
Branching and Pruning:
An Optimal Temporal POCL Planner
based on Constraint Programming

Vincent Vidal
CRIL - Universit́e d’Artois, rue de l’universit́e - SP16, 62307 Lens Cedex, FRANCE

Héctor Geffner

ICREA - Universitat Pompeu Fabra, Paseo de Circunvalacion 8, 08003 Barcelona, SPAIN

Abstract

A key feature of modern optimal planners such asGRAPHPLAN and BLACKBOX is their
ability to prune large parts of the search space. Previous Partial Order Causal Link (POCL)
planners provide an alternative branching scheme but lacking comparable pruning mecha-
nisms do not perform as well. In this paper, a domain-independent formulation of tempo-
ral planning based on Constraint Programming is introduced that successfully combines a
POCL branching scheme with powerful and sound pruning rules. The key novelty in the
formulation is the ability to reason about supports, precedences, and causal links involving
actions that are not in the plan. Experiments over a wide range of benchmarks show that the
resulting optimal temporal planner is much faster than current ones and is competitive with
the best parallel planners in the special case in which actions have all the same duration.1

Key words: planning, constraint programming, temporal reasoning

1 Introduction

The search for optimal plans, like the search for optimal solutions in many in-
tractable combinatorial optimization problems, can be understood along two di-

1 This paper extends [45] by removing the canonicity restriction in the generation of plans.
This is a restriction that forces every (ground) action in the domain to be done at most once
in the plan. See the text for details.

Email addresses:vidal@cril.univ-artois.fr (Vincent Vidal),
hector.geffner@upf.edu (Héctor Geffner).

Preprint submitted to Elsevier Science 19 July 2005

mensions: thebranching schemeused for expanding partial solutions, and theprun-
ing schemeused for discarding them. Most AI planning frameworks can be under-
stood in these terms. Optimal state-based planners, for example, branch by per-
forming state regression or progression, and prune by comparing the estimated cost
of the partial plans with a given bound [16]. Optimal SAT and CSP planners, on
the other hand, branch by picking a variable and trying each of its values, prun-
ing branches and domain values that lead to an inconsistency [10,23]. Pruning is a
key operation in both cases: in the first, it is the result of the use of explicit lower
bounds, in the second, of constraint propagation mechanisms and bounds encoded
in the planning graph [3]. This pruning power distinguishes modern planners such
as GRAPHPLAN from its predecessors (whether optimal or not). Indeed the main
limitation of traditional Partial Order Causal Link (POCL) planners [32,46] is that
they provide an alternative branching scheme but no comparable pruning mecha-
nisms. The result is that dead-ends are discovered late and the size of the search
tree explodes much sooner.

Due to its expressive power, however, POCL planning remains an appealing frame-
work for planning, and in particular temporal planning [39]. The challenge is to
close the performance gap that separates POCL planners from modern planners
while retaining the optimality guarantees. In this paper, we undertake this chal-
lenge, extending a POCL temporal planner with powerful and sound pruning mech-
anisms based on a constraint programming formulation that integrates existing
lower bounds with propagation rules that reason with supports, precedences, and
causal links in novel ways. The experiments show that the resulting planner is
faster than current optimal temporal planners and is competitive with current par-
allel planners in the special case in which action durations are all uniform.

The proposed scheme shows also the appeal of constraint-programming branch-
and-prune formulations for combinatorial optimization problems in which the def-
inition of explicit and informative lower bound functions is difficult to come by
[8,12,43]. Indeed, informative admissible heuristics for estimating the completion
time of partial POCL plans do not exist, but still we show that suitably chosen
constraints and propagation rules may yield an equivalent pruning power.

The integration of heuristic functions in a POCL planning framework has been pur-
sued recently in [35,47]. However, no attempt at the generation of optimal plans is
made in these proposals. Here we make use of some of the ideas in [35] like the
use of structural mutexes for extending the notion of threats in POCL planning, and
the use of disjunctive constraints for expressing the possible resolution of threats.
Temporal POCL planners featuring constraint propagation mechanisms includeIX -
TET [27], ZENO [37] andRAX [18]. These planners are more expressive than ours
(e.g., in the use of resources), but their pruning mechanisms are weaker as they tend
to reason about actions in the current partial plan only. Something similar occurs
with formulations of POCL planning as Dynamic CSPs : CSPs in which the set of
variables and constraints is not determined a priori but gets expanded until a failure

2

is detected or a fixed point is reached [19]. In such cases, the number of potential
CSPs to be explored is exponential and for attaining good performance it is not
possible to reason only within the ‘current’ CSP; it is necessary to reason also over
its possible refinements. This is whatGRAPHPLANdoes when it builds the planning
graph: it reasons, in a limited way, about all possible plans, and this is also what is
achieved in different ways in our formulation. A previous CP approach to planning
over variousspecificdomains is given in [42]. We borrow some elements from this
formulation, like the use ofdistancesof various sorts, yet our approach is domain-
independent. The broad ideas on which the current proposal is based have been
outlined first in [15], and a preliminary implementation for parallel planning was
reported earlier in [36]. Here this formulation is extended in a number of ways and
a new planner has been implemented over theCHOCOCP library [28] that operates
on top of theCLAIRE programming language [7]. This formulation first appeared
in [45] along with a restriction on the types of temporal plans that could be gener-
ated; namely onlycanonical planswhere every ground action in the domain was
doneat mostonce. This restriction is a slight generalization of the situation most
commonly found in scheduling where every action or task has to be doneexactly
once [2,6]. In this paper, this restriction is removed and all empirical results, except
where otherwise noted, refer to this general, non-canonical temporal planner called
still CPT.

2 Preview

In order to illustrate the capabilities of the proposed planner, we consider the class
of planning problemsTOWER-n where the task is to build a tower withn blocks
b1, . . . , bn in that order, withb1 on top, all blocks initially on the table. The single
optimal plan for this problem involves picking each blockbi from the table and
stacking it on blockbi+1, from i = n − 1 until i = 1. The reasoning mechanisms
underlying the proposed planner, that we callCPT, yield a solution to this problem
by pure inference and no search.This is quite remarkable as the inferences are not
trivial and existing optimal planners do not scale up well over these problems (see
Table 1). How doesCPT do it? First, it is inferred that each subgoalon(bi, bi+1)
must be achieved by the actionstack(bi, bi+1). This inference is simple as there
is a single possible supporter in each case. More interestingly, it is then inferred
that these stack operations must be ordered sequentially in descending order ofi;
namely,stack(bn−1, bn) first, thenstack(bn−2, bn−1), and so on, untilstack(b1, b2).
This is inferred by reasoning with and resolving the threats affecting the causal
links stack(bi, bi+1)[on(bi, bi+1)]End. 2 Moreover, it is also inferred that the first
action in the sequence cannot occur earlier thant = 1, the second action not earlier
than t = 3, the third not earlier thant = 5, and so on, and that theEnd action

2 We use the notationa[p]a′ for causal links in which actiona supports preconditionp of
a′, often denoted in the literature asa

p→a′.

3

cannot start earlier than2(n−1), the optimal time bound. This is because as part of
the preprocessingCPT infers that no stack action can be done beforet = 1 and that
at least a unit of time must separate the ending of one stack action and the beginning
of a new one (all actions are assumed to have unit durations in the example).

All these inferences result from the domain constraints and propagation mecha-
nisms before even a search boundB on the allowed makespan of the plan is fixed.
After the first boundB = 2(n − 1) is chosen (this is the earliest time at which the
actionEnd can start), further inferences are made. First, the starting timesT (ak)
of all the actionsai in the stack sequence above become fixed to their earliest pos-
sible starting times resulting inT (ak) = 1 + 2k, for k = 1, . . . , n − 1, where
ak is thek-th action in the sequence (namelyak = stack(bn−k, bn−k+1)). Then
the pickup(bn−1), pickup(bn−2), . . . sequence gets added to the set of actions in
the plan at their correct starting times as a result of further reasoning that prunes
the other possible supports and times. For example, the preconditionclear(bn) for
the first actiona1 = stack(bn−1, bn) in the sequence can be supported by a num-
ber ofunstack(∗, bn) andstack(bn, ∗) actions, and byStart. However, since any
such supportera′ must precedea1 and T (a1) = 1 is already fixed,T (a′) < 1
must hold, leavinga′ = Start as the only possible supporter (at preprocessing,
lower bounds on the starting time of actions are computed from which it is known
that T (a′) < 1 is true only forStart andpickup actions). For similar reasons,
all supportersunstack(bn−1, ∗) for the other preconditionholding(bn−1) of a1 are
pruned, leavinga′1 = pickup(bn−1) as the only possible support. The process re-
peats for the preconditions ofa′1 = pickup(bn−1) with all supportersa′ different
thanStart being pruned as well.

At this point a number of actions and causal links in the plan have been inferred
with no commitments made except for the boundB. In particular, due to the causal
links going into the actionspickup(bn−1) andstack(bn−1, bn) already fixed at the
timest = 0 andt = 1 respectively, and the fact that all actionsa′ whether in the plan
or not (except for these two andStart), threat these causal links but cannot precede
both actions, the starting timesT (a′) of such actionsa′ are pushed to timest = 2 or
higher. The result is that the only supporters left for the preconditionsclear(bn−1)
andholding(bn−2) of the next stack action in the sequence,a2 = stack(bn−2, bn−1),
scheduled at timet = 3, end up being the actionsa1 = stack(bn−1, bn) at t = 1
and pickup(bn−2) at time t = 2. To illustrate this, consider the possible sup-
portersa′ of the preconditionclear(bn−1) of a2 different thana1 (namelyStart,
unstack(∗, bn−1), andstack(bn−1, ∗) actions) and the causal linka′[clear(bn−1)]a2.
Clearly, for avoiding the actiona1 at timet = 1 from threatening this link, one of
the precedencesa1 ≺ a′ or a2 ≺ a1 must hold, but since the latter disjunct is false
anda′ ≺ a2 must hold too, we getT (a′) = 2 which is not possible for any such
supportera′. The supporterpickup(bn−2) for preconditionholding(bn−2) of a2 is
fixed at timet = 2 in a similar way, and the process repeats for all other stack
actions in the sequence until all actions have their start times and supporters fixed
and no flaw in the plan is left.

4

Table 1
Results forTOWER-n domain

CPU time (sec.) Makespan
CPT BLACKBOX SATPLAN IPP TP4

tower02 0.00 0.00 0.13 0.00 0.00 2

tower03 0.00 0.00 0.13 0.00 0.00 4

tower04 0.01 0.02 0.16 0.00 0.01 6

tower05 0.01 0.08 0.32 0.00 0.03 8

tower06 0.02 0.24 3.30 0.00 0.08 10

tower07 0.03 0.75 39.75 0.01 0.32 12

tower08 0.06 1.85 236.02 0.01 1.75 14

tower09 0.08 3.56 665.76 0.04 12.11 16

tower10 0.11 7.07 1229.22 0.19 103.63 18

tower11 0.17 13.92 - 1.10 1096.08 20

tower12 0.26 26.93 - 7.42 - 22

tower13 0.36 52.16 - 61.32 - 24

tower14 0.54 99.15 - 535.45 - 26

tower15 0.80 - - - - 28

tower16 1.10 - - - - 30

tower17 1.47 - - - - 32

tower18 1.89 - - - - 34

tower19 2.46 - - - - 36

tower20 3.41 - - - - 38

tower21 4.40 - - - - 40

tower22 5.69 - - - - 42

Table 1 shows results forCPT in relation to other three modern planners: two op-
timal parallel planners,BLACKBOX [23] (with CHAFF [34]) and IPP [24], and an
optimal temporal plannerTP4’04 [17]. While most domains are not likeTOWER-n
and require search, the domain illustrates the strength ofCPT inference mechanisms
that often manage to prune the search space considerably. Over the next few sec-
tions we will see how this is achieved and how cost-effective these mechanisms are
in other parallel and temporal domains.

3 Background

The proposed scheme for optimal temporal planning combines three elements:
lower bounds automatically extracted from planning problems, a branching scheme
that parallels the one used in POCL planning, and a constraint-directed branch-and-
bound search. We review these topics over the next sections.

3.1 Lower Bounds

A recent key development in AI planning is the use ofheuristic estimatorsautomat-
ically extracted from problem encodings [5,33]. A parameterized family of lower
bounds or admissible heuristicshm, m = 1, 2, . . ., for sequential and parallel plan-
ning is formulated in [16]. The heuristicshm(C) recursively approximatethe cost
of achieving a set of atomsC from an initial states0 by the cost of achieving the

5

most costly subset of sizem′ ≤ m in C. For example, form = 1, the heuristic
hm approximates the cost of achieving a set of atoms by the cost of achieving the
most costlyatomin the set. For both sequential and parallel Strips planning,hm for
m = 1 is thus given by the equation

h1(C) =


0 if C ⊆ s0, else

mino∈O(p)[1 + h1(pre(o))] if C = {p}, else

maxp∈C h1({p}) if |C| > 1

(1)

wherep is an atom andO(p) stands for the operatorso that addp (h1 is also known
as thehmax heuristic; e.g., [4]). The estimatorshm for sequential and parallel plan-
ning are equal form = 1 but become different for higher values ofm (recall that
cost in the sequential and parallel settings refer to number of actions and number of
time steps in the plan respectively). Moreover, form = 2, the parallel estimatorhm

is equivalent to the heuristic implicitly computed byGRAPHPLAN in the construc-
tion of the planning graph: namely,hm(A) for a set of atomsA is equivalent to the
index of the first propositional layer that contains the atoms inA without a mutex
[16].

From a computational point of view, for a fixedm, the heuristicshm are polynomial
in both the number of actions and the number of atoms in the problem, and they
can be computed by a shortest-path algorithm over a graph in which the nodes are
given by the sets of at mostm atoms [16].

The heuristicshm have also been extended to estimatemakespan(completion time)
in a temporal setting where actions can be executed concurrently and have different
durations [17]. The equation form = 1 in that setting becomes

h1
T (C) =


0 if C ⊆ s0, else

mino∈O(p)[dur(o) + h1
T (pre(o))] if C = {p}, else

maxp∈C h1
T ({p}) if |C| > 1

(2)

where the only change from theparallel estimatorh1 is the substitution of the fixed
cost1 by the durationdur(a) of the actiona. Form = 2, the temporal estimatorh2

T

departs from parallelh2 in other ways; see [17] for details. The measureshm
T (C)

are lower bounds on the time needed to makeC true from the initial situation
s0. In CPT we use theh2

T heuristic for initializing the value of certain temporal
variables, and enforce a version of theh1

T heuristic over partial plans through a set
of ‘precondition’ constraints.

6

3.2 Branching

Branching in AI planning is most often discussed in terms of thespacein which the
search for plans is done, with state or directional planners searching in the space
of states, and partial order planners in the space of plans [20,21]. This perspective
has been very useful in planning, although it does not always make explicit what
these various approaches to planning have in common, including the more recent
SAT and CSP formulations. All planners, indeed, search in the space of plans (solu-
tions); directional planners, however, are able to exploit adecomposition property
for which a partial plan tail or headσ can be summarized by the statesσ obtained
by regressing the goal or progressing the initial state throughσ. This decompo-
sition is not possible in non-directional partial plans as arising from POCL, SAT,
or CSP formulations. In all cases, however, in order to search effectively for op-
timal plans it is necessary to detect and prune partial plansσ that can only lead
to solutions with cost exceeding a certain boundB. In state-based planners this is
accomplished by comparing the boundB with the value of an explicit evaluation
functionf(σ) that adds up the accumulated costg(σ) of the plan and an estimate
h(sσ) of the ‘cost to go’. In SAT and CSP formulations, a constraintf ∗(σ) ≤ B or
f ∗(σ) = B defining the feasible partial plansσ is explicitly added (f ∗ stands for
the optimal cost function); e.g., in SAT formulations unit clauses likep10 andq10

are added when searching for plans leading to the goalsp andq with costs not ex-
ceedingB = 10. Planning schemes based on POCL branching, on the other hand,
have lacked comparable pruning mechanisms. Recent proposals like [35,47] extend
POCL planning with guiding non-admissible heuristics, leaving optimality consid-
erations aside. Here we aim to achieve both good performance and optimality in
the more general setting of temporal planning.

3.3 Temporal Planning

We consider a simple extension of the Strips language that accommodates con-
current actions with integer durations. A number of extensions could easily be
added but we have chosen to keep the model as simple as possible focusing in-
stead on performance and optimality issues. The appeal of POCL planning for
rich temporal settings is discussed in [39]. A temporal planning problem is a tu-
ple P = 〈A, I, O, G〉 whereA is a set of ground atoms (the boolean variables of
interest),I ⊆ A andG ⊆ A represent the initial and goal situations, andO is the
set of ground Strips operators, each with precondition, add, and delete listpre(a),
add(a), anddel(a), anddurationdur(a). As is common in POCL Planning, we also
consider two dummy actionsStart andEnd with zero durations, the first with an
empty precondition and effectI; the latter with preconditionG and empty effects.
As in GRAPHPLAN two actionsa anda′ interfere when one deletes a precondition
or positive effect of the other. We follow the simple model of time in [40], and

7

define a valid plan as a plan where interfering actions do not overlap in time. In
other words, we assume that the preconditions need to hold until the end of the
action, and that the effects also hold at the end and cannot be deleted during the
execution by a concurrent action. We are interested in computing valid plans with
minimum makespan.Other models of concurrency could also be used (see [14]).
When all actions have uniform durations, the model reduces to the standard model
of parallel planning.

A scheduleP is a finite set of time stamped actions〈ai, ti〉, i = 1, . . . , n, where
ai is an action andti is a non-negative integer indicating the starting time ofai (its
ending time isti +dur(ai)). P must include theStart andEnd actions, the former
with time tag0. The same action (except for these two) can be executed more than
once inP if ai = aj for i 6= j. In such a case,ai andaj refer to twooccurrencesof
the same action. Two action occurrencesai andaj overlapin P if one starts before
the other ends; namely if[ti, ti + dur(ai)] ∩ [tj, tj + dur(aj)] contains more than
one time point.

A scheduleP is a valid plan iff interfering actions do not overlap inP and for
every action occurrenceai in P its preconditionsp ∈ pre(a) are true at timeti.
This condition is inductively defined as follows:p is true at timet = 0 iff p ∈ I,
andp is true at timet > 0 if eitherp is true at timet−1 and no actiona in P ending
at t deletesp, or some actiona′ in P ending att addsp.

The makespanof a planP is the time tag of theEnd action. An optimal tempo-
ral planner computes valid plans with minimum makespan. For this, it is actually
sufficient to have a planner that is sound and complete in the following sense: a
valid plan with makespan equal to a given boundB is found iff one such plan ex-
ists. There are then many strategies for adjusting the boundB so that an optimal
makespan is produced; e.g., the bound may be increased until a plan is found, or
can be decreased until no plan is found, etc.

3.4 POCL Planning

A partial plan or stateσ in classical POCL planning corresponds to a set of com-
mitments represented by a tupleσ = 〈Steps, Ord, CL, Open〉, whereSteps is the
set of actions in the partial planσ, Ord is a set of precedence constraints onSteps,
CL is a set of causal links, andOpen is a set of open preconditions [20,32,46] (we
assume that actions are all grounded). A precedence constrainta ≺ a′ states that ac-
tiona precedes actiona′ in the plan, acausal linka[p]a′ states that actiona supports
the preconditionp of actiona in σ, while anopen precondition[p]a states that ac-
tiona in the plan has a preconditionp that is not yet supported. The initial stateσ0 is
given by the tuple〈{Start, End}, {Start ≺ End}, ∅, {[G1]End, . . . , [Gm]End}〉
whereG1, G2, . . . , Gm are the top level goals inG.

8

Branching in POCL planning proceeds by picking a ‘flaw’ in a non-terminal state
σ and applying the possiblerepairs [20,46]. Flaws are of two types.Open precon-
dition flaws[p]a in σ are solved by selecting an actiona′ that supportsp and adding
the causal linka′[p]a to CL and the precedence constrainta′ ≺ a to Ord (a′ should
also be added toSteps if a′ 6∈ Steps). Similarly, threats– which refer to situations
in which an actiona ∈ Steps deletes the conditionp in a causal linka1[p]a2 in CL
with the orderinga1 ≺ a′ ≺ a2 consistent withOrd — are solved by placing one
of the precedence constrainta′ ≺ a1 or a2 ≺ a′ in Ord. A state is terminal if it is
inconsistent (i.e., the orderingOrd is inconsistent or contains flaws that cannot be
fixed) or is agoal (is consistent and contains no flaws).

4 Temporal POCL Planning

POCL branching can be adapted to the temporal setting in a direct way (e.g., [27]).
While extensions to rich temporal settings have been considered in [18], [37] and
[39], here we consider a simple extension obtained by the addition of temporal vari-
ablesT (a) for each of the actionsa in the current stateσ (i.e.,a ∈ Steps), where
T (a) stands for the starting time ofa. These temporal variables have initial domains
T (Start) = 0, T (End) = B, andT (a) :: [0, B− dur(a)] whereB is the bound on
the makespan (Start andEnd are the two ‘dummy’ actions used in POCL plan-
ning). The resulting statesσ have the formσ = 〈Steps,OrdT , CL, Open, T (·)〉
where the qualitative precedence orderingOrd has been replaced by the set of tem-
poral variablesT (a), a ∈ Steps and their domains, along with a setOrdT of tem-
poral constraints over them. A precedence constraint stating that actiona precedes
actiona′ becomes the temporal constraintT (a) + dur(a) ≤ T (a′). The qualitative
precedence relationOrd from classical POCL planning can be preserved although
this is not strictly necessary. Initially, the setOrdT is empty.

As before, branching proceeds by picking a ‘flaw’ in a non-terminal stateσ and
applying the possible repairs.Open precondition flaws[p]a in σ are solved by se-
lecting an actiona′ that supportsp, and adding the causal linka′[p]a to CL and
the temporal constraintT (a′) + dur(a′) ≤ T (a) to OrdT . The actiona′ is added
to Steps if a′ 6∈ Steps and in such case a variableT (a′) for a′ is created. Simi-
larly, causal linkthreats, i.e., situations in which an actiona ∈ Steps may delete
a conditionp ∈ del(a) in a causal linka1[p]a2 in CL, are solved by adding one of
the temporal constraintsT (a) + dur(a) ≤ T (a1) or T (a2) + dur(a2) ≤ T (a) to
OrdT . A terminal state in the resulting space is either a state with an inconsistent
set of temporal constraints (adead-end) or a state with a consistent set of temporal
constraints and no flaws (agoal state).

The temporal constraints inOrdT form a Simple Temporal Problem (STP) [9]
whose consistency can be tested efficiently by applying a form of constraint propa-
gation known asbounds consistency[29,48], where the lower and upper bounds

9

Tmin(a) and Tmax(a) of the variablesT (a) in constraints of the formT (a) +
dur(a) ≤ T (a′) are updated asTmax(a) := min[Tmax(a), Tmax(a

′) − dur(a)] and
Tmin(a′) := max[Tmin(a′), Tmin(a) + dur(a)] until a fixed point is reached or a
variable domain becomes empty.

With two additional provisions, it is possible to verify that the resulting branching
scheme issoundandcomplete; i.e., terminal goal-statesσ = 〈Steps, OrdT , CL,
Open, T (·)〉 encode a valid temporal planP with makespanB where actions inσ
execute at their earliest possible times; i.e.,P = 〈ai, ti = Tmin(ai)〉ai∈Steps, and
one such terminal goal state will be generated when one such valid temporal plan
exists.

The two required provisions are the following. First, in the absence of a qualitative
precedence ordering on actions as in POCL planning, we need to regard an action
a deleting the conditionp in a causal linka1[p]a2 as athreat when neither of the
two temporal conditionsTmin(a) + dur(a) ≤ Tmin(a1) andTmin(a2) + dur(a2) ≤
Tmin(a) hold. This is because the lower boundsTmin provide a consistent solution
to a STP if the STP is consistent, and at the same time, each of the constraints
T (a) + dur(a) ≤ T (a1) andT (a2) + dur(a2) ≤ T (a) posted as a result of a threat
fix the threat through bounds consistency propagation. Second, in accordance with
the semantics, we need to ensure that interfering actions do not overlap in time. For
that, let us say that a pair of interfering actions areprecondition-interferingwhen
one action deletes a precondition of the other, and areeffect-interferingotherwise.
It is easy to verify that the branching scheme above ensures that precondition-
interfering actions cannot overlap in time in the final plan, as such interferences
give rise to causal link threats. On the other hand, effect-interfering actions may
overlap. To rule out such situations, it is then sufficient to branch also on a second
class of threats;mutex threats:pairs of effect-interfering actionsa anda′ such that
neitherTmin(a)+dur(a) ≤ Tmin(a′) norTmin(a′)+dur(a′) ≤ Tmin(a) hold in the
stateσ. Such flaws are solved by adding toOrdT one of the temporal constraints
T (a) + dur(a) ≤ T (a′) or T (a′) + dur(a′) ≤ T (a).

Modern Constraint-Based Interval (CBI) planners [18,39] are based on similar
ideas and are able to deal with more expressive languages. Yet, as in standard
POCL and Dynamic CSP planners [19], the followingperformance problemre-
mains: pruning partial plans whose STP network is not consistent does not suffice
to match the performance of modern planners. For this,more powerful representa-
tions and inference methods for predicting that all STP networks in the way to the
goal will eventually become inconsistentare needed. This is indeed whatCPT does
in the TOWER-n domain considered above for planning horizons smaller than the
optimal horizon, reporting an inconsistency by pure inference without doing any
search. Moreover, in the same domain, for the optimal planning horizon,CPT finds
the solution without doing any search either. In both cases, as we see next, the key
is the ability of CPT to reason about all the actions in the problem, and not only
about the actions in the plan being considered.

10

5 A Constraint Programming Formulation

The performance limitation of current constraint-based POCL planners arises mainly
from their limitationto reason about the actions in the current plan only.Most of-
ten, nothing is inferred about an actiona until the action is considered for inclusion
in the plan. Still, as we have seen in Section 2, a lot can be inferred about such ac-
tions including restrictions about their possible starting times and supporters. Some
of this information can actually be inferred before any commitments are made; the
lower bounds on the starting times ofall actions as computed inGRAPHPLANbeing
one example. Yet this is not enough; if similar performance and optimality guar-
antees are to be achieved in the POCL setting, inferences that take advantage of
the commitments made are also necessary. In order to perform such inferences, the
representation of the space of possible commitments is crucial. We thus make two
changes in relation to the ‘standard’ temporal POCL planner above. First, we in-
troduce and reason with variables that involveall the actionsa in the domain; not
only those present in the current plan. And second, for all such actions we intro-
duce variablesS(p, a) andT (p, a) that stand for the possibly undetermined action
supporting preconditionp of a and the possibly undetermined starting time of such
an action, and perform limited but useful forms of reasoning over such variables.
A causal linka′[p]a thus becomes a constraintS(p, a) = a′, which in turn implies
that the supportera′ of preconditionp of a starts at timeT (p, a) = T (a′). 3

Initially, we will follow the formulation in [45], and make an important restriction;
namely thatno (ground) actiona in the domain occurs more than once in the plan.
This canonicity restrictionallows us to collapse the notions of action and action
occurrence, leading to a number of simplifications. Later on we will show how this
restriction is removed in the current version ofCPT. The restriction is a meaningful
extension of the common assumption found in scheduling research where every
action in the domain must occur exactlyonce,and as we will see below, it happens
to be true in most current benchmarks in planning.

The basic CP formulation of theCPT planner is given in four parts:preprocess-
ing, variables, constraints, and branching.After the preprocessing, the variables
are created and the constraints are asserted and propagated. If an inconsistency is
found, no valid plan for the problem exists. Otherwise, the constraintT (End) = B
for the boundB set to the earliest possible starting time of the actionEnd (i.e.;
B = Tmin(End)) is asserted and propagated. The branching scheme then takes
over and if no solution is found, the process restarts by retracting the constraint
T (End) = B and replacing it withT (End) = B + 1, and so on.

3 Propositional ‘causal’ encodings of Strips planning problems have been formulated and
analyzed in [22,31]. Our encodings share a number of features with these formulations but
are more compact due to the use of a temporal representation.

11

5.1 Preprocessing

In the preprocessing phase, the planner computes the heuristic valuesh2
T (a) and

h2
T ({p, q}) for each actiona ∈ O and each atom pair{p, q} as in [17]. The values

provide lower bounds on the times to achieve the preconditions ofa and the pair
of atomsp, q, from the initial situationI. In addition, we identify the(structural)
mutexesas the pairs of atomsp, q for which h2

T ({p, q}) = ∞. We then say that an
actiona e-deletesan atomp when eithera deletesp, a adds an atomq such thatq
andp are mutex, or a preconditionr of a is mutex withp anda does not addp (in
all casesp is false after doinga; see [35]).

In addition, the simpler heuristich1
T is used for definingdistancesbetween actions

[42] as follows. For each actiona ∈ O, we compute theh1
T heuristic from an initial

situationIa that includes all factsexcept those that are e-deleted bya. We then
set the distancesdist(a, a′) to the resultingh1

T (a′) values. Clearly, these distances
encode lower bounds on theslack that can be inserted between the completion
of a and the start ofa′ in any legal plan in whicha′ follows a. These distances
are not symmetric and their calculation, which remains polynomial, involves the
computation of theh1

T heuristic|O| times.

The distancesdist(Start, a) anddist(a, End) are defined in a slightly different
way. The former are obtained by running a shortest-path algorithm over a ‘relevance
graph’ where the nodes are the actionsa ∈ O and the actionEnd is the source node.
An edgea → a′ in this graph means thata′ is ‘relevant’ toa (namely that it adds
a preconditionp of a) and its cost is given byδ(a′, a) = dur(a′) + dist(a′, a). The
distancesdist(a, End) are then set to the cost of the shortest-path connectingEnd
to a in this graph, minusdur(a). The distancesdist(Start, a) are set toh2

T (a).

5.2 Variables and Domains

The stateσ of the planner is given by a collection of variables, domains, and con-
straints. As emphasized above, the variables are defined for each actiona ∈ O and
not only for the actions in the current plan. Moreover, variables are created for each
preconditionp of each actiona as indicated below. The domain of variableX is
indicated byD[X] or simply asX :: [Xmin, Xmax] if X is a numerical variable.
The variables, their initial domains, and their meanings are:

• T (a) :: [0,∞] encodes the starting time of each actiona, with T (Start) = 0
• S(p, a) encodes the support of preconditionp of actiona with initial domain

D[S(p, a)] = O(p) whereO(p) is the set of actions inO that addp
• T (p, a) :: [0,∞] encodes the starting time ofS(p, a)
• InP lan(a) :: [0, 1] indicates the presence ofa in the plan;InP lan(Start) =

InP lan(End) = 1 (true)

12

In addition, the set of actions in the current plan is kept in the variableSteps; i.e.,
Steps = {a | InP lan(a) = 1}. VariablesT (a), S(p, a), andT (p, a) associated
with actionsa which are not yet in the plan (i.e., actions for which the domain of
InP lan(a) remains the interval[0, 1] in σ) areconditionalin the following sense:
these variables and their domains are meaningful only under the assumption that
they will be part of the plan. In order to ensure this interpretation, some care needs
to be taken in the propagation of constraints as explained below.

5.3 Constraints

The constraints correspond basically to disjunctions, rules, and temporal constraints,
or their combination. Most of these constraints are redundant; they are not needed
for soundness or completeness but for performance reasons (pruning values and
detecting inconsistencies earlier). Disjunctions are interpreted constructively: when
one disjunct is false, the other is enforced. Similarly for rules: when the antecedent
constraint holds, the consequent is enforced. The conditions under which a con-
straint is regarded as (necessarily) true or false in a state are determined by the
nature of the constraint and the domains of the variables; roughly, a constraint is
true (false) if it is true (false) foranypossible assignment given the domains. E.g.,
T (a) < T (a′) is true if the variable domains are such thatTmax(a) < Tmin(a′)
holds, is false ifTmin(a) ≥ Tmax(a

′) holds, and otherwise isundetermined.4

Temporal constraints are propagated by bounds consistency as indicated above. In
constraints involving terms of the formopa′∈D[S(p,a)], information propagatesfrom
S(p, a) but notinto S(p, a); propagation into such variables is achieved by explicit
rules with variablesS(p, a) on the right hand side. The constraints apply to all
actionsa ∈ O and allp ∈ pre(a); we useδ(a, a′) to stand fordur(a) + dist(a, a′).

• Bounds:For alla ∈ O,

T (Start) + δ(Start, a) ≤ T (a)

T (a) + δ(a, End) ≤ T (End)

• Preconditions:Supportera′ of preconditionp of a must precedea by an amount
that depends onδ(a′, a):

T (a) ≥ min
a′∈D[S(p,a)]

(T (a′) + δ(a′, a))

4 Similarly, T (a) = T (a′) is true if Tmin(a) = Tmax(a) = Tmin(a′) = Tmax(a′) holds,
and is false if eitherT (a) < T (a′) or T (a) > T (a′) holds. The conditions for enumerated
variables likeS(p, a) are similar;S(p, a) = a′ is true if D[S(p, a)] = {a′} and is false if
a′ 6∈ D[S(p, a)]. In all cases, the constraint¬C is true (false) ifC is false (true). In CP, it is
common to say that a constraint isentailedin a state rather than true [44]. We also note that
T (a) < T (a′) is true in our modified CP engine whena′ = End, regardless of the domain
of T (a).

13

T (a) ≥ T (p, a) + min
a′∈D[S(p,a)]

δ(a′, a)

T (a′) + δ(a′, a) > T (a) → S(p, a) 6= a′

• Causal Link Constraints: For all a ∈ O, p ∈ pre(a) anda′ that e-deletesp, a′

precedesS(p, a) or followsa

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a)

∨ T (a) + δ(a, a′) ≤ T (a′)

• Mutex Constraints: For effect-interferinga anda′

T (a) + δ(a, a′) ≤ T (a′) ∨ T (a′) + δ(a′, a) ≤ T (a)

• Support Constraints: T (p, a) andS(p, a) related by

S(p, a) = a′ → T (p, a) = T (a′)

T (p, a) 6= T (a′) → S(p, a) 6= a′

min
a′∈D[S(p,a)]

T (a′) ≤ T (p, a) ≤ max
a′∈D[S(p,a)]

T (a′)

The constraints involving the variablesS(p, a) andT (p, a) are lifted in the sense
that they apply to all possible supportersa′ of preconditionp of a. As mentioned
above, the variablesT (a), T (p, a), andS(p, a) areconditionalwhenInP lan(a) =
1 is neither true or false. They becomein-plan variables whenInP lan(a) = 1
becomes true, andout-planvariables whenInP lan(a) = 1 becomes false. Con-
straints involving in-plan variables only are propagated as usual, and furthermore,
an empty domain raises an inconsistency. Constraints involving an out-plan vari-
able, on the other hand, are not propagated. Finally, and most importantly, con-
straints involving conditional variables associated with thesame actiona and hence
the same assumption (namely thata will be part of the plan) are propagated butonly
in the direction of the conditional variables.This ensures that the domain of a con-
ditional variable depends only on the assumption that that particular variable is in
the plan and on no other assumption. As a result,if the domain of a conditional
variable associated with an actiona becomes empty, it is inferred that the actiona
cannot be part of the current plan and not that the current partial plan is inconsis-
tent.More precisely,InP lan(a) is set to0 if the domain of a conditional variable
associated witha becomes empty, and in such case, the actiona is removed from
the domain of all support variablesS(p, a′) such thata addsp. On the other hand,
whenS(p, a′) = a holds for some actiona′ in the plan,InP lan(a) is automati-
cally set to1. Conditional variables of this type in constraint programming have
been considered in [13].

14

5.4 Branching

As in the temporal POCL planner described above, branching inCPT proceeds
by iteratively selecting and fixing flaws in non-terminal statesσ and backtracking
upon inconsistencies. A stateσ is given by the variables, their domains, and the
constraints involving them. The initial stateσ0 contains the variables, domains, and
constraints above, along with the bounding constraintT (End) = B whereB is
the current bound on the makespan. A state is inconsistent when a non-conditional
variable has an empty domain, while a consistent stateσ with no flaws is agoal
statefrom which a valid planP with boundB can be extracted by scheduling the
in-plan variables at their earliest starting times.

The definition of ‘flaws’ parallels the one considered above for temporal POCL
planning:

• Support Threats: a′ threats a supportS(p, a) when both actionsa anda′ are in
the current plan,a′ e-deletesp, and neitherTmin(a′) + dur(a′) ≤ Tmin(p, a) nor
Tmin(a) + dur(a) ≤ Tmin(a′) hold.

• Open Conditions: S(p, a) is anopen condition when |D[S(p, a)]| > 1 holds
for an actiona in the plan.

• Mutex Threats: a and a′ constitute amutex threatwhen both actions are in
the plan, they are effect-interfering, and neitherTmin(a) + dur(a) ≤ Tmin(a′)
nor Tmin(a′) + dur(a′) ≤ Tmin(a) hold (two actions are effect-interfering in
CPT when one deletes a positive effect of the other, and neither onee-deletesa
precondition of the other).

Upon selecting a flaw in a stateσ, a binary split is created which we denote as
[C1; C2] whereC1 andC2 are constraints. The first childσ1 of σ is obtained by
addingC1 to σ and closing the result under the propagation rules; the second child
σ2 of σ is generated by adding the constraintC2 instead, when the search beneath
σ1 fails. The binary splits generated for each type of flaw are as follows:

• A Support Threat 〈a′, S(p, a)〉 generates the split

[T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a) ;

T (a) + δ(a, a′) ≤ T (a′)]

• An Open Condition S(p, a) generates for a selected supporta′ the split

[S(p, a) = a′ ; S(p, a) 6= a′]

• A Mutex Threat 〈a, a′〉 generates the split

[T (a) + δ(a, a′) ≤ T (a′) ; T (a′) + δ(a′, a) ≤ T (a)]

15

The branching scheme is sound and complete under the canonical restrictions above.
Soundness follows from the validity of the planP obtained from a consistent state
σ with no flaws by scheduling the in-plan actionsai at the earliest possible times
ti = Tmin(ai). Completeness in turn follows from the soundness of the propaga-
tion rules and the validity of the binary splits: namely for each possible binary split
[C1; C2], the disjunctionC1 ∨ C2 is valid; thus if there is a plan with makespanB
compatible with the commitments inσ, then there will be a plan compatible with
one of the two sons ofσ.

Branching heuristics

In each step, the selected flaw for repair inCPT is a Support Threat if one exists,
else an Open Condition if one exists, else a Mutex Threat, until no flaws are left or
an inconsistency is detected. The heuristic for selecting among the existing flaws is
the following:

• Support Threats 〈a′, S(p, a)〉 with minimum slack

max[slack(a′ ≺ S(p, a)), slack(a ≺ a′)]

selected first (i.e., most constrained first; see [41]). Basically, the slack of an
orderinga ≺ a′ stands for the ‘room’ fora′ in the schedule assuming it must
follow a; namely,

slack(a ≺ a′) = Tmax(a
′)− [Tmin(a) + δ(a, a′)]

slack(a′ ≺ S(p, a)) =

Tmax(p, a)− [Tmin(a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′)]

• Open Conditions S(p, a) selected latest first; i.e. maximizing the expression
mina′∈D[S(p,a)] Tmin(a′), splitting on the ‘arg min’ actiona′ (i.e., creating the split
[S(p, a) = a′ ; S(p, a) 6= a′]).

• Mutex Threats 〈a, a′〉 selected in simple fashion; first encountered such pair in
a search overSteps selected first.

The heuristics for Support Threats and Open Conditions have a significant influence
on performance but not so the heuristic for Mutex Threats (most often no Mutex
Threats are left after removal of Support Threats and Open Conditions).

5.5 Mutex Sets

The code incorporates an enhancement that helps in some domains without repre-
senting a significant burden in others. It has to do with the idea ofmutex sets:sets

16

M of actionsin the plan,(not necessarily pairs) such that any two actions inM are
interfering. Since such actions cannot overlap, the time window associated with the
set of actionsM :

max
a∈M

[Tmax(a) + dur(a)]−min
a∈M

Tmin(a)

must provide enough ‘room’ for scheduling all actions ina ∈ M in sequence.
Taking into account the pre-computed distances, a lower bound for the time needed
for scheduling all actions inM is given by

∆(M) =
∑
a∈M

[dur(a) + min
a′∈M |a′ 6=a

dist(a, a′)]− max
{a,a′}⊆M

dist(a, a′)

which expresses a lower bound on the time needed to schedule all the actions inM ,
one before another, except for the action scheduled last. With these lower bounds,
we define theMutex Setconstraint as

max
a′∈M

[T (a′) + dur(a′)]− min
a′′∈M

T (a′′) ≥ ∆(M)

and apply it tosomemutex setsM identified from the actionsSteps in the plan in
a greedy fashion, as described below (computing the largest mutex sets in the plan
seems too expensive). The idea of mutex sets is adapted from similar concepts used
in constraint-based scheduling such asedge-finding;see [2,6,26].

• Global Mutex SetsMi are built greedily as new actions are added toSteps.
Initially a single mutex setM0 with theStart andEnd actions is defined; then
any time an actiona is added toSteps, a is added to each existing mutex setMi,
i = 0, . . . , k such thata is interfering with each actiona′ in Mi, and a new mutex
setMk+1 is created witha only whena cannot be added to any existing mutex
set. The mutex set constraint is enforced for each such setMi.

• Causal Link Mutex Sets M− andM+ are defined also for each ‘causal link’
S(p, a)[p]a in the plan. Initially, these sets are empty, then when a new actiona′

is added to the plan that e-deletesp and cannot followa (resp. cannot precede
S(p, a)), a is added toM− (resp. toM+) if a is interfering with each action in
M− (resp. inM+). For these mutex setsM+ andM−, the following CL Mu-
tex Set constraintis enforced, which unlike the mutex set constraint above, not
only detects inconsistencies, but also prunes the bounds of the temporal variables
T (p, a) andT (a):

min
a′∈M−

T (a′) + ∆(M−) ≤ T (p, a) ∧

T (a) + dur(a) ≤ max
a′∈M+

[T (a′) + dur(a′)]−∆(M+)

17

In addition, for alla′ in the plan that e-deletep that can followS(p, a) and pre-
cedea, we evaluate the consistency of the mutex setM−∪{a′} (resp.M+∪{a′})
if a′ is interfering with each action inM− (resp.M+). If the set is inconsistent
(i.e., it violates the mutex constraint), then it is inferred thata′ must follow a
(resp. must precedeS(p, a)).

5.6 Relaxation of the canonicity assumption

The formulation above exploits the canonicity restriction that no (ground) actiona
in the domain occurs more than once in the plan. This restriction allows us to col-
lapse the notions of action and action occurrence, making the formulation simpler
but less general. In the currentCPTplanner, this restriction is removed by establish-
ing a distinction betweenaction typesandaction tokens. Plans contain only action
tokens which are all instances of the fixed set of action types defined by the initial
set of operators. On the other hand, constraints and domains, that initially involve
only action types, eventually involvebothaction tokens and types. Basically, an ac-
tion type is regarded as a place holder for all the action tokens of that type that have
not made it yet into the plan. Action tokens are created dynamically from action
types when an action type is selected for supporting an open condition in the plan.
This happens when the propagation narrows down the domain of a support variable
S(p, b) for an action (token)b in the plan to the singleton{a}, wherea is an action
type, or when the action typea is explicitly chosen as the value of a support variable
S(p, b). In such a case, a new tokena′ of typea is created by ‘cloning’; namely for
the new instancea′ of typea, the variablesT (a′), S(q, a′), andT (q, a′) are created
as fresh copies of the variablesT (a), S(q, a), andT (q, a) with their corresponding
domains, whereq is a precondition ofa. In addition, the new tokena′ is added as
an independent action to all support domains that include the action typea, and all
the constraints involving the variablesT (a), S(q, a), andT (q, a) are copied witha′

in place ofa. The value of the variableInP lan(a′) is then set to 1 anda′ is added
to Steps. Finally, if the action instancea′ of the action typea was created because
action typea was chosen (by branching or propagation) to support the precondition
p of an actionb, then the variableS(p, b) is set to the new instancea′ of a.

As an illustration, let us consider a problem in the Blocks World domain with three
blocksA, B andC with on(C, B) true in the initial state. The actionstack(A, B)
hasclear(B) as precondition, so the domain of the support variableS(clear(B),
stack(A, B)) is equal to{putdown(B), stack(B, A), stack(B, C), unstack(A, B),
unstack(C, B)}. Suppose now thatInP lan(stack(A, B)) = 1 and that the ‘Open
Condition’ branching rule chooses as the value of the support variableS(clear(B),
stack(A, B)) the action typeunstack(C, B). The ’cloning’ operation then creates
the new action tokenunstack(C, B)′ of type unstack(C, B), and then performs

18

the following operations:

• First, thevariablesInP lan(unstack(C, B)′), T (unstack(C, B)′), S(clear(C),
unstack(C, B)′), S(on(C, B), unstack(C, B)′), T (clear(C), unstack(C, B)′)
andT (on(C, B), unstack(C, B)′) are created, their domains being a copy of the
corresponding domains of the variables involving the action typeunstack(C, B).
For instance, if the domain of the temporal variableT (unstack(C, B)) is [0, 5],
then the domain of the cloned variableT (unstack(C, B)′) is set to[0, 5] as well.

• Then all theconstraints involving the typeunstack(C, B) are copied with the
tokenunstack(C, B)′ instead ofunstack(C, B), and all these constraints are
entered into the current state. For example, the following new precondition con-
straints are added

T (unstack(C, B)′) ≥ min
a′∈D[S(clear(B),unstack(C,B)′)]

(T (a′)+δ(a′, unstack(C, B)′))

and

T (unstack(C, B)′) ≥ min
a′∈D[S(on(C,B),unstack(C,B)′)]

(T (a′)+δ(a′, unstack(C, B)′)).

• Also the domains of all the support variables containing the action typeun-
stack(C, B) are extended with the new action tokenunstack(C, B)′. For exam-
ple, sinceunstack(C, B) producesholding(C), the domain ofS(holding(C),
stack(C, A)) which was equal to{pickup(C), unstack(C, A), unstack(C, B)}
is augmented withunstack(C, B)′; i.e., D[S(holding(C), stack(C, A))] be-
comes equal to{pickup(C), unstack(C, A), unstack(C, B), unstack(C, B)′}.
Similarly, unstack(C, B)′ is added toD[S(clear(B), pickup(B))], which be-
comes equal to{unstack(A, B), unstack(C, B), unstack(C, B)′}.

• Finally, thecausal link is instantiated; i.e., the support variableS(clear(B),
stack(A, B)) is set to the new tokenunstack(C, B)′ which is added to the plan
by settingInP lan(unstack(C, B)′) to 1, and the effects are propagated.

This scheme provides a lazy implementation of a planning domain with an infi-
nite number of action tokens. In such a scheme, an action type represents all the
action instances of that type that have not made it yet into the plan, and which
are thus indistinguishable up to that point. This changes however when a new in-
stance is added to the plan, requiring the ‘cloning’ operation detailed above. In
our example, after the action tokenunstack(C, B)′ is ‘cloned’ from the action
type unstack(C, B), the two actions become ‘independent’, meaning that from
that point on, things work as if they were two completely different actions in the
domain.

Notice that if during the searchInP lan(a) = 0 for an action typea is inferred, all
new action tokens of that type get automatically excluded from the plan. Namely,
action types are true place holders for the information that is common to all the
action tokens of the same type that are not yet in the plan.

19

5.7 Implementation

The CPT planner has been implemented using theCHOCOCP library [28] that op-
erates on top of theCLAIRE programming language [7] and compiles into C++. In
early stages of the implementation, we wrote the constraints inCHOCO in a way
that resembled the formulation above, yet we progressively moved to an imple-
mentation based on propagation rules that avoids unnecessary checks and trigger-
ings, and speeds up the propagations. The current implementation is a collection
of rules which are triggered by the event mechanism ofCHOCO. Updates on lower
bounds, upper bounds, and domain values are recorded in event queues, where sim-
ilar events are ‘collapsed’; e.g., if the lower bound of a variableX is increased suc-
cessively from 1 to 2, and then from 2 to 3 before the first event is dequeued, only
one event is stored, stating that the lower bound ofX is increased from 1 to 3. When
an event is dequeued, the relevant rules are triggered, performing the corresponding
propagations (namely, updates on variables constrained by the modified variables
are done which may trigger other rules and further updates). The only constraints
not re-implemented in terms of rules are the dynamic constraints; namely those that
are posted as a result of branching. We modified theCHOCO engine for allowing
to retract such constraints upon backtracking, and also for enforcing the semantics
of conditional variables. As stated above, for the latter an empty domain does not
raise an inconsistency but forces an action out of the plan. Over temporal variables,
the conditional behavior is obtained by handling those variables ourselves, while
over support variables, the conditional behavior is obtained by simply introducing
a dummy actionα added to their domains, withD[S(p, a)] = {α} meaning thatp
cannot be supported by any action. TheInP lan(a) variables are not implemented
as CP variables either; the information about the status of actions in the plan is com-
piled in the code of the propagation rules. Finally, for the removal of the canonicity
restriction, theCHOCO engine was extended so that variables can be created dy-
namically, values can be added dynamically to their domains, and all such actions
can be retracted upon backtracking. The code and several executables are available
for download from our page.5

6 A Working Example

We revisit the example in Section 2 for showing how the backtrack-free behavior of
CPT in the TOWER-n domain follows from the proposed constraint programming
formulation. Recall that the task inTOWER-n is to build an ordered tower ofn
blocks,b1, . . . ,bn, with b1 on top, all blocks laying initially on the table. The single
optimal plan for this problem involves picking each blockbi from the table and
stacking it on blockbi+1, from i = n − 1 until i = 1. This is a trivial domain but

5 CPT home page: http://www.cril.univ-artois.fr/∼vidal/cpt.en.html

20

which no other optimal planner solves without search. Indeed, the inferences are
not trivial for a domain-independent planner as we will see.

Thetemporal variablesand their domains after preprocessing are (i, j ∈ [1, n], i 6=
j):

• T (Start) :: [0,∞]
• T (End) :: [4,∞]
• T (pickup(bi)) :: [0,∞]
• T (putdown(bi)) :: [1,∞]
• T (stack(bi, bj)) :: [1,∞]
• T (unstack(bi, bj)) :: [2,∞]
• T (on(bi, bi+1), End) :: [1,∞]
• T (ontable(bi), pickup(bi)) :: [0,∞]
• T (handempty, pickup(bi)) :: [0,∞]
• T (clear(bi), pickup(bi)) :: [0,∞]
• T (holding(bi), putdown(bi)) :: [0,∞]
• T (on(bi, bj), unstack(bi, bj)) :: [1,∞]
• T (handempty, unstack(bi, bj)) :: [0,∞]
• T (clear(bi), unstack(bi, bj)) :: [0,∞]
• T (holding(bi), stack(bi, bj)) :: [0,∞]
• T (clear(bj), stack(bi, bj)) :: [0,∞]

Thesupport variablesand their domains in turn are:

• S(on(bi, bi+1), End) :: {stack(bi, bi+1)}
• S(ontable(bi), pickup(bi)) :: {Start, putdown(bi)}
• S(handempty, pickup(bi)) :: {Start} ∪ PUTDOWN ∪ STACK
• S(clear(bi), pickup(bi)) :: {Start, putdown(bi)} ∪ STACK i,∗ ∪UNSTACK ∗,i
• S(holding(bi), putdown(bi)) :: {pickup(bi)} ∪ UNSTACK i,∗
• S(on(bi, bj), unstack(bi, bj)) :: {stack(bi, bj)}
• S(handempty, unstack(bi, bj)) :: {Start} ∪ PUTDOWN ∪ STACK
• S(clear(bi), unstack(bi, bj)) :: {Start, putdown(bi)}∪STACK i,∗∪UNSTACK ∗,i
• S(holding(bi), stack(bi, bj)) :: {pickup(bi)} ∪ UNSTACK i,∗
• S(clear(bj), stack(bi, bj)) :: {Start, putdown(bj)}∪STACK j,∗∪UNSTACK ∗,j

where

– PICKUP = {pickup(bi) | i ∈ [1, n]}
– PUTDOWN = {putdown(bi) | i ∈ [1, n]}
– STACK = {stack(bi, bj) | i, j ∈ [1, n] ∧ j 6= i}
– STACK i,∗ = {stack(bi, bj) | j ∈ [1, n] ∧ j 6= i}
– STACK ∗,i = {stack(bj, bi) | j ∈ [1, n] ∧ j 6= i}
– UNSTACK = {unstack(bi, bj) | i, j ∈ [1, n] ∧ j 6= i}
– UNSTACK i,∗ = {unstack(bi, bj) | j ∈ [1, n] ∧ j 6= i}
– UNSTACK ∗,i = {unstack(bj, bi) | j ∈ [1, n] ∧ j 6= i}

21

We explain the inferences that yield the backtrack-free behavior inTOWER-n by
quoting the high-level account in Section 2, and showing how it follows from the
constraints inCPTand the general constraint propagation mechanisms supported in
the implementation. For keeping the description simple we describe the canonical
implementation where there is no need for distinguishing action types from tokens.

Step 1: Addition of stack actions to the plan.

. . . First, it is inferred that each subgoalon(bi, bi+1) must be achieved by the
actionstack(bi, bi+1). This inference is simple as there is a single possible sup-
porter in each case . . .

• For eachi ∈ [1, n − 1] indeed,S(on(bi, bi+1), End) has a singleton domain,
and sinceInP lan(End) = 1, S(on(bi, bi+1), End) = stack(bi, bi+1) and
InP lan(stack(bi, bi+1)) = 1 are inferred.

Step 2: Increasing the starting times ofstack actions.

. . . More interestingly, it is then inferred that these stack operations must be or-
dered sequentially in descending order ofi; namely,stack(bn−1, bn) first, then
stack(bn−2, bn−1), and so on, untilstack(b1, b2). This is inferred by reasoning
with and resolving the threats affecting the causal linksstack(bi, bi+1)[on(bi,
bi+1)]End. Moreover, it is also inferred that the first action in the sequence can-
not occur earlier thant = 1, the second action not earlier thant = 3, the third
not earlier thant = 5, and so on, and that theEnd action cannot start earlier
than2(n− 1), the optimal time bound . . .

• The actionstack(bn−1, bn) e-deleteson(bn−2, bn−1), and so threatens the causal
link stack(bn−2, bn−1)[on(bn−2, bn−1)]End. Following the causal link constraint,
sincestack(bn−1, bn) cannot followEnd, it must precedestack(bn−2, bn−1),
and hence the disjunct

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a)

with p = on(bn−2, bn−1), a = End anda′ = stack(bn−2, bn−1) is inferred,
which sincedist(stack(bn−1, bn), stack(bn−2, bn−1)) = 1 anddur(stack(bn−1,
bn)) = 1, yields

T (stack(bn−1, bn)) + 2 ≤ T (on(bn−2, bn−1), End)

and therefore

T (on(bn−2, bn−1), End) ≥ 3

as from preprocessing,T (stack(bi, bj)) ≥ 1 for all i, j.
• Then from the constraintS(p, a) = a′ → T (p, a) = T (a′) and the inferred

constraintS(on(bn−2, bn−1), End) = stack(bn−2, bn−1),

T (stack(bn−2, bn−1)) ≥ 3.

22

• In a similar way, the disjunct

T (stack(bn−2, bn−1)) + 2 ≤ T (on(bn−3, bn−2), End)

of the causal link constraint becomes active, and sinceT (stack(bn−2, bn−1)) ≥
3 holds, so doesT (on(bn−3, bn−2), End) ≥ 5, and from the constraintS(p, a) =
a′ → T (p, a) = T (a′) andS(on(bn−3, bn−2), End) = stack(bn−3, bn−2),

T (stack(bn−3, bn−2)) ≥ 5.

• The same process is iterated over all the actionsstack(bi, bi+1) until

T (stack(b1, b2)) ≥ 2(n− 1)− 1.

Then, asS(on(b1, b2), End) = stack(b1, b2), the precondition constraint

T (a) ≥ min
a′∈D[S(p,a)]

(T (a′) + δ(a′, a))

for a = End andp = on(b1, b2), results in

T (End) ≥ T (stack(b1, b2)) + 1

which fromT (stack(b1, b2)) ≥ 2(n− 1)− 1, yieldsT (End) ≥ 2(n− 1).

Step 3: Setting the initial upper bound on the makespan and deriving upper
bounds for thestack actions.

. . . All these inferences result from the domain constraints and propagation mech-
anisms before even a search boundB on the allowed makespan of the plan is
fixed. After the first boundB = 2(n − 1) is chosen (this is the earliest time at
which the actionEnd can start), further inferences are made. First, the starting
timesT (ak) of all the actionsai in the stack sequence above become fixed to their
earliest possible starting times resulting inT (ak) = 1+2k, for k = 1, . . . , n−1,
whereak is thek-th action in the sequence (namelyak = stack(bn−k, bn−k+1))
. . .

• The constraintT (End) = B on the makespan is asserted forB equal to the
current lower bound2(n−1) of variableT (End), and then from the bounding
constraint

T (a) + δ(a, End) ≤ T (End)

for a = stack(b1, b2), andδ(stack(b1, b2), End) = 1 (thestack actions have
duration1), it is inferred that

T (stack(b1, b2)) ≤ 2(n− 1)− 1

and since we haveT (stack(b1, b2)) ≥ 2(n− 1)− 1, that

T (stack(b1, b2)) = 2(n− 1)− 1.

23

• From the constraintS(p, a) = a′ → T (p, a) = T (a′), in turn, andS(on(b1, b2),
End) = stack(b1, b2), it is inferred also that

T (on(b1, b2), End) = 2(n− 1)− 1.

• Then from the constraintT (stack(b2, b3)) + 2 ≤ T (on(b1, b2), End) derived
in Step 2, this propagates into

T (stack(b2, b3)) ≤ 2(n− 1)− 3

but sinceT (stack(b2, b3)) ≥ 2(n− 1)− 3 also from Step 2, then

T (stack(b2, b3)) = 2(n− 1)− 3.

• This continues iteratively until obtaining

T (stack(bn−1, bn)) = 1.

Step 4: Addition of pickup(bn−1) to the plan.

. . . Then thepickup(bn−1), pickup(bn−2), . . . sequence gets added to the set of
actions in the plan at their correct starting times as a result of further reasoning
that prunes the other possible supports and times. For example, the precondition
clear(bn) for the first actiona1 = stack(bn−1, bn) in the sequence can be sup-
ported by a number ofunstack(∗, bn) and stack(bn, ∗) actions, and byStart.
However, since any such supportera′ must precedea1 andT (a1) = 1 is already
fixed,T (a′) < 1 must hold, leavinga′ = Start as the only possible supporter (at
preprocessing, lower bounds on the starting time of actions are computed from
which it is known thatT (a′) < 1 is true only forStart and pickup actions).
For similar reasons, all supportersunstack(bn−1, ∗) for the other precondition
holding(bn−1) of a1 are pruned, leavinga′1 = pickup(bn−1) as the only possible
support. The process repeats for the preconditions ofa′1 = pickup(bn−1) with all
supportersa′ different thanStart being pruned as well . . .

• stack(bn−1, bn) has two preconditions:clear(bn) andholding(bn−1). From the
constraintT (a) ≥ T (p, a) + mina′∈D[S(p,a)]δ(a

′, a) with p = clear(bn) and
a = stack(bn−1, bn), asT (stack(bn−1, bn)) = 1, it is inferred thatT (clear(bn),
stack(bn−1, bn)) ≤ 0 and hence that

T (clear(bn), stack(bn−1, bn)) = 0.

• The domain of variableS(clear(bn), stack(bn−1, bn)) containsStart and the
actions inSTACK n,∗ andUNSTACK ∗,n. However, from preprocessing, the
actions inSTACK n,∗ have starting times greater than or equal to1, and the
actions inUNSTACK ∗,n have starting times greater than or equal to2. From
the constraint

T (p, a) 6= T (a′) → S(p, a) 6= a′

24

with p = clear(bn), a = stack(bn−1, bn) anda′ ∈ STACK n,∗∪UNSTACK ∗,n,
all the actions inSTACK n,∗ andUNSTACK n−1,∗ are then pruned from the do-
main of the variableS(clear(bn), stack(bn−1, bn)). The only remaining action
is thenStart, and we have then

S(clear(bn), stack(bn−1, bn)) = Start.

• For the second precondition ofstack(bn−1, bn), i.e. holding(bn−1), the rea-
soning is similar: firstT (holding(bn−1), stack(bn−1, bn)) = 0 is inferred, and
then sinceholding(bn−1) can be produced only bypickup(bn−1) and the ac-
tions UNSTACK n−1,∗ which all have starting times greater than or equal to
2, it follows from T (p, a) 6= T (a′) → S(p, a) 6= a′ with p = holding(bn−1),
a = stack(bn−1, bn) anda′ ∈ UNSTACK n−1,∗, that all such actionsa′ are
pruned fromD[S(holding(bn−1), stack(bn−1, bn))], resulting in

S(holding(bn−1), stack(bn−1, bn)) = pickup(bn−1)

and

InP lan(pickup(bn−1)) = 1.

• Furthermore, from the constraintS(p, a) = a′ → T (p, a) = T (a′) it is also
inferred thatT (pickup(bn−1)) = 0, and from the precondition constraint

T (a) ≥ T (p, a) + mina′∈D[S(p,a)]δ(a
′, a)

anda = pickup(bn−1), T (p, a) = 0 is inferred for the two preconditionsp
of a: clear(bn−1) andhandempty. As a result, from the constraintT (p, a) 6=
T (a′) → S(p, a) 6= a′, all actions other thanStart are pruned as possible
supporters ofclear(bn−1) andhandempty, from which it is inferred that

S(clear(bn−1), pickup(bn−1)) = S(handempty, pickup(bn−1)) = Start.

Step 5: Addition of pickup(bn−2) to the plan.

. . . At this point a number of actions and causal links in the plan have been in-
ferred with no commitments made except for the boundB. In particular, due to
the causal links going into the actionspickup(bn−1) andstack(bn−1, bn) already
fixed at the timest = 0 and t = 1 respectively, and the fact that all actionsa′

whether in the plan or not (except for these two andStart), threat these causal
links but cannot precede both actions, the starting timesT (a′) of such actionsa′

are pushed to timest = 2 or higher. The result is that the only supporters left
for the preconditionsclear(bn−1) andholding(bn−2) of the next stack action in
the sequence,a2 = stack(bn−2, bn−1), scheduled at timet = 3, end up being the
actionsa1 = stack(bn−1, bn) at t = 1 andpickup(bn−2) at timet = 2 . . .

• The actionstack(bn−2, bn−1) still has two open preconditions:holding(bn−2)
andclear(bn−1). The actionstack(bn−1, bn) e-deletesholding(bn−2), and thus

25

threats the support variableS(holding(bn−2), stack(bn−2, bn−1)). But since it
does not precedestack(bn−2, bn−1) (all the times for thestack actions are al-
ready fixed), the first disjunct of the causal link constraint is enforced

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a)

with p = holding(bn−2), a′ = stack(bn−1, bn) and a = stack(bn−2, bn−1)
which yields

T (holding(bn−2), stack(bn−2, bn−1)) ≥ 2.

In turn fromT (p, a) + mina′∈D[S(p,a)]δ(a
′, a) ≤ T (a) with p = holding(bn−2)

anda = stack(bn−2, bn−1), T (holding(bn−2), stack(bn−2, bn−1)) ≥ 2 is in-
ferred, and therefore from the inequality above,

T (holding(bn−2), stack(bn−2, bn−1)) = 2.

• The actions that can support the preconditionholding(bn−2) of stack(bn−2, bn−1)
are pickup(bn−2) and the actionsUNSTACK n−2,∗. However, the latter ac-
tions are excluded. Indeed, they all have as precondition the fact thatbn−2

is on another block, and the actions that can produce this precondition are
the ones inSTACK n−2,∗. However, these actions cannot precede the action
stack(bn−1, bn), which is in the plan, and hence must follow it because of the
causal link constraint. Since the distance betweenstack(bn−1, bn) and the ac-
tions in STACK n−2,∗ is 1, the lower bound of the starting time of these ac-
tions is increased to3. As a consequence, the lower bound of the actions in
UNSTACK n−2,∗ is increased to4, and this is why they cannot produce the
preconditionholding(bn−2) for stack(bn−2, bn−1), and therefore

S(holding(bn−2), stack(bn−2, bn−1)) = pickup(bn−2).

• The actions that can produce the other preconditionclear(bn−1) of stack(bn−2,
bn−1) are eitherStart, or the actions inSTACK n−1,∗ ∪ UNSTACK ∗,n−1. As
clear(bn−1) is false before doingstack(bn−1, bn) and no action is left between
stack(bn−1, bn) andstack(bn−2, bn−1), the only possibility is

S(clear(bn−1), stack(bn−2, bn−1)) = stack(bn−1, bn).

• The same kind of reasoning is made for the preconditions ofpickup(bn−2), and
therefore the support variables get the values

S(handempty, pickup(bn−2)) = stack(bn−1, bn)

and

S(clear(bn−2), pickup(bn−2)) = Start.

26

Step 6: Addition of all other pickup actions to the plan.

. . . the process repeats for all other stack actions in the sequence until all actions
have their start times and supporters fixed and no flaw in the plan is left.

• Following the same process, the actions inUNSTACK n−k,∗ with k ≥ 3 are ex-
cluded from the domain of the support variablesS(holding(bn−k), stack(bn−k,
bn−k−1)), leaving as the only possible choice the actionspickup(bn−k) whose
correct starting times are also inferred. The preconditions of the actionspick-
up(bn−k) are found in the same way.

7 Experimental Results

We consider next the experiments for comparingCPT with other optimal parallel
or temporal planners. The experiments have been obtained using a Pentium IV
machine running at 2.8Ghz, with 1Gb of RAM, under Linux, and a time limit of
one hour for each problem. The planners are:

• CPT: our temporal planner, a version that slightly improves the version entered
at the 4th International Planning Competition (Optimal Track; see [11]) with no
canonicity restrictions,6

• BLACKBOX : the SAT-based parallel planner described in [23] with theCHAFF

SAT solver [34],
• SATPLAN04: the new implementation ofBLACKBOX with theSIEGESAT solver,

as it was entered at the 4th International Planning Competition,
• IPP: theGRAPHPLAN-based parallel planner described in [24], and
• TP4’04: the new implementation of the temporal planner described in [17], that

was also entered at the 4th IPC.

We evaluated the two temporal plannersCPT andTP4’04 over temporal domains,
and all temporal and parallel planners over parallel domains. The domains and
problems are Blocks World (5 standard instances, 50 instances from IPC2), Lo-
gistics (8 standard instances, 50 instances from IPC2), Miconic [25] (50 instances
from IPC2), and four domains created for IPC3: Depots, DriverLog, Satellite and
ZenoTravel. These last four domains are used in both parallel and temporal set-
tings. Details on IPC2 and IPC3 can be found in [1] and [30]. We report results
over many domains and instances both for assessing the proposed planner reliably
and as a reference for other researchers.

6 While CPT was entered at the 4th IPC,CPT does not adhere completely to the PDDL2.1
semantics [14] but rather follows the simpler semantics for temporal planning in [40]. In
the former, plans with smaller makespans may result as interfering actions are allowed to
overlap in certain cases. See [14] for details.

27

Tables 2 to 5 compare the planners over the parallel domains, while Table 6 com-
paresCPT and TP4’04 over the temporal domains. The times in all cases include
preprocessing. Times reported as 0.00 mean that they were solved in less than 0.01
seconds. The tables show thatCPT runtimes and coverage are similar to those of
BLACKBOX andSATPLAN04over the parallel domains with the exception of Blocks
World, whereCPT does much better, and Logistics and Miconic, whereCPT does
worse.CPT also seems to scale up much better thanIPP over all domains with
the exception of the Miconic domain, whereIPP does better. Finally,CPT seems
to dominate the temporal plannerTP4’04 over all parallel and temporal domains,
expanding much fewer nodes. As discussed in [17], the problem with state-based
temporal planners such asTP4’04 is theirbranching factorwhich may be exponen-
tial in the number of primitive actions in the domain. InCPT, the branching factor is
two, and after every branching decision, a powerful pruning mechanism is applied.
While solutions in such a case, may lay deeper in the search tree, pruning decisions
have a chance then to prune larger parts of the search space, and therefore, to be
more effective.

The scatter plots in Figures 1 to 5 summarize the information provided in these
tables. The first four figures summarize the results for parallel planning compar-
ing CPT with BLACKBOX , SATPLAN04, IPP andTP4’04 respectively, while the last
figure comparesCPT with TP4’04 over temporal domains. In these figures, dots
represent for each problem, the runtime ofCPT (x-axis) in comparison with the
runtime of the other planners (y-axis). Dots above the diagonal indicate problems
whereCPT is faster, while dots below the diagonal indicate problems where the
other planners are faster. Likewise, problems on the top border are unsolved by
CPT, while problems on the right border are unsolved by the other planners.

The results shown in the tables and in the figures lend support to our main goal
in the development ofCPT: an optimal temporal planner with good performance,
able to approach the performance of the best parallel planners when all actions
have the same duration. The key for this result is the combination inCPT of a
POCL branching scheme suitable for temporal planning, and a CP representation
of partial plans that supports powerful pruning and reasoning mechanisms such as
those found in modern parallel planners.

8 Discussion

We have developed a domain-independent optimal POCL temporal planner based
on constraint programming that integrates existing lower bounds with novel repre-
sentations and propagation rules that manage to prune the search space consider-
ably. The key novelty in the planner and the source of its power, is the ability to rep-
resent and reason about supports, precedences, and causal links involving actions
that are not in the plan. The experiments show that the resulting planner is faster

28

Table 2
Results for Blocks World

CPU time (sec.) Makespan
CPT BLACKBOX SATPLAN IPP TP4

bw-12step 0.10 0.15 0.53 0.01 0.17 12

bw-large.a 0.10 0.64 3.35 0.03 0.93 12

bw-large.b 1.02 10.14 181.61 1.33 593.85 18

bw-large.c 140.30 - - - - 28

bw-large.d - - - - - -
bw-ipc01 0.00 0.02 0.17 0.00 0.01 6

bw-ipc02 0.01 0.01 0.20 0.00 0.00 10

bw-ipc03 0.01 0.01 0.16 0.00 0.01 6

bw-ipc04 0.03 0.07 0.34 0.00 0.04 12

bw-ipc05 0.01 0.06 0.32 0.00 0.04 10

bw-ipc06 0.02 0.11 1.28 0.00 0.03 16

bw-ipc07 0.04 0.15 0.48 0.00 0.07 12

bw-ipc08 0.02 0.17 0.90 0.00 0.08 10

bw-ipc09 0.03 0.41 35.14 0.00 0.11 20

bw-ipc10 0.04 0.38 5.07 0.01 0.14 20

bw-ipc11 26.63 2.87 541.39 0.02 3.77 22

bw-ipc12 1.21 1.19 115.31 0.01 0.69 20

bw-ipc13 0.16 2.35 193.12 0.02 2.64 18

bw-ipc14 0.82 3.04 683.88 0.03 5.57 20

bw-ipc15 0.10 1.03 24.37 0.01 0.44 16

bw-ipc16 0.24 6.13 - 0.12 33.03 30

bw-ipc17 0.95 3.35 - 0.04 3.85 28

bw-ipc18 0.12 3.18 - 0.03 1.76 26

bw-ipc19 0.23 12.17 - 0.27 94.41 34

bw-ipc20 1018.47 53.48 - 10.31 - 32

bw-ipc21 16.51 19.93 - 0.71 261.37 34

bw-ipc22 - 75.89 - 9.43 - 32

bw-ipc23 - 283.26 - 390.26 - 30

bw-ipc24 1.11 36.89 - 3.97 2518.01 34

bw-ipc25 574.46 70.49 - 1.86 2936.43 34

bw-ipc26 5.86 39.30 - 0.89 413.27 34

bw-ipc27 0.82 119.58 - 477.50 - 42

bw-ipc28 6.43 198.49 - 281.91 - 44

bw-ipc29 - - - 195.42 - 38

bw-ipc30 - - - - - -
bw-ipc31 1434.88 - - - - 40

bw-ipc32 6.57 - - - - 52

bw-ipc33 - - - - - -
bw-ipc34 1706.01 - - - - 52

bw-ipc35 - - - - - -
bw-ipc36 - - - - - -
bw-ipc37 - - - - - -
bw-ipc38 - - - - - -
bw-ipc39 34.15 - - - - 62

bw-ipc40 358.65 - - - - 58

bw-ipc41 - - - - - -
bw-ipc42 170.45 - - - - 72

bw-ipc43 16.86 - - - - 78

bw-ipc44 1563.39 - - - - 68

bw-ipc45 - - - - - -
bw-ipc46 - - - - - -
bw-ipc47 - - - - - -
bw-ipc48 - - - - - -
bw-ipc49 - - - - - -
bw-ipc50 - - - - - -

29

Table 3
Results for Logistics

CPU time (sec.) Makespan
CPT BLACKBOX SATPLAN IPP TP4

log.easy 0.02 0.05 0.19 0.00 0.48 9

rocket.a 0.11 0.22 1.91 4.54 - 7

rocket.b 0.08 0.26 2.68 6.92 - 7

log.a 0.15 0.26 1.05 450.47 - 11

log.b 1.85 0.52 57.92 1190.54 - 13

log.c 2.22 0.85 36.18 - - 13

log.d 2.82 2.12 100.45 - - 14

log.d3 1.25 1.69 27.83 - - 13

log.d1 - 2.77 353.34 - - 17

log-ipc01 0.02 0.04 0.14 0.00 0.06 9

log-ipc02 0.02 0.04 0.16 0.00 0.07 9

log-ipc03 0.02 0.04 0.17 0.00 0.06 9

log-ipc04 0.02 0.04 0.17 0.00 0.08 9

log-ipc05 0.02 0.04 0.16 0.00 0.10 9

log-ipc06 0.01 0.01 0.11 0.00 0.06 3

log-ipc07 0.02 0.04 0.16 0.00 0.09 9

log-ipc08 0.02 0.04 0.18 0.00 0.89 9

log-ipc09 0.02 0.04 0.20 0.00 0.30 9

log-ipc10 0.09 0.17 0.35 1.32 789.17 12

log-ipc11 0.13 0.22 0.41 24.18 - 13

log-ipc12 0.07 0.15 0.25 0.28 218.13 11

log-ipc13 0.11 0.18 0.30 1.17 1712.18 12

log-ipc14 0.07 0.14 0.29 0.06 30.60 11

log-ipc15 0.07 0.11 0.22 0.02 2.18 10

log-ipc16 1.56 1.37 6.24 - - 15

log-ipc17 0.21 0.38 1.36 620.86 - 12

log-ipc18 0.43 0.54 1.42 - - 13

log-ipc19 3.06 1.24 9.94 - - 15

log-ipc20 0.22 0.48 1.25 - - 12

log-ipc21 11.39 1.16 8.93 - - 15

log-ipc22 51.12 2.78 222.94 - - 13

log-ipc23 2.60 2.14 200.84 - - 13

log-ipc24 2.36 1.51 72.50 - - 12

log-ipc25 2.56 2.67 160.74 - - 13

log-ipc26 2.50 5.56 182.85 - - 13

log-ipc27 29.54 1.91 74.16 - - 12

log-ipc28 6.28 6.88 319.49 - - 13

log-ipc29 - 10.45 436.39 - - 13

log-ipc30 1505.16 15.38 591.54 - - 14

log-ipc31 - 52.05 595.15 - - 14

log-ipc32 - 90.98 919.45 - - 15

log-ipc33 1298.66 6.20 326.12 - - 13

log-ipc34 - 271.41 885.38 - - 15

log-ipc35 - 26.46 496.10 - - 14

log-ipc36 - 845.25 924.73 - - 15

log-ipc37 - 3308.84 - - - 16

log-ipc38 - - - - - -
log-ipc39 - 84.66 1267.65 - - 14

log-ipc40 - - - - - -

than current optimal temporal planners and is competitive with the best parallel
planners in the special case in which actions have all the same duration. The for-
mulation extends the one in [45] that assumes that no ground action in the domain
occurs more than once in the plan. This canonicity restriction is removed by estab-
lishing a distinction betweenaction typesandaction tokens, the latter being created

30

Table 4
Results for Miconic

CPU time (sec.) Makespan
CPT BLACKBOX SATPLAN IPP TP4

miconic01 0.00 0.00 0.14 0.00 0.00 4

miconic02 0.00 0.00 0.14 0.00 0.00 3

miconic03 0.00 0.00 0.13 0.00 0.00 4

miconic04 0.00 0.00 0.13 0.00 0.00 4

miconic05 0.00 0.00 0.14 0.00 0.00 4

miconic06 0.00 0.01 0.16 0.00 0.00 6

miconic07 0.00 0.01 0.16 0.00 0.00 6

miconic08 0.00 0.01 0.15 0.00 0.00 6

miconic09 0.00 0.01 0.15 0.00 0.01 6

miconic10 0.00 0.01 0.16 0.00 0.00 6

miconic11 0.01 0.05 1.28 0.00 0.02 8

miconic12 0.01 0.07 26.91 0.00 0.03 10

miconic13 0.01 0.04 0.43 0.00 0.05 8

miconic14 0.01 0.06 11.73 0.00 0.02 9

miconic15 0.01 0.05 0.84 0.00 0.04 8

miconic16 0.02 0.34 228.80 0.00 3.94 12

miconic17 0.02 0.33 143.00 0.00 3.01 11

miconic18 0.11 0.88 444.54 0.00 88.08 14

miconic19 0.14 0.84 403.35 0.01 88.45 14

miconic20 0.18 0.87 459.46 0.00 129.61 14

miconic21 0.35 2.35 377.01 0.03 1054.36 14

miconic22 0.81 4.50 450.55 0.05 - 15

miconic23 0.05 0.51 107.62 0.00 1.52 10

miconic24 0.16 3.31 350.99 0.04 921.91 14

miconic25 0.04 3.79 574.59 0.03 - 16

miconic26 0.71 4.04 353.35 0.13 - 14

miconic27 0.08 5.12 438.61 0.11 - 15

miconic28 2.38 20.63 506.44 0.21 - 16

miconic29 2.63 17.19 549.54 0.14 - 16

miconic30 30.69 42.18 765.94 0.21 - 18

miconic31 6.89 69.74 808.73 0.88 - 18

miconic32 339.13 150.71 1254.80 1.27 - 20

miconic33 27.82 20.63 676.15 0.66 - 17

miconic34 45.48 33.91 697.31 0.86 - 17

miconic35 0.13 1149.07 1964.92 1.52 - 23

miconic36 8.02 398.61 1717.08 6.26 - 22

miconic37 - 1702.56 - 6.76 - 23

miconic38 958.34 148.81 1273.84 5.44 - 20

miconic39 - 1802.74 2173.08 7.08 - 24

miconic40 - 504.42 1598.66 6.53 - 22

miconic41 - - - 34.64 - 26

miconic42 28.24 2240.95 - 29.55 - 24

miconic43 0.32 2317.58 - 34.50 - 24

miconic44 3110.23 - - 34.02 - 28

miconic45 - 587.12 - 35.49 - 21

miconic46 - - - 166.68 - 27

miconic47 - - - 146.43 - 25

miconic48 - 2425.37 - 134.89 - 24

miconic49 3282.31 - - 162.68 - 28

miconic50 - - - 149.78 - 26

dynamically during the search. The resulting scheme can be understood as provid-
ing a lazy implementation of an action domain with an infinite collection of action
tokens or instances. Indeed, the action types are used as place holders for the infor-
mation that is common to all the action instances of that type that have not yet made
it into the plan. The move from canonical to general planning where ground actions

31

Table 5
Results for four parallel domains from IPC3

CPU time (sec.) Makespan
CPT BLACKBOX SATPLAN IPP TP4

depots01 0.02 0.02 0.14 0.00 0.08 5

depots02 0.11 0.11 0.34 0.01 1.45 8

depots03 0.46 0.67 68.68 0.20 143.38 12

depots04 3.32 2.14 353.33 0.38 - 14

depots05 - 349.22 - - - 20

depots06 - - - - - -
driver01 0.02 0.02 0.15 0.00 0.08 6

driver02 0.03 0.14 1.10 0.02 2.03 9

driver03 0.03 0.06 0.20 0.01 0.15 7

driver04 0.04 0.12 0.38 0.07 4.54 7

driver05 0.06 0.17 0.44 0.75 69.01 8

driver06 0.07 0.06 0.17 0.01 2.37 5

driver07 0.09 0.14 0.21 0.08 32.79 6

driver08 0.10 0.23 0.32 1.92 168.21 7

driver09 0.34 0.88 32.67 5.73 584.05 10

driver10 0.31 0.56 7.02 9.65 2113.08 7

driver11 0.92 1.52 23.32 1.27 72.06 9

driver12 - 1186.49 - - - 16

satellite01 0.01 0.05 10.23 0.00 0.02 8

satellite02 0.09 0.84 265.85 0.01 12.38 12

satellite03 0.04 0.15 4.99 0.01 0.36 6

satellite04 0.18 0.78 129.91 4.10 - 10

satellite05 0.74 0.85 52.33 79.03 - 7

satellite06 0.18 0.75 25.25 40.96 - 8

satellite07 0.63 1.02 26.00 571.25 - 6

satellite08 46.59 133.79 295.17 - - 8

satellite09 3.84 2.62 39.01 - - 6

satellite10 96.44 24.10 193.68 - - 8

satellite11 11.53 13.90 172.87 - - 8

satellite12 - - - - - -
zeno01 0.01 0.01 0.12 0.00 0.05 1

zeno02 0.02 0.08 0.18 0.00 0.06 5

zeno03 0.07 0.20 0.28 0.01 0.30 5

zeno04 0.06 0.16 0.22 0.00 0.63 5

zeno05 0.15 0.27 0.37 0.01 1.49 5

zeno06 0.19 0.36 0.91 0.02 40.72 5

zeno07 0.22 0.39 0.54 0.02 266.24 6

zeno08 1.28 0.89 5.50 0.12 2088.00 5

zeno09 1.58 1.44 45.62 0.38 - 6

zeno10 5.42 2.28 102.21 123.58 - 6

zeno11 4.36 3.13 140.87 17.55 - 6

zeno12 4.67 6.32 201.85 743.63 - 6

zeno13 56.03 6.44 353.82 - - 7

zeno14 - - - - - -

can be repeated many times, involves however an overhead. In Tables 7 to 9, we
actually compare the generalCPT planner with theCPT planner with the canonicity
restriction. The latter planner, that we refer to asCPT-CA in the tables, is a planner
that is optimal only when some of the optimal plans are canonical. This happens
automatically in domains like Blocks World for example, where all instances are
canonical in this sense (they never require repeating the same ground action twice).
In general, however, when this assumption is not true,CPT-CA may result in non-
optimal plans (non-optimality), or may even find no plan at all (incompleteness).
Interestingly by looking at the tables, we only find four examples of non-optimality

32

Table 6
Results for four temporal domains from IPC3

CPU time (sec.) Makespan CPU time (sec.) Makespan
CPT TP404 CPT TP404

driver01 0.02 4.18 91 depots01 0.02 0.08 28

driver02 - 365.89 92 depots02 0.50 19.73 36

driver03 0.03 0.18 40 depots03 - - -
driver04 - - - depots04 - - -
driver05 40.67 - 51 depots05 - - -
driver06 - - - depots06 - - -
driver07 0.43 45.52 40 zeno01 0.02 0.07 173

driver08 - - - zeno02 0.07 0.28 592

driver09 - - - zeno03 0.09 0.43 280

driver10 6.16 - 38 zeno04 1.09 - 522

driver11 - - - zeno05 0.44 30.54 400

driver12 - - - zeno06 0.35 4.87 323

satellite01 0.01 0.01 46 zeno07 3.07 - 665

satellite02 1.19 466.63 70 zeno08 17.52 - 522

satellite03 0.06 1.17 34 zeno09 90.64 - 522

satellite04 0.82 - 58 zeno10 82.62 - 453

satellite05 1.55 - 36 zeno11 7.77 - 423

satellite06 0.28 - 46 zeno12 - - -
satellite07 1.10 - 34 zeno13 - - -
satellite08 - - - zeno14 - - -
satellite09 6.21 - 34

satellite10 1897.84 - 43

satellite11 42.32 - 46

satellite12 - - -

(log-ipc09 , log-ipc10 , depots03 and driver02), and no example of
incompleteness; indicating that while not valid, the canonicity restriction is often
reasonable. At the same time, since the consideration of non-canonical plans in-
volves an overhead, the canonical plannerCPT-CA ends up actually solving more
problems in the given time window (1 hour) than the generalCPT planner. This is
most prominent in the temporal DriverLog instances where the former solves 11
out of the 12 instances, while the latter solves only 5, but it is also true for Blocks
World and Logistics. In addition, in all instances, with the four exceptions men-
tioned above, when bothCPT and CPT-CA find a plan,CPT-CA finds a plan that
is as good in less time. It remains an open challenge to determine the conditions
under which restrictions like canonicity or suitable variations (e.g., that certain ac-
tions are ‘canonical’ but not others) can be detected and exploited. In the future,
we would also like to analyze in further detail the constraints that are most critical
in pruning the search space inCPT, and whether this pruning power can be fur-
ther extended by explicating additional constraints in the formulation such as those
encoding ‘landmark’ information [38].

Acknowledgements

The first author thanks Ǵerard Verfaillie for comments on earlier versions of this
paper and numerous discussions, and Patrick Haslum for his assistance on the use

33

Table 7
General planning in CPT vs. Restricted canonical planning in CPT over Blocks World and
Logistics

Blocks World CPU time (sec.) Makespan Logistics CPU time (sec.) Makespan
CPT CPT-CA CPT CPT-CA CPT CPT-CA CPT CPT-CA

bw-12step 0.10 0.08 12 12 log.easy 0.02 0.02 9 9

bw-large.a 0.10 0.09 12 12 rocket.a 0.11 0.09 7 7

bw-large.b 1.02 0.98 18 18 rocket.b 0.08 0.06 7 7

bw-large.c 140.30 129.93 28 28 log.a 0.15 0.15 11 11

bw-large.d - - - - log.b 1.85 0.38 13 13

bw-ipc01 0.00 0.00 6 6 log.c 2.22 0.53 13 13

bw-ipc02 0.01 0.01 10 10 log.d 2.82 1.33 14 14

bw-ipc03 0.01 0.01 6 6 log.d3 1.25 1.22 13 13

bw-ipc04 0.03 0.02 12 12 log.d1 - 121.12 - 17

bw-ipc05 0.01 0.01 10 10 log-ipc01 0.02 0.02 9 9

bw-ipc06 0.02 0.02 16 16 log-ipc02 0.02 0.02 9 9

bw-ipc07 0.04 0.03 12 12 log-ipc03 0.02 0.02 9 9

bw-ipc08 0.02 0.02 10 10 log-ipc04 0.02 0.02 9 9

bw-ipc09 0.03 0.03 20 20 log-ipc05 0.02 0.01 9 9

bw-ipc10 0.04 0.04 20 20 log-ipc06 0.01 0.01 3 3

bw-ipc11 26.63 3.04 22 22 log-ipc07 0.02 0.02 9 9

bw-ipc12 1.21 0.31 20 20 log-ipc08 0.02 0.02 9 9

bw-ipc13 0.16 0.10 18 18 log-ipc09 0.02 0.02 9 11

bw-ipc14 0.82 0.30 20 20 log-ipc10 0.09 0.09 12 13

bw-ipc15 0.10 0.09 16 16 log-ipc11 0.13 0.08 13 13

bw-ipc16 0.24 0.19 30 30 log-ipc12 0.07 0.06 11 11

bw-ipc17 0.95 0.49 28 28 log-ipc13 0.11 0.08 12 12

bw-ipc18 0.12 0.11 26 26 log-ipc14 0.07 0.06 11 11

bw-ipc19 0.23 0.22 34 34 log-ipc15 0.07 0.07 10 10

bw-ipc20 1018.47 88.93 32 32 log-ipc16 1.56 0.25 15 15

bw-ipc21 16.51 4.04 34 34 log-ipc17 0.21 0.18 12 12

bw-ipc22 - 1041.98 - 32 log-ipc18 0.43 0.23 13 13

bw-ipc23 - 2898.88 - 30 log-ipc19 3.06 0.28 15 15

bw-ipc24 1.11 0.56 34 34 log-ipc20 0.22 0.19 12 12

bw-ipc25 574.46 94.27 34 34 log-ipc21 11.39 0.46 15 15

bw-ipc26 5.86 1.82 34 34 log-ipc22 51.12 5.12 13 13

bw-ipc27 0.82 0.79 42 42 log-ipc23 2.60 1.10 13 13

bw-ipc28 6.43 1.60 44 44 log-ipc24 2.36 1.50 12 12

bw-ipc29 - 1672.96 - 38 log-ipc25 2.56 1.16 13 13

bw-ipc30 - - - - log-ipc26 2.50 1.16 13 13

bw-ipc31 1434.88 554.87 40 40 log-ipc27 29.54 7.57 12 12

bw-ipc32 6.57 2.91 52 52 log-ipc28 6.28 3.57 13 13

bw-ipc33 - - - - log-ipc29 - - - -
bw-ipc34 1706.01 654.64 52 52 log-ipc30 1505.16 10.64 14 14

bw-ipc35 - - - - log-ipc31 - - - -
bw-ipc36 - - - - log-ipc32 - 507.39 - 15

bw-ipc37 - - - - log-ipc33 1298.66 146.18 13 13

bw-ipc38 - - - - log-ipc34 - 34.80 - 15

bw-ipc39 34.15 8.93 62 62 log-ipc35 - 140.01 - 14

bw-ipc40 358.65 257.16 58 58 log-ipc36 - - - -
bw-ipc41 - - - - log-ipc37 - - - -
bw-ipc42 170.45 20.23 72 72 log-ipc38 - - - -
bw-ipc43 16.86 15.76 78 78 log-ipc39 - - - -
bw-ipc44 1563.39 249.01 68 68 log-ipc40 - - - -
bw-ipc45 - - - -
bw-ipc46 - - - -
bw-ipc47 - - - -
bw-ipc48 - - - -
bw-ipc49 - - - -
bw-ipc50 - - - -

34

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
B

O
X

 ru
nn

in
g

tim
e

(s
ec

on
ds

)

CPT running time (seconds)

blocks
depots
driver
logistics
miconic
rovers
satellite
zeno

Fig. 1. Performance ofCPT vs. BLACKBOX over parallel domains.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
A

TP
LA

N
 ru

nn
in

g
tim

e
(s

ec
on

ds
)

CPT running time (seconds)

blocks
depots
driver
logistics
miconic
rovers
satellite
zeno

Fig. 2. Performance ofCPT vs. SATPLAN04 over parallel domains.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

IP
P

 ru
nn

in
g

tim
e

(s
ec

on
ds

)

CPT running time (seconds)

blocks
depots
driver
logistics
miconic
rovers
satellite
zeno

Fig. 3. Performance ofCPT vs. IPP over parallel domains.

of TP4’04. Part of this work was done while the second author visited Nasa Ames
and the Universita di Genova in the Summer of 2000. He thanks Nicola Muscettola
and Enrico Giunchiglia for their hospitality and a number of useful discussions. He
has also benefited from discussions with P. Haslum, P. Laborie, C. Beck, S. Kamb-
hampati, D. Smith, A. Jonsson, J. Frank, and P. Morris. He also thanks Héctor Pala-

35

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

TP
4

ru
nn

in
g

tim
e

(s
ec

on
ds

)

CPT running time (seconds)

blocks
depots
driver
logistics
miconic
rovers
satellite
zeno

Fig. 4. Performance ofCPT vs. TP4’04 over parallel domains.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

TP
4

ru
nn

in
g

tim
e

(s
ec

on
ds

)

CPT running time (seconds)

blocks
depots
driver
logistics
miconic
rovers
satellite
zeno

Fig. 5. Performance ofCPT vs. TP4’04 over temporal domains.

cios for the related joint work in [36]. V. Vidal is partially supported by the “IUT
de Lens”, the CNRS and the “région Nord/Pas-de-Calais” under the COCOA pro-
gram. H. Geffner is partially supported by Grant TIC2002-04470-C03-02, MCyT,
Spain.

References

[1] F. Bacchus. The 2000 AI Planning Systems Competition.Artificial Intelligence
Magazine, 22(3):47–56, 2001.

[2] P. Baptiste, C. Le Pape, and W. Nuijten.Constraint-based scheduling: Applying
constraint programming to scheduling problems. Kluwer, 2001.

[3] A. Blum and M. Furst. Fast planning through planning graph analysis. InProceedings
of IJCAI-95, pages 1636–1642. Morgan Kaufmann, 1995.

[4] B. Bonet and H. Geffner. Planning as heuristic search.Artificial Intelligence, 129(1-
2):5–33, 2001.

36

Table 8
General planning in CPT vs. Restricted canonical planning in CPT over Miconic

CPU time (sec.) Makespan CPU time (sec.) Makespan
CPT CPT-CA CPT CPT-CA CPT CPT-CA CPT CPT-CA

miconic01 0.00 0.00 4 4 miconic26 0.71 0.68 14 14

miconic02 0.00 0.00 3 3 miconic27 0.08 0.07 15 15

miconic03 0.00 0.00 4 4 miconic28 2.38 2.26 16 16

miconic04 0.00 0.00 4 4 miconic29 2.63 2.58 16 16

miconic05 0.00 0.00 4 4 miconic30 30.69 28.71 18 18

miconic06 0.00 0.00 6 6 miconic31 6.89 6.49 18 18

miconic07 0.00 0.00 6 6 miconic32 339.13 328.26 20 20

miconic08 0.00 0.01 6 6 miconic33 27.82 26.39 17 17

miconic09 0.00 0.00 6 6 miconic34 45.48 43.06 17 17

miconic10 0.00 0.00 6 6 miconic35 0.13 0.12 23 23

miconic11 0.01 0.01 8 8 miconic36 8.02 7.51 22 22

miconic12 0.01 0.01 10 10 miconic37 - - - -
miconic13 0.01 0.01 8 8 miconic38 958.34 922.00 20 20

miconic14 0.01 0.01 9 9 miconic39 - - - -
miconic15 0.01 0.01 8 8 miconic40 - - - -
miconic16 0.02 0.01 12 12 miconic41 - - - -
miconic17 0.02 0.02 11 11 miconic42 28.24 26.53 24 24

miconic18 0.11 0.10 14 14 miconic43 0.32 0.32 24 24

miconic19 0.14 0.14 14 14 miconic44 3110.23 3089.62 28 28

miconic20 0.18 0.17 14 14 miconic45 - - - -
miconic21 0.35 0.32 14 14 miconic46 - - - -
miconic22 0.81 0.76 15 15 miconic47 - - - -
miconic23 0.05 0.04 10 10 miconic48 - - - -
miconic24 0.16 0.14 14 14 miconic49 3282.31 3212.65 28 28

miconic25 0.04 0.04 16 16 miconic50 - - - -

[5] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism
for planning. InProceedings of AAAI-97, pages 714–719. MIT Press, 1997.

[6] J. Carlier and E. Pinson. An algorithm for solving the job shop scheduling problem.
Management Science, 35(2):164–176, 1989.

[7] Y. Caseau, F. X. Josset, and F. Laburthe. CLAIRE: Combining sets, search and rules
to better express algorithms. InProceedings of ICLP-99, pages 245–259, 1999.

[8] Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In
Proceedings of ICLP-94, pages 369–383. MIT Press, 1994.

[9] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.Artificial Intelligence,
49:61–95, 1991.

[10] M. B. Do and S. Kambhampati. Solving planning-graph by compiling it into CSP. In
Proceedings of AIPS-00, pages 82–91, 2000.

[11] S. Edelkamp and J. Hoffmann. The 4th international planning competition. At
http://ipc04.icaps-conference.org , 2004.

[12] F. Focacci, A. Lodi, and M. Milano. Solving TSPs with time windows with constraints.
In Proceedings of ICLP-99, pages 515–529. MIT Press, 1999.

[13] F. Focacci and M. Milano. Connections and integrations of dynamic programming
and constraint programming. InProceedings of CP-AI-OR’01, 2001.

[14] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains.Journal of Artificial Intelligence Research, pages 61–124, 2003.

37

Table 9
General planning in CPT vs. Restricted canonical planning in CPT over four parallel and
temporal domains from IPC3

Parallel domains Temporal domains
CPU time (sec.) Makespan CPU time (sec.) Makespan
CPT CPT-CA CPT CPT-CA CPT CPT-CA CPT CPT-CA

depots01 0.02 0.02 5 5 0.02 0.02 28 28

depots02 0.11 0.10 8 8 0.50 0.17 36 36

depots03 0.46 0.79 12 13 - - - -
depots04 3.32 1.43 14 14 - 18.73 - 40

depots05 - - - - - - - -
depots06 - - - - - - - -
driver01 0.02 0.02 6 6 0.02 0.01 91 91

driver02 0.03 0.07 9 10 - 355.68 - 92

driver03 0.03 0.03 7 7 0.03 0.03 40 40

driver04 0.04 0.03 7 7 - 29.28 - 52

driver05 0.06 0.05 8 8 40.67 0.52 51 51

driver06 0.07 0.07 5 5 - 46.33 - 52

driver07 0.09 0.08 6 6 0.43 0.22 40 40

driver08 0.10 0.10 7 7 - 2686.41 - 52

driver09 0.34 0.28 10 10 - 114.08 - 92

driver10 0.31 0.29 7 7 6.16 2.33 38 38

driver11 0.92 0.76 9 9 - 3365.36 - 65

driver12 - - - - - - - -
satellite01 0.01 0.01 8 8 0.01 0.00 46 46

satellite02 0.09 0.06 12 12 1.19 0.56 70 70

satellite03 0.04 0.04 6 6 0.06 0.05 34 34

satellite04 0.18 0.15 10 10 0.82 0.61 58 58

satellite05 0.74 0.57 7 7 1.55 1.22 36 36

satellite06 0.18 0.18 8 8 0.28 0.26 46 46

satellite07 0.63 0.63 6 6 1.10 0.95 34 34

satellite08 46.59 41.82 8 8 - 1921.27 - 46

satellite09 3.84 3.87 6 6 6.21 5.58 34 34

satellite10 96.44 88.28 8 8 1897.84 1474.57 43 43

satellite11 11.53 10.91 8 8 42.32 30.96 46 46

satellite12 - - - - - - - -
zeno01 0.01 0.02 1 1 0.02 0.02 173 173

zeno02 0.02 0.02 5 5 0.07 0.06 592 592

zeno03 0.07 0.06 5 5 0.09 0.09 280 280

zeno04 0.06 0.06 5 5 1.09 0.45 522 522

zeno05 0.15 0.15 5 5 0.44 0.40 400 400

zeno06 0.19 0.19 5 5 0.35 0.34 323 323

zeno07 0.22 0.22 6 6 3.07 1.42 665 665

zeno08 1.28 1.32 5 5 17.52 9.68 522 522

zeno09 1.58 1.66 6 6 90.64 38.18 522 522

zeno10 5.42 5.35 6 6 82.62 12.54 453 453

zeno11 4.36 4.36 6 6 7.77 7.81 423 423

zeno12 4.67 4.48 6 6 - - - -
zeno13 56.03 50.22 7 7 - - - -
zeno14 - - - - - - - -

[15] H. Geffner. Planning as branch and bound and its relation to constraint-
based approaches. Technical report, Universidad Simón Boĺıvar, 2001. At
www.tecn.upf.es/ ∼hgeffner .

[16] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. InProceedings
of the Fifth International Conference on AI Planning Systems (AIPS-2000), pages 70–
82, 2000.

[17] P. Haslum and H. Geffner. Heuristic planning with time and resources. InProceedings

38

of European Conference of Planning (ECP-01), pages 121–132, 2001.

[18] A. Jonsson, P. Morris, N. Muscettola, and K. Rajan. Planning in interplanetary space:
Theory and practice. InProceedings of AIPS-2000, pages 177–186, 2000.

[19] D. Joslin and M. E. Pollack. Is ”early commitment” in plan generation ever a good
idea? InProceedings of AAAI-96, pages 1188–1193, 1996.

[20] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A
unified framework for evaluating design tradeoffs in partial-order planning.Artificial
Intelligence, 76(1-2):167–238, 1995.

[21] S. Kambhampati and B. Srivastava. Universal classical planner: An algorithm for
unifying state-space and plan-space planning. In M. Ghallab and A. Milani, editors,
New Directions in AI Planning, pages 61–78. IOS Press (Amsterdam), 1996.

[22] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. In
Proceedings of KR-96, pages 374–384, 1996.

[23] H. Kautz and B. Selman. Unifying SAT-based and Graph-based planning. In T. Dean,
editor,Proceedings of IJCAI-99, pages 318–327. Morgan Kaufmann, 1999.

[24] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopoulos. Extending planning graphs to
an ADL subset. In S. Steel and R. Alami, editors,Recent Advances in AI Planning.
Proceedings of 4th European Conf. on Planning (ECP-97). Lect. Notes in AI 1348,
pages 273–285. Springer, 1997.

[25] J. Koehler and K. Schuster. Elevator control as a planning problem. InProceedings of
AIPS-00, pages 331–338, 2000.

[26] P. Laborie. Algorithms for propagating resource constraints in AI planning and
scheduling.Artificial Intelligence, 143:151–188, 2003.

[27] P. Laborie and M. Ghallab. Planning with sharable resources constraints. In C. Mellish,
editor,Proceedings of IJCAI-95, pages 1643–1649. Morgan Kaufmann, 1995.

[28] F. Laburthe. CHOCO: implementing a CP kernel. InProceedings of CP-00, Lecture
Notes in CS, Vol 1894. Springer, 2000.

[29] O. Lhomme. Consistency techniques for numeric CSPs. InProceedings of IJCAI-93,
pages 232–238. Morgan Kaufmann, 1993.

[30] D. Long and M. Fox. The 3rd international planning competition: Results and analysis.
Journal of Artificial Intelligence Research, 20:1–59, 2003.

[31] A. Mali and A. Kambhampati. On the utility of plan-space (causal) encodings. In
Proceedings of AAAI-99, pages 557–563, 1999.

[32] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. InProceedings of
AAAI-91, pages 634–639, Anaheim, CA, 1991. AAAI Press.

[33] D. McDermott. A heuristic estimator for means-ends analysis in planning. In
Proceedings of AIPS-96, pages 142–149, 1996.

39

[34] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. InProceedings of DAC-01, pages 530–535, 2001.

[35] X. L. Nguyen and S. Kambhampati. Reviving partial order planning. InProceedings
of IJCAI-01, pages 459–466, 2001.

[36] H. Palacios and H. Geffner. Planning as branch and bound: A constraint programming
implementation. InProceedings of XXVIII Conf. Latinoamericana de Informática,
pages 239–251, 2002.

[37] J. S. Penberthy and D. S. Weld. Temporal planning with continous change. In
Proceedings of AAAI-94, pages 1010–1015, 1994.

[38] J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, ordering, and usage of
landmarks in planning. InProceedings of ECP-01, pages 37–48, 2001.

[39] D. Smith, J. Frank, and A. Jonsson. Bridging the gap between planning and
scheduling.Knowledge Engineering Review, 15(1):61–94, 2000.

[40] D. Smith and D. S. Weld. Temporal planning with mutual exclusion reasoning. In
Proceedings of IJCAI-99, pages 326–337, 1999.

[41] S. Smith and C. Cheng. Slack-based heuristics for the constraint satisfaction
scheduling. InProceedings of AAAI-93, pages 139–144, 1993.

[42] P. Van Beek and X. Chen. CPlan: a constraint programming approach to planning. In
Proceedings AAAI-99, pages 585–590, 1999.

[43] P. Van Hentenryck.The OPL Optimization Programming Language. MIT Press, 1999.

[44] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using
constraint logic programming.Artificial Intelligence, 58(1-3):113–159, 1992.

[45] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner
based on constraint programming. InProceedings of AAAI-2004, pages 570–577,
2004.

[46] D. S. Weld. An introduction to least commitment planning.AI Magazine, 15(4):27–61,
1994.

[47] H. L. S. Younes and R. G. Simmons. VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence Research, 20:405–430, 2003.

[48] Y. Zhang and R. Yap. Arc consistency on n-ary monotonic and linear constraints. In
Proceedings of CP 2000, pages 470–483, 2000.

40

