˝

Transformations:

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X • • •
PBC X ˝ ? X X • • •

Compared to CNF, PBC and CARD are strictly more succinct, but the

same queries and less transformations can be computed in polytime

29 / 37

Recap of the results

Succinctness: PBC ă CARD ă CNF

Queries:

CO VA CE IM EQ SE CT ME

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

CARD ˝ X ˝ X ˝ ˝ ˝ ˝

PBC ˝ X ˝ X ˝ ˝ ˝ ˝

Transformations:

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X • • •
PBC X ˝ ? X X • • •

Compared to CNF, PBC and CARD are strictly more succinct, but the

same queries and less transformations can be computed in polytime

29 / 37

Recap of the results

Succinctness: PBC ă CARD ă CNF

Queries:

CO VA CE IM EQ SE CT ME

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

CARD ˝ X ˝ X ˝ ˝ ˝ ˝

PBC ˝ X ˝ X ˝ ˝ ˝ ˝

Transformations:

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X • • •
PBC X ˝ ? X X • • •

Compared to CNF, PBC and CARD are strictly more succinct, but the

same queries and less transformations can be computed in polytime

29 / 37

Recap of the results

Succinctness: PBC ă CARD ă CNF

Queries:

CO VA CE IM EQ SE CT ME

CNF ˝ X ˝ X ˝ ˝ ˝ ˝

CARD ˝ X ˝ X ˝ ˝ ˝ ˝

PBC ˝ X ˝ X ˝ ˝ ˝ ˝

Transformations:

CD FO SFO ^C ^BC _C _BC C

CNF X ˝ X X X • X •
CARD X ˝ ? X X • • •
PBC X ˝ ? X X • • •

Compared to CNF, PBC and CARD are strictly more succinct, but the

same queries and less transformations can be computed in polytime
29 / 37

What’s next?

Open question: SFO?

Is there any polytime algorithm to compute the forgetting of a variable x

in a PBC formula K?

Dx .K ” pK |xq _ pK |xq

30 / 37

Open question: SFO?

Is there any polytime algorithm to compute the forgetting of a variable x

in a PBC formula K?

Dx .K ” pK |xq _ pK |xq

30 / 37

Singleton Forgetting (SFO): an example

Let us consider:

• κ1 “ x ` a` b ě 2

• κ2 “ x ` 2c ` 2d ě 3

” x ` c ` d ě 2

Then:

x ` a` b ě 2 x ` 2c ` 2d ě 3
a` b ` 2c ` 2d ě 4

But:

Dx .pκ1 ^ κ2q ” a` b ` c ` d ě 3

31 / 37

Singleton Forgetting (SFO): an example

Let us consider:

• κ1 “ x ` a` b ě 2

• κ2 “ x ` 2c ` 2d ě 3

” x ` c ` d ě 2

Then:

x ` a` b ě 2 x ` 2c ` 2d ě 3
a` b ` 2c ` 2d ě 4

But:

Dx .pκ1 ^ κ2q ” a` b ` c ` d ě 3

31 / 37

Singleton Forgetting (SFO): an example

Let us consider:

• κ1 “ x ` a` b ě 2

• κ2 “ x ` 2c ` 2d ě 3

” x ` c ` d ě 2

Then:

x ` a` b ě 2 x ` 2c ` 2d ě 3
a` b ` 2c ` 2d ě 4

But:

Dx .pκ1 ^ κ2q ” a` b ` c ` d ě 3

31 / 37

Singleton Forgetting (SFO): an example

Let us consider:

• κ1 “ x ` a` b ě 2

• κ2 “ x ` 2c ` 2d ě 3 ” x ` c ` d ě 2

Then:

x ` a` b ě 2 x ` 2c ` 2d ě 3
a` b ` 2c ` 2d ě 4

But:

Dx .pκ1 ^ κ2q ” a` b ` c ` d ě 3

31 / 37

Singleton Forgetting (SFO): an example

Let us consider:

• κ1 “ x ` a` b ě 2

• κ2 “ x ` 2c ` 2d ě 3 ” x ` c ` d ě 2

Then:

x ` a` b ě 2 x ` c ` d ě 2
a` b ` c ` d ě 3

But:

Dx .pκ1 ^ κ2q ” a` b ` c ` d ě 3

31 / 37

Singleton Forgetting (SFO): an other example

Let us consider:

• κ1 “ x ` a` b ě 2

” x ` 2a` 2b ě 3

• κ3 “ x ` c ` 2d ` 3e ě 5

) x ` c ` 3d ` 4e ě 7

Then:

x ` a` b ě 2 x ` c ` 2d ` 3e ě 5
a` b ` c ` 2d ` 3e ě 6

But:

Dx .pκ1 ^ κ3q ” 2a` 2b ` c ` 3d ` 4e ě 9

32 / 37

Singleton Forgetting (SFO): an other example

Let us consider:

• κ1 “ x ` a` b ě 2

” x ` 2a` 2b ě 3

• κ3 “ x ` c ` 2d ` 3e ě 5

) x ` c ` 3d ` 4e ě 7

Then:

x ` a` b ě 2 x ` c ` 2d ` 3e ě 5
a` b ` c ` 2d ` 3e ě 6

But:

Dx .pκ1 ^ κ3q ” 2a` 2b ` c ` 3d ` 4e ě 9

32 / 37

Singleton Forgetting (SFO): an other example

Let us consider:

• κ1 “ x ` a` b ě 2

” x ` 2a` 2b ě 3

• κ3 “ x ` c ` 2d ` 3e ě 5

) x ` c ` 3d ` 4e ě 7

Then:

x ` a` b ě 2 x ` c ` 2d ` 3e ě 5
a` b ` c ` 2d ` 3e ě 6

But:

Dx .pκ1 ^ κ3q ” 2a` 2b ` c ` 3d ` 4e ě 9

32 / 37

Singleton Forgetting (SFO): an other example

Let us consider:

• κ1 “ x ` a` b ě 2 ” x ` 2a` 2b ě 3

• κ3 “ x ` c ` 2d ` 3e ě 5

) x ` c ` 3d ` 4e ě 7

Then:

x ` a` b ě 2 x ` c ` 2d ` 3e ě 5
a` b ` c ` 2d ` 3e ě 6

But:

Dx .pκ1 ^ κ3q ” 2a` 2b ` c ` 3d ` 4e ě 9

32 / 37

Singleton Forgetting (SFO): an other example

Let us consider:

• κ1 “ x ` a` b ě 2 ” x ` 2a` 2b ě 3

• κ3 “ x ` c ` 2d ` 3e ě 5

) x ` c ` 3d ` 4e ě 7

Then:

x ` 2a` 2b ě 3 x ` c ` 2d ` 3e ě 5
2a` 2b ` c ` 2d ` 3e ě 7

But:

Dx .pκ1 ^ κ3q ” 2a` 2b ` c ` 3d ` 4e ě 9

32 / 37

Singleton Forgetting (SFO): an other example

Let us consider:

• κ1 “ x ` a` b ě 2 ” x ` 2a` 2b ě 3

• κ3 “ x ` c ` 2d ` 3e ě 5) x ` c ` 3d ` 4e ě 7

Then:

x ` 2a` 2b ě 3 x ` c ` 2d ` 3e ě 5
2a` 2b ` c ` 2d ` 3e ě 7

But:

Dx .pκ1 ^ κ3q ” 2a` 2b ` c ` 3d ` 4e ě 9

32 / 37

Singleton Forgetting (SFO): an other example

Let us consider:

• κ1 “ x ` a` b ě 2 ” x ` 2a` 2b ě 3

• κ3 “ x ` c ` 2d ` 3e ě 5) x ` c ` 3d ` 4e ě 7

Then:

x ` 2a` 2b ě 3 x ` c ` 3d ` 4e ě 7
2a` 2b ` c ` 3d ` 4e ě 9

But:

Dx .pκ1 ^ κ3q ” 2a` 2b ` c ` 3d ` 4e ě 9

32 / 37

Compile!

PBC and CARD are not good compilation languages

We need to define sub-languages of PBC which enable to perform

more queries and transformations

As an example, we can define pseudo-Boolean prime implicants and

implicates

• κ is an IP-PBC of K iff κ |ù K and, if κ1 |ù K and κ |ù κ1, then

κ1 ” κ

• κ is a PI-PBC of K iff K |ù κ and, if K |ù κ1 and κ1 |ù κ, then

κ1 ” κ

33 / 37

Compile!

PBC and CARD are not good compilation languages

We need to define sub-languages of PBC which enable to perform

more queries and transformations

As an example, we can define pseudo-Boolean prime implicants and

implicates

• κ is an IP-PBC of K iff κ |ù K and, if κ1 |ù K and κ |ù κ1, then

κ1 ” κ

• κ is a PI-PBC of K iff K |ù κ and, if K |ù κ1 and κ1 |ù κ, then

κ1 ” κ

33 / 37

Compile!

PBC and CARD are not good compilation languages

We need to define sub-languages of PBC which enable to perform

more queries and transformations

As an example, we can define pseudo-Boolean prime implicants and

implicates

• κ is an IP-PBC of K iff κ |ù K and, if κ1 |ù K and κ |ù κ1, then

κ1 ” κ

• κ is a PI-PBC of K iff K |ù κ and, if K |ù κ1 and κ1 |ù κ, then

κ1 ” κ

33 / 37

Compile!

PBC and CARD are not good compilation languages

We need to define sub-languages of PBC which enable to perform

more queries and transformations

As an example, we can define pseudo-Boolean prime implicants and

implicates

• κ is an IP-PBC of K iff κ |ù K and, if κ1 |ù K and κ |ù κ1, then

κ1 ” κ

• κ is a PI-PBC of K iff K |ù κ and, if K |ù κ1 and κ1 |ù κ, then

κ1 ” κ

33 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11

” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be

as simple as possible

9w ` 6x ` 3y ` z ě 11 ” 9w ` 6x ` 3y ě 11

” 9w ` 6x ` 3y ě 12

” 3w ` 2x ` y ě 4

” 2w ` x ` y ě 3

” pw ě 1q ^ px ` y ě 1q

” w ^ px _ yq

34 / 37

Canonical form: a sketch of definition

A pseudo-Boolean constraint κ “
řn

j“1 aj lj ě k is in canonical form iff it

satisfies the following properties:

• @x P Varpκq, x appears in κ only once

• @i , i 1 P 1..n, i ď i 1 ðñ ai ě ai 1 , i.e. literals are sorted by

descending weights

• there exists a model of κ which is a model of
řn

j“1 aj lj “ k

• @j P 1..n, there exists no other constraint κ1 ” κ such that lj has a

weight a1j ă aj in κ1

For a given constraint κ, is there always a unique ”canonical form” of κ?

35 / 37

Canonical form: a sketch of definition

A pseudo-Boolean constraint κ “
řn

j“1 aj lj ě k is in canonical form iff it

satisfies the following properties:

• @x P Varpκq, x appears in κ only once

• @i , i 1 P 1..n, i ď i 1 ðñ ai ě ai 1 , i.e. literals are sorted by

descending weights

• there exists a model of κ which is a model of
řn

j“1 aj lj “ k

• @j P 1..n, there exists no other constraint κ1 ” κ such that lj has a

weight a1j ă aj in κ1

For a given constraint κ, is there always a unique ”canonical form” of κ?

35 / 37

Canonical form: a sketch of definition

A pseudo-Boolean constraint κ “
řn

j“1 aj lj ě k is in canonical form iff it

satisfies the following properties:

• @x P Varpκq, x appears in κ only once

• @i , i 1 P 1..n, i ď i 1 ðñ ai ě ai 1 , i.e. literals are sorted by

descending weights

• there exists a model of κ which is a model of
řn

j“1 aj lj “ k

• @j P 1..n, there exists no other constraint κ1 ” κ such that lj has a

weight a1j ă aj in κ1

For a given constraint κ, is there always a unique ”canonical form” of κ?

35 / 37

Canonical form: a sketch of definition

A pseudo-Boolean constraint κ “
řn

j“1 aj lj ě k is in canonical form iff it

satisfies the following properties:

• @x P Varpκq, x appears in κ only once

• @i , i 1 P 1..n, i ď i 1 ðñ ai ě ai 1 , i.e. literals are sorted by

descending weights

• there exists a model of κ which is a model of
řn

j“1 aj lj “ k

• @j P 1..n, there exists no other constraint κ1 ” κ such that lj has a

weight a1j ă aj in κ1

For a given constraint κ, is there always a unique ”canonical form” of κ?

35 / 37

Canonical form: a sketch of definition

A pseudo-Boolean constraint κ “
řn

j“1 aj lj ě k is in canonical form iff it

satisfies the following properties:

• @x P Varpκq, x appears in κ only once

• @i , i 1 P 1..n, i ď i 1 ðñ ai ě ai 1 , i.e. literals are sorted by

descending weights

• there exists a model of κ which is a model of
řn

j“1 aj lj “ k

• @j P 1..n, there exists no other constraint κ1 ” κ such that lj has a

weight a1j ă aj in κ1

For a given constraint κ, is there always a unique ”canonical form” of κ?

35 / 37

Canonical form: a sketch of definition

A pseudo-Boolean constraint κ “
řn

j“1 aj lj ě k is in canonical form iff it

satisfies the following properties:

• @x P Varpκq, x appears in κ only once

• @i , i 1 P 1..n, i ď i 1 ðñ ai ě ai 1 , i.e. literals are sorted by

descending weights

• there exists a model of κ which is a model of
řn

j“1 aj lj “ k

• @j P 1..n, there exists no other constraint κ1 ” κ such that lj has a

weight a1j ă aj in κ1

For a given constraint κ, is there always a unique ”canonical form” of κ?

35 / 37

Canonical form: a sketch of definition

A pseudo-Boolean constraint κ “
řn

j“1 aj lj ě k is in canonical form iff it

satisfies the following properties:

• @x P Varpκq, x appears in κ only once

• @i , i 1 P 1..n, i ď i 1 ðñ ai ě ai 1 , i.e. literals are sorted by

descending weights

• there exists a model of κ which is a model of
řn

j“1 aj lj “ k

• @j P 1..n, there exists no other constraint κ1 ” κ such that lj has a

weight a1j ă aj in κ1

For a given constraint κ, is there always a unique ”canonical form” of κ?

35 / 37

Implement an efficient pseudo-Boolean solver

• Investigate why pseudo-Boolean solvers are not as efficient in

practice as they should theoretically be

• Use arbitrary precision only when needed

• Find a better solution than reduction for learning

• Find a solution to the fact that generalized resolution is not

implication-complete

36 / 37

Implement an efficient pseudo-Boolean solver

• Investigate why pseudo-Boolean solvers are not as efficient in

practice as they should theoretically be

• Use arbitrary precision only when needed

• Find a better solution than reduction for learning

• Find a solution to the fact that generalized resolution is not

implication-complete

36 / 37

Implement an efficient pseudo-Boolean solver

• Investigate why pseudo-Boolean solvers are not as efficient in

practice as they should theoretically be

• Use arbitrary precision only when needed

• Find a better solution than reduction for learning

• Find a solution to the fact that generalized resolution is not

implication-complete

36 / 37

Implement an efficient pseudo-Boolean solver

• Investigate why pseudo-Boolean solvers are not as efficient in

practice as they should theoretically be

• Use arbitrary precision only when needed

• Find a better solution than reduction for learning

• Find a solution to the fact that generalized resolution is not

implication-complete

36 / 37

Implement an efficient pseudo-Boolean solver

• Investigate why pseudo-Boolean solvers are not as efficient in

practice as they should theoretically be

• Use arbitrary precision only when needed

• Find a better solution than reduction for learning

• Find a solution to the fact that generalized resolution is not

implication-complete

36 / 37

Conclusion

Conclusion

Recap:

• Pseudo-Boolean constraints properties

• Pseudo-Boolean constraints as a compilation language

Future works:

• Get a better understanding of pseudo-Boolean constraints

• Define PBC sublanguages for compilation

• Implement an efficient solver using PBC and CARD

37 / 37

Conclusion

Recap:

• Pseudo-Boolean constraints properties

• Pseudo-Boolean constraints as a compilation language

Future works:

• Get a better understanding of pseudo-Boolean constraints

• Define PBC sublanguages for compilation

• Implement an efficient solver using PBC and CARD

37 / 37

Pseudo-Boolean Constraints:

Reasoning and Compilation

Romain Wallon (Advisors: Daniel Le Berre, Pierre Marquis, Stefan Mengel)

September 11, 2017

CRIL - U. Artois & CNRS

	Reasoning with Pseudo-Boolean Constraints
	A Knowledge Compilation Map
	Properties of pseudo-Boolean constraints
	PBC and CARD as compilation languages
	What's next?
	Conclusion

