
A lookahead strategy for
heuristic search planning

Vincent Vidal
IRIT – Université Paul Sabatier

118 route de Narbonne
31062 Toulouse Cedex 04, France

email: vvidal@irit.fr

Technical report IRIT/2002-35-R

Abstract

The planning as heuristic search framework, initiated by the planners ASP from
Bonet, Loerincs and Geffner, and HSP from Bonet and Geffner, lead to some of the
most performant planners, as demonstrated in the two previous editions of the Inter-
national Planning Competition. We focus in this paper on a technique introduced by
Hoffmann and Nebel in the FF planning system for calculating the heuristic, based on
the extraction of a solution from a planning graph computed for the relaxed problem ob-
tained by ignoring deletes of actions. This heuristic is used in a forward-chaining search
algorithm to evaluate each encountered state. As a side effect of the computation of this
heuristic, more information is derived from the planning graph and its solution, namely
the helpful actions which permit FF to concentrate its efforts on more promising ways,
forgetting the other actions in a local search algorithm. We introduce a novel way for ex-
tracting information from the computation of the heuristic and for tackling with helpful
actions, by considering the high quality of the plans computed by the heuristic function
in numerous domains. For each evaluated state, we employ actions from these plans in
order to find the beginning of a valid plan that can lead to a reachable state, that will of-
ten bring us closer to a solution state. The lookahead state thus calculated is then added
to the list of nodes that can be chosen to be developed following the numerical value of
the heuristic. We use this lookahead strategy in a complete best-first search algorithm,
modified in order to take into account helpful actions by preferring nodes that can be
developed with such actions over nodes that can be developed with actions that are not
considered as helpful. We then provide an empirical evaluation which demonstrates that
in numerous planning benchmark domains, the performance of heuristic search planning
and the size of the problems that can be handled have been drastically improved, while
in more “difficult” domains these strategies remain interesting even if they sometimes
degrade plan quality.

1

1 Introduction

Planning as heuristic search has proven to be a successful framework for non-optimal plan-
ning, since the advent of planners capable to outperform in most of the classical benchmarks
the previous state-of-the-art planners Graphplan [BF95, BF97], Satplan [KS96, KMS96]
and their descendants Blackbox [KS99], IPP [KNHD97], LCGP [CRV01], STAN [LF99],
SGP [WAS98], . . . Although most of these planners compute optimal parallel plans, which
is not exactly the same purpose as non-optimal planning, they also offer no optimality guar-
antee concerning plan length in number of actions. This is one reason for which the interest
of the planning community turned towards the planning as heuristic search framework and
other techniques such as planning as model checking, more promising in terms of perfor-
mance for non-optimal planning plus some other advantages such as easier extensions to
resource planning and planning under uncertainty.

The planning as heuristic search framework, initiated by the planners ASP [BLG97],
HSP and HSPr [BG01], lead to some of the most performant planners, as demonstrated in
the two previous editions of the International Planning Competition with planners such as
HSP2 [BG01], FF [HN01] and AltAlt [NK00, NK02]. FF was in particular awarded for out-
standing performance at the 2

���
International Planning Competition1 and was generally the

top performer planner in the STRIPS track of the
�����

International Planning Competition2.
We focus in this paper on a technique introduced in the FF planning system for calculat-

ing the heuristic, based on the extraction of a solution from a planning graph computed for
the relaxed problem obtained by ignoring deletes of actions. It can be performed in poly-
nomial time and space, and the length in number of actions of the relaxed plan extracted
from the planning graph represents the heuristic value of the evaluated state. This heuristic
is used in a forward-chaining search algorithm to evaluate each encountered state. As a side
effect of the computation of this heuristic, another information is derived from the planning
graph and its solution, namely the helpful actions. They are the actions of the relaxed plan
executable in the state for which the heuristic is computed, augmented in FF by all actions
which are executable in that state and produce fluents that where found to be goals at the
first level of the planning graph. These actions permit FF to concentrate its efforts on more
promising ways than considering all actions, forgetting actions that are not helpful in a vari-
ation of the hill-climbing local search algorithm. When this last fails to find a solution, FF
switches to a classical complete best-first search algorithm. The search is then started again
from scratch, without the benefit obtained by using helpful actions and local search.

We introduce a novel way for extracting informations from the computation of the
heuristic and for tackling with helpful actions, by considering the high quality of the re-
laxed plans extracted by the heuristic function in numerous domains. Indeed, the beginning
of these plans can often be extended to solution plans of the initial problem, and there are
often a lot of other actions from these plans that can effectively be used in a solution plan.
We define in this paper an algorithm for combining some actions from each relaxed plan,
in order to find the beginning of valid plan that can lead to a reachable state. Thanks to the
quality of the extracted relaxed plans, these states will frequently bring us closer to a solu-
tion state. The lookahead states thus calculated are then added to the list of nodes that can
be chosen to be developed following the numerical value of the heuristic. The best strategy
we (empirically) found is to use as much actions as possible from each relaxed plans and to
perform the computation of lookahead states as often as possible.

This lookahead strategy can be used in different search algorithms. We propose a mod-
ification of a classical best-first search algorithm in a way that preserves completeness. In-
deed, it can simply consist in augmenting the list of nodes to be developed (the open list)
with some new nodes computed by the lookahead algorithm. The branching factor is slightly

1The 2 �	� IPC home page can be found at http://www.cs.toronto.edu/aips2000/.
2The 3
 � IPC home page can be found at http://www.dur.ac.uk/d.p.long/competition.html.

2

increased, but the performances are generally better and completeness is not affected. In ad-
dition to this lookahead strategy, we propose a new way of using helpful actions that also
preserves completeness. In FF, actions that are not considered as helpful are lost: this makes
the algorithm incomplete. For avoiding that, we modify several aspects of the search algo-
rithm. Once a state � is evaluated, two new nodes are added to the open list: one node that
contains the helpful actions, which are the actions belonging to the relaxed plan computed
for � and executable in � , and one node that contains all actions applicable in � and that
do not belong to the relaxed plan (we call them rescue actions). A flag is added to each
node, indicating whether the actions attached to it are helpful or rescue actions. We then
add a criterium to the node selection mechanism, that always gives preference in develop-
ing a node containing helpful actions over a node containing rescue actions, whatever the
heuristic estimates of these nodes are. As no action is lost and no node is pruned from the
search space as in FF, completeness is preserved.

Our empirical evaluation of the use of this lookahead strategy in a complete best-first
search algorithm that takes benefit of helpful actions demonstrates that in numerous planning
benchmark domains, the improvement of the performance in terms of running time and size
of problems that can be handled have been drastically improved. Taking into account helpful
actions makes a best-first search algorithm always more performant, while the lookahead
strategy makes it able to solve very large problems in several domains. One drawback of
our lookahead strategy is sometimes a degradation of plan quality, which we found to be
critical for a few problems. But the trade-off between speed and quality, even in some
“difficult” domains where solutions for some problems are substantially longer when using
the lookahead strategy, seems to always tend in favor of it.

After giving classical definitions and notations in Section 2, we explain the main ideas
of the paper and give theoretical issues in Section 3. We then give all details about the
algorithms implemented in our planning system in Section 4, and illustrate them with an
example from the well-known Logistics domain in Section 5. We finally present an experi-
mental evaluation of our work in Section 6 before some related works in Section 7 and our
conclusions in Section 8.

2 Definitions

Operators are STRIPS-like operators, without negation in their preconditions. We use a
first order logic language � , constructed from the vocabularies ��� , ��� , ��� that respectively
denote finite disjoint sets of symbols of variables, constants and predicates.

Definition 1 (operator) An operator, denoted by 	 , is a triple
����������������� where �� , ��� and
��� denote finite sets of atomic formulas of the language � . ���������	 � , !"�#�$��	 � and %&�(')��	 �
respectively denote the sets �� , ��� and ��� of the operator 	 .

Definition 2 (state, fluent) A state is a finite set of ground atomic formulas (i.e. without any
variable symbol). A ground atomic formula is also called a fluent.

Definition 3 (action) An action denoted by � is a ground instance 	�*,+-
����*�������*������.*#� of
an operator 	 which is obtained by applying a substitution * defined with the language �
such that ���* , ����* and ���.* are ground. ����.���/�0� , !"�#�$�/�0� , %1�(')�/�2� respectively denote the
sets ���* , ����* , ���.* and represent the preconditions, adds and deletes of the action � .

Definition 4 (planning problem) A planning problem is a triple 34+5
6!7�98���:;� where !
denotes a finite set of actions (which are all the possible ground instantiations of a given set
of operators defined on �), 8 denotes a finite set of fluents that represent the initial state,
and : denotes a finite set of fluents that represent the goals.

3

Definition 5 (relaxed planning problem) Let 3 +4
6!7�98���:;� be a planning problem. The
relaxed planning problem 3 � +
6! � ��8�� :7� of 3 is such that

! � + �
6��������/�0����!"�����/�0�����#������� !
	
Definition 6 (plan) A plan is a sequence of actions
6���(���� ������� . Let 3 +
6!7�98���:;� be
a planning problem. The set of all plans constructed with actions of ! is denoted by
� '6�����#�63 � .
Definition 7 (First, Rest, Length, concatenation of plans) We define the classical func-
tions ��� ���� and ������� on non-empty plans as �������� ��
6��� ���������� �������9� + ��� and ������� ��
6� � �
�������� �����$�9� +
6�!������ ������� , and � ���#"!�%$ on all plans as � ���#"!�%$ ��
6�#� ���� �������9� +&� (with
� ���#"!�%$ ��
��9� +('). Let �)�7+
6���(���� ������� and �*� +
,+-� ���� �.+0/;� be two plans. The con-
catenation of �1� and �*� (denoted by �1��2 �*�) is defined by �1��2"�*� +
6� � ���� ����� �.+��(���� �.+0/7� .
Definition 8 (application of a plan) Let � be a state and � be a plan. The impossible state,
which represents a failure in the application of a plan, is denoted by 3 . The application of
� on � (denoted by �54 �) is recursively defined by:

�54 � +
if � +
�� or � +63
then �
else /* with � +
6� � ���������� ������� */

if ����.���/� � �87 �
then 9 ���;: %1�(')�/��� �9�=<1!"�����/� � �?>�4
6���.���� �������
else 3 .

Definition 9 (valid plan, solution plan) Let � +
6�#�(���� ������� be a plan. � is valid for
a state � iff �@4 �BA+C3 . � is a solution plan of a planning problem 3 +
6!7�98���:;� iff
�D� � '6�����#�63 � and :E7 884 � .

Definition 10 (reachable state) Let 34+
6!7�98���:;� be a planning problem. Let � and � �
be two states. � � is reachable from � in 3 iff there exists a plan �F� � '6�����#�63 � such that
�@4 � + � � .

3 The ideas

In this section, we expose the two main ideas of the paper (lookahead plans and use of
helpful actions in a complete algorithm) in a very general way, without entering the details
of their computation which will be given in the next section. For each of these ideas, we
describe the main intuitions, we briefly explain how to obtain them in the context of a
forward heuristic search planner based on FF [HN01] and we explain how to use them in a
complete heuristic search algorithm.

3.1 Computing and using lookahead states and plans

In classical forward state-space search algorithms, a node in the search graph represents a
planning state and a vertex starting from that node represents the application of one action
to this state. For completeness issue, all actions that can be applied to one state must be
considered. For example, let � be planning state and

� �=�(���� �����#	 be all the actions that
can be applied to that state. Figure 1 represents the development of a node related to the state
� , with each action �#�(���� ����� leading respectively to the states �G� ���� � ��� , in a complete
search algorithm. The order in which these states will then be considered for development
depends on the overall search strategy: depth-first, breadth-first, best-first. . .

4

�

� � � � �=�

� � �!� ���

Figure 1: Node development

The main problem of forward heuristic search planning is of course the selection of the
best node to be developed next. Difficulties appear when heuristic values for such nodes are
very close to each other: no state can be distinguished from other states.

Let us now imagine that for each evaluated state � , we knew a valid plan � that could
be applied to � and would lead to a state closer to the goal than direct descendants of
� . It could then be interesting to apply � to � , and use the resulting state � � as a knew
node in the search. This state could be simply considered as a new descendant of � , as
represented in the Figure 2: +�� is an action that can be applied to � , +�� is an action that can
be applied to �54 +-� , and so on until the application of +./ : the resulting state � � is such that
� � + �54
,+-� ����(��+�/ � . We have then two kind of vertices in the search graph: the ones that
come from the direct application of an action to a state, and the ones that come from the
application of a valid plan to a state � and lead to a state � � reachable from � . We will call
such states lookahead states, as they are computed by the application of a plan to a node but
are considered in the search tree as direct descendants of the nodes they are connected to.
Plans labeling vertices that lead to lookahead states will be called lookahead plans. Once a
goal state is found, the solution plan is then the concatenation of single actions for classical
vertices and lookahead plans for the other vertices.

�

� � � � ��� � �

� � ��� ���
,+-� �.+.������ �.+0/7�

Figure 2: Node development with lookahead state

The computation of a heuristic for each states as is done in the FF planner offers a way
to get such lookahead plans. FF creates a planning graph for each encountered state � , for
the relaxed problem obtained by ignoring deletes of actions and using � as initial state. A
relaxed plan is then extracted from these planning graphs in polynomial time and space. The
length in number of actions of these relaxed plans corresponds to the heuristic evaluation
of the states for which they are calculated. The relaxed plan for a state � is in general not
valid for � , as deletes of actions are ignored during its computation: negative interactions

5

between actions are not considered, so an action can delete a goal or a fluent needed as a
precondition by some actions that follow it in the relaxed plan. But actions of the relaxed
plans are used because they produce fluents that can be interesting to obtain the goals, so
some actions of these plans can possibly be interesting to compute the solution plan of the
problem. In numerous benchmark domains, we can observe that relaxed plans have a very
good quality in that they contain a lot of actions that belong to solution plans. We propose
a way of computing lookahead plans from these relaxed plans, by trying as most actions as
possible from them and keeping the ones that can be collected into a valid plan. The details
of the algorithms are given in Section 4.

Completeness and correctness of search algorithms is preserved by this process, because
the nodes that are added by lookahead plans are reachable from the states they are connected
to, and because no information is lost: all actions that can be applied to a state are still
considered. All we do is adding new nodes, corresponding to states that can be reached
from the initial state.

Even more, this lookahead strategy can preserve optimality of algorithms such as A*
or IDA* when used with admissible heuristics, although some preliminary experiments we
conducted did not gave interesting results (we tried to use a heuristic similar to the one used
in [HG00], which corresponds to the length in number of levels of the relaxed planning
graph, while still extracting a relaxed plan for computing a lookahead plan). The condition
for preserving optimality is to consider that the cost of a vertex is the number of actions
attached to it: 1 for classical vertices, and the length of the lookahead plan for vertices
added by the lookahead algorithm. The evaluation function

� +&"�� $ for a state � , with "
being the cost for reaching � from the initial state and $ being the estimation of the cost from
� to the goal, thus takes into account the length of the lookahead plans within the value of
" . This cost, that takes into account the length of lookahead plans, must also be considered
by the way the state loop control (if used) is handled. Indeed, avoiding to explore already
visited states increases a lot the performances of forward state-space planners [VR99]: a
state � encountered at a depth � in the search tree does not need to be developed again when
encountered again at a depth � ��� � . In order to preserve optimality, we must consider the
cost of a node as defined above, and not simply its depth: a state � encountered with a cost "
in the search tree need not to be developed again when encountered again with a cost " ��� " .

3.2 Using helpful actions: the “optimistic” search algorithms

In classical search algorithms, all actions that can be applied to a node are considered the
same way: the states that they lead to are evaluated by a heuristic function and are then
ordered, but there is no notion of preference over the actions themselves. Such a notion of
preference during search has been introduced in the FF planner [HN01], with the concept
of helpful actions. Once the planning graph for a state � is computed and a relaxed plan is
extracted, more information is extracted from these two structures: the actions of the relaxed
plan that are executable in � are considered as helpful, while the other actions are forgotten
by the local search algorithm of FF. But this strategy appeared to be too restrictive, so the set
of helpful actions is augmented in FF by all actions executable in � that produce fluents that
were considered as goals at the first level of the planning graph, during the extraction of the
relaxed plan. The main drawback of this strategy, as used in FF, it that it does not preserve
completeness: the actions executable in a state � that are not considered as helpful are
simply lost. In FF, the search algorithm is not complete for other reasons (it is a variation of
an hill-climbing algorithm), and the search must switch to a complete best-first search when
no solution is found by the local search algorithm.

We present in this paper a way to use such a notion of helpful actions in complete search
algorithms, that we call optimistic search algorithms because they give a maximum trust to
the informations returned by the computation of the heuristic. The principle is the following:

6

1. Several classes of actions are created. In our implementation, we only use two of
them: helpful actions (the restricted ones: the actions of the relaxed plan that are
executable in the state for which we compute a relaxed plan), and rescue actions that
are all the actions that are not helpful.

2. When a newly created state � is evaluated, the heuristic function returns the numer-
ical estimation of the state and also the actions executable in � partitioned into their
different classes (for us, helpful or rescue3). For each class, one node is created for
the state � , that contains the actions of that class returned by the heuristic function.

3. When a node is selected to be developed, the class of the actions attached to it is taken
into account: in our “optimistic” algorithm, it is the first criterium: nodes containing
helpful actions are always preferred over nodes containing rescue actions, whatever
their numerical heuristic values are.

Once again, completeness and correctness are preserved: no information is lost. The
way nodes are developed is simply modified: a state � is developed first with helpful ac-
tions, some other nodes are developed, and then � can potentially be developed with rescue
actions. As the union of helpful actions and rescue actions is equal to the set of all the
actions that can be applied to � , no action is lost. But optimality for use with admissible
heuristics cannot of course be preserved: nothing guarantees that helpful actions always
produce the shortest path to the goal.

4 Description of the algorithms

In this section, we describe the algorithms of our planning system and discuss the main
differences with the FF planner, which is the closer work presented in the literature. The
main functions of the algorithm are the following:

LOBFS � � : this is the main function (see Figure 3). At first, the function compute node
is called over the initial state of the problem and the empty plan: the initial state is
evaluated by the heuristic function, and a node is created and pushed into the open
list. Nodes in the open list have the following structure:
/� ��� ��!7�.$�� � � , where:

� � is a state,
� � is the plan that lead to � from the initial state,
� ! is a set of actions applicable in � ,
� $ is the heuristic value of � (the length of the relaxed plan computed from �),
� � is a flag indicating if the actions of ! are helpful actions (value $��('�� ��� ') or

rescue actions (value �� �(� � �).
We then enter in a loop that selects the best node (function pop best node) in the
open list and develops it until a plan is found or the open list is empty. In contrast
to standard search algorithms, the actions chosen to be applied to the node state are
already known, as they are part of the informations attached to the node. These actions
come from the computation of the heuristic in the function compute heuristic called
by compute node, which returns a set of helpful actions and a set of rescue actions.

3It must be noted that an action can be considered as helpful for a given state, but can be considered as rescue
for another state: it depends on the role it plays in the relaxed plan and in the planning graph.

7

pop best node � � : returns the best node of the open list. Nodes are compared following
three criteria of decreasing importance. Let

� +
/� ��� ��!7�.$�� � � be a node in the
open list. The first criterium is the value of the flag

�
: $��.' � � � ' is preferred over

�� �(� � � . When two flags are equal, the second criterium minimizes the heuristic value� ��� � +���� $�� � ���#"!�%$ �/�;� , as in � !�� algorithm. In our current implementation,
we use � + �

. When two heuristic values are equal, the third criterium minimizes
the length of the plan � that lead to � .

compute node ��� ���;� : it is called by LOBFS over the initial state and the empty plan, or
by LOBFS or itself over a newly created state � and the plan � that lead to that state
(see Figure 3). Calls from LOBFS come from the initial state or the selection of a
node in the open list and the application of one action to a given state. Calls from
itself come from the computation of a valid plan by the lookahead algorithm and its
application to a given state.

If the state � belongs to the close list or is a goal state, the function terminates. Oth-
erwise, the state is evaluated by the heuristic function (compute heuristic, which
returns a relaxed plan, a set of helpful actions and a set of rescue actions). This op-
eration is performed the first time with the goal-preferred actions (actions that do not
delete a fluent that belongs to the goal and do not belong to the initial state).

If a relaxed plan can be found, two nodes are added to the initial state: one node for
the helpful actions (the flag is set to $��('�� ��� ') and one node for the rescue actions (the
flag is set to ����.� � �). A valid plan is then searched by the lookahead algorithm, and
compute node is called again over the state that results from the application of this
plan to � (if this valid plan is at least two actions long).

If no relaxed plan can be found with the goal-preferred actions, the heuristic is eval-
uated again with all actions. In that case, we consider that � has a lowest interest: if
a relaxed plan is found, only one node is added to the open list (helpful actions and
rescue actions are merged), the flag is set to ����.� � � , and no lookahead is performed.

compute heuristic ��� ��!�� : this function computes the heuristic value of the state � in a
way similar to FF. At first, a relaxed planning graph is created, using only actions
from the set ! . This parameter allows us to try to restrict actions to be used to goal-
preferred actions (actions that delete a goal which is not in the initial state): this
heuristic proved to be useful in some benchmark domains. Once created, the relaxed
planning graph is then searched backward for a solution.

In our current implementation, there is two main differences compared to FF. The
first difference holds in the way actions are used for a relaxed plan. In FF, when an
action is selected at a level � , its add effects are marked � � � at level � (as in classical
Graphplan), but also at level �8:�� . As a consequence, a precondition required by
another action at the same level will not be considered as a new goal. In our imple-
mentation, add effects of an action are only marked true at time � , but its preconditions
are required at time � and not at the first level they appear, as in FF. A precondition of
an action can then be achieved by an action at the same level, and the range of actions
that can be selected to achieve it is wider.

The second difference holds in the way actions are added to the relaxed plan. In FF,
actions are arranged in the order the get selected. We found useful to use the following
algorithm. Let � be an action, and
6��� ���!������ ������� be a plan. � is ordered after �#� iff:
the level of the goal � was selected for is greater or equal than the level of the goal
� � was selected for, and either � deletes a precondition of �=� or � � does not delete a
precondition of � . In that case, the same process continues between � and �#� , and so
on with all actions in the plan. Otherwise, � is placed before ��� .

8

The differences between FF and our implementation we described here are all heuris-
tic and motivated by our experiments, since making optimal decisions for these prob-
lems are not polynomial, as stated in [HN01].

The function compute heuristic returns a structure
 � � ��� �0� � where: � � is a re-
laxed plan, � is a set of helpful actions, and � is a set of rescue actions. As complete-
ness is preserved by the algorithm, we restrict the set of helpful actions compared to
FF: they are only actions of the relaxed plan applicable in the state � for which we
compute the heuristic. In FF, all the actions that are applicable in � and produce a
goal at level 1 are considered as helpful. Rescue actions are all actions applicable
in � and not present in � � , and are used only when no node with helpful actions is
present in the open list. So, � < � contains all actions applicable in � .

lookahead ��� �0� �;� : this function searches a valid plan for a state � using the actions of a
relaxed plan � � calculated by compute heuristic (cf. Figure 4). Several strategies
can be imagined: searching plans with a limited number of actions, returning several
possible plans, . . . From our experiments, the best strategy we found is to search one
plan, containing as most actions as possible from the relaxed plan, and to try to replace
an action of � � which is not applicable by another action when no other choice is
possible.

At first, we enter in a loop that stops if no action can be found or all actions of ���
have been used. Inside this loop, there is two parts: one for selecting actions from � � ,
and another one for replacing an action of � � by another action in case of failure in
the first part.

In the first part, actions of � � are observed in turn, in the order they are present in
the sequence. Each time an action � is applicable in � , we add � to the end of the
lookahead plan and update � by applying � to it. Actions that cannot be applied are
kept in a new relaxed plan called

� ��� '6�.� , in the order they get selected. If at least
one action has been found to be applicable, when all actions of � � have been tried,
the second part is not used (this is controlled by the boolean � 	-�=� � � � �). The relaxed
plan ��� is updated with

� ��� '/�(� , and the process is repeated until � � is empty or no
action can be found.

The second part is entered when no action has been found in the first part. The goal
is to try to repair the current (not applicable) relaxed plan, by replacing one action
by another which is applicable in the current state � . Actions of

� ��� '/�(� are observed
in turn, and we look for an action (in the global set of actions !) applicable in � ,
which achieves an add effect of the action of

� ��� '/�(� we observe, this add effect being
a precondition of another action in the current relaxed plan. If several achievers are
possible for the add effect of the action of

� ��� '6�.� we observe, we select the one that
has the minimum cost in the relaxed planning graph used for extracting the initial
relaxed plan (function choose best). When such an action is found, it is added to the
lookahead plan and the global loop is repeated. The action of

� ��� '/�(� observed when
a repairing action was found is deleted from the current relaxed plan. This repairing
technique is also completely heuristic, but gave good results in our experiments.

5 An example

Let us now illustrate the main ideas of the paper and the algorithms by the resolution of a
small problem issued from the well-known Logistics benchmark domain. We provide here
exactly what prints our planning system.

9

let 3 +
6!7��8�� :7� ; /* planning problem */
let :�! + � � � !E��� � � %&�(')�/�0��� ���� ��:�� 82�0	 ; /* goal-preferred actions */
let 	��$��� +�� ; /* open list: nodes to be developed */
let � '/	 �(�"+�� ; /* close list: already developed nodes */

function LOBFS � �
compute node �68���
��9� ;
while 	��$��� A+�� do

let
/� ��� �����.� � 	-��� �.$�� � '6� "�� +��
	�� �
���� ��	���#� �
forall � � ���.� � 	-��� do

compute node ��� 4
6�0����� 2
6�0�9�
endfor

endwhile
end

function compute node ��� ���;� /* S: state, P: plan, */
if � �� � '/	 �.� then

if :E7 � then output and exit �/�;� endif ;
� '/	 �.��� � '/	 �(�8< � �8	 ;
let
 ��� � � ��� � +���	��������� !��!"�#$�%��#&�#��� � :�!�� ;
if � � A+ � ��� ' then

	�� ���'� 	�� ��� < �
/� ��� � � ��� ���#"!�%$ �,� �;���.$��('�� ��� '/���

/� ��� �0�,��� ���#"!�%$ �,� �;���9����.� � ���0	 ;

let
/� � ��� � � +�(&)	�*�+� !�+�� ��� �0� �;� ;
if � ���#"!�%$ �/� � � ��,

then
compute node ��� � ���&2 � � �

endif
else

let
 � � � � �0� � +���	������!�� !���"�#$�%��#&����� ��!�� ;
if � � A+ � ��� ' then

	��$���'� 	��$��� < �
/� ��� ��� ���#"!�%$ �,� �;����� < �;�9����.� � ���0	
endif

endif
endif

end

Figure 3: Lookahead Optimistic Best-First Search algorithm

10

function lookahead ��� ��� �;� /* S: state, RP: relaxed plan */
let �$' ��� +
�� ;
let
� ��� '6�.�,+
�� ;

let � 	-�=� �?� � � +&� � � ;
while � 	-�=� � � � ����� � A+
�� do

� 	-�=� �?� � � � � ��' �.� ;
forall �)� 9 ���0��> do /* with � � +
6� �(���� ������� */

if ����.� �/��� �17 � then
� 	-�=� � � � ��� � � � ;
� � �54
6��� � ;
��'6��� � ��'6���@2
6��� �

else � ��� '/�(��� � ��� '/�(��2
6��� �
endif

endfor ;
if � 	-�=� � � � � then

��� � � ��� '/�(� ;� ��� '/�(���
��
else

��� �
�� ;
while � � 	-�=� � � � ��� � ��� '/�(� A+
�� do

forall
� � !"�#�$�,�������� � � ��� '/�(�2�9� do

if
���� �����2� � �,� � 2 � ��� '6�.��� � � � ����.���/�0� then

let � 	 �-��� + '/� �2��� � 	-���"+ � ��� !D� � � !"�����/�0�	�1����.� �/�2�17 �8	 ;
if �$	 ����� + '6� ���.� � 	-��� A+ � then

let � +�� !)	�� �
��%��� � 	 ����� +�'/� ���.� � 	-����� ;
� 	-�=� � � � ��� � � � ;
� � �@4
6�0� ;
��'6��� � ��'6���@2
6�2� ;
� � � � �&2 ������� � � ��� '/�(�2� ;� ��� '/�(� �
��

endif
endif

endfor ;
if � � 	-�=� � � � � then

� � � ���&2 ��� ���� � � ��� '/�(��� ;� ��� '/�(��� ��� ��� � � ��� '/�(���
endif

endwhile
endif

endwhile
return ��� �/��'6��� �

end

Figure 4: Lookahead algorithm

11

This Logistics world contains two cities (Paris and Toulouse), each one subdivided into
two districts (post office and airport). Each city contains a truck that can move between
districts of this city. There is one airplane, which can move between airports. Trucks and
airplane can load and unload packages in every location they can go. In the initial state,
three objects are located at Paris post office, each truck is located at its respective city post
office, and the airplane is located at Paris airport. The goal is to move two of these objects
to Toulouse post office, the third object staying at Paris post office. This problem can be
described in typed PDDL [MGH � 98] by the following:

(define (problem small-french-logistics)
(:domain logistics)
(:objects
Paris Toulouse - city
pa-po tlse-po - location
pa-apt tlse-apt - airport
A320 - airplane
pa-truck tlse-truck - truck
obj1 obj2 obj3 - package)
(:init
(in-city pa-po Paris) (in-city pa-apt Paris)
(in-city tlse-po Toulouse) (in-city tlse-apt Toulouse)
(at A320 pa-apt) (at pa-truck pa-po) (at tlse-truck tlse-po)
(at obj1 pa-po) (at obj2 pa-po) (at obj3 pa-po))
(:goal
(and (at obj1 tlse-po) (at obj2 tlse-po) (at obj3 pa-po))))

The open and close lists are initiated to the empty set:

	�� ��� + � 	

� '6	 �.�"+ � 	
As the in-city predicate is only used for constraining trucks to move between districts

of the same city, we can remove fluents using it from the initial state. They can be handled
in a separate way, typically by the instantiation procedure. The initial state 8 can then be
described by the following:

8 + �
(at A320 pa-apt), (at pa-truck pa-po),
(at tlse-truck tlse-po), (at obj1 pa-po), (at obj2 pa-po),
(at obj3 pa-po) 	

The function compute node is then called on the initial state 8 and the empty plan. As 8
does not belong to the close list, it is evaluated by the heuristic function compute heuristic
which returns a relaxed plan �8� , a set of helpful actions � � and a set of rescue actions
� � . The action (LOAD-TRUCK obj3 pa-truck pa-po) is not considered as helpful
because it is not used into the relaxed plan. The union of � � and � � represents all actions
applicable in 8 .

12

�1� +
 (LOAD-TRUCK obj1 pa-truck pa-po),
(LOAD-TRUCK obj2 pa-truck pa-po),
(DRIVE-TRUCK pa-truck pa-po pa-apt Paris),
(UNLOAD-TRUCK obj2 pa-truck pa-apt),
(UNLOAD-TRUCK obj1 pa-truck pa-apt),
(LOAD-AIRPLANE obj2 A320 pa-apt),
(LOAD-AIRPLANE obj1 A320 pa-apt),
(FLY-AIRPLANE A320 pa-apt tlse-apt),
(DRIVE-TRUCK tlse-truck tlse-po tlse-apt Toulouse),
(UNLOAD-AIRPLANE obj1 A320 tlse-apt),
(UNLOAD-AIRPLANE obj2 A320 tlse-apt),
(UNLOAD-TRUCK obj1 tlse-truck tlse-po),
(LOAD-TRUCK obj1 tlse-truck tlse-apt),
(UNLOAD-TRUCK obj2 tlse-truck tlse-po),
(LOAD-TRUCK obj2 tlse-truck tlse-apt) �

� � + �
(LOAD-TRUCK obj1 pa-truck pa-po),
(LOAD-TRUCK obj2 pa-truck pa-po),
(DRIVE-TRUCK pa-truck pa-po pa-apt Paris),
(FLY-AIRPLANE A320 pa-apt tlse-apt),
(DRIVE-TRUCK tlse-truck tlse-po tlse-apt Toulouse) 	

� � + �
(LOAD-TRUCK obj3 pa-truck pa-po) 	

As a relaxed plan has been found, the open list is augmented with two new nodes, one
for the helpful actions and one for the rescue actions. The heuristic value 15 corresponds to
the number of actions of the relaxed plan �8� . The initial state 8 is added to the close list.

	�� ��� + �
 8���
������ � � � � ��$��('�� � � '�� ,
 8���
����0� � � � � �9����.� � ��� 	

� '6	 �.�"+ � 8 	
At that point, a classical search algorithm would have selected and developed a node of

the open list. The preferred node for our algorithm would be the one with the flag set to
$��('�� ��� ' . But as the relaxed plan has been found with only using goal-preferred actions, a
lookahead plan will be computed from the initial state.

This is motivated by the fact that the relaxed plan ��� has a very good quality. We can
remark that the eleven first actions of �1� give the beginning of an optimal plan that solves
the problem: the two objects that must move to Toulouse are loaded into the truck at Paris
post office, the truck goes to Paris airport, the two objects are unloaded from the truck and
boarded into the airplane, the airplane flies from Paris to Toulouse while one truck goes
from Toulouse post office to Toulouse airport, and the two objects are unloaded from the
airplane.

There is a problem with the following four actions: as delete lists of actions are not
taken into account, the fact that one truck is still at Toulouse post office remains true while
extracting a relaxed plan: the action of driving the truck from the airport to the post office
does not appear. For the same reason, the final actions of loading objects and unloading
them are badly ordered.

The function lookahead returns
/�G� ��� �� � +�(&)	 *�+� !�+�� �68����)� � , with � � + 884 � � � :

13

� � � +
 (LOAD-TRUCK obj1 pa-truck pa-po),
(LOAD-TRUCK obj2 pa-truck pa-po),
(DRIVE-TRUCK pa-truck pa-po pa-apt Paris),
(UNLOAD-TRUCK obj2 pa-truck pa-apt),
(UNLOAD-TRUCK obj1 pa-truck pa-apt),
(LOAD-AIRPLANE obj2 A320 pa-apt),
(LOAD-AIRPLANE obj1 A320 pa-apt),
(FLY-AIRPLANE A320 pa-apt tlse-apt),
(DRIVE-TRUCK tlse-truck tlse-po tlse-apt Toulouse),
(UNLOAD-AIRPLANE obj1 A320 tlse-apt),
(UNLOAD-AIRPLANE obj2 A320 tlse-apt),
(LOAD-TRUCK obj1 tlse-truck tlse-apt),
(LOAD-TRUCK obj2 tlse-truck tlse-apt) �

�*� + �
(at A320 tlse-apt), (at pa-truck pa-apt),
(at tlse-truck tlse-apt),(in obj1 tlse-truck),
(in obj2 tlse-truck), (at obj3 pa-po) 	

The eleven first actions have been taken without any change, and the algorithm found
that the two actions of loading objects into Toulouse truck can be executed without the two
actions of unloading these objects from the truck, which were present in the relaxed plan.
The repairing part of the lookahead algorithm is not useful here, because no action in the
global set of actions can have the same effects that unloading the objects at Toulouse post-
office, which cannot be executed here.

The lookahead plan � �� being more than one action long, the function compute node is
recursively called on the state �*� and the plan � �� that lead to it. As the state �G� does not
belong to the close list, it is evaluated by the heuristic function compute heuristic which
returns a relaxed plan �G� , a set of helpful actions ��� and a set of rescue actions �
� :

�G� +
 (UNLOAD-TRUCK obj1 tlse-truck tlse-po),
(DRIVE-TRUCK tlse-truck tlse-apt tlse-po Toulouse),
(UNLOAD-TRUCK obj2 tlse-truck tlse-po) �

� � + �
(DRIVE-TRUCK tlse-truck tlse-apt tlse-po Toulouse) 	

��� + �
(UNLOAD-TRUCK obj1 tlse-truck tlse-apt),
(UNLOAD-TRUCK obj2 tlse-truck tlse-apt),
(FLY-AIRPLANE A320 tlse-apt pa-apt),
(DRIVE-TRUCK pa-truck pa-apt pa-po Paris)
(LOAD-TRUCK obj3 pa-truck pa-po) 	

A relaxed plan has been found this time again, so the open list is augmented with two
new nodes: one for the helpful actions and one for the rescue actions. There is now four
nodes in the open list, as none of them has been developed yet, and �)� is entered into the
close list:

	�� ��� + �
 8���
������ � � � � ��$��('�� � � '�� ,
 8���
����0� � � � � �9����.� � ��� ,
/� � ��� � � ���@��� � �.$��('�� ��� '�� ,

/� �(��� � � �0����� � �9����.� � ��� 	

� '6	 �.�"+ � 8 , �*�)	
Once again, the relaxed plan has been computed with only using goal-preferred actions.

So, a lookahead plan is searched from the state � � . In the case of a choice by the function

14

pop best nodes, the nodes would have been ordered by decreasing interest as follows:

1.
/�*� ��� � � � � ��� � �.$��('�� � � '�� : the flag is $��('�� ��� ' and its heuristic value evaluates to� ��� � � + � � � � � ���#"!�%$ �/� � ��� +�� � � � + ,�,
,

2.
 8���
������ � � � � ��$��.' � � � '�� : the flag is $��('�� � � ' and its heuristic value evaluates to
� �680� +

� � � � � � ���#"!�%$ ��
��9� +�� �
,

3.
/�*� ��� � � �0����� � ������.� � ��� : the flag is ����.� � � and its heuristic value evaluates to
� ���G� � +� � � � � ���#"!�%$ �/� � ��� +�� � � � + ,�,

,

4.
 8���
������ � � � � ������.� � ��� : the flag is �� �(� � � and its heuristic value evaluates to
� �680� +

� � � � � � ���#"!�%$ ��
��9� +�� �
.

The function lookahead returns
/������� �� � +�(&)	 *�+� !�+�� ��� �(���*�.� , with � � + � �#4 � �� :

� �� +
 (DRIVE-TRUCK tlse-truck tlse-apt tlse-po Toulouse),
(UNLOAD-TRUCK obj1 tlse-truck tlse-po),
(UNLOAD-TRUCK obj2 tlse-truck tlse-po) �

� � + �
(at A320 tlse-apt), (at pa-truck pa-apt),
(at tlse-truck tlse-po),
(at obj1 tlse-po),(at obj2 tlse-po), (at obj3 pa-po) 	

The lookahead plan � �� being more than one action long, the function compute node is
recursively called on the state � � and the plan �/� �� 2 � �� � that lead to it. The state � � does
not belong to the close list, but contains the goals of the problem: a solution plan is found
and printed out, and the search is stopped. The solution plan is then:

� �� 2 � �� +
 (LOAD-TRUCK obj1 pa-truck pa-po),
(LOAD-TRUCK obj2 pa-truck pa-po),
(DRIVE-TRUCK pa-truck pa-po pa-apt Paris),
(UNLOAD-TRUCK obj2 pa-truck pa-apt),
(UNLOAD-TRUCK obj1 pa-truck pa-apt),
(LOAD-AIRPLANE obj2 A320 pa-apt),
(LOAD-AIRPLANE obj1 A320 pa-apt),
(FLY-AIRPLANE A320 pa-apt tlse-apt),
(DRIVE-TRUCK tlse-truck tlse-po tlse-apt Toulouse),
(UNLOAD-AIRPLANE obj1 A320 tlse-apt),
(UNLOAD-AIRPLANE obj2 A320 tlse-apt),
(LOAD-TRUCK obj1 tlse-truck tlse-apt),
(LOAD-TRUCK obj2 tlse-truck tlse-apt),
(DRIVE-TRUCK tlse-truck tlse-apt tlse-po Toulouse),
(UNLOAD-TRUCK obj2 tlse-truck tlse-po),
(UNLOAD-TRUCK obj1 tlse-truck tlse-po) �

As a conclusion to the treatment of this example, here is a comparison between its res-
olution by our planning system with three different settings: classical Best First Search
(BFS), Optimistic Best First Search (OBFS), and Lookahead Optimistic Best First Search
(LOBFS):

Developed nodes: BFS and OBFS develop 16 nodes, while LOBFS develops 0 nodes:
LOBFS solves this problem without entering the real search part of the algorithm.

15

Evaluated nodes: BFS evaluates 65 states, OBFS evaluates 42 states. As the plan is 16
actions long, both of these algorithms evaluate unuseful states. The difference corre-
sponds to the fact that OBFS uses only actions that are considered as helpful: rescue
actions are in nodes whose flag is �� �(� � � , which take no part in node development as
a solution is found before using them. LOBFS evaluates only 2 nodes.

Computed nodes: BFS computes 129 nodes, OBFS computes 43 nodes. The difference
between evaluated and computed nodes for these algorithms is due to the fact that
OBFS focuses faster on a solution state on the last stage of search. LOBFS computes
only 16 states, which is only performed in the lookahead algorithm and never in the
development of nodes, as none of them is developed.

6 Experimental evaluation

6.1 Planners, benchmarks and objectives

We compare four planners. The first one is the FF planning system v2.3 [HN01]4, the
highly optimized heuristic search planner (implemented in C) that won the 2

� �
Interna-

tional Planning Competition and was generally the top performer in the STRIPS and simple
numeric tracks of the 3

� �
International Planning Competition. The other planners consist in

three different settings of our planning system called YAHSP (which stands for Yet Another
Heuristic Search Planner, see5) implemented in Objective Caml6 compiled for speed:

� BFS (Best First Search): classical � ! � search, with � + �
. The heuristic is based

on the computation of a relaxed plan as in FF, with the differences detailed in Sec-
tion 4.

� OBFS (Optimistic Best First Search): identical to BFS, with the use of a flag indicat-
ing whether the actions attached to a node are helpful or rescue. A node containing
helpful actions is always preferred over a node containing rescue actions.

� LOBFS (Lookahead Optimistic Best First Search): identical to OBFS, with the use of
the lookahead algorithm described in Section 4. A lookahead plan is searched each
time the computation of a relaxed plan can be performed with goal-preferred actions.

We use nine different benchmark domains7: the classical Logistics domain, the Mprime
and Mystery domains created for the 1 �

�
IPC, the Freecell domain created for the 2

���
IPC,

and the five STRIPS domains created for the 3
� �

IPC (Rovers, Satellite, ZenoTravel, Driver-
Log, Depots). Problems for Logistics are those of the 2

���
IPC and problems for Freecell are

those of the 3
� �

IPC.
We classified these domains into three categories, in accordance with the way LOBFS

solves them: easy problems in Section 6.2 (Rovers, Satellite, ZenoTravel, Logistics, Driver-
Log), medium difficulty problems in Section 6.3 (Mprime, Freecell), and difficult problems
in Section 6.4 (Depots, Mystery).

Our objectives for these experiments are the following:

4The FF home page can be found at:
http://www.informatik.uni-freiburg.de/ � hoffmann/ff.html.

5The YAHSP home page can be found at:
http://www.irit.fr/recherches/RPDMP/vincent/yahsp.html.

6Objective Caml is a strongly-typed functional language from the ML family, with object oriented extensions.
Its home page can be found at http://caml.inria.fr/.

7All domains and problems used in our experiments can be downloaded on the YAHSP home page.

16

1. To test the efficiency of our planning system over a state-of-the-art planner, FF. In-
deed, FF is known for its distinguished performances in numerous planning domains
and successes in the 2

���
and 3

� �
IPC. Although generally not as fast as FF in the BFS

and OBFS settings, our planner compares well to FF.

2. To evaluate the suitability of the optimistic search strategy. This strategy allows us to
use helpful actions in complete search algorithms. This is in contrast to their use in
the enforced hill-climbing algorithm of FF which is not complete, and falls back into
a classical complete best-first search when hill-climbing fails to find a plan. We will
see in particular that the OBFS strategy is better than BFS in almost all the problems.

3. To demonstrate that the use of a lookahead strategy greatly improves the perfor-
mances of forward heuristic search. Even more, we will see that our planner can
solve problems that are substantially bigger than what other planners can handle (up
to 10 times more atoms in the initial state and 16 times more goals in the last Driver-
Log problem). The main drawback of our lookahead strategy is the degradation in
plan quality (number of actions); however, we will see that this degradation remains
generally very limited.

All tests have been performed in the same experimental conditions, on a Pentium II -
450MHz machine with 512Mb of memory running Debian GNU/Linux 3.0. The maximal
amount of time allocated to all planners for each problem was fixed to one hour.

6.2 Easy problems

As original problems from the competition sets are solved very easily by LOBFS, we cre-
ated 10 more problems in each domain with the available problem generators. The 20 first
problems (numbered from 1 to 20) are the original ones, and the 10 following are newly
created ones.

In order to fully understand the results we present here, it is very important to remark the
following: difficulty (measured as the number of atoms in the initial state and the number of
goals) between successive new created problems numbered from 21 to 30, increases much
more than difficulty between original problems. Indeed, the last problem we created in each
problem is the largest one that can be handled by LOBFS within the memory constraints.
As the solving time remains reasonable, larger problems could surely be solved in less than
one hour with more memory.

As a consequence, the graphs representing plan length are divided into two parts: plan
length for new created problems increases much more than for original ones. We also added
a table for each domain that shows some data about the largest problems solved by FF,
OBFS and LOBFS, in order to realize the progress accomplished in the size of the problems
that can be solved by a STRIPS planner.

6.2.1 Rovers domain

This domain is inspired by planetary rovers problems. A collection of rovers navigate a
planet surface, analyzing samples of soil and rock, and taking images of the planet. Analysis
and images are then communicated back to a lander. Parallel communication between rovers
and the lander is impossible.

OBFS and FF perform nearly the same, FF being slightly more efficient than OBFS
(see Figure 5). They are much more faster than BFS and solve 24 problems, while BFS
solves only 20 problems. OBFS is up to 300 times faster than BFS, on problem 21. LOBFS
is much more efficient than all other planners, and solves all the problems. The largest
problem solved by LOBFS contains 6 times more atoms in the initial state and 4 times more

17

goals than the largest problem solved by FF and OBFS (see Table 1). Plans found by LOBFS
contain sometimes slightly more actions than plans found by other planners, but this remains
limited (see Figure 6).

What is remarkable in this domain is that LOBFS never develops any node: plans are
found by recursive calls between node computation and lookahead plan application, as in
the example of the Logistics domain we studied in Section 5. Such a behavior will be
encountered again for numerous problems in other domains, and is a reason of the good
performances of LOBFS.

6.2.2 Satellite domain

This domain is inspired by space-applications and is a first step towards the “Ambitious
Spacecraft” described by David Smith at AIPS-2000. It involves planning and schedul-
ing a collection of observation tasks between multiple satellites, each equipped in slightly
different ways. Satellites can point to different directions, supply power to one selected
instrument, calibrate it to one target and take images of that target.

Running time curves for OBFS and FF are very similar, FF being generally more effi-
cient than OBFS but at most around 10 times faster (see Figure 7). They are much more
efficient than BFS and solve 21 problems against 19 for BFS. OBFS can be up to 30 times
faster than BFS, on problem 17. LOBFS outperforms all other planners, and solves all the
problems. The largest problem solved by LOBFS contains 10 times more atoms in the initial
state and 6 times more goals than the largest problem solved by FF and OBFS (see Table 2).
Plans found by LOBFS contain often slightly more actions than plans found by other plan-
ners, but this remains limited (see Figure 8) with the except of one problem for which it
finds a plan containing 176 actions against 105 actions for OBFS.

In this domain, LOBFS develops only one node in 8 problems and develops no node in
all other problems.

6.2.3 ZenoTravel domain

This is a transportation domain which involves transporting people around in planes. It was
more specifically designed for numeric tracks of the competition, with different modes of
movement: fast and slow. The fast movement consumes fuel faster than the slow once,
making the search for a good quality plan (one using less fuel) much harder. In its STRIPS
version, the fast movement gives no advantage, as quality is measured by plan length; but
as more fuel is consumed, it still brings a penalty. The best behavior for STRIPS planner is
then to avoid using the fast movement.

In this domain, FF is often more efficient than OBFS but at most around 10 times faster
(see Figure 9). Both are much more efficient than BFS. FF solves 25 problems, against
24 for OBFS and 21 for BFS. OBFS is up to 30 times faster than BFS, on problem 19.
LOBFS is much more efficient than all other planners, and solves all the problems. The
largest problem solved by LOBFS contains 2 times more atoms in the initial state and 2
times more goals than the largest problem solved by OBFS (see Table 3). Plans found by
LOBFS contain often slightly more actions than plans found by other planners, but this
remains limited (see Figure 10) with the except of 2 or 3 problems where it finds up to 2
times more actions.

In this domain, LOBFS develops only 5 nodes in one problem, one node in 2 problems
and develops no node in all other problems.

6.2.4 Logistics domain

This is the classical domain, as described in Section 5.

18

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 11 12 10 14 16 13 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 5: Rovers domain (CPU time)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 11 12 10 14 16 13 15 17 18 19 20

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

21 22 23 24 25 26 27 28 29 30

Problems

Figure 6: Rovers domain (plan length)

Problem 24 Problem 30
Rovers 26 66
Way-points 80 200
Objectives 26 66
Cameras 16 40
Goals 26 66
Init atoms 5920 35791
Goals 33 127

FF OBFS LOBFS LOBFS
Plan length 130 133 145 560
Evaluated nodes 3876 2114 9 24
Search time 418.32 430.95 1.97 44.35
Total time 422.48 437.92 8.87 219.13

Table 1: Rovers domain (largest problems)

19

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 6 5 7 8 9 10 11 18 12 14 13 19 15 20 16 17 21 22 23 24 25 26 27 28 29 30

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 7: Satellite domain (CPU time)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 6 5 7 8 9 10 11 18 12 14 13 19 15 20 16 17

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

21 22 23 24 25 26 27 28 29 30

Problems

Figure 8: Satellite domain (plan length)

Problem 21 Problem 30
Satellites 6 45
Instruments/sat. 12 50
Modes 12 50
Targets 6 25
Observations 25 100
Init atoms 971 10374
Goals 124 768

FF OBFS LOBFS LOBFS
Plan length 140 125 151 2058
Evaluated nodes 22385 20370 5 5
Search time 188.69 328.42 0.12 33.73
Total time 188.82 328.70 0.40 94.24

Table 2: Satellite domain (largest problems)

20

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 9 8 10 11 13 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 9: ZenoTravel domain (CPU time)

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 9 8 10 11 13 12 14 15 16 17 18 19 20

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

 100

 150

 200

 250

 300

 350

 400

 450

21 22 23 24 25 26 27 28 29 30

Problems

Figure 10: ZenoTravel domain (plan length)

Problem 24 Problem 25 Problem 30
Cities 36 40 80
Planes 9 10 20
People 45 50 100
Init atoms 166 183 353
Goals 45 49 100

FF OBFS LOBFS FF LOBFS LOBFS
Plan length 163 165 177 179 211 444
Evaluated nodes 3481 5271 15 8714 16 20
Search time 562.09 1496.81 4.15 1898.26 6.45 59.67
Total time 564.07 1505.43 12.80 1901.03 18.98 247.06

Table 3: ZenoTravel domain (largest problems)

21

In this domain, FF is much more efficient than OBFS: up to 57 times faster in problem 6
(see Figure 11). FF solves 15 problems against 10 for OBFS. This last remains however
more efficient than BFS, which solves only 8 problems. LOBFS is outperforms all other
planners, and solves all the problems. The largest problem solved by LOBFS contains 3.5
times more atoms in the initial state and 3 times more goals than the largest problem solved
by OBFS (see Table 4). What is remarkable in this domain is that all planners give plans of
approximately the same length, with only a few actions of difference (see Figure 12).

In this domain, LOBFS never develops any node.

6.2.5 DriverLog domain

This domain involves driving trucks around delivering packages between locations. The
difference with a more classical transportation domain such as Logistics is that the trucks
require drivers who must walk between trucks in order to drive them. The paths for walking
and the roads for driving form different maps on the locations.

In this domain, OBFS is often more efficient than FF (see Figure 13). Both are much
more efficient than BFS, but this last solves more problems than FF: FF solves 15 problems,
BFS solves 18 problems, and OBFS solves 20 problems. LOBFS is much more efficient
than all other planners, and solves all the problems. The largest problem solved by LOBFS
contains 3.5 times more atoms in the initial state and 4 times more goals than the largest
problem solved by OBFS (see Table 5). This problem contains also 9 times more atoms in
the initial state and 16 times more goals than the largest problem solved by FF. Plans found
by LOBFS contain sometimes slightly more actions than plans found by other planners, but
this remains very limited (see Figure 14).

Problems from this domain seem to be a little bit more difficult for LOBFS than prob-
lems from previous domains: 13 problems require nodes to be developed. But there are still
few of such nodes: 4 problems develop between 10 and 75 nodes, and 9 problems develop
between 1 and 9 nodes.

6.2.6 Concluding remarks

For the five domains we presented in this section, the superiority of LOBFS over all planners
and the superiority of OBFS over BFS are clearly demonstrated, while OBFS and FF have
comparable performances.

The only drawback of LOBFS is sometimes a slight degradation of plan quality, but this
remains very limited: the trade-off between speed and quality tends without any doubt in
favor of our lookahead technique. Several known benchmarks not presented here such as
Ferry, Gripper, Miconic-10 elevator, are also solved very easily by LOBFS.

It is to be noted that the FF planner had already good performances in these domains,
that are for the most part transportation domains; but the time required for solving problems
from these domains and the size of problems that can be handled have been considerably
improved.

6.3 Medium difficulty problems

The results we present for domains in this category are not as advantageous for LOBFS as
in the previous section, but still compares well to the results of the other planners.

6.3.1 Mprime domain

In this domain, OBFS and FF have very close performances (FF being slightly faster), with
the except of problem 18 solved by OBFS but not by FF and two problems (22 and 14)
solved much faster by OBFS (see Figure 15). BFS solves only 24 of the total 35 problems,

22

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 11: Logistics domain (CPU time)

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

21 22 23 24 25 26 27 28 29 30

Problems

Figure 12: Logistics domain (plan length)

Problem 13 Problem 15 Problem 30
Airplanes 6 7 20
Cities 22 25 50
City size 2 2 5
Packages 66 75 200
Init atoms 320 364 1140
Goals 65 75 200

FF OBFS LOBFS FF LOBFS LOBFS
Plan length 398 387 403 505 477 1714
Evaluated nodes 16456 16456 4 45785 4 5
Search time 527.21 1181.95 0.29 2792.51 0.42 16.64
Total time 528.10 1184.35 2.68 2793.82 3.88 96.69

Table 4: Logistics domain (largest problems)

23

 0.1

 1

 10

 100

 1000

 10000

1 3 5 6 7 8 2 11 4 10 13 14 9 15 12 17 18 19 20 16 21 23 22 24 25 26 27 28 29 30

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 13: DriverLog domain (CPU time)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 3 5 6 7 8 2 11 4 10 13 14 9 15 12 17 18 19 20 16

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

21 23 22 24 25 26 27 28 29 30

Problems

Figure 14: DriverLog domain (plan length)

Problem 15 Problem 21 Problem 30
Road junctions 12 28 90
Drivers 4 10 40
Packages 8 30 120
Trucks 4 7 30
Init atoms 227 607 2130
Goals 10 38 163

FF OBFS LOBFS OBFS LOBFS LOBFS
Plan length 44 44 54 184 193 1574
Evaluated nodes 161 273 4 3266 8 38
Search time 0.21 0.84 0.02 207.89 0.45 93.92
Total time 0.26 0.97 0.14 209.40 1.96 284.65

Table 5: DriverLog (largest problems)

24

with running times much more important than the other planners ones. LOBFS solves all
the problems and is generally faster. The problem of LOBFS in this domain is about plan
quality: several plans found by LOBFS contain much more actions than plans found by
other planners (see Figure 16). However, when looking closely to these results, we can make
the following observation: problems for which LOBFS returns a very long plan compared
to other planners are often the ones that cause difficulty to these planners. For instance,
problem 22 is solved in 1770 seconds by FF, in 53 seconds by OBFS, but in only 4 seconds
by LOBFS. The returned plans are 25 actions long for FF, 18 actions long for OBFS, and
54 actions long for LOBFS.

LOBFS develops only one node in 8 problems, and never develops any node in all other
problems.

6.3.2 Freecell domain

It is the familiar solitaire game found on many computers, involving moving cards from an
initial tableau, constrained by tight restrictions, to achieve a final suit-sorted collection of
stacks.

In this domain, FF is more efficient than OBFS, although this last is faster for 3 problems
(up to 23 times for problem 20, see Figure 17). It is interesting to note that the enforced hill-
climbing strategy of FF fails to find a solution for these problems, and FF must switch to
a complete best-first search algorithm. OBFS does not have this problem, as the optimistic
best-first search algorithm is able to handle helpful actions until a solution is found or the
state space is completely explored without finding a plan. OBFS is generally more efficient
than BFS, except for two problems where BFS is slightly faster (the difference is not really
significant). LOBFS is more efficient than BFS and OBFS, and tends to be faster than FF:
up to 67 times for problem 20. However, problem 19, solved by FF, is not solved by any of
our planners. Plan quality is equivalent for all planners, plans found by LOBFS being often
slightly longer (see Figure 18).

Some problems seem to be more difficult for LOBFS than problems from domains we
have studied so far, because LOBFS develops more nodes: five problems require between
70 and 250 nodes to be developed, while the other problems require less than 3 nodes. This
is however limited compared to the number of nodes developed by OBFS: for instance in
problem 18, OBFS develops 6915 nodes and LOBFS only 250.

6.3.3 Concluding remarks

Although not as impressive as for the five first domains we studied, the improvements
obtained by using our lookahead technique are still interesting for these two domains, as
LOBFS has much better performances than OBFS. This last compares well to FF, and is
more efficient than BFS.

The loss in quality of plan solution observed for LOBFS remains limited to a small
number of problems, and for example in Mprime domain where LOBFS solves all problems
in less than 10 seconds, we could use LOBFS for getting a solution as fast as possible and
then another planner to get a better solution.

Other techniques within our planner can also be imagined; for example we could let it
run when a solution is found and try to get a better one in an anytime way. We have some
preliminary results of such a technique that are not yet enough convincing and will not be
presented here.

6.4 Difficult problems

The domains we test here are very difficult for all the planners we use. While still upgrading
the efficiency of OBFS, our lookahead technique seems to be less useful than in previous

25

 0.1

 1

 10

 100

 1000

 10000

25 1 28 35 4 32 7 11 12 3 9 5 2 29 26 27 34 16 31 8 19 21 33 17 23 30 24 6 18 20 15 22 10 13 14

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 15: Mprime domain (CPU time)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

25 1 28 35 4 32 7 11 12 3 9 5 2 29 26 27 34 16 31 8 19 21 33 17 23 30 24 6 18 20 15 22 10 13 14

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

Figure 16: Mprime domain (plan length)

26

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 8 9 12 10 13 16 7 15 17 14 11 18 20 19

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 17: Freecell domain (CPU time)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 8 9 12 10 13 16 7 15 17 14 11 18 20 19

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

Figure 18: Freecell domain (plan length)

27

domains. The trade-off between speed and quality is not so clearly in favor of LOBFS.

6.4.1 Depots domain

This domain was devised in order to see what would happen if two previously well-researched
domains were joined together. These were the logistics and blocks domains. They are com-
bined to form a domain in which trucks can transport crates around and then the crates
must be stacked onto pallets at their destinations. The stacking is achieved using hoists, so
the stacking problem is like a blocks-world problem with hands. Trucks can behave like
“tables”, since the pallets on which crates are stacked are limited.

Problems from this domain are difficult for all planners (see Figure 19). FF solves more
problems than the other planners: it solves 21 problems on 22, LOBFS solves 19 problems,
OBFS solves 17 problems and BFS solves 14 problems. FF is generally more efficient then
OBFS, with the except of 4 problems solved much faster by OBFS: it is up to 2000 times
faster on problem 8. As in the Freecell domain, 3 of these problems (problems 4, 8 and 10)
require that FF switches to a complete best-first search algorithm, unable to handle helpful
actions contrary to OBFS. BFS is only slower than OBFS, while LOBFS is generally faster
but in 2 problems and one problem solved by OBFS and not by LOBFS. This last compares
well to FF and is often faster, but misses two problems more than FF. The plans returned
by LOBFS are also significantly longer than plans returned by other planners in 7 problems
(see Figure 20).

In this domain, LOBFS develops a lot of nodes for several problems: between 9 and
6659 nodes for 10 problems, and less than 3 for 9 problems. But it still develops very fewer
nodes than OBFS: for example in problem 9, OBFS develops 48629 nodes while LOBFS
develops only 6659 nodes.

The interest of our lookahead technique is debatable for this domain because of plan
quality, but seems to be still interesting: 2 more problems are solved and LOBFS is generally
faster than OBFS.

6.4.2 Mystery domain

What is very difficult to handle for heuristic search planners in this domain is the fact that
some problems do not admit a solution plan. It is some time trivial, and can be determined
by the instantiation procedure; but it more often requires to exhaustively explore the search
space.

This domain is the most difficult one we used in our experiments, for all planners (see
Figure 21). Among the 30 problems tested, only 16 are solved by FF, 14 are solved by BFS,
and 18 by OBFS and LOBFS. BFS is the slowest planner, except on problem 9 that it solves
much better than OBFS and LOBFS. FF is generally faster than OBFS and LOBFS, but
solves less problems. OBFS and LOBFS have very close performances, with the except of
4 problems solved much better by LOBFS (up to 1050 times faster on problem 19). The
main drawback of LOBFS, as in the Depots domain, is the quality of plans that it returns
(see Figure 22): 9 plans found by LOBFS are significantly longer than plans returned by the
other planners.

LOBFS develops less than 3 nodes in 15 problems, but develops a lot of nodes for the 3
other problems. On problem 12, which admits no solution plan, OBFS and LOBFS develop
exactly the same number of nodes (1032977 nodes); but on problems 6 and 9, LOBFS
develops slightly more nodes than OBFS: 15729 against 15663 for problem 6 and 3976
against 3960. The running time overhead due to the lookahead computation in LOBFS
remain limited: LOBFS solves problem 6 in 1530 seconds against 1314 seconds for OBFS.

28

 0.1

 1

 10

 100

 1000

 10000

1 2 3 10 13 7 16 17 11 19 18 21 14 4 8 5 9 22 12 15 6 20

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 19: Depots domain (CPU time)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 10 13 7 16 17 11 19 18 21 14 4 8 5 9 22 12 15 6 20

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

Figure 20: Depots domain (plan length)

29

 0.1

 1

 10

 100

 1000

 10000

1 7 18 25 28 11 29 27 3 26 30 2 20 19 17 15 13 14 9 6 12

T
im

e
(s

ec
on

ds
)

Problems

FF
BFS
OBFS
LOBFS

Figure 21: Mystery domain (CPU time)

 0

 5

 10

 15

 20

 25

1 7 18 25 28 11 29 27 3 26 30 2 20 19 17 15 13 14 9 6 12

P
la

n
le

ng
th

 (
nu

m
be

r
of

 a
ct

io
ns

)

Problems

FF
BFS
OBFS
LOBFS

Figure 22: Mystery domain (plan length)

30

6.4.3 Concluding remarks

Due to the loss in plan quality, the use of our lookahead technique is less interesting than in
previous studied domains; it however allows to find plans for problems where OBFS fails to
do so, and to get a better running time for some problems. Further developments of the ideas
presented in this paper should concentrate on improving the behavior of LOBFS for such
domains, where there are a lot of subgoal interactions as in the Depots domain, or limited
resources as in the mystery domain.

6.5 Lookahead utility

7 Related works

8 Conclusion

Plans extracted from relaxed planning graphs are used in the FF planning system for pro-
viding an estimation of the length of the plans that lead to goal states. We presented a new
method for deriving information from these relaxed plans, by the computation of lookahead
plans. A lookahead plan, calculated by a polynomial algorithm, is composed of as most
actions as possible from a given relaxed plan. It is valid for the state for which the relaxed
plan is extracted in the sense that its application to this state is possible and leads to an-
other state called lookahead state. We then expose how to employ the produced lookahead
plans in a modified version of a classical best-first search algorithm to be used by a forward
state-space planner. For each state evaluated by the heuristic function, a lookahead plan
is computed and the state that it leads is added to the list of nodes to be developed, in the
same way the states computed by using the actions executable in that state are added to that
list: lookahead states thus produce supplementary nodes in the search tree. The difference
with classical algorithms is that the vertices that lead to lookahead states are labeled by a
plan and not by only one action. We then improved this search algorithm by using helpful
actions in a way different than in FF, that preserves completeness of the search algorithm
in a strategy we called “optimistic”. Instead of using them in a local search, and loosing
actions that are not considered as helpful, we introduce a criterium for choosing nodes that
always prefers to develop states that can be developed with helpful actions over states that
cannot. Although lookahead states are generally not goal states and the branching factor
is increased with each created lookahead state, the experiments we conducted prove that in
numerous domains (Rovers, Logistics, DriverLog. . .), our planner can solve problems that
are up to ten times bigger (in number of actions of the initial state) than those solved by FF
or by the optimistic best-first search without lookahead (we got plans with more than 2000
actions long). The efficiency for problems solved by all planners is also greatly improved
when using our lookahead strategy. In domains that present more difficulty for all planners
(Mystery, Depots), the use of the lookahead strategy can still improve performances for
several problems. There is very few problems for which the optimistic search algorithm is
better without lookahead. The price to pay for such improvements in the performances and
in the size of the problems that can be handled resides in the quality of solution plans that
can be in some cases severely damaged. However, there are few of such plans and quality
remain generally very good compared to FF.

Acknowledgments

To be included. . .

31

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

A
cc

el
er

at
io

n
LO

B
F

S
 /

O
B

F
S

Lookahead utility

Figure 23: Utility

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

Lookahead utility

Number of problems
Mean acceleration

Figure 24: Utility

32

References

[BF95] A. Blum and M. Furst. Fast planning through planning-graphs analysis. In
Proc. IJCAI-95, pages 1636–1642, 1995.

[BF97] A. Blum and M. Furst. Fast planning through planning-graphs analysis. Artifi-
cial Intelligence, 90(1-2):281–300, 1997.

[BG01] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence,
129(1-2):5–33, 2001.

[BLG97] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection
mechanism for planning. In Proc. AAAI-97, pages 714–719, 1997.

[CRV01] M. Cayrol, P. Régnier, and V. Vidal. Least commitment in Graphplan. Artificial
Intelligence, 130(1):85–118, 2001.

[HG00] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Proc.
AIPS-2000, pages 140–149, 2000.

[HN01] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation
through heuristic search. JAIR, 14:253–302, 2001.

[KMS96] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic.
In Proc. KR-96, pages 374–384, 1996.

[KNHD97] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning-
graphs to an ADL subset. In Proc. ECP-97, pages 273–285, 1997.

[KS96] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic
and stochastic search. In Proc. AAAI-96, pages 1194–1201, 1996.

[KS99] H. Kautz and B. Selman. Unifying SAT-based and Graph-based planning. In
Proc. IJCAI-99, pages 318–325, 1999.

[LF99] D. Long and M. Fox. The efficient implementation of the plan-graph in STAN.
JAIR, 10:87–115, 1999.

[MGH � 98] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, and
D. Weld. The Planning Domain Definition Language. 1998.

[NK00] X.L. Nguyen and S. Kambhampati. Extracting effective and admissible state
space heuristics from planning-graph. In Proc. AAA1-2000, pages 798–805,
2000.

[NK02] X.L. Nguyen and S. Kambhampati. Planning graph as the basis for deriving
heuristics for plan synthesis by state space and CSP search. Artificial Intelli-
gence, 135(1-2):73–123, 2002.

[VR99] V. Vidal and P. Régnier. Total order planning is better than we thought. In Proc.
AAAI-99, pages 591–596, 1999.

[WAS98] D.S. Weld, C.R. Anderson, and D.E. Smith. Extending Graphplan to handle
uncertainty and sensing actions. In Proc. AAAI-98, pages 897–904, 1998.

33

