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Reasoning with Pseudo-Boolean
Constraints



The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

2/37



The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

(avbv—c)an(av —bvd)

2/37



The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

(avbv—c)an(av —bvd)

To reason on such formulae, the resolution proof system can be used

XV ¢ —X VY
¢V

IviIvae
v ¢

(resolution) (fusion)

2/37



The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

(avbv—c)an(av —bvd)

To reason on such formulae, the resolution proof system can be used

XV o —X VY Ivive

Ve (resolution) Tve (fusion)
When the formula is UNSAT, this proof system is used to
find a proof of L J
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...is not efficient on some problems!

Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!
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Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!

Example

Let us consider:

e p pigeons and h holes

e X;j meaning that pigeon i is put in hole j

The encoding is based on the following assertions:

Each pigeon is assigned at least one hole

and Each hole contains at most one pigeon
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..is not efficient on some problems!

Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!

Example

Let us consider:

e p pigeons and h holes

e X;j meaning that pigeon i is put in hole j

A CNF encoding is:

When h < p, an exponential number of resolution steps is required to
prove unsatisfiability J
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Linear Pseudo-Boolean Constraints
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Linear Pseudo-Boolean Constraints

A linear pseudo-Boolean constraint is of the form:
Dlajli>k
J

where:

o Vja,c€Z
e Vj, /i is a literal (i.e. a boolean value)
L >€{<v<7:7>7>}

e ke Zis the degree (threshold) of the constraint
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PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

Zaj/j>k Vj,ajeN keN
J
Cardinality constraints are of the form:
Dli=k keN
J

A formula of PBC (resp. CARD) is a conjunction of normalized
constraints (resp. cardinality constraints) J

5 /37



Generalized Resolution

The proof system used to reason on PBC and CARD formulas is the
generalized resolution proof system, which is more powerful than the
resolution one [Hooker, 1988]

al+ Y ajl; > k Bl + 3 bl = K aeN* B e N*
Jj J

llati
Ba; + ab)l; = ak' + Bk — af (cancellation)
J j)1j

J

Dajli =k Vj,a; =0 ai >k
J

M+ Sa sk (saturation)
J#i
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Is it worth the effort?

The PBC encoding of PHP is:

P h
/\ atLeast({x,-,l, 000 7X,',h}, 1) A /\ atMost({xl,j, 500 7XP~J'}’ 1)
i=1 i=1
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The PBC encoding of PHP is:

P h
/\ atleast({x;1,...,Xin}, 1) A /\ atleast({Xi;,...,%p;},p-1)
i=1

i=1
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Is it worth the effort?

The PBC encoding of PHP is:
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Is it worth the effort?

The PBC encoding of PHP is:

By using this encoding, one can solve a PHP instance in a linear number
of steps [Haken, 1985 & Hooker, 1988] J
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From CARD to CNF

Let us consider the following cardinality constraint:

at+b+c+d+e=3
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From CARD to CNF

Let us consider the following cardinality constraint:

at+b+c+d+e=3

Its CNF encoding is given below:

(avbve)an(avbvdian(avbve aAlavevd)a(aveve)

Alavdve)a(bvevd)a(bveven(bvdve an(cvdve)

This CNF encoding is the smallest which does not require to introduce
new variables [Dixon, 2004] J
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Representing knowledge using PBC and CARD

Let us recap what we have seen

e pseudo-Boolean constraints enable to improve reasoning efficiency in
some cases

e representing a problem in this language requires less space than CNF
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Representing knowledge using PBC and CARD

Let us recap what we have seen

e pseudo-Boolean constraints enable to improve reasoning efficiency in
some cases

e representing a problem in this language requires less space than CNF

With PBC or CARD, modeling problems is also more natural: subset-sum
and knapsack require two normalized pseudo-Boolean constraints to be
modeled

Let us consider PBC and CARD as knowledge representation languages )
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A Knowledge Compilation Map



Knowledge compilation

Given a formula written in a specific language (e.g. CNF, DNF, etc.),
one would like to perform operations on it

But sometimes they are too expensive to be performed
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Knowledge compilation

Given a formula written in a specific language (e.g. CNF, DNF, etc.),
one would like to perform operations on it

But sometimes they are too expensive to be performed

Compiling a formula is translating it into an other language to obtain an

equivalent formula on which performing the wanted operations is easier J
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Some compilation languages: NNF

A circuit in Negative Normal Form is a DAG like this one:

-t

/

X

v\v
A/ \
\V

)’/ z

/
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Some compilation languages: OBDD_

Let us consider ¢ = x v (y A x) v (z A x) v =t
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Some compilation languages: OBDD_

Let us consider ¢ = x v (y A x) v (z A x) v =t

Given the order over the variables y < x < t < z, the Ordered Binary
Decision Diagram representing ¢, written OBDD_ (), is:

y\
1( 0
XA
0’
x
t 1
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Some compilation languages: /P, Pl et MODS
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Some compilation languages: /P, Pl et MODS

Let us consider ¢ = x v (y A x) v (z A x) v =t

IP(¢) = (x) v (—t)

Pl(¢) = x v —t
MODS (¢) = (xAyAznat)v (XAyAzA—t)vV
(XAYyA—zZAL)V (X Ay A—zZA—t)V
(XA=yAzZAL)V (xA=yAzA—t)vV
(X A=y A—zZAL)V (X A=y A=z A—t) Vv
(=X Ay AzZA-L)V (X Ay A—ZA—Et)V
) )

(=xA—=yAzA—t)v (=XxXA—-yA—ZA-L
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A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis
proposed in 2002 a knowledge compilation map [DM02]
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A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis
proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the
best to use w.r.t. the wanted operations

e succinctness
® queries

e transformations
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Succinctness [DM02]

Succinctness captures the ability of a language to represent information
using little space
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Ly is at least as succinct as Ly, denoted L1 < Ly, iff there exists a
polynomial p such that for every formula « € L;, there exists an
equivalent formula 8 where |5| < p(|«|)

In other words, L1 < Ly iff any formula oo € L, can be written as a
formula B € Ly of polynomial size J
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Succinctness [DM02]

Succinctness captures the ability of a language to represent information
using little space

Ly is at least as succinct as Ly, denoted L1 < Ly, iff there exists a
polynomial p such that for every formula « € L;, there exists an
equivalent formula 8 where |5| < p(|«|)

In other words, L1 < Ly iff any formula oo € L, can be written as a
formula B € Ly of polynomial size J

Note that there is no hypothesis on the time complexity of the algorithm
needed to translate a formula from L, to [
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Results from the KC map (succinctness)

Results from [DM02], [Bova-Capelli-Mengel-Slivovsky, 2016] and
[Kaleyski, 2017]
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Queries [DM02]

Given one or several formulas, what are the properties of these formulas?
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Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?
IM (IMplication) Is a formula implied by a given cube/term?

EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?
CT (CounTing) How many models does a formula have?

ME (Model Enumeration) What are all the models of a formula?
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Results from the KC map (queries) [DMO02]

L CO|VA|CE|IM | EQ | SE| CT | ME
NNF o o o o o o o o
DNNF e o v o o o o v
d — DNNF v v v v ? o v v
sd — DNNF | v v v v ? o v v
BDD o o o o o o o o
FBDD v v v v ? o v v
OBDD v v v v v o v v
OBDD_ v v v v v v v v
DNF v o v o o o o va
CNF o v o v o o o o
Pl v v v v v v o v
IP v v v v v v o v
MODS v v v v v v v

v Verified o Not verified (unless P = NP) 18 /37



Transformations [DMO02]

Given one or several formulas, transform them into a formula equivalent
in the considered language to the application of a logical operator
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Transformations [DMO02]

Given one or several formulas, transform them into a formula equivalent
in the considered language to the application of a logical operator

CD (ConDitioning) Compute ¢|T where 7 is a consistent cube/term
SFO (Singleton FOrgetting) Compute Ix.¢p = (¢|x) v (¢|X)

FO (FOrgetting) Compute 3X.¢ where X is a set of variables

AC (Closure under A) Compute A7_; &

ABC (Bounded Closure under A) Compute A_; ¢;, where n < N
vC (Closure under v) Compute \/|_; ¢

vBC (Bounded Closure under v) Compute \/!_, ¢;, where n < N
—C (Closure under —) Compute —¢
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Results from the KC map (transformations) [DM02]

L CD | FO | SFO | AC | ABC | vC | vBC | =C
NNF v o v v v v v v
DNNF v v v o o v v o
d — DNNF v o o ) o o o ?
sd — DNNF | v o o ) o o o ?
BDD v o v v v v v v
FBDD ve ° o ° o ° o va
OBDD v ° v ° o ° o v
OBDD_ v ° v ° v ° v v
DNF v v v ° v v v °
CNF v ) v v ° Vi °
Pl v v v ° ° ° v °
IP v ° ° ° v ° ° °
MODS v v v ° v ° ° °

v" Verified o Not verified (unless P = NP) e Not verified 20,37



Properties of pseudo-Boolean
constraints




CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

9w +6x +3y +z>11

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

Ow +6x+3y +z>11

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

Ow +6x+3y+z>11=9w+6x+3y +z>12

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable:

Ow+6x+3y+z>11

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable:

Ow+6x+3y+z>11

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable:

Ow+6x+3y+z=>11=9w+6x+ 3y >

21 /37



CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
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Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable: (NP-hard: reduction from increasible degree)

Ow+6x+3y+z=>11=9w+6x+ 3y >
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CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VvV VvV v v
1-PBC v v | vV |V o v

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0
Properties of pseudo-Boolean constraints give these results
DL = klEY e I = K iff k' <0or |L\L| < k—K
Reduction from increasible degree

There are Z}’:k (j) models of a cardinality constraint >,/ ;[ > n
Reduction from subset-sum
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Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:
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CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | v v v ° ° ° ° v
1-PBC v v v ° ° ° ° v

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

n n

HX.(BX"‘EQJ'[I' = k) = (Zaj/j = k—a)
j=0 Jj=0

Negation is computable in polytime: ﬁ(zj'.’zl ajl; = n) = Z}’Zl ajli<n

Conjunctions and disjunctions are not computable in general since both
languages are not expressive enough
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A (Vo)

1.2k iel
[l|=k+1

25 /37



NNF < PBC because a formula from PBC can be seen as an arithmetic
circuit, and such a circuit can be translated into a polysize NNF circuit
[Vollmer, 1999]
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PBC < IP because \/|_;(x; A y;) requires an exponential number of
constraints to be expressed
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Properties of pseudo-Boolean constraints give the other results
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CO|VA | CE|IM|EQ|SE| CT | ME
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Transformations:

CD | FO | SFO | AC | AB
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CARD | v o ? v v ° ° °
PBC v o ? v v

Compared to CNF, PBC and CARD are strictly more succinct, but the

same queries and less transformations can be computed in polytime
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Open question: SFO?

Is there any polytime algorithm to compute the forgetting of a variable x
in a PBC formula K7
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Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible

Ow+6x+3y+z=>11= Ow +6x + 3y > 11
= Ow + 6x + 3y > 12
= 3w+2x+y =>4
= 2wHx+y =3
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Implement an efficient pseudo-Boolean solver

e Investigate why pseudo-Boolean solvers are not as efficient in
practice as they should theoretically be

e Use arbitrary precision only when needed
e Find a better solution than reduction for learning

e Find a solution to the fact that generalized resolution is not

implication-complete
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Conclusion

Recap:

e Pseudo-Boolean constraints properties

e Pseudo-Boolean constraints as a compilation language

Future works:

e Get a better understanding of pseudo-Boolean constraints
e Define PBC sublanguages for compilation

e Implement an efficient solver using PBC and CARD
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