Pseudo-Boolean Constraints:
Reasoning and Compilation

Romain Wallon (Advisors: Daniel Le Berre, Pierre Marquis, Stefan Mengel)
September 11, 2017

CRIL - U. Artois & CNRS

cr il l/l

UNIVERSITE D’ARTOIS

Overview

1. Reasoning with Pseudo-Boolean Constraints
2. A Knowledge Compilation Map

3. Properties of pseudo-Boolean constraints

4. PBC and CARD as compilation languages
5. What's next?

6. Conclusion

1/37

Reasoning with Pseudo-Boolean
Constraints

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

2/37

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

(avbv—c)an(av —bvd)

2/37

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

(avbv—c)an(av —bvd)

To reason on such formulae, the resolution proof system can be used

XV ¢ —X VY
¢V

IviIvae
v ¢

(resolution) (fusion)

2/37

The usual resolution approach...

SAT solvers deal with information represented as propositional formulae,
in conjunctive normal form (CNF)

(avbv—c)an(av —bvd)

To reason on such formulae, the resolution proof system can be used

XV o —X VY Ivive

Ve (resolution) Tve (fusion)
When the formula is UNSAT, this proof system is used to
find a proof of L J

2/37

...is not efficient on some problems!

Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!

3/37

...is not efficient on some problems!

Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!

Example

Let us consider:

e p pigeons and h holes

e X;j meaning that pigeon i is put in hole j

3/37

..is not efficient on some problems!

Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!

Example

Let us consider:

e p pigeons and h holes

e X;j meaning that pigeon i is put in hole j

The encoding is based on the following assertions:

Each pigeon is assigned at least one hole

and Each hole contains at most one pigeon

3/37

..is not efficient on some problems!

Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!

Example

Let us consider:

e p pigeons and h holes

e X;j meaning that pigeon i is put in hole j

A CNF encoding is:

3/37

..is not efficient on some problems!

Definition (Pigeon-Hole Principle — PHP)
You cannot put p pigeons in p — 1 holes!

Example

Let us consider:

e p pigeons and h holes

e X;j meaning that pigeon i is put in hole j

A CNF encoding is:

When h < p, an exponential number of resolution steps is required to
prove unsatisfiability J

3/37

Linear Pseudo-Boolean Constraints

4 /37

Linear Pseudo-Boolean Constraints

A linear pseudo-Boolean constraint is of the form:
Dlajli>k
J

where:

o Vja,c€Z
e Vj, /i is a literal (i.e. a boolean value)
L >€{<v<7:7>7>}

e ke Zis the degree (threshold) of the constraint

4 /37

PBC and CARD

We focus on two kinds of constraints

5 /37

PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

Zaj/j>k Vj,ajeN keN
J

5 /37

PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

Zaj/j>k Vj,ajeN keN
J

Cardinality constraints are of the form:

Shi>k keN
J

5 /37

PBC and CARD

We focus on two kinds of constraints

Normalized pseudo-Boolean constraints are of the form:

Zaj/j>k Vj,ajeN keN
J
Cardinality constraints are of the form:
Dli=k keN
J

A formula of PBC (resp. CARD) is a conjunction of normalized
constraints (resp. cardinality constraints) J

5 /37

Generalized Resolution

The proof system used to reason on PBC and CARD formulas is the
generalized resolution proof system, which is more powerful than the
resolution one [Hooker, 1988]

al+ Y ajl; > k Bl + 3 bl = K aeN* B e N*
Jj J

llati
Ba; + ab)l; = ak' + Bk — af (cancellation)
J j)1j

J

Dajli =k Vj,a; =0 ai >k
J

M+ Sa sk (saturation)
J#i

6 /37

Is it worth the effort?

The PBC encoding of PHP is:

P h
/\ atLeast({x,-,l, 000 7X,',h}, 1) A /\ atMost({xl,j, 500 7XP~J'}’ 1)
i=1 i=1

7/37

Is it worth the effort?

The PBC encoding of PHP is:

P h
/\ atleast({x;1,...,Xin}, 1) A /\ atleast({Xi;,...,%p;},p-1)
i=1

i=1

7/37

Is it worth the effort?

The PBC encoding of PHP is:

7/37

Is it worth the effort?

The PBC encoding of PHP is:

By using this encoding, one can solve a PHP instance in a linear number
of steps [Haken, 1985 & Hooker, 1988] J

7/37

From CARD to CNF

Let us consider the following cardinality constraint:

at+b+c+d+e=3

8 /37

From CARD to CNF

Let us consider the following cardinality constraint:

at+b+c+d+e=3

Its CNF encoding is given below:

(avbve)an(avbvdian(avbve aAlavevd)a(aveve)

Alavdve)a(bvevd)a(bveven(bvdve an(cvdve)

8 /37

From CARD to CNF

Let us consider the following cardinality constraint:

at+b+c+d+e=3

Its CNF encoding is given below:

(avbve)an(avbvdian(avbve aAlavevd)a(aveve)

Alavdve)a(bvevd)a(bveven(bvdve an(cvdve)

This CNF encoding is the smallest which does not require to introduce
new variables [Dixon, 2004] J

8 /37

Representing knowledge using PBC and CARD

Let us recap what we have seen

e pseudo-Boolean constraints enable to improve reasoning efficiency in
some cases

e representing a problem in this language requires less space than CNF

9/37

Representing knowledge using PBC and CARD

Let us recap what we have seen

e pseudo-Boolean constraints enable to improve reasoning efficiency in
some cases

e representing a problem in this language requires less space than CNF

With PBC or CARD, modeling problems is also more natural: subset-sum
and knapsack require two normalized pseudo-Boolean constraints to be
modeled

9/37

Representing knowledge using PBC and CARD

Let us recap what we have seen

e pseudo-Boolean constraints enable to improve reasoning efficiency in
some cases

e representing a problem in this language requires less space than CNF

With PBC or CARD, modeling problems is also more natural: subset-sum
and knapsack require two normalized pseudo-Boolean constraints to be
modeled

Let us consider PBC and CARD as knowledge representation languages)

9/37

A Knowledge Compilation Map

Knowledge compilation

Given a formula written in a specific language (e.g. CNF, DNF, etc.),
one would like to perform operations on it

But sometimes they are too expensive to be performed

10 / 37

Knowledge compilation

Given a formula written in a specific language (e.g. CNF, DNF, etc.),
one would like to perform operations on it

But sometimes they are too expensive to be performed

Compiling a formula is translating it into an other language to obtain an

equivalent formula on which performing the wanted operations is easier J

10 / 37

Some compilation languages: NNF

A circuit in Negative Normal Form is a DAG like this one:

-t

/

X

v\v
A/ \
\V

)’/ z

/

11 /37

Some compilation languages: OBDD_

Let us consider ¢ = x v (y A x) v (z A x) v =t

12 /37

Some compilation languages: OBDD_

Let us consider ¢ = x v (y A x) v (z A x) v =t

Given the order over the variables y < x <t < z,

12 /37

Some compilation languages: OBDD_

Let us consider ¢ = x v (y A x) v (z A x) v =t

Given the order over the variables y < x < t < z, the Ordered Binary
Decision Diagram representing ¢, written OBDD_ (), is:

y\
1(0
XA
0’
x
t 1

12 /37

Some compilation languages: /P, Pl et MODS

Let us consider ¢ = x v (y A x) v (z A x) v =t

13 /37

Some compilation languages: /P, Pl et MODS

Let us consider ¢ = x v (y A x) v (z A x) v =t

13 /37

Some compilation languages: /P, Pl et MODS

Let us consider ¢ = x v (y A x) v (z A x) v =t

Pl(¢) = x v —t

13 /37

Some compilation languages: /P, Pl et MODS

Let us consider ¢ = x v (y A x) v (z A x) v =t

IP(¢) = (x) v (—t)

Pl(¢) = x v —t
MODS (¢) = (xAyAznat)v (XAyAzA—t)vV
(XAYyA—zZAL)V (X Ay A—zZA—t)V
(XA=yAzZAL)V (xA=yAzA—t)vV
(X A=y A—zZAL)V (X A=y A=z A—t) Vv
(=X Ay AzZA-L)V (X Ay A—ZA—Et)V
))

(=xA—=yAzA—t)v (=XxXA—-yA—ZA-L

13 /37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis
proposed in 2002 a knowledge compilation map [DM02]

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis
proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the
best to use w.r.t. the wanted operations

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis
proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the
best to use w.r.t. the wanted operations

e succinctness

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis
proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the
best to use w.r.t. the wanted operations

e succinctness

® queries

14 / 37

A map to compare them all

To compare all these languages, Adnan Darwiche and Pierre Marquis
proposed in 2002 a knowledge compilation map [DM02]

Three criteria are taken into account to identify which language is the
best to use w.r.t. the wanted operations

e succinctness
® queries

e transformations

14 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information
using little space

15 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information
using little space

Ly is at least as succinct as Ly, denoted L1 < Ly, iff there exists a
polynomial p such that for every formula « € Ly, there exists an
equivalent formula 8 where |5| < p(|«|)

15 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information

using little space

Ly is at least as succinct as Ly, denoted L1 < Ly, iff there exists a
polynomial p such that for every formula « € L;, there exists an
equivalent formula 8 where |5| < p(|«|)

In other words, L1 < Ly iff any formula oo € L, can be written as a
formula B € Ly of polynomial size J

15 / 37

Succinctness [DM02]

Succinctness captures the ability of a language to represent information
using little space

Ly is at least as succinct as Ly, denoted L1 < Ly, iff there exists a
polynomial p such that for every formula « € L;, there exists an
equivalent formula 8 where |5| < p(|«|)

In other words, L1 < Ly iff any formula oo € L, can be written as a
formula B € Ly of polynomial size J

Note that there is no hypothesis on the time complexity of the algorithm
needed to translate a formula from L, to [

15 / 37

Results from the KC map (succinctness)

Results from [DM02], [Bova-Capelli-Mengel-Slivovsky, 2016] and
[Kaleyski, 2017]

=
2
a8
=
B
)
3

NNF | DNNF | d — DNNF | sd — DNNF | FBDD | OBDD | OBDD. | D MODS

NNF
DNNF
d — DNNF
sd — DNNF
FBDD
OBDD
OBDD-
DNF
CNF
2
P
MODS

N
N
N
N
N
N
N

e

INLIN | | IN|IN LN LI I[N ||

S

i | | | | I | | | | | S| A | A

|5 [IN | IN [| | A | | (A | A | A

|| | | A | A | A | A A A
| | | A | A || (A (A A A
|| | A | A || (A (N[N
| A | |5 (A || A | AN [N [N
A || A | A | A | (A (N[N | IN N
R R e R e R AN WA VAN VAN /A
|| | IN | A | A | A | A A A
e IN ||| N | (A (A [| LA A

A || A | A N[N [N [N I

16 / 37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

17 /37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?
IM (IMplication) Is a formula implied by a given cube/term?
EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?

17 /37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?
IM (IMplication) Is a formula implied by a given cube/term?

EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?

CT (CounTing) How many models does a formula have?

17 /37

Queries [DM02]

Given one or several formulas, what are the properties of these formulas?

CO (COnsistency) Is a formula consistent?

VA (VAlidity) Is a formula valid?

CE (Clausal Entailment) Is a given clause implied by a formula?
IM (IMplication) Is a formula implied by a given cube/term?

EQ (EQuivalence) Are two formulas equivalent?

SE (Sentential Entailment) Is a formula entailed by an other one?
CT (CounTing) How many models does a formula have?

ME (Model Enumeration) What are all the models of a formula?

17 /37

Results from the KC map (queries) [DMO02]

L CO|VA|CE|IM | EQ | SE| CT | ME
NNF o o o o o o o o
DNNF e o v o o o o v
d — DNNF v v v v ? o v v
sd — DNNF | v v v v ? o v v
BDD o o o o o o o o
FBDD v v v v ? o v v
OBDD v v v v v o v v
OBDD_ v v v v v v v v
DNF v o v o o o o va
CNF o v o v o o o o
Pl v v v v v v o v
IP v v v v v v o v
MODS v v v v v v v

v Verified o Not verified (unless P = NP) 18 /37

Transformations [DMO02]

Given one or several formulas, transform them into a formula equivalent
in the considered language to the application of a logical operator

19 /37

Transformations [DMO02]

Given one or several formulas, transform them into a formula equivalent
in the considered language to the application of a logical operator

CD (ConDitioning) Compute ¢|T where 7 is a consistent cube/term
SFO (Singleton FOrgetting) Compute Ix.¢p = (¢|x) v (¢|X)

FO (FOrgetting) Compute 3X.¢ where X is a set of variables

AC (Closure under A) Compute A7_; &

ABC (Bounded Closure under A) Compute A_; ¢;, where n < N
vC (Closure under v) Compute \/|_; ¢

vBC (Bounded Closure under v) Compute \/!_, ¢;, where n < N
—C (Closure under —) Compute —¢

19 /37

Results from the KC map (transformations) [DM02]

L CD | FO | SFO | AC | ABC | vC | vBC | =C
NNF v o v v v v v v
DNNF v v v o o v v o
d — DNNF v o o) o o o ?
sd — DNNF | v o o) o o o ?
BDD v o v v v v v v
FBDD ve ° o ° o ° o va
OBDD v ° v ° o ° o v
OBDD_ v ° v ° v ° v v
DNF v v v ° v v v °
CNF v) v v ° Vi °
Pl v v v ° ° ° v °
IP v ° ° ° v ° ° °
MODS v v v ° v ° ° °

v" Verified o Not verified (unless P = NP) e Not verified 20,37

Properties of pseudo-Boolean
constraints

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

9w +6x +3y +z>11

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

Ow +6x+3y +z>11

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree:

Ow +6x+3y+z>11=9w+6x+3y +z>12

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable:

Ow+6x+3y+z>11

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable:

Ow+6x+3y+z>11

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable:

Ow+6x+3y+z=>11=9w+6x+ 3y >

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

Increasible degree: (coNP-hard: reduction from subset-sum)

Ow +6x+3y+z>11=9w+6x+3y +z>12

Dependency on a variable: (NP-hard: reduction from increasible degree)

Ow+6x+3y+z=>11=9w+6x+ 3y >

21 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | 7 ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv ? ? ? ? ? ? ?
1-PBC v ? ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a+2b+c>3 3a+2b+c>7

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv ? ? ? ? ? ? ?
1-PBC v ? ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a+2b+c>3 V 3a+2b+c>7

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv ? ? ? ? ? ? ?
1-PBC v ? ? ? ? ? ? ?

Consistency can be checked by summing the weights

3a4+2b+c>3 V 3a+2b+c>=7 X

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv v ? ? ? ? ? ?
1-PBC v v 7 ? ? ? ? ?

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VA A 7 7 7 v
1-PBC v v | vV |V 7 7 7 v

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VA A 7 v 7 v
1-PBC v v | vV |V 7 7 7 v

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0
Properties of pseudo-Boolean constraints give these results

Sl 2 kY e = K iff K <0or [L\L| < k=K

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VI VvV VY 7 v
1-PBC v v | vV |V 7 7 7 v

Consistency can be checked by summing the weights
3a+2b+c>3 v 3a+2b+tc=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0

Properties of pseudo-Boolean constraints give these results

Sl =k =K iffk <0or |[I\|<k—K

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VvV VvV 7 v
1-PBC v v | vV |V 7 7 v

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0
Properties of pseudo-Boolean constraints give these results
DL = klEY e I = K iff k' <0or |L\L| < k—K

Reduction from increasible degree

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VvV VvV 7 v
1-PBC v v | vV |V o 7 v

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0
Properties of pseudo-Boolean constraints give these results
DL = klEY e I = K iff k' <0or |L\L| < k—K

Reduction from increasible degree

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VvV VvV v v
1-PBC v v | vV |V o 7 v

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0
Properties of pseudo-Boolean constraints give these results
DL = klEY e I = K iff k' <0or |L\L| < k—K
Reduction from increasible degree

There are Z}’:k (") models of a cardinality constraint .7 ; /; > n

J

22 /37

CO|VA|CE|IM|EQ|SE|CT | ME
1-CARD | Vv VvV VvV v v
1-PBC v v | vV |V o v

Consistency can be checked by summing the weights
3a+2b+c>3 vV 3a+2b+c=7 X

A normalized pseudo-Boolean constraint is valid iff its degree is 0
Properties of pseudo-Boolean constraints give these results
DL = klEY e I = K iff k' <0or |L\L| < k—K
Reduction from increasible degree

There are Z}’:k (j) models of a cardinality constraint >,/ ;[> n
Reduction from subset-sum

22 /37

CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | ? ? ? ? ? ? ? ?
1-PBC ? ? ? ? ? ? ? ?

23 /37

CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | v ? ? ? ? ? ? ?
1-PBC v ? ? ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

23 /37

CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | v ? v ? ? ? ? ?
1-PBC v ? v ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Hx.(aX+23j/J->k> = (Zaﬁ?k—a) v (Za,-b?k)
j=0 j=0

Jj=0

23 /37

CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | v ? v ? ? ? ? ?
1-PBC v ? v ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Hx.(ax—kzjaj/j)k) = (Zaj/j>k—a)
j=0

Jj=0

23 /37

CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | v v/ v ? ? ? ? ?
1-PBC v v v ? ? ? ? ?

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Hx.(ax—kzjaj/j)k) = (Zaj/j>k—a)
j=0

Jj=0

23 /37

CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | v v/ v ? ? ? ? v
1-PBC v v v ? ? ? ? v

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

Hx.(ax—kzjaj/j)k) = (Zaj/j>k—a)
j=0

Jj=0

Negation is computable in polytime: ﬁ(zj']:l ajl; = n) = Z}’Zl ajli <n

23 /37

CD | FO | SFO | AC | ABC | vC | vBC | =C
1-CARD | v v v ° ° ° ° v
1-PBC v v v ° ° ° ° v

Conditioning is just replacing a variable by 0 or 1

Forgetting one variable can be computed in polytime:

n n

HX.(BX"‘EQJ'[I' = k) = (Zaj/j = k—a)
j=0 Jj=0

Negation is computable in polytime: ﬁ(zj'.’zl ajl; = n) = Z}’Zl ajli<n

Conjunctions and disjunctions are not computable in general since both
languages are not expressive enough

23 /37

In general, a propositional formula may require more than a single

pseudo-Boolean constraint to be expressed

24 /37

In general, a propositional formula may require more than a single
pseudo-Boolean constraint to be expressed

p=xDy

24 /37

In general, a propositional formula may require more than a single
pseudo-Boolean constraint to be expressed

p=xDy

We need to use a conjunction of a set of constraints: PBC or CARD)

24 /37

PBC and CARD as compilation
languages

25 /37

CARD <« PBC because translating k = kx + 21221 xj = k into CARD
requires clauses, and there is an exponential number of them

25 /37

CARD <« PBC because translating k = kx + 21221 xj = k into CARD
requires clauses, and there is an exponential number of them

A (Vo)

1.2k iel
[l|=k+1

25 /37

NNF < PBC because a formula from PBC can be seen as an arithmetic
circuit, and such a circuit can be translated into a polysize NNF circuit
[Vollmer, 1999]

25 /37

NNF < PBC because a formula from PBC can be seen as an arithmetic
circuit, and such a circuit can be translated into a polysize NNF circuit
[Vollmer, 1999]

k

+/>\
x/‘\x

VRN VRN

ai /1 an /n

25 /37

PBC < IP because \/|_;(x; A y;) requires an exponential number of
constraints to be expressed

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

P=xPDyDz

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

-
|

=XDyDz

=(xvyvz)axvoyv—oz)a(—=xvyv—z)A(-xvVvyvVz)

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

-
|

=XDyDz

=(xvyvz)axvoyv—oz)a(—=xvyv—z)A(-xvVvyvVz)

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

-
|

=XDyDz

=(xvyvz)axvoyv—oz)a(—=xvyv—z)A(-xvVvyvVz)

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

-
|

=XDyDz

=(xvyvz)axvoyv—oz)a(—=xvyv—z)A(-xvVvyvVz)

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

-
|

=XDyDz

=(xvyvz)axvoyv—oz)a(—=xvyv—z)A(-xvVvyvVz)

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

-
|

=XDyDz

=(xvyvz)axvoyv—oz)a(—=xvyv—z)A(-xvVvyvVz)

25 /37

PBC € OBDD_ because parity function can only be represented in PBC
with clauses

-
|

=XDyDz

=(xvyvz)axvoyv—oz)a(—=xvyv—z)A(-xvVvyvVz)

25 /37

CARD | PBC CARD | PBC
NNF ? ? NNF ? ?
DNNF ? ? DNNF ? ?
d — DNNF ? ? d — DNNF ? ?
sd — DNNF ? ? sd — DNNF ? ?
FBDD ? ? FBDD ? ?
OBDD ? ? OBDD ? ?
OBDD_ ? ? OBDD_ ? ?
DNF ? ? DNF ? ?
CNF ? ? CNF ? ?
Pl ? ? Pl ? ?
IP ? ? IP ? ?
MODS ? ? MODS ? ?
CARD > = CARD < ?
PBC ? > PBC < <

> Proven > [Dixon, 2004] > Transitivity

26 / 37

CARD | PBC CARD | PBC
NNF ? ? NNF ? ?
DNNF ? ? DNNF ? ?
d — DNNF ? ? d — DNNF ? ?
sd — DNNF ? ? sd — DNNF ? ?
FBDD ? ? FBDD ? ?
OBDD ? ? OBDD ? ?
OBDD_ ? ? OBDD_ ? ?
DNF ? ? DNF ? ?
CNF ? ? CNF ? ?
Pl ? ? Pl ? ?
IP ? ? IP ? ?
MODS ? ? MODS ? ?
CARD > = CARD < <
PBC * > PBC < <

> Proven > [Dixon, 2004] > Transitivity

26 / 37

CARD | PBC CARD | PBC
NNF ? ? NNF ? ?
DNNF ? ? DNNF ? ?
d — DNNF ? ? d — DNNF ? ?
sd — DNNF ? ? sd — DNNF ? ?
FBDD ? ? FBDD ? ?
OBDD ? ? OBDD ? ?
OBDD_ ? ? OBDD_ ? ?
DNF ? ? DNF ? ?
CNF > = CNF ? ?
Pl ? ? Pl ? ?
IP ? ? IP ? ?
MODS ? ? MODS ? ?
CARD > = CARD < <
PBC * > PBC < <

> Proven > [Dixon, 2004] > Transitivity

26 / 37

CARD | PBC CARD | PBC

NNF ? ? NNF ? ?
DNNF ? ? DNNF ? ?
d — DNNF ? ? d — DNNF ? ?
sd — DNNF ? ? sd — DNNF ? ?
FBDD ? ? FBDD ? ?
OBDD ? ? OBDD ? ?
OBDD- ? ? OBDD- ? ?
DNF ? ? DNF ? ?
CNF > = CNF ? ?
PI > = PI ? ?

P 7 ? IP ? ?
MODS > > MODS ? ?
CARD > > CARD < £
PBC > > PBC < <

> Proven > [Dixon, 2004] > Transitivity 26 / 37

CARD

Y]
oy
(@

CARD

Y]
oy
(@

NNF

NNF

-~

DNNF

DNNF

d — DNNF

d — DNNF

sd — DNNF

sd — DNNF

FBDD

FBDD

OBDD

OBDD

OBDD._

OBDD_

DNF

DNF

CNF

CNF

Pl

Pl

P

P

MODS

MODS

CARD

W IV~ WVI[WV| -~~~ -~~~]~

CARD

PBC

VIV WV~ WV]]]]~

PBC

NN~~~ A~~~ N o~~~

IN A N] A] | N N v]

>

Proven

> [Dixon, 2004]

> Transitivity

26 / 37

CARD | PBC CARD | PBC

NNF ? ? NNF ? ?
DNNF ? ? DNNF £ <
d — DNNF ? ? d — DNNF & £
sd — DNNF ? ? sd — DNNF | < £
FBDD ? ? FBDD £ <
OBDD ? ? OBDD £ <
OBDD- ? ? OBDD- £ <
DNF ? ? DNF & <
CNF > > CNF £ £
pPI > > PI « &

P ? ? P < <
MODS > > MODS « <
CARD > > CARD < £
PBC > > PBC < <

> Proven > [Dixon, 2004] > Transitivity 26 / 37

CARD | PBC CARD | PBC
NNF ? ? NNF <

DNNF ? ? DNNF £ <
d — DNNF ? ? d — DNNF £ <
sd — DNNF ? ? sd — DNNF | < £
FBDD ? ? FBDD & £
OBDD ? ? OBDD £ <
OBDD- ? ? OBDD- £ <
DNF ? ? DNF & <
CNF > > CNF £ £
pPI > > PI « &

P ? ? P < <
MODS > > MODS « <
CARD > > CARD < t
PBC > > PBC < <

> Proven > [Dixon, 2004] > Transitivity 26 / 37

CARD | PBC CARD | PBC
NNF ? ? NNF <

DNNF ? ? DNNF £ <
d — DNNF ? ? d — DNNF £ <
sd — DNNF ? ? sd — DNNF | < £
FBDD ? ? FBDD & £
OBDD ? ? OBDD £ <
OBDD- * p3 OBDD- £ <
DNF ? ? DNF & <
CNF > > CNF £ £
pPI > > PI « &

P ? ? P < <
MODS > > MODS « <
CARD > > CARD < t
PBC > > PBC < <

> Proven > [Dixon, 2004] > Transitivity 26 / 37

CARD

Y]
oy
(@

NNF

CARD

PBC

DNNF

NNF

d — DNNF

DNNF

sd — DNNF

d — DNNF

FBDD

sd — DNNF

OBDD

FBDD

OBDD_

OBDD

DNF

OBDD_

CNF

DNF

Pl

CNF

P

Pl

MODS

P

CARD

W W[~ W W] [[3 | [

MODS

PBC

VW WV [V WV AW W W [(W (W

CARD

>

Proven

> [Dixon, 2004]

PBC

ANV AN Eadkadkad badkadbad Ead bad badb/ad Ead WA

ARk ad b ad Ead b ad kiad Rrad b/ad b/ad b/ad ad Erad WA

> Transitivity

26 / 37

CARD

Y]
oy
(@

NNF

CARD

PBC

DNNF

NNF

d — DNNF

DNNF

sd — DNNF

d — DNNF

FBDD

sd — DNNF

OBDD

FBDD

OBDD_

OBDD

DNF

OBDD_

CNF

DNF

Pl

W W [~ [| [[| [

W W[[0 | [[v

CNF

P

Pl

MODS

P

CARD

WV WV [

MODS

PBC

\VARVARVAES

CARD

>

Proven

> [Dixon, 2004]

PBC

ANV AN Eadkadkad bad bad bad ad Ead bad bad b/ad WA

AN R ad b ad b ad b ad Ead Brad B/ad b/ad b/adl /ad WA

> Transitivity

26 / 37

CARD

Y]
oy
(@

NNF

CARD

PBC

DNNF

NNF

d — DNNF

DNNF

sd — DNNF

d — DNNF

FBDD

sd — DNNF

OBDD

FBDD

OBDD_

OBDD

DNF

OBDD_

CNF

DNF

Pl

VAR AR AR YARVAEVA VA RVA VA

WV | | e

CNF

P

Pl

MODS

P

CARD

\ARVAE S

MODS

PBC

\VARVARVAES

CARD

>

Proven

> [Dixon, 2004]

PBC

ANV AN Eadkadkad badkadbad Ead bad badb/ad Ead WA

ARk ad b ad Ead b ad kiad Rrad b/ad b/ad b/ad ad Erad WA

> Transitivity

26 / 37

CO|VA|CE|IM|EQ|SE| CT | ME
CNF o v o v o o o o
CARD ? ? ? ? ? ? ? ?
PBC ? ? ? ? ? ? ? ?

27 / 37

CO|VA|CE|IM|EQ|SE| CT | ME
CNF o v o v o o o o
CARD o
PBC o ? o ? o o o o

~J
~J

O @] @] O O

By functional reduction, NP-hard problems for CNF are NP-hard for
CARD and PBC

CNF

CARD

PBC

27 /37

CO|VA|CE|IM|EQ|SE| CT | ME

CNF o v o v o o o o
CARD o v o ve o o o o
PBC o v o v o o o o

By functional reduction, NP-hard problems for CNF are NP-hard for

CARD and PBC

Properties of pseudo-Boolean constraints give the other results

PBC

CARD

CNF

27 / 37

CD | FO | SFO | AC | ABC | vC | vBC | =C
CNF v o v v v v
CARD | 7 ? ? ? ? ? ? ?
PBC ? ? ? ? ? ? ? ?

28 / 37

CD | FO | SFO | AC | ABC | vC | vBC | =C
CNF v o v v v
CARD / / / . 7
PBC v o ? v ? ? ? ?

<
(@]
S

<
S
=

Arguments for CNF can be applied to PBC and CARD

28 / 37

CD | FO | SFO | AC | ABC | vC | vBC | =C
CNF v o v v v
CARD / / . 7
PBC v o ? v v ? ? ?

<
(@]
~
\
<
~

Arguments for CNF can be applied to PBC and CARD

28 / 37

CD | FO | SFO | AC | ABC | vC | vBC | —=C
CNF v o v v v ° v
CARD / . 7
PBC v o ? v v ? ° ?

<
o
N
<
<
°

Arguments for CNF can be applied to PBC and CARD

2 . .
2/21 X; # n can only be expressed with an exponential number of
clauses, and

2n 2n 2n
Zx,-;énz Zx;<n \% Zx,->n
i=1 i=1 i=1

28 / 37

CD | FO | SFO | AC | ABC | vC | vBC | —=C
CNF v o v v v ° v
CARD / 7
PBC v o ? v v ° ° ?

<
o
N
<
<
°
°

Arguments for CNF can be applied to PBC and CARD

2 . .
2/21 X; # n can only be expressed with an exponential number of
clauses, and

2n 2n 2n
Zx,-;énz Zx;<n \% Zx,->n
i=1 i=1 i=1

28 / 37

CD | FO | SFO | AC | ABC | vC | vBC | —=C
CNF v o v v v ° v °
CARD | v o ? v v ° ° °
PBC v o ? v v ° ° °

Arguments for CNF can be applied to PBC and CARD

2 . .
2/21 X; # n can only be expressed with an exponential number of
clauses, and

2n 2n 2n
Zx,-;énz Zx;<n \% Zx,->n
i=1 i=1 i=1

28 / 37

CD | FO | SFO | AC | ABC | vC | vBC | —=C
CNF v o v v v ° v °
CARD .
PBC v o ? v v ° ° °

<
o
=
<
<
°
°
°

Arguments for CNF can be applied to PBC and CARD

2 . .
2/21 X; # n can only be expressed with an exponential number of
clauses, and

2n 2n 2n
Zx,-;énz Zx;<n \% Zx,->n
i=1 i=1 i=1

28 / 37

Recap of the results

Succinctness: PBC < CARD < CNF

29 / 37

Recap of the results

Succinctness: PBC < CARD < CNF

Queries:
CO|VA | CE|IM|EQ|SE| CT | ME
CNF o v o v o o o o
CARD o v o v o o o o
PBC o v o v o o o o

29 / 37

Recap of the results

Succinctness: PBC < CARD < CNF

Queries:
CO|VA | CE|IM|EQ|SE| CT | ME
CNF o v o v o o o o
CARD o v o v o o o o
PBC o v o v o o o o

Transformations:

CD | FO | SFO | AC | ABC | vC | vBC | =C
CNF v o v v v ° v °
CARD | v o ? v v ° ° °
PBC v o ? v v ° ° °

29 / 37

Recap of the results

Succinctness: PBC < CARD < CNF

Queries:
CO|VA | CE|IM|EQ|SE| CT | ME
CNF o v o v o o o o
CARD o v o v o o o o
PBC o v o v o o o o

Transformations:

CD | FO | SFO | AC | AB
CNF v o v v v
CARD | v o ? v v ° ° °
PBC v o ? v v

Compared to CNF, PBC and CARD are strictly more succinct, but the

same queries and less transformations can be computed in polytime

29) 37

What’'s next?

Open question: SFO?

Is there any polytime algorithm to compute the forgetting of a variable x
in a PBC formula K7

30 /37

Open question: SFO?

Is there any polytime algorithm to compute the forgetting of a variable x
in a PBC formula K7

Ix.K = (K|x) v (K|x)

30 /37

Let us consider:

e ki=x+a+b=

2
e Kp=X+2c+2d >3

31/37

Let us consider:

e ki=x+a+b=

2
e Kp=X+2c+2d >3

Then:

x+a+b=2 X+2c+2d =3
at+b+2c+2d=4

31/37

Let us consider:

e ki=x+a+b=

2
e Kp=X+2c+2d >3

Then:

x+a+b=2 X+2c+2d =3
at+b+2c+2d=4

But:

Ix.(kyAkp)=a+b+c+d=3

31/37

Let us consider:

e Ki=x+a+b=2
e kp=X+2c+2d=>3=x+c+d=2
Then:
x+a+b=2 X+2c+2d =3
at+b+2c+2d=4
But:

Ix.(kyAkp)=a+b+c+d=3

31/37

Let us consider:

e ki=x+a+b=

2
e kip=x+2c+2d=3=x+c+d=2

Then:

But:

Ix.(kyAkp)=a+b+c+d=3

31/37

Let us consider:

e Ki=x+a+b=2

e k3=X+c+2d+3e=5

32/37

Let us consider:

e Ki=x+a+b=2

e k3=X+c+2d+3e=5

Then:

x+a+b=2 X+c+2d+3e>=5
at+tb+c+2d+3e>6

32/37

Let us consider:

e Ki=x+a+b=2

e k3=X+c+2d+3e=5

Then:

x+a+b=2 X+c+2d+3e>=5
at+tb+c+2d+3e>6

But:

Ix.(k1 AK3)=2a+2b+c+3d+4e=9

32/37

Let us consider:

e ki=x+a+b=22=x+2a+2b=3
e k3=X+c+2d+3e=5

Then:

x+a+b=2 X+c+2d+3e>=5
at+tb+c+2d+3e>6

But:

Ix.(k1 AK3)=2a+2b+c+3d+4e=9

32/37

Let us consider:

e Ki=x+at+tb=22=x+2a+2b>3
e k3=X+c+2d+3e=5

Then:

X+2a+2b>3 X+c+2d+3e=5
2a+2b+c+2d+3e=>7

But:

Ix.(k1 AK3)=2a+2b+c+3d+4e=9

32/37

Let us consider:

e Ki=x+at+tb=22=x+2a+2b>3
e ki3=X+c+2d+3e=25X+c+3d+4e=>7

Then:

X+2a+2b>3 X+c+2d+3e=5
2a+2b+c+2d+3e=>7

But:

Ix.(k1 AK3)=2a+2b+c+3d+4e=9

32/37

Let us consider:

e Ki=x+at+tb=22=x+2a+2b>3
e ki3=X+c+2d+3e=25X+c+3d+4e=>7

Then:

X+2a+2b>3 X+c+3d+4e=>7
2a+2b+c+3d+4e>9

But:

Ix.(k1 AK3)=2a+2b+c+3d+4e=9

32/37

PBC and CARD are not good compilation languages

33 /37

PBC and CARD are not good compilation languages

We need to define sub-languages of PBC which enable to perform J

more queries and transformations

33 /37

PBC and CARD are not good compilation languages

We need to define sub-languages of PBC which enable to perform
more queries and transformations J

As an example, we can define pseudo-Boolean prime implicants and

implicates

e s an IP-PBC of K iff Kk = K and, if ¥’ = K and & |= &/, then

K =k
e risaPI-PBCof K iff K =k and, if K = «’ and £’ = k, then
K =k

33 /37

PBC and CARD are not good compilation languages

We need to define sub-languages of PBC which enable to perform
more queries and transformations J

As an example, we can define pseudo-Boolean prime implicants and

implicates

e s an IP-PBC of K iff Kk = K and, if ¥’ = K and & |= &/, then

33 /37

Can we define a canonical form for pseudo-Boolean constraints?

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible

Iw+6x+3y +z>11

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible

Ow+6x+3y+z=>11= Ow +6x + 3y > 11

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible J
Ow+6x+3y+z=>11= Ow +6x + 3y > 11

>
9w + 6x + 3y > 12

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible J
Ow+6x+3y+z=>11= Ow +6x + 3y > 11

=
= Ow + 6x + 3y > 12
3w+2x+y =>4

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible

Ow+6x+3y+z=>11= 9w + 6x + 3y

I
N
S
+
x
+
<
WV

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible

Ow+6x+3y+z=>11= 9w + 6x + 3y

\\/ \\/

= 9W+6X+3y

34 /37

Can we define a canonical form for pseudo-Boolean constraints?

We need a unique way to write the constraint, which must be
as simple as possible

Ow+6x+3y+z=>11= Ow +6x + 3y > 11
= Ow + 6x + 3y > 12
= 3w+2x+y =>4
= 2wHx+y =3

[
S
>
0
<
<

34 /37

A pseudo-Boolean constraint k = 3.7 a;jlj > k is in canonical form iff it

satisfies the following properties:

35 /37

A pseudo-Boolean constraint k = 3.7 a;jlj > k is in canonical form iff it

satisfies the following properties:

e Vx € Var(k), x appears in x only once

35 /37

A pseudo-Boolean constraint k = 3.7 a;jlj > k is in canonical form iff it

satisfies the following properties:

e Vx € Var(k), x appears in x only once

e Vii'el.ni<i <= aj>ay,ie. literals are sorted by
descending weights

35 /37

A pseudo-Boolean constraint k = 3.7 a;jlj > k is in canonical form iff it

satisfies the following properties:
e Vx € Var(k), x appears in x only once

e Vii'el.ni<i <= aj>ay,ie. literals are sorted by
descending weights

e there exists a model of x which is a model of Zf:l ajli =k

35 /37

A pseudo-Boolean constraint k = 3.7 a;jlj > k is in canonical form iff it

satisfies the following properties:
e Vx € Var(k), x appears in x only once

e Vii'el.ni<i <= aj>ay,ie. literals are sorted by
descending weights

e there exists a model of x which is a model of Zf:l ajli =k

e Vje 1..n, there exists no other constraint x’ = x such that /; has a
weight a; < a; in &’

35 /37

A pseudo-Boolean constraint k = 3.7 a;jlj > k is in canonical form iff it

satisfies the following properties:
e Vx € Var(k), x appears in x only once

e Vii'el.ni<i <= aj>ay,ie. literals are sorted by
descending weights

e there exists a model of x which is a model of Zf:l ajli =k

e Vje 1..n, there exists no other constraint x’ = x such that /; has a
weight a; < a; in &’

For a given constraint k, is there always a unique "canonical form” ofn?J

35 /37

A pseudo-Boolean constraint k = 3.7 a;jlj > k is in canonical form iff it

satisfies the following properties:
e Vx € Var(k), x appears in x only once

e Vii'el.ni<i <= aj>ay,ie. literals are sorted by
descending weights

e there exists a model of x which is a model of Z;:l ajli =k

e V) € 1..n, there exists no other constraint k' = x such that /i has a

weight a; < a; in x'

For a given constraint k, is there always a unique "canonical form” ofn?J

35 /37

Implement an efficient pseudo-Boolean solver

36 /37

Implement an efficient pseudo-Boolean solver

e Investigate why pseudo-Boolean solvers are not as efficient in
practice as they should theoretically be

36 /37

Implement an efficient pseudo-Boolean solver

e Investigate why pseudo-Boolean solvers are not as efficient in
practice as they should theoretically be

e Use arbitrary precision only when needed

36 /37

Implement an efficient pseudo-Boolean solver

e Investigate why pseudo-Boolean solvers are not as efficient in
practice as they should theoretically be

e Use arbitrary precision only when needed

e Find a better solution than reduction for learning

36 /37

Implement an efficient pseudo-Boolean solver

e Investigate why pseudo-Boolean solvers are not as efficient in
practice as they should theoretically be

e Use arbitrary precision only when needed
e Find a better solution than reduction for learning

e Find a solution to the fact that generalized resolution is not

implication-complete

36 /37

Conclusion

Conclusion

Recap:

e Pseudo-Boolean constraints properties

e Pseudo-Boolean constraints as a compilation language

37 /37

Conclusion

Recap:

e Pseudo-Boolean constraints properties

e Pseudo-Boolean constraints as a compilation language

Future works:

e Get a better understanding of pseudo-Boolean constraints
e Define PBC sublanguages for compilation

e Implement an efficient solver using PBC and CARD

37 /37

Pseudo-Boolean Constraints:
Reasoning and Compilation

Romain Wallon (Advisors: Daniel Le Berre, Pierre Marquis, Stefan Mengel)
September 11, 2017

CRIL - U. Artois & CNRS

cr il l/l

UNIVERSITE D’ARTOIS

	Reasoning with Pseudo-Boolean Constraints
	A Knowledge Compilation Map
	Properties of pseudo-Boolean constraints
	PBC and CARD as compilation languages
	What's next?
	Conclusion

