Branching and Pruning:
An Optimal Temporal POCL Planner
based on Constraint Programming

Vincent Vidal
CRIL - Universit d’Artois, rue de l'universé - SP16, 62307 Lens Cedex, FRANCE

Hector Geffner

ICREA - Universitat Pompeu Fabra, Paseo de Circunvalacion 8, 08003 Barcelona, SPAIN

Abstract

A key feature of modern optimal planners suchcsaPHPLAN and BLACKBOX is their

ability to prune large parts of the search space. Previous Partial Order Causal Link (POCL)
planners provide an alternative branching scheme but lacking comparable pruning mecha-
nisms do not perform as well. In this paper, a domain-independent formulation of tempo-
ral planning based on Constraint Programming is introduced that successfully combines a
POCL branching scheme with powerful and sound pruning rules. The key novelty in the
formulation is the ability to reason about supports, precedences, and causal links involving
actions that are not in the plan. Experiments over a wide range of benchmarks show that the
resulting optimal temporal planner is much faster than current ones and is competitive with
the best parallel planners in the special case in which actions have all the same duration.

Key words: planning, constraint programming, temporal reasoning

1 Introduction

The search for optimal plans, like the search for optimal solutions in many in-
tractable combinatorial optimization problems, can be understood along two di-

1 This paper extends [45] by removing the canonicity restriction in the generation of plans.
This is a restriction that forces every (ground) action in the domain to be done at most once
in the plan. See the text for details.

Email addresseszidal@cril.univ-artois.fr (Vincent Vidal),
hector.geffner@upf.edu (Héctor Geffner).

Preprint submitted to Elsevier Science 19 July 2005



mensions: théranching schemaesed for expanding partial solutions, and finen-

ing schemaised for discarding them. Most Al planning frameworks can be under-
stood in these terms. Optimal state-based planners, for example, branch by per-
forming state regression or progression, and prune by comparing the estimated cost
of the partial plans with a given bound [16]. Optimal SAT and CSP planners, on
the other hand, branch by picking a variable and trying each of its values, prun-
ing branches and domain values that lead to an inconsistency [10,23]. Pruning is a
key operation in both cases: in the first, it is the result of the use of explicit lower
bounds, in the second, of constraint propagation mechanisms and bounds encoded
in the planning graph [3]. This pruning power distinguishes modern planners such
asGRAPHPLAN from its predecessors (whether optimal or not). Indeed the main
limitation of traditional Partial Order Causal Link (POCL) planners [32,46] is that
they provide an alternative branching scheme but no comparable pruning mecha-
nisms. The result is that dead-ends are discovered late and the size of the search
tree explodes much sooner.

Due to its expressive power, however, POCL planning remains an appealing frame-
work for planning, and in particular temporal planning [39]. The challenge is to
close the performance gap that separates POCL planners from modern planners
while retaining the optimality guarantees. In this paper, we undertake this chal-
lenge, extending a POCL temporal planner with powerful and sound pruning mech-
anisms based on a constraint programming formulation that integrates existing
lower bounds with propagation rules that reason with supports, precedences, and
causal links in novel ways. The experiments show that the resulting planner is
faster than current optimal temporal planners and is competitive with current par-
allel planners in the special case in which action durations are all uniform.

The proposed scheme shows also the appeal of constraint-programming branch-
and-prune formulations for combinatorial optimization problems in which the def-
inition of explicit and informative lower bound functions is difficult to come by
[8,12,43]. Indeed, informative admissible heuristics for estimating the completion
time of partial POCL plans do not exist, but still we show that suitably chosen
constraints and propagation rules may yield an equivalent pruning power.

The integration of heuristic functions in a POCL planning framework has been pur-
sued recently in [35,47]. However, no attempt at the generation of optimal plans is
made in these proposals. Here we make use of some of the ideas in [35] like the
use of structural mutexes for extending the notion of threats in POCL planning, and
the use of disjunctive constraints for expressing the possible resolution of threats.
Temporal POCL planners featuring constraint propagation mechanisms imclude
TET [27], zENO [37] andRAX [18]. These planners are more expressive than ours
(e.g., inthe use of resources), but their pruning mechanisms are weaker as they tend
to reason about actions in the current partial plan only. Something similar occurs
with formulations of POCL planning as Dynamic CSPs : CSPs in which the set of
variables and constraints is not determined a priori but gets expanded until a failure



is detected or a fixed point is reached [19]. In such cases, the number of potential
CSPs to be explored is exponential and for attaining good performance it is not
possible to reason only within the ‘current’ CSP; it is necessary to reason also over
its possible refinements. This is wiakAPHPLANdoes when it builds the planning
graph: it reasons, in a limited way, about all possible plans, and this is also what is
achieved in different ways in our formulation. A previous CP approach to planning
over variousspecificdomains is given in [42]. We borrow some elements from this
formulation, like the use aflistanceof various sorts, yet our approach is domain-
independent. The broad ideas on which the current proposal is based have been
outlined first in [15], and a preliminary implementation for parallel planning was
reported earlier in [36]. Here this formulation is extended in a number of ways and
a new planner has been implemented overdheco CP library [28] that operates

on top of theCLAIRE programming language [7]. This formulation first appeared

in [45] along with a restriction on the types of temporal plans that could be gener-
ated; namely onlcanonical plansvhere every ground action in the domain was
doneat mostonce. This restriction is a slight generalization of the situation most
commonly found in scheduling where every action or task has to be exawly

once [2,6]. In this paper, this restriction is removed and all empirical results, except
where otherwise noted, refer to this general, non-canonical temporal planner called
still cPT.

2 Preview

In order to illustrate the capabilities of the proposed planner, we consider the class
of planning problemgowER-n where the task is to build a tower with blocks

b1, ..., b, in that order, withh; on top, all blocks initially on the table. The single
optimal plan for this problem involves picking each bldgkfrom the table and
stacking it on block, ., fromi = n — 1 until i« = 1. The reasoning mechanisms
underlying the proposed planner, that we calr, yield a solution to this problem

by pure inference and no searchhis is quite remarkable as the inferences are not
trivial and existing optimal planners do not scale up well over these problems (see
Table 1). How doesPT do it? First, it is inferred that each subgaad(b;, b; 1)

must be achieved by the actiaack(b;, b;11). This inference is simple as there

is a single possible supporter in each case. More interestingly, it is then inferred
that these stack operations must be ordered sequentially in descending arder of
namely,stack(b,_1,b,) first, thenstack (b, o, b,_1), and so on, untiktack(by, bs).

This is inferred by reasoning with and resolving the threats affecting the causal
links stack(b;, by 1)[on (b, biy1)]End.? Moreover, it is also inferred that the first
action in the sequence cannot occur earlier thanl, the second action not earlier
thant = 3, the third not earlier than = 5, and so on, and that thend action

2 We use the notation[p]a’ for causal links in which action supports preconditiop of
d’, often denoted in the literature as-a/.



cannot start earlier thal{n — 1), the optimal time bound. This is because as part of
the preprocessingpPT infers that no stack action can be done befotel and that

at least a unit of time must separate the ending of one stack action and the beginning
of a new one (all actions are assumed to have unit durations in the example).

All these inferences result from the domain constraints and propagation mecha-
nisms before even a search bouBan the allowed makespan of the plan is fixed.
After the first boundB = 2(n — 1) is chosen (this is the earliest time at which the
action End can start), further inferences are made. First, the starting tinegs

of all the actionsy; in the stack sequence above become fixed to their earliest pos-
sible starting times resulting i#'(ax) = 1 + 2k, fork = 1,...,n — 1, where

a is the k-th action in the sequence (namely = stack(b,_,bn_x+1)). Then

the pickup(b,_1), pickup(b,—_2), ...sequence gets added to the set of actions in
the plan at their correct starting times as a result of further reasoning that prunes
the other possible supports and times. For example, the preconditiorib,,) for

the first actionu; = stack(b,_1,b,) in the sequence can be supported by a num-
ber ofunstack(x, b,) andstack(b,, *) actions, and bystart. However, since any
such supporter’ must precede; and7'(a;) = 1 is already fixed,I'(a') < 1

must hold, leaving’’ = Start as the only possible supporter (at preprocessing,
lower bounds on the starting time of actions are computed from which it is known
that 7'(a’) < 1 is true only forStart and pickup actions). For similar reasons,

all supportersinstack(b,_1, x) for the other preconditioholding(b,,_,) of a; are
pruned, leaving:| = pickup(b,_1) as the only possible support. The process re-
peats for the preconditions of = pickup(b,_1) with all supporters:’ different
thanStart being pruned as well.

At this point a number of actions and causal links in the plan have been inferred
with no commitments made except for the boundn particular, due to the causal
links going into the actiongickup(b,_1) andstack(b,_1, b,) already fixed at the
timest = 0 andt = 1 respectively, and the fact that all actiaisvhether in the plan

or not (except for these two artttart), threat these causal links but cannot precede
both actions, the starting tim&%«’) of such actions’ are pushed to times= 2 or
higher. The result is that the only supporters left for the precondititias (b, ;)
andholding(b,_») of the next stack action in the sequenee= stack(b,_2,b,_1),
scheduled at time = 3, end up being the actiong = stack(b,_1,b,) att = 1

and pickup(b,_») at timet = 2. To illustrate this, consider the possible sup-
portersa’ of the preconditiorclear(b,_1) of ay differentthana, (namelyStart,
unstack(x, b,_1), andstack(b,_1, *) actions) and the causal linKclear (b,,_1)]as.
Clearly, for avoiding the action, at timet = 1 from threatening this link, one of

the precedences < d’ ora, < a; must hold, but since the latter disjunct is false
anda’ < as must hold too, we get'(a’) = 2 which is not possible for any such
supportera’. The supportepickup(b,_») for preconditionholding(b,_2) of as is

fixed at timet = 2 in a similar way, and the process repeats for all other stack
actions in the sequence until all actions have their start times and supporters fixed
and no flaw in the plan is left.



Table 1
Results forrowER-n domain

CPU time (sec.) Makespan
CPT BLACKBOX SATPLAN IPP TP4
tower02 | 0.00 0.00 0.13 0.00 0.00 2
tower03 | 0.00 0.00 0.13 0.00 0.00 4
tower04 | 0.01 0.02 0.16 0.00 0.01 6
tower05 | 0.01 0.08 0.32 0.00 0.03 8
tower06 | 0.02 0.24 3.30 0.00 0.08 10
tower07 | 0.03 0.75 39.75 0.01 0.32 12
tower08 | 0.06 1.85 236.02 0.01 1.75 14
tower09 | 0.08 3.56 665.76 0.04 12.11 16
towerl0 | 0.11 7.07 1229.22 0.19 103.63 18
towerll | 0.17 13.92 - 1.10 1096.08 20
towerl2 | 0.26 26.93 - 7.42 - 22
towerl3 | 0.36 52.16 - 61.32 - 24
towerlsd | 0.54 99.15 - 535.45 - 26
towerl5 | 0.80 - - - - 28
towerl6 | 1.10 - - - - 30
towerl7 | 1.47 - - - - 32
towerl8 | 1.89 - - - - 34
towerl9 | 2.46 - - - - 36
tower20 | 3.41 - - - - 38
tower2l | 4.40 - - - - 40
tower22 | 5.69 - - - - 42

Table 1 shows results fa@pPT in relation to other three modern planners: two op-
timal parallel plannersgLACKBOX [23] (with CHAFF [34]) and PP [24], and an
optimal temporal plannerr4'04 [17]. While most domains are not liKeOWER-n

and require search, the domain illustrates the strengtiroinference mechanisms

that often manage to prune the search space considerably. Over the next few sec-
tions we will see how this is achieved and how cost-effective these mechanisms are
in other parallel and temporal domains.

3 Background

The proposed scheme for optimal temporal planning combines three elements:
lower bounds automatically extracted from planning problems, a branching scheme
that parallels the one used in POCL planning, and a constraint-directed branch-and-
bound search. We review these topics over the next sections.

3.1 Lower Bounds

Arecent key development in Al planning is the uséetristic estimatorautomat-
ically extracted from problem encodings [5,33]. A parameterized family of lower
bounds or admissible heuristiég, m = 1, 2, .. ., for sequential and parallel plan-
ning is formulated in [16]. The heuristi¢g™(C') recursively approximatthe cost

of achieving a set of atoms from an initial states, by the cost of achieving the



most costly subset of size&' < m in C. For example, forn = 1, the heuristic

h™ approximates the cost of achieving a set of atoms by the cost of achieving the
most costlyatomin the set. For both sequential and parallel Strips planrifigor

m = 1 is thus given by the equation

0 if C C s, else
RY(C) = mingeo() |1 + h(pre(o))] if C = {p}, else 1)
max,ec h'({p}) if |C|>1

wherep is an atom and(p) stands for the operatorgthat addp (k! is also known

as theh,,,., heuristic; e.g., [4]). The estimatoks$® for sequential and parallel plan-
ning are equal forn = 1 but become different for higher valuesaf (recall that

cost in the sequential and parallel settings refer to number of actions and number of
time steps in the plan respectively). Moreover,for= 2, the parallel estimatdr™

is equivalent to the heuristic implicitly computed BRAPHPLAN in the construc-

tion of the planning graph: namely;*(A) for a set of atoms! is equivalent to the
index of the first propositional layer that contains the atom4 ithout a mutex

[16].

From a computational point of view, for a fixed, the heuristicd™ are polynomial

in both the number of actions and the number of atoms in the problem, and they
can be computed by a shortest-path algorithm over a graph in which the nodes are
given by the sets of at most atoms [16].

The heuristicg™ have also been extended to estinratkesparicompletion time)
in a temporal setting where actions can be executed concurrently and have different
durations [17]. The equation fer = 1 in that setting becomes

0 if C' C s, else
hp(C) = minyeo () [dur(o) + hi(pre(o))] if C' = {p}, else (2)
max,cc hi-({p}) if |C|>1

where the only change from tiparallel estimatori! is the substitution of the fixed
costl by the durationfur(a) of the actionz. Form = 2, the temporal estimatdi>.
departs from parallet? in other ways; see [17] for details. The measurgs$C)
are lower bounds on the time needed to méakérue from the initial situation
so- In cPT we use thehZ heuristic for initializing the value of certain temporal
variables, and enforce a version of thie heuristic over partial plans through a set
of ‘precondition’ constraints.



3.2 Branching

Branching in Al planning is most often discussed in terms ofktecean which the
search for plans is done, with state or directional planners searching in the space
of states, and partial order planners in the space of plans [20,21]. This perspective
has been very useful in planning, although it does not always make explicit what
these various approaches to planning have in common, including the more recent
SAT and CSP formulations. All planners, indeed, search in the space of plans (solu-
tions); directional planners, however, are able to explaieeomposition property

for which a partial plan tail or head can be summarized by the stateobtained

by regressing the goal or progressing the initial state thraughhis decompo-

sition is not possible in non-directional partial plans as arising from POCL, SAT,
or CSP formulations. In all cases, however, in order to search effectively for op-
timal plans it is necessary to detect and prune partial pratigat can only lead

to solutions with cost exceeding a certain bounidn state-based planners this is
accomplished by comparing the bouBdwith the value of an explicit evaluation
function f (o) that adds up the accumulated cgé&t) of the plan and an estimate
h(s?) of the ‘cost to go’. In SAT and CSP formulations, a constrdif(z) < B or

f*(0) = B defining the feasible partial plamsis explicitly added (* stands for

the optimal cost function); e.g., in SAT formulations unit clauses fikeand ¢

are added when searching for plans leading to the goatslg with costs not ex-
ceedingB = 10. Planning schemes based on POCL branching, on the other hand,
have lacked comparable pruning mechanisms. Recent proposals like [35,47] extend
POCL planning with guiding non-admissible heuristics, leaving optimality consid-
erations aside. Here we aim to achieve both good performance and optimality in
the more general setting of temporal planning.

3.3 Temporal Planning

We consider a simple extension of the Strips language that accommodates con-
current actions with integer durations. A number of extensions could easily be
added but we have chosen to keep the model as simple as possible focusing in-
stead on performance and optimality issues. The appeal of POCL planning for
rich temporal settings is discussed in [39]. A temporal planning problem is a tu-
ple P = (A, 1,0,G) whereA is a set of ground atoms (the boolean variables of
interest),] C A andG C A represent the initial and goal situations, ands the

set of ground Strips operators, each with precondition, add, and deleteclia,

add(a), anddel(a), anddurationdur(a). As is common in POCL Planning, we also
consider two dummy actionStart and End with zero durations, the first with an
empty precondition and effeét the latter with preconditiods and empty effects.

As in GRAPHPLAN two actionse anda’ interfere when one deletes a precondition

or positive effect of the other. We follow the simple model of time in [40], and



define a valid plan as a plan where interfering actions do not overlap in time. In
other words, we assume that the preconditions need to hold until the end of the
action, and that the effects also hold at the end and cannot be deleted during the
execution by a concurrent action. We are interested in computing valid plans with
minimum makespanOther models of concurrency could also be used (see [14]).
When all actions have uniform durations, the model reduces to the standard model
of parallel planning.

A scheduleP is a finite set of time stamped actiofss, ¢;), i = 1,...,n, where

a; IS an action and; is a non-negative integer indicating the starting time its
ending time ig; + dur(a;)). P mustinclude th&tart and End actions, the former

with time tag0. The same action (except for these two) can be executed more than
once inP if a; = a; fori # j. In such a casey,; anda; refer to twooccurrence®f

the same action. Two action occurreneganda,; overlapin P if one starts before

the other ends; namely ff;, ¢, + dur(a;)] N [t;,t; + dur(a;)] contains more than

one time point.

A scheduleP is avalid planiff interfering actions do not overlap i and for
every action occurrencg in P its preconditiong € pre(a) are true at time,.
This condition is inductively defined as follows:is true at timet = 0 iff p € I,
andp is true attime > 0 if eitherp is true at timeg — 1 and no actiom in P ending
att deletesp, or some actior’ in P ending at addsp.

The makesparof a planP is the time tag of théZnd action. An optimal tempo-

ral planner computes valid plans with minimum makespan. For this, it is actually
sufficient to have a planner that is sound and complete in the following sense: a
valid plan with makespan equal to a given bousds found iff one such plan ex-

ists. There are then many strategies for adjusting the bdtisd that an optimal
makespan is produced; e.g., the bound may be increased until a plan is found, or
can be decreased until no plan is found, etc.

3.4 POCL Planning

A partial plan or state in classical POCL planning corresponds to a set of com-
mitments represented by a tuple= (Steps, Ord, C'L, Open), whereSteps is the

set of actions in the partial plan Ord is a set of precedence constraintsaps,

C'L is a set of causal links, an@dpen is a set of open preconditions [20,32,46] (we
assume that actions are all grounded). A precedence constraint states that ac-
tion a precedes actioa in the plan, acausal linka[p]a’ states that actiom supports
the preconditiorp of actiona in o, while anopen preconditiotip|a states that ac-
tion a in the plan has a preconditigrthat is not yet supported. The initial statgis
given by the tuple{Start, End}, {Start < End},0,{|G1]End, ..., [Gn|End})
whereGy, Go, ..., G, are the top level goals iy.



Branching in POCL planning proceeds by picking a ‘flaw’ in a non-terminal state
o and applying the possiblkepairs[20,46]. Flaws are of two type®pen precon-
dition flaws[p|a in o are solved by selecting an actiofthat support® and adding

the causal link/'[p]a to C'L and the precedence constraiht< a to Ord (a’ should
also be added tSteps if a’ ¢ Steps). Similarly, threats— which refer to situations

in which an actioru € Steps deletes the conditiopin a causal linka; [plas in C'L

with the orderingz; < a’ < as consistent withDrd — are solved by placing one

of the precedence constraifit< a; or a; < @’ in Ord. A state is terminal if it is
inconsistent (i.e., the orderin@rd is inconsistent or contains flaws that cannot be
fixed) or is agoal (is consistent and contains no flaws).

4 Temporal POCL Planning

POCL branching can be adapted to the temporal setting in a direct way (e.g., [27]).
While extensions to rich temporal settings have been considered in [18], [37] and
[39], here we consider a simple extension obtained by the addition of temporal vari-
ablesT(a) for each of the actiong in the current state (i.e.,a € Steps), where

T(a) stands for the starting time af These temporal variables have initial domains
T(Start) =0, T(End) = B, andT(a) :: [0, B— dur(a)] whereB is the bound on

the makespanStart and End are the two ‘dummy’ actions used in POCL plan-
ning). The resulting states have the formy = (Steps, Ordr, CL,Open,T(-))
where the qualitative precedence orderingl has been replaced by the set of tem-
poral variable¥(a), a € Steps and their domains, along with a s@td; of tem-

poral constraints over them. A precedence constraint stating that aghi@tedes
actiona’ becomes the temporal constraif(a) + dur(a) < T'(a’). The qualitative
precedence relatiofrd from classical POCL planning can be preserved although
this is not strictly necessary. Initially, the s@td is empty.

As before, branching proceeds by picking a ‘flaw’ in a non-terminal staaed
applying the possible repair®pen precondition flawp]a in o are solved by se-
lecting an actior:’ that support®, and adding the causal linK[p]a to C'L and
the temporal constrairf(a’) + dur(a’) < T'(a) to Ordy. The actiond’ is added

to Steps if o' ¢ Steps and in such case a variabllgd’) for o’ is created. Simi-
larly, causal linkthreats i.e., situations in which an actian€ Steps may delete

a conditionp € del(a) in a causal linka, [p]as in C'L, are solved by adding one of
the temporal constraints(a) + dur(a) < T'(ay) or T'(az) + dur(az) < T'(a) to
Ordr. A terminal state in the resulting space is either a state with an inconsistent
set of temporal constraints (gead-engior a state with a consistent set of temporal
constraints and no flaws (pal statg.

The temporal constraints i@rd; form a Simple Temporal Problem (STP) [9]
whose consistency can be tested efficiently by applying a form of constraint propa-
gation known asounds consistend®9,48], where the lower and upper bounds



Tonin(a) and T,,..(a) of the variablesT'(a) in constraints of the forn¥'(a) +
dur(a) < T(a’) are updated &8,,.,(a) := min[T,,z(a), Trnae(a’) — dur(a)] and
Tin(a') = max[Tin(a’), Tin(a) + dur(a)] until a fixed point is reached or a
variable domain becomes empty.

With two additional provisions, it is possible to verify that the resulting branching
scheme issoundandcompletei.e., terminal goal-states = (Steps, Ordr,CL,
Open,T(+)) encode a valid temporal plai with makesparB where actions i
execute at their earliest possible times; il2.= (a;,t; = T0nin(ai))a,esteps, @and

one such terminal goal state will be generated when one such valid temporal plan
exists.

The two required provisions are the following. First, in the absence of a qualitative
precedence ordering on actions as in POCL planning, we need to regard an action
a deleting the condition in a causal linka, [p|a, as athreatwhen neither of the

two temporal condition§,.;,,(a) + dur(a) < Tyin(ar) andT,i, (az) + dur(as) <
Tin(a) hold. This is because the lower bourils;,, provide a consistent solution

to a STP if the STP is consistent, and at the same time, each of the constraints
T(a) + dur(a) < T(ay) andT(ay) + dur(az) < T'(a) posted as a result of a threat

fix the threat through bounds consistency propagation. Second, in accordance with
the semantics, we need to ensure that interfering actions do not overlap in time. For
that, let us say that a pair of interfering actions precondition-interferingvhen

one action deletes a precondition of the other, ance#eet-interferingotherwise.

It is easy to verify that the branching scheme above ensures that precondition-
interfering actions cannot overlap in time in the final plan, as such interferences
give rise to causal link threats. On the other hand, effect-interfering actions may
overlap. To rule out such situations, it is then sufficient to branch also on a second
class of threatanutex threatspairs of effect-interfering actionsanda’ such that
neither?,,;,(a) + dur(a) < T (a’) Nor T, (a') + dur(a’) < T, (a) hold in the
states. Such flaws are solved by addingdv-d one of the temporal constraints
T(a) + dur(a) <T(a")orT(a') + dur(a’) < T(a).

Modern Constraint-Based Interval (CBI) planners [18,39] are based on similar
ideas and are able to deal with more expressive languages. Yet, as in standard
POCL and Dynamic CSP planners [19], the followipgrformance probleme-

mains: pruning partial plans whose STP network is not consistent does not suffice
to match the performance of modern planners. For thige powerful representa-

tions and inference methods for predicting that all STP networks in the way to the
goal will eventually become inconsistent needed. This is indeed witT does

in the TOWER-n domain considered above for planning horizons smaller than the
optimal horizon, reporting an inconsistency by pure inference without doing any
search. Moreover, in the same domain, for the optimal planning hortzzorniinds

the solution without doing any search either. In both cases, as we see next, the key
is the ability of cPT to reason about all the actions in the problem, and not only
about the actions in the plan being considered.

10



5 A Constraint Programming Formulation

The performance limitation of current constraint-based POCL planners arises mainly
from their limitationto reason about the actions in the current plan ohpst of-

ten, nothing is inferred about an actiemntil the action is considered for inclusion

in the plan. Still, as we have seen in Section 2, a lot can be inferred about such ac-
tions including restrictions about their possible starting times and supporters. Some
of this information can actually be inferred before any commitments are made; the
lower bounds on the starting timesaif actions as computed BRAPHPLANbeing

one example. Yet this is not enough; if similar performance and optimality guar-
antees are to be achieved in the POCL setting, inferences that take advantage of
the commitments made are also necessary. In order to perform such inferences, the
representation of the space of possible commitments is crucial. We thus make two
changes in relation to the ‘standard’ temporal POCL planner above. First, we in-
troduce and reason with variables that invohlethe actions: in the domain; not

only those present in the current plan. And second, for all such actions we intro-
duce variables(p, a) andT'(p, a) that stand for the possibly undetermined action
supporting preconditiop of « and the possibly undetermined starting time of such

an action, and perform limited but useful forms of reasoning over such variables.
A causal linka'[p|a thus becomes a constraifitp, a) = o', which in turn implies

that the supporter’ of preconditiornp of a starts at timel'(p, a) = T'(a’).?

Initially, we will follow the formulation in [45], and make an important restriction;
namely thaho (ground) actioru in the domain occurs more than once in the plan.
This canonicity restrictionallows us to collapse the notions of action and action
occurrence, leading to a number of simplifications. Later on we will show how this
restriction is removed in the current versiona®T. The restriction is a meaningful
extension of the common assumption found in scheduling research where every
action in the domain must occur exactigice,and as we will see below, it happens

to be true in most current benchmarks in planning.

The basic CP formulation of thePT planner is given in four partgreprocess-

ing, variables, constraints, and branchingfter the preprocessing, the variables

are created and the constraints are asserted and propagated. If an inconsistency is
found, no valid plan for the problem exists. Otherwise, the constigibtnd) = B

for the boundB set to the earliest possible starting time of the actioni (i.e.;

B = T,..(End)) is asserted and propagated. The branching scheme then takes
over and if no solution is found, the process restarts by retracting the constraint
T(End) = B and replacing it witil'(End) = B + 1, and so on.

3 Propositional ‘causal’ encodings of Strips planning problems have been formulated and
analyzed in [22,31]. Our encodings share a number of features with these formulations but
are more compact due to the use of a temporal representation.

11



5.1 Preprocessing

In the preprocessing phase, the planner computes the heuristic ¥dligsand
h%({p, q}) for each action: € O and each atom paifp, ¢} as in [17]. The values
provide lower bounds on the times to achieve the preconditionsasid the pair
of atomsp, ¢, from the initial situation/. In addition, we identify thgstructural)
mutexess the pairs of atoms ¢ for which 12.({p, ¢}) = oo. We then say that an
actiona e-deletesan atomp when either deletesp, a adds an atom such thay
andp are mutex, or a preconditionof « is mutex withp anda does not adg (in
all casew is false after doing; see [35]).

In addition, the simpler heuristic}. is used for defininglistancesetween actions
[42] as follows. For each actione O, we compute thé'. heuristic from an initial
situation /,, that includes all factexcept those that are e-deleted ayWe then

set the distancedist(a, a’) to the resultingh}.(a') values. Clearly, these distances
encode lower bounds on theack that can be inserted between the completion
of a and the start o’ in any legal plan in which/’ follows a. These distances
are not symmetric and their calculation, which remains polynomial, involves the
computation of the}. heuristic|O| times.

The distancedist(Start, a) anddist(a, End) are defined in a slightly different
way. The former are obtained by running a shortest-path algorithm over a ‘relevance
graph’ where the nodes are the actions O and the actiort'nd is the source node.

An edgea — o’ in this graph means that is ‘relevant’ toa (namely that it adds

a preconditiorp of ) and its cost is given by(a’, a) = dur(a’) + dist(a’,a). The
distanceslist(a, End) are then set to the cost of the shortest-path conneéting

to a in this graph, minugur(a). The distancedist(Start, a) are set toh3.(a).

5.2 Variables and Domains

The states of the planner is given by a collection of variables, domains, and con-
straints. As emphasized above, the variables are defined for eachaetionand

not only for the actions in the current plan. Moreover, variables are created for each
preconditionp of each actioru as indicated below. The domain of variableis
indicated byD[X] or simply asX :: [X,in, Ximae] If X is @ numerical variable.

The variables, their initial domains, and their meanings are:

T(a) :: [0, 00] encodes the starting time of each actignvith 7'(Start) = 0
S(p,a) encodes the support of preconditiprof actiona with initial domain
DI[S(p,a)] = O(p) whereO(p) is the set of actions i that addp

T(p,a) :: [0, 00] encodes the starting time 61{p, a)

InPlan(a) :: [0,1] indicates the presence ofin the plan;InPlan(Start) =
InPlan(End) = 1 (true)

12



In addition, the set of actions in the current plan is kept in the varigblgs; i.e.,

Steps = {a | InPlan(a) = 1}. VariablesT'(a), S(p,a), andT'(p, a) associated

with actionsa which are not yet in the plan (i.e., actions for which the domain of
InPlan(a) remains the intervdD, 1] in o) areconditionalin the following sense:
these variables and their domains are meaningful only under the assumption that
they will be part of the plan. In order to ensure this interpretation, some care needs
to be taken in the propagation of constraints as explained below.

5.3 Constraints

The constraints correspond basically to disjunctions, rules, and temporal constraints,
or their combination. Most of these constraints are redundant; they are not needed
for soundness or completeness but for performance reasons (pruning values and
detecting inconsistencies earlier). Disjunctions are interpreted constructively: when
one disjunct is false, the other is enforced. Similarly for rules: when the antecedent
constraint holds, the consequent is enforced. The conditions under which a con-
straint is regarded as (necessarily) true or false in a state are determined by the
nature of the constraint and the domains of the variables; roughly, a constraint is
true (false) if it is true (false) foany possible assignment given the domains. E.g.,
T(a) < T(d') is true if the variable domains are such thaf,.(a) < T,n(a’)

holds, is false ifT},.i,(a) > T,...(a’) holds, and otherwise igndetermined.
Temporal constraints are propagated by bounds consistency as indicated above. In
constraints involving terms of the forop, c p(s(,q)), information propagatesom

S(p, a) but notinto S(p, a); propagation into such variables is achieved by explicit
rules with variablesS(p, a) on the right hand side. The constraints apply to all
actionsa € O and allp € pre(a); we use(a, a’) to stand fordur(a) + dist(a,a’).

e Bounds:Foralla € O,
T(Start) + d(Start,a) < T'(a)
T(a) + d(a, End) < T(End)

e Preconditions: Supportew’ of preconditiorp of « must precede by an amount
that depends odi(da’, a):

: / /

T(a) >  min (T(d)+5(d"a))
4 Similarly, T(a) = T(a') is true if Tjuin(a) = Thnaz(a) = Tiin(a') = Thnaz(a’) holds,
and is false if eithef'(a) < T'(a’) or T'(a) > T'(a’) holds. The conditions for enumerated
variables likeS(p, a) are similar;S(p,a) = o’ is true if D[S(p,a)] = {a'} and is false if
a’ & D[S(p,a)]. In all cases, the constrainC is true (false) ifC' is false (true). In CP, itis
common to say that a constraingistailedin a state rather than true [44]. We also note that
T(a) < T(d) is true in our modified CP engine wheh= End, regardless of the domain
of T'(a).

13



T(a) > T(p,a)+ i 8(d,a)

> in
a’€D[S(p,a)]
T(d)+d(d,a) > T(a) — S(p,a) #d

e Causal Link Constraints: For alla € O, p € pre(a) anda’ that e-deleteg, o’
precedes(p, a) or follows a

T(d) +dur(d) + min dist(d’,a") < T(p,a)
a’eD[S(p,a)]

V T(a)+d(a,a’) < T(a")
e Mutex Constraints: For effect-interfering: anda’
T(a)+d(a,a’) <T(a") v T(d')+6(a,a) < T(a)
e Support Constraints: 7'(p, a) andS(p, a) related by
S(p,a) = d' — T(p,a) = T(a')

T(p.a) #T(d') — S(p,a) # d

min  T(d) < T(p,a) < max T(da)

a’€D[S(p,a)] a’eD[S(p,a)]

The constraints involving the variablé§p, a) andT'(p, a) arelifted in the sense

that they apply to all possible supportersof preconditionp of a. As mentioned
above, the variableB(a), T'(p, a), andS(p, a) areconditionalwhenInPlan(a) =

1 is neither true or false. They becormeplan variables when'nPlan(a) = 1
becomes true, andut-planvariables when'nPlan(a) = 1 becomes false. Con-
straints involving in-plan variables only are propagated as usual, and furthermore,
an empty domain raises an inconsistency. Constraints involving an out-plan vari-
able, on the other hand, are not propagated. Finally, and most importantly, con-
straints involving conditional variables associated withghme actiorm and hence

the same assumption (namely thatill be part of the plan) are propagated louty

in the direction of the conditional variable$his ensures that the domain of a con-
ditional variable depends only on the assumption that that particular variable is in
the plan and on no other assumption. As a resuthe domain of a conditional
variable associated with an actianbecomes empty, it is inferred that the action
cannot be part of the current plan and not that the current partial plan is inconsis-
tent.More precisely/nPlan(a) is set to0 if the domain of a conditional variable
associated witla becomes empty, and in such case, the acticremoved from

the domain of all support variableégp, ') such that: addsp. On the other hand,
whenS(p,a’) = a holds for some action’ in the plan,/nPlan(a) is automati-

cally set tol. Conditional variables of this type in constraint programming have
been considered in [13].

14



5.4 Branching

As in the temporal POCL planner described above, branchingpinproceeds

by iteratively selecting and fixing flaws in non-terminal statesnd backtracking

upon inconsistencies. A stateis given by the variables, their domains, and the
constraints involving them. The initial stadg contains the variables, domains, and
constraints above, along with the bounding constréifnd) = B whereB is

the current bound on the makespan. A state is inconsistent when a non-conditional
variable has an empty domain, while a consistent stateth no flaws is agoal
statefrom which a valid planP with boundB can be extracted by scheduling the
in-plan variables at their earliest starting times.

The definition of ‘flaws’ parallels the one considered above for temporal POCL
planning:

e Support Threats: o’ threats a supportS(p, a) when both actions anda’ are in
the current plang’ e-delete, and neithefl’,,;,,(a’) + dur(a’) < Ty (p, a) NOX
Tmin(a) + dur(a) < Tpin(a’) hold.

e Open Conditions: S(p, a) is anopen conditionwhen |D[S(p,a)]| > 1 holds
for an actionu in the plan.

e Mutex Threats: a anda’ constitute amutex threatwhen both actions are in
the plan, they are effect-interfering, and neitfigy;,,(a) + dur(a) < Tin(a’)
nor Thin(a’) + dur(a’) < T,.un(a) hold (two actions are effect-interfering in
cPTwhen one deletes a positive effect of the other, and neitheealeetesa
precondition of the other).

Upon selecting a flaw in a state a binary splitis created which we denote as
[Cy; Cs] whereC; and C;, are constraints. The first chilg, of o is obtained by
addingC’; to o and closing the result under the propagation rules; the second child
oy Of o is generated by adding the constraiitinstead, when the search beneath
o fails. The binary splits generated for each type of flaw are as follows:

e A Support Threat (a’, S(p, a)) generates the split

[T(a') + dur(a’) + min dist(a’,a") < T(p,a);
a'’eDI[S(p,a)]

T(a)+d(a,a’) <T(a)]

e An Open Condition S(p, a) generates for a selected suppdrthe split
[S(p.a) = d’; S(p,a) # d]

e A Mutex Threat (a,a’) generates the split

[T(a)+d(a,a’) <T(d); T(d)+d(d,a) < T(a)]

15



The branching scheme is sound and complete under the canonical restrictions above.
Soundness follows from the validity of the pl&hobtained from a consistent state

o with no flaws by scheduling the in-plan actiomsat the earliest possible times

t; = Thin(a;). Completeness in turn follows from the soundness of the propaga-
tion rules and the validity of the binary splits: namely for each possible binary split
[Cy; Cs), the disjunctionC; Vv Oy is valid; thus if there is a plan with makespan
compatible with the commitments tn then there will be a plan compatible with

one of the two sons af.

Branching heuristics

In each step, the selected flaw for repailcipT is a Support Threat if one exists,
else an Open Condition if one exists, else a Mutex Threat, until no flaws are left or
an inconsistency is detected. The heuristic for selecting among the existing flaws is
the following:

e Support Threats (a’, S(p, a)) with minimum slack
max|[slack(a’ < S(p,a)), slack(a < a')]

selected first (i.e., most constrained first; see [41]). Basically, the slack of an
orderinga < o stands for the ‘room’ fow’ in the schedule assuming it must
follow a; namely,

slack(a < a') = Thae(a') — [Tin(a) + 6(a, a’)]
slack(a’ < S(p,a)) =

/ !/ : . / "
Trnaz (P, @) — [Tin(a’) + dur(a”) + aueg}g(lpﬂ)} dist(a’,a")]

e Open Conditions S(p, a) selected latest first; i.e. maximizing the expression
Miny e pis(pa) Tmin (@), SPlitting on the ‘arg min’ action’ (i.e., creating the split
[S(p,a) = d"; S(p,a) # d)).

e Mutex Threats (a, a’) selected in simple fashion; first encountered such pair in
a search ovefteps selected first.

The heuristics for Support Threats and Open Conditions have a significant influence
on performance but not so the heuristic for Mutex Threats (most often no Mutex
Threats are left after removal of Support Threats and Open Conditions).

5.5 Mutex Sets

The code incorporates an enhancement that helps in some domains without repre-
senting a significant burden in others. It has to do with the ideauiéx setssets

16



M of actionsin the plan,(not necessarily pairs) such that any two actiond/imre
interfering. Since such actions cannot overlap, the time window associated with the
set of actiond\/:

I&%?[Tmaw(a> + dur(a)] - (I;Ié%} Tm%n(a>

must provide enough ‘room’ for scheduling all actionsaine M in sequence.
Taking into account the pre-computed distances, a lower bound for the time needed
for scheduling all actions i/ is given by

A(M) = [dur(a)+ min dist(a,a’)]— max dist(a,a’)

aedl a’€M|a’#a {a,a’ }CM

which expresses a lower bound on the time needed to schedule all the actléns in
one before another, except for the action scheduled last. With these lower bounds,
we define theMutex Setconstraint as

irllea&([T(a )+ dur(a’)] — ar’I'lel]I\l/[ T(a") > A(M)

and apply it tcsomemutex setsV/ identified from the actionSteps in the plan in

a greedy fashion, as described below (computing the largest mutex sets in the plan
seems too expensive). The idea of mutex sets is adapted from similar concepts used
in constraint-based scheduling suchedge-findingsee [2,6,26].

e Global Mutex Sets M; are built greedily as new actions are addedsteps.
Initially a single mutex sei/, with the Start and End actions is defined; then
any time an actiown is added taSteps, a is added to each existing mutex 3éf,

1 =0,...,ksuchthat is interfering with each actioa in M;, and a new mutex
set M, is created with: only whena cannot be added to any existing mutex
set. The mutex set constraint is enforced for each such/set

e Causal Link Mutex Sets M~ and M are defined also for each ‘causal link’
S(p,a)[pla in the plan. Initially, these sets are empty, then when a new agtion
is added to the plan that e-delefeand cannot follow: (resp. cannot precede
S(p,a)), a is added taM/~ (resp. toM ™) if a is interfering with each action in
M~ (resp. inM™). For these mutex set®/* and M —, the following CL Mu-
tex Set constraints enforced, which unlike the mutex set constraint above, not
only detects inconsistencies, but also prunes the bounds of the temporal variables
T(p,a) andT'(a):

min T(a') + A(M™) <T(p,a) A

a'eM—

T(a) + dur(a) < max [T(a’) + dur(a’)] — A(M™)

a'eM+

17



In addition, for alla” in the plan that e-deletethat can followS(p, a) and pre-
cedeu, we evaluate the consistency of the mutexigetU{a’} (resp.M*U{da'})

if ¢’ is interfering with each action in/~ (resp.M ™). If the set is inconsistent
(i.e., it violates the mutex constraint), then it is inferred tifamust follow a
(resp. must preced€(p, a)).

5.6 Relaxation of the canonicity assumption

The formulation above exploits the canonicity restriction that no (ground) action

in the domain occurs more than once in the plan. This restriction allows us to col-
lapse the notions of action and action occurrence, making the formulation simpler
but less general. In the curreni T planner, this restriction is removed by establish-
ing a distinction betweeaction typesandaction tokensPlans contain only action
tokens which are all instances of the fixed set of action types defined by the initial
set of operators. On the other hand, constraints and domains, that initially involve
only action types, eventually invohmothaction tokens and types. Basically, an ac-
tion type is regarded as a place holder for all the action tokens of that type that have
not made it yet into the plan. Action tokens are created dynamically from action
types when an action type is selected for supporting an open condition in the plan.
This happens when the propagation narrows down the domain of a support variable
S(p, b) for an action (token) in the plan to the singletofu}, wherea is an action

type, or when the action typeis explicitly chosen as the value of a support variable
S(p,b). In such a case, a new tokehof typea is created by ‘cloning’; namely for

the new instance’ of typea, the variable§'(a), S(q,a’), andT'(¢, a’) are created

as fresh copies of the variabl&$a), S(q, a), andT’(¢, a) with their corresponding
domains, wherg is a precondition of.. In addition, the new token’ is added as

an independent action to all support domains that include the actiom el all

the constraints involving the variabléga), S(q, a), andT (¢, a) are copied with/

in place ofa. The value of the variablén Plan(a’) is then set to 1 and' is added

to Steps. Finally, if the action instance’ of the action type: was created because
action typen was chosen (by branching or propagation) to support the precondition
p of an actionp, then the variabl&(p, b) is set to the new instaneé of a.

As an illustration, let us consider a problem in the Blocks World domain with three
blocks A, B andC with on(C, B) true in the initial state. The actioftack(A, B)
hasclear(B) as precondition, so the domain of the support varigtildcar(B),
stack(A, B)) is equal to{ putdown(B), stack(B, A), stack(B, C), unstack(A, B),
unstack(C, B)}. Suppose now thdin Plan(stack(A, B)) = 1 and that the ‘Open
Condition’ branching rule chooses as the value of the support varidblear(B),
stack(A, B)) the action typeunstack(C, B). The 'cloning’ operation then creates
the new action tokemnstack(C, B)' of type unstack(C, B), and then performs

18



the following operations:

e First, thevariables InPlan(unstack(C, B)'), T (unstack(C, B)"), S(clear(C),
unstack(C, B)"), S(on(C, B),unstack(C, B)"), T(clear(C), unstack(C, B)")
andT (on(C, B),unstack(C, B)") are created, their domains being a copy of the
corresponding domains of the variables involving the action typeack(C, B).

For instance, if the domain of the temporal variable:nstack(C, B)) is [0, 5],
then the domain of the cloned variallf¢unstack(C, B)') is set to[0, 5] as well.

e Then all theconstraints involving the typeunstack(C, B) are copied with the
token unstack(C, B)" instead ofunstack(C, B), and all these constraints are
entered into the current state. For example, the following new precondition con-
straints are added

T (unstack(C, B)") > i T(a")+0(d’, unstack(C, B)’
(UTLS ac <C7 ) ) B a/GD[S(clear(IB%}antack(C,B)’)}( (a )+ <a » unsrac (07 ) ))

and

T (unstack(C, B)') > min (T(a')+0(a', unstack(C, B)")).

a’€D[S(on(C,B),unstack(C,B)’)]

e Also the domains of all the support variables containing the action type
stack(C, B) are extended with the new action tokemstack(C, B)'. For exam-
ple, sinceunstack(C, B) producesholding(C'), the domain ofS(holding(C),
stack(C, A)) which was equal tdpickup(C), unstack(C, A), unstack(C, B)}
is augmented withunstack(C, B)'; i.e., D[S(holding(C), stack(C, A))] be-
comes equal t§pickup(C), unstack(C, A), unstack(C, B), unstack(C, B)'}.
Similarly, unstack(C, B)" is added toD|[S(clear(B), pickup(B))], which be-
comes equal tdunstack(A, B), unstack(C, B), unstack(C, B)'}.

e Finally, thecausal link is instantiated i.e., the support variabl®(clear(B),
stack(A, B)) is set to the new tokeanstack(C, B)" which is added to the plan
by setting/n Plan(unstack(C, B)') to 1, and the effects are propagated.

This scheme provides a lazy implementation of a planning domain with an infi-
nite number of action tokens. In such a scheme, an action type represents all the
action instances of that type that have not made it yet into the plan, and which
are thus indistinguishable up to that point. This changes however when a new in-
stance is added to the plan, requiring the ‘cloning’ operation detailed above. In
our example, after the action tokemstack(C, B)' is ‘cloned’ from the action

type unstack(C, B), the two actions become ‘independent’, meaning that from
that point on, things work as if they were two completely different actions in the
domain.

Notice that if during the search Plan(a) = 0 for an action typex is inferred, all

new action tokens of that type get automatically excluded from the plan. Namely,
action types are true place holders for the information that is common to all the
action tokens of the same type that are not yet in the plan.

19



5.7 Implementation

ThecpPT planner has been implemented using ¢tikedCco CP library [28] that op-

erates on top of theLAIRE programming language [7] and compiles into C++. In
early stages of the implementation, we wrote the constraintHinco in a way

that resembled the formulation above, yet we progressively moved to an imple-
mentation based on propagation rules that avoids unnecessary checks and trigger-
ings, and speeds up the propagations. The current implementation is a collection
of rules which are triggered by the event mechanisratodco. Updates on lower
bounds, upper bounds, and domain values are recorded in event queues, where sim-
ilar events are ‘collapsed’; e.g., if the lower bound of a variables increased suc-
cessively from 1 to 2, and then from 2 to 3 before the first event is dequeued, only
one eventis stored, stating that the lower bound @ increased from 1 to 3. When

an event is dequeued, the relevant rules are triggered, performing the corresponding
propagations (namely, updates on variables constrained by the modified variables
are done which may trigger other rules and further updates). The only constraints
not re-implemented in terms of rules are the dynamic constraints; namely those that
are posted as a result of branching. We modifieddheco engine for allowing

to retract such constraints upon backtracking, and also for enforcing the semantics
of conditional variables. As stated above, for the latter an empty domain does not
raise an inconsistency but forces an action out of the plan. Over temporal variables,
the conditional behavior is obtained by handling those variables ourselves, while
over support variables, the conditional behavior is obtained by simply introducing

a dummy actiony added to their domains, witP[S(p, a)] = {a} meaning thap

cannot be supported by any action. ThePlan(a) variables are not implemented

as CP variables either; the information about the status of actions in the plan is com-
piled in the code of the propagation rules. Finally, for the removal of the canonicity
restriction, thecHoco engine was extended so that variables can be created dy-
namically, values can be added dynamically to their domains, and all such actions
can be retracted upon backtracking. The code and several executables are available
for download from our pagé.

6 A Working Example

We revisit the example in Section 2 for showing how the backtrack-free behavior of
CPT in the TOWER-n domain follows from the proposed constraint programming
formulation. Recall that the task mowEeR-n is to build an ordered tower of
blocks,bq, ...,b,, with b; on top, all blocks laying initially on the table. The single
optimal plan for this problem involves picking each bldgkfrom the table and
stacking it on block,  ;, fromi = n — 1 until « = 1. This is a trivial domain but

> CPT home page: http://www.cril.univ-artois{n¥idal/cpt.en.html

20



which no other optimal planner solves without search. Indeed, the inferences are
not trivial for a domain-independent planner as we will see.

Thetemporal variablesand their domains after preprocessing arg € [1,n], i #
7):

(Start) :: [0, 0]
(End) :: [4, ]
(pickup(by)) = [0, o
(putdown(b;)) :: [1, o0
(stack(b;,b;)) =2 [1, 00]
(unstack(b;, b;)) :: [2, 00
(on(b;, biv1), End) :: [1,00]
(ontable(b;), pickup(b;)) :: [0, ]
(handempty, pickup(b;)) :: [0
(clear(b;), pickup(b;)) :: [O,oo]
(holding(b;), putdown(b;)) :
(on(b;, bj), unstack(b;, b;))
(handempty, unstack(b;, b;
(clear(b;), unstack(b;, b;)) :
(holding(b;), stack(b;, b;)) :
T(clear(b;), stack(b;, b;)) :: [O, 0]

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

38

Thesupport variables and their domains in turn are:

S(on(bi, biy1), End) :: {stack(b;, biy1)}

(ontable(b;), pickup(b;)) :: {Start, putdown(b;)}

(handempty, pickup(b;)) :: {Start} U PUTDOWN U STACK

(clear(b;), pickup(b;)) :: {Start, putdown(b;)} U STACK ;.U UNSTACK .. ;
(holding(b;), putdown(b;)) :: {pickup(b;)} U UNSTACK .

(on(bi, b;), unstack(b;, b;)) == {stack(b;, b;)}

(handempty,unstack(bz, b;)) = {Start} U PUTDOWN U STACK

(clear(b;), unstack(b;, b;)) == {Start, putdown(b;) }USTACK; .UUNSTACK . ;
(holding(b;), stack(b;, b;)) :: {pickup(b;)} U UNSTACK; .

(clear(b;), stack(b;, b, )) {Start, putdown(b;) }JUSTACK ; [ JUNSTACK ..

S
S
S
S
S
S
S
S
S

where

— PICKUP = {pickup(b;) | i € [1,n]}

— PUTDOWN = {putdown(b;) | i € [1,n]}

— STACK = {stack(b;,b;) | 1,7 € [L,n] Aj #i}

— STACK, , = {stack;(bi,bj) |jel,n]ANj#i}

— STACK,; = {stack(b;,b;) | j € [1,n] A j # i}

— UNSTACK = {unstack(bl, bj)|i,je€l,n]ANj#i}
— UNSTACK, . = {unstack(bz,b )| jel,n]Nj#i}
— UNSTACK.; = {unstack(b;,b;) | j € [L,n] A j # i}

21



We explain the inferences that yield the backtrack-free behaviooDinER-n by
guoting the high-level account in Section 2, and showing how it follows from the
constraints ircPTand the general constraint propagation mechanisms supported in
the implementation. For keeping the description simple we describe the canonical
implementation where there is no need for distinguishing action types from tokens.

Step 1: Addition of stack actions to the plan.

... First, it is inferred that each subgoal:(b;,b; 1) must be achieved by the
action stack(b;, b;+1). This inference is simple as there is a single possible sup-
porter in each case ...

e For eachi € [1,n — 1] indeed,S(on(b;, b;11), End) has a singleton domain,
and sincelnPlan(End) = 1, S(on(b;,bi11), End) = stack(b;, b;+1) and
InPlan(stack(b;, b;11)) = 1 are inferred.

Step 2: Increasing the starting times ofstack actions.

... More interestingly, it is then inferred that these stack operations must be or-
dered sequentially in descending orderiphamely,stack(b,_1, b,) first, then
stack(b,_2,b,_1), and so on, untilstack(by, b2). This is inferred by reasoning
with and resolving the threats affecting the causal lisksck(b;, b;1)[on(b;,
bi1+1)]End. Moreover, it is also inferred that the first action in the sequence can-
not occur earlier thart = 1, the second action not earlier than= 3, the third

not earlier thant = 5, and so on, and that th&nd action cannot start earlier
than2(n — 1), the optimal time bound ... .

e The actionstack(b,_1,b,) e-deletesn(b,_», b,_1), and so threatens the causal
link stack(b,_a, bp_1)[on(b,_2, b,_1)]End. Following the causal link constraint,
sincestack(b,_1,b,) cannot follow End, it must precedatack(b,,—2, b,,—1),
and hence the disjunct

T(d) +dur(a) +  win dist(a’,a") < T(p,a)
a”"eD[S(p,a)]

with p = on(b,_2,b,-1), a = End andd’ = stack(b,_»,b,_1) is inferred,
which sincelist(stack(b,—1,b,), stack(b,_o,b,—1)) = 1 anddur(stack(b,_1,
b,)) = 1, yields

T (stack(b,—1,b,)) +2 < T(on(b,—_2,b,_1), End)
and therefore
T(On(bn_g, bn_1), End) Z 3

as from preprocessing;(stack(b;, b;)) > 1 forall 4, j.
e Then from the constraint(p,a) = ' — T(p,a) = T(a’) and the inferred
constraintS(on(b,—2, by—1), End) = stack(b,—2, b,—1),

T(stack(bn,g, bnfl)) Z 3.

22



¢ In a similar way, the disjunct
T(stack(bp—2,b,—1)) +2 < T(on(b,—3,b,—2), End)

of the causal link constraint becomes active, and sineeack (b,,—2, b,—1)) >
3 holds, so doe¥ (on(b,_3, b,—2), End) > 5, and from the constraiti(p, a) =
a — T(p,a) =T(a") andS(on(b,—3,b,—2), End) = stack(b,—3, bp—2),

T (stack(by—3,b,-2)) > 5.
e The same process is iterated over all the actionsk(b;, b;11) until
T(stack(by,bs)) > 2(n—1) — 1.
Then, asS(on(by, be), End) = stack(by, by), the precondition constraint

T(a)> min (T(a")+d(d,a))

' €D[S(p,a)]
for a = End andp = on(by, be), results in

T(End) > T(stack(by, b)) + 1
which fromT'(stack(by, b)) > 2(n — 1) — 1, yieldsT'(End) > 2(n — 1).

Step 3: Setting the initial upper bound on the makespan and deriving upper
bounds for the stack actions.

... Allthese inferences result from the domain constraints and propagation mech-
anisms before even a search bouBicbn the allowed makespan of the plan is
fixed. After the first boun® = 2(n — 1) is chosen (this is the earliest time at
which the actionfnd can start), further inferences are made. First, the starting
timesT'(ay) of all the actions; in the stack sequence above become fixed to their
earliest possible starting times resultingiita,) = 1+2k,fork =1,...,n—1,
wherea,, is the k-th action in the sequence (namely = stack(b,_x, by_r+11))

e The constrainfl'(End) = B on the makespan is asserted forequal to the
current lower boun@(n — 1) of variableT'( End), and then from the bounding
constraint

T(a) 4+ 6(a, End) < T(End)

for a = stack(by, by), ando(stack(by, bs), End) = 1 (the stack actions have
durationl), itis inferred that

T(stack(by,bs)) <2(n—1)—1
and since we havé&(stack(by, b)) > 2(n — 1) — 1, that

T(stack(by,bs)) = 2(n —1) — 1.

23



e Fromthe constraint(p,a) = o' — T'(p,a) = T(d’), inturn, andS(on(by, bs),
End) = stack(by, by), itis inferred also that

T(on(by,by), End) =2(n—1) — 1.

e Then from the constrainif'(stack (b, b3)) + 2 < T(on(by, by), End) derived
in Step 2, this propagates into

T'(stack(ba, b3)) <2(n—1)—3
but sinceT (stack(bs, b3)) > 2(n — 1) — 3 also from Step 2, then
T(stack(by, b3)) =2(n — 1) — 3.
e This continues iteratively until obtaining

T (stack(b,—1,b,)) = 1.

Step 4: Addition of pickup(b,,—1) to the plan.

... Then thepickup(b,_1), pickup(b,_2), ...sequence gets added to the set of
actions in the plan at their correct starting times as a result of further reasoning
that prunes the other possible supports and times. For example, the precondition
clear(b,) for the first actiona; = stack(b,_1,b,) in the sequence can be sup-
ported by a number ofnstack(x,b,) and stack(b,, ) actions, and byStart.
However, since any such supportémust precede; and7'(a;) = 1 is already
fixed,T(a") < 1 must hold, leaving’ = Start as the only possible supporter (at
preprocessing, lower bounds on the starting time of actions are computed from
which it is known that/’'(a’) < 1 is true only forStart and pickup actions).

For similar reasons, all supportergnstack(b,_1,*) for the other precondition
holding(b,_1) of a; are pruned, leaving) = pickup(b,_1) as the only possible
support. The process repeats for the preconditiong 6f pickup(b,,_1) with all
supportersy’ different thanStart being pruned as well ...

e stack(b,_1,b,) has two preconditiongiear (b, ) andholding(b,_,). From the
constraintl’(a) > T'(p,a) + mingepisp.a)d(a’,a) with p = clear(b,) and
a = stack(b,_1,b,), asT'(stack(b,—1,b,)) = 1, itis inferred thatl'(clear(b,),
stack(b,_1,b,)) < 0 and hence that

T(clear(by,), stack(by—1,b,)) = 0.

e The domain of variabl&(clear(b,), stack(b,—1,b,)) containsStart and the
actions inSTACK,, . and UNSTACK . ,,. However, from preprocessing, the
actions inSTACK,, . have starting times greater than or equal tand the
actions inUNSTACK , ,, have starting times greater than or equak.térom
the constraint

T(p,a) # T(d') — S(p,a) # d

24



with p = clear(b,), a = stack(b,_1,b,) anda’ € STACK,, ,UUNSTACK .,
all the actions il TACK ,, ., andUNSTACK,,_, . are then pruned from the do-
main of the variables (clear(b,,), stack(b,—1, b,)). The only remaining action
is thenStart, and we have then

S(clear(by), stack(b,_1,b,)) = Start.

e For the second precondition etack(b,_1,b,), i.e. holding(b,_1), the rea-
soning is similar: first’(holding(b,_1), stack(b,—1,b,)) = 0 is inferred, and
then sinceholding(b,—1) can be produced only byickup(b,—;) and the ac-
tions UNSTACK ,,_, . which all have starting times greater than or equal to
2, it follows from T'(p, a) # T(a') — S(p,a) # o' with p = holding(b,_1),

a = stack(b,_1,b,) anda’ € UNSTACK, ., that all such actions’ are
pruned fromD[S(holding(b,_1), stack(b,_1,by))], resulting in

S(holding(b,_1), stack(b,—1, b)) = pickup(b,_1)
and
InPlan(pickup(b,_1)) = 1.

e Furthermore, from the constraistp,a) = o' — T(p,a) = T'(d’) it is also
inferred thatl"(pickup(b,_1)) = 0, and from the precondition constraint

T(a) > T(p,a) + mingepispa)d(a, a)

anda = pickup(b,_1), T(p,a) = 0 is inferred for the two preconditions
of a: clear(b,—1) andhandempty. As a result, from the constraifit(p, a) #
T(a') — S(p,a) # d, all actions other thatart are pruned as possible
supporters oflear(b,_1) andhandempty, from which it is inferred that

S(clear(b,_1), pickup(b,_1)) = S(handempty, pickup(b,_1)) = Start.

Step 5: Addition of pickup(b,_») to the plan.

... At this point a number of actions and causal links in the plan have been in-
ferred with no commitments made except for the balinth particular, due to

the causal links going into the actiopg-kup(b,_1) andstack(b,_1,b,,) already
fixed at the timeg = 0 andt¢ = 1 respectively, and the fact that all action$
whether in the plan or not (except for these two &ftdrt), threat these causal
links but cannot precede both actions, the starting tiffigs) of such actiong’

are pushed to times = 2 or higher. The result is that the only supporters left
for the preconditionglear(b,_1) and holding(b,_-) of the next stack action in
the sequencey, = stack(b,—2, b,—1), scheduled at time= 3, end up being the
actionsa; = stack(b,_1,b,) att = 1 andpickup(b,_o) attimet =2 ...

e The actionstack(b,_2, b,_1) still has two open preconditiongolding(b, )
andclear(b,-1). The actionstack(b,,—1,b,,) e-deletesiolding(b,—-), and thus

25



threats the support variabl holding(b,_2), stack(b,_2,b,_1)). But since it
does not preced€ack(b, o, b, 1) (all the times for thestack actions are al-
ready fixed), the first disjunct of the causal link constraint is enforced
T(d')+dur(d)+ min dist(a',a") <T(p,a)
a”’€D[S(p,a)]
with p = holding(b,—2), ' = stack(b,_1,b,) anda = stack(b,_2,b,_1)
which yields

T (holding(b,_2), stack(b,_2,b,_1)) > 2.

In turn fromT'(p, a) + mingcpsp,ad(a’, a) < T'(a) with p = holding(b,_)
anda = stack(b,_2,b,_1), T'(holding(b,_2), stack(b,_2,b,_1)) > 2is in-
ferred, and therefore from the inequality above,

T (holding(b,_s), stack(b,_2,b,_1)) = 2.

The actions that can support the preconditiotiding(b,, o) of stack(b,_2,b,_1)

are pickup(b,—2) and the actiond/NSTACK ,,_, .. However, the latter ac-
tions are excluded. Indeed, they all have as precondition the facbtthat

is on another block, and the actions that can produce this precondition are
the ones INSTACK,,_» .. However, these actions cannot precede the action
stack(b,_1,by,), which is in the plan, and hence must follow it because of the
causal link constraint. Since the distance betweenk (b, 1, b,,) and the ac-
tions in STACK,,_, . is 1, the lower bound of the starting time of these ac-
tions is increased t8. As a consequence, the lower bound of the actions in
UNSTACK,_ .. is increased tel, and this is why they cannot produce the
preconditioniolding(b,,_o) for stack(b,_o,b,_1), and therefore

S(holding(b,_s), stack(b,—_2,b,_1)) = pickup(b,_2).

The actions that can produce the other preconditiea- (b, ) of stack(b,, s,
b,—1) are eitherStart, or the actions il6TACK ,,_1 . U UNSTACK . ,—1. AS
clear(b,_) is false before doingtack(b,_1, b,) and no action is left between
stack(b,—_1,by,) andstack(b,_o,b,_1), the only possibility is

S(clear(bn—1), stack(by—o,b,—1)) = stack(bn,—1,by).

The same kind of reasoning is made for the preconditiopscdfup(b,,_»), and
therefore the support variables get the values

S(handempty, pickup(b,_3)) = stack(b,—1, by,)
and

S(clear(b,—2), pickup(b,—2)) = Start.

26



Step 6: Addition of all other pickup actions to the plan.

...the process repeats for all other stack actions in the sequence until all actions
have their start times and supporters fixed and no flaw in the plan is left.

e Following the same process, the action$INSTACK ,,_, . with & > 3 are ex-
cluded from the domain of the support variab¥&#.olding (b, i), stack(b, g,
b,_x_1)), leaving as the only possible choice the actipiigup(b,_,) whose
correct starting times are also inferred. The preconditions of the agtiohs
up(b,_i) are found in the same way.

7 Experimental Results

We consider next the experiments for comparary with other optimal parallel

or temporal planners. The experiments have been obtained using a Pentium IV
machine running at 2.8Ghz, with 1Gb of RAM, under Linux, and a time limit of
one hour for each problem. The planners are:

e CPT. our temporal planner, a version that slightly improves the version entered
at the 4th International Planning Competition (Optimal Track; see [11]) with no
canonicity restrictions,

e BLACKBOX: the SAT-based parallel planner described in [23] with thenFF
SAT solver [34],

e SATPLANO4: the new implementation &LACKBOX with the SIEGESAT solver,
as it was entered at the 4th International Planning Competition,

e IPP. theGRAPHPLAN-based parallel planner described in [24], and

e TP4'04: the new implementation of the temporal planner described in [17], that
was also entered at the 4th IPC.

We evaluated the two temporal plannemsT and TP4'04 over temporal domains,

and all temporal and parallel planners over parallel domains. The domains and
problems are Blocks World (5 standard instances, 50 instances from IPC2), Lo-
gistics (8 standard instances, 50 instances from IPC2), Miconic [25] (50 instances
from IPC2), and four domains created for IPC3: Depots, DriverLog, Satellite and
ZenoTravel. These last four domains are used in both parallel and temporal set-
tings. Details on IPC2 and IPC3 can be found in [1] and [30]. We report results
over many domains and instances both for assessing the proposed planner reliably
and as a reference for other researchers.

6 While cpTwas entered at the 4th IPCpT does not adhere completely to the PDDL2.1
semantics [14] but rather follows the simpler semantics for temporal planning in [40]. In
the former, plans with smaller makespans may result as interfering actions are allowed to
overlap in certain cases. See [14] for details.

27



Tables 2 to 5 compare the planners over the parallel domains, while Table 6 com-
parescPT andTP4'04 over the temporal domains. The times in all cases include
preprocessing. Times reported as 0.00 mean that they were solved in less than 0.01
seconds. The tables show tl@tT runtimes and coverage are similar to those of
BLACKBOX andsSATPLANO4 over the parallel domains with the exception of Blocks
World, wherecPT does much better, and Logistics and Miconic, whepa does
worse.CPT also seems to scale up much better thRm over all domains with

the exception of the Miconic domain, wheireP does better. FinallycPT seems

to dominate the temporal plannep4’'04 over all parallel and temporal domains,
expanding much fewer nodes. As discussed in [17], the problem with state-based
temporal planners such &B4’'04 is theirbranching factowhich may be exponen-

tial in the number of primitive actions in the domain.dnT, the branching factor is

two, and after every branching decision, a powerful pruning mechanism is applied.
While solutions in such a case, may lay deeper in the search tree, pruning decisions
have a chance then to prune larger parts of the search space, and therefore, to be
more effective.

The scatter plots in Figures 1 to 5 summarize the information provided in these
tables. The first four figures summarize the results for parallel planning compar-
ing CPTwith BLACKBOX, SATPLANO4, IPP andTpP4’'04 respectively, while the last
figure compare€pPT with TP4'04 over temporal domains. In these figures, dots
represent for each problem, the runtimeasT (x-axis) in comparison with the
runtime of the other planners (y-axis). Dots above the diagonal indicate problems
wherecpT is faster, while dots below the diagonal indicate problems where the
other planners are faster. Likewise, problems on the top border are unsolved by
cPT, while problems on the right border are unsolved by the other planners.

The results shown in the tables and in the figures lend support to our main goal
in the development ofPT. an optimal temporal planner with good performance,
able to approach the performance of the best parallel planners when all actions
have the same duration. The key for this result is the combinatiazPinof a

POCL branching scheme suitable for temporal planning, and a CP representation
of partial plans that supports powerful pruning and reasoning mechanisms such as
those found in modern parallel planners.

8 Discussion

We have developed a domain-independent optimal POCL temporal planner based
on constraint programming that integrates existing lower bounds with novel repre-
sentations and propagation rules that manage to prune the search space consider-
ably. The key novelty in the planner and the source of its power, is the ability to rep-
resent and reason about supports, precedences, and causal links involving actions
that are not in the plan. The experiments show that the resulting planner is faster

28



Table 2

Results for Blocks World

CPU time (sec.) Makespan
CPT BLACKBOX  SATPLAN IPP TP4
bw-12step 0.10 0.15 0.53 0.01 0.17 12
bw-large.a 0.10 0.64 3.35 0.03 0.93 12
bw-large.b 1.02 10.14 181.61 1.33 593.85 18
bw-large.c 140.30 - - - - 28
bw-large.d - - - - - -
bw-ipc01 0.00 0.02 0.17 0.00 0.01 6
bw-ipc02 0.01 0.01 0.20 0.00 0.00 10
bw-ipc03 0.01 0.01 0.16 0.00 0.01 6
bw-ipc04 0.03 0.07 0.34 0.00 0.04 12
bw-ipc05 0.01 0.06 0.32 0.00 0.04 10
bw-ipc06 0.02 0.11 1.28 0.00 0.03 16
bw-ipc07 0.04 0.15 0.48 0.00 0.07 12
bw-ipc08 0.02 0.17 0.90 0.00 0.08 10
bw-ipc09 0.03 0.41 35.14 0.00 0.11 20
bw-ipc10 0.04 0.38 5.07 0.01 0.14 20
bw-ipcl1 26.63 2.87 541.39 0.02 3.77 22
bw-ipc12 1.21 1.19 115.31 0.01 0.69 20
bw-ipc13 0.16 2.35 193.12 0.02 2.64 18
bw-ipc14 0.82 3.04 683.88 0.03 5.57 20
bw-ipc15 0.10 1.03 24.37 0.01 0.44 16
bw-ipcl6 0.24 6.13 - 0.12 33.03 30
bw-ipc17 0.95 3.35 - 0.04 3.85 28
bw-ipc18 0.12 3.18 - 0.03 1.76 26
bw-ipc19 0.23 12.17 - 0.27 94.41 34
bw-ipc20 1018.47 53.48 - 10.31 - 32
bw-ipc21 16.51 19.93 - 0.71 261.37 34
bw-ipc22 - 75.89 - 9.43 - 32
bw-ipc23 - 283.26 - 390.26 - 30
bw-ipc24 1.11 36.89 - 3.97 2518.01 34
bw-ipc25 574.46 70.49 - 1.86 2936.43 34
bw-ipc26 5.86 39.30 - 0.89 413.27 34
bw-ipc27 0.82 119.58 - 477.50 - 42
bw-ipc28 6.43 198.49 - 28191 - 44
bw-ipc29 - - - 195.42 - 38
bw-ipc30 - - - - - -
bw-ipc31 | 1434.88 - - - - 40
bw-ipc32 6.57 - - - - 52
bw-ipc33 - - - - - -
bw-ipc34 | 1706.01 - - - - 52
bw-ipc35 - - - - - -
bw-ipc36 - - - - - -
bw-ipc37 - - - - - -
bw-ipc38 - - - - - -
bw-ipc39 34.15 - - - - 62
bw-ipc40 358.65 - - - - 58
bw-ipc4l - - - - - -
bw-ipc42 170.45 - - - - 72
bw-ipc43 16.86 - - - - 78
bw-ipc44 | 1563.39 - - - - 68
bw-ipc45 - - - - - -
bw-ipc46 - - - - - -
bw-ipc47 - - - - - -
bw-ipc48 - - - - - -
bw-ipc49 - - - - - -
bw-ipc50 - - - - - -

29




Table 3

Results for Logistics

CPU time (sec.) Makespan
CPT BLACKBOX  SATPLAN IPP TP4
log.easy 0.02 0.05 0.19 0.00 0.48 9
rocket.a 0.11 0.22 1.91 4.54 - 7
rocket.b 0.08 0.26 2.68 6.92 - 7
log.a 0.15 0.26 1.05 450.47 - 11
log.b 1.85 0.52 57.92  1190.54 - 13
log.c 2.22 0.85 36.18 - - 13
log.d 2.82 2.12 100.45 - - 14
log.d3 1.25 1.69 27.83 - - 13
log.d1 - 2.77 353.34 - - 17
log-ipc01 0.02 0.04 0.14 0.00 0.06 9
log-ipc02 0.02 0.04 0.16 0.00 0.07 9
log-ipc03 0.02 0.04 0.17 0.00 0.06 9
log-ipc04 0.02 0.04 0.17 0.00 0.08 9
log-ipc05 0.02 0.04 0.16 0.00 0.10 9
log-ipc06 0.01 0.01 0.11 0.00 0.06 3
log-ipc07 0.02 0.04 0.16 0.00 0.09 9
log-ipc08 0.02 0.04 0.18 0.00 0.89 9
log-ipc09 0.02 0.04 0.20 0.00 0.30 9
log-ipcl10 0.09 0.17 0.35 1.32 789.17 12
log-ipcll 0.13 0.22 0.41 24.18 - 13
log-ipc12 0.07 0.15 0.25 0.28 218.13 11
log-ipcl3 0.11 0.18 0.30 1.17  1712.18 12
log-ipc14 0.07 0.14 0.29 0.06 30.60 11
log-ipc15 0.07 0.11 0.22 0.02 2.18 10
log-ipc16 1.56 1.37 6.24 - - 15
log-ipc17 0.21 0.38 1.36 620.86 - 12
log-ipcl8 0.43 0.54 1.42 - - 13
log-ipc19 3.06 1.24 9.94 - - 15
log-ipc20 0.22 0.48 1.25 - - 12
log-ipc21 11.39 1.16 8.93 - - 15
log-ipc22 51.12 2.78 222.94 - - 13
log-ipc23 2.60 2.14 200.84 - - 13
log-ipc24 2.36 1.51 72.50 - - 12
log-ipc25 2.56 2.67 160.74 - - 13
log-ipc26 2.50 5.56 182.85 - - 13
log-ipc27 29.54 1.91 74.16 - - 12
log-ipc28 6.28 6.88 319.49 - - 13
log-ipc29 - 10.45 436.39 - - 13
log-ipc30 | 1505.16 15.38 591.54 - - 14
log-ipc31 - 52.05 595.15 - - 14
log-ipc32 - 90.98 919.45 - - 15
log-ipc33 | 1298.66 6.20 326.12 - - 13
log-ipc34 - 271.41 885.38 - - 15
log-ipc35 - 26.46 496.10 - - 14
log-ipc36 - 845.25 924.73 - - 15
log-ipc37 - 3308.84 - - - 16
log-ipc38 - - - - - -
log-ipc39 - 84.66 1267.65 - - 14
log-ipc40 - - - - - -

than current optimal temporal planners and is competitive with the best parallel

planners in the special case in which actions have all the same duration. The for-
mulation extends the one in [45] that assumes that no ground action in the domain
occurs more than once in the plan. This canonicity restriction is removed by estab-
lishing a distinction betweeaction typesndaction tokensthe latter being created

30




Table 4
Results for Miconic

CPU time (sec.) Makespan
CPT BLACKBOX  SATPLAN IPP TP4
miconic0l 0.00 0.00 0.14 0.00 0.00 4
miconic02 0.00 0.00 0.14 0.00 0.00 3
miconic03 0.00 0.00 0.13 0.00 0.00 4
miconic04 0.00 0.00 0.13 0.00 0.00 4
miconic05 0.00 0.00 0.14 0.00 0.00 4
miconic06 0.00 0.01 0.16 0.00 0.00 6
miconic07 0.00 0.01 0.16 0.00 0.00 6
miconic08 0.00 0.01 0.15 0.00 0.00 6
miconic09 0.00 0.01 0.15 0.00 0.01 6
miconic10 0.00 0.01 0.16 0.00 0.00 6
miconicll 0.01 0.05 1.28 0.00 0.02 8
miconic12 0.01 0.07 26.91 0.00 0.03 10
miconicl3 0.01 0.04 0.43 0.00 0.05 8
miconicl4 0.01 0.06 11.73 0.00 0.02 9
miconicl5 0.01 0.05 0.84 0.00 0.04 8
miconicl6 0.02 0.34 228.80 0.00 3.94 12
miconicl7 0.02 0.33 143.00 0.00 3.01 11
miconicl8 0.11 0.88 444.54 0.00 88.08 14
miconicl9 0.14 0.84 403.35 0.01 88.45 14
miconic20 0.18 0.87 459.46 0.00 129.61 14
miconic21 0.35 2.35 377.01 0.03 1054.36 14
miconic22 0.81 4.50 450.55 0.05 - 15
miconic23 0.05 0.51 107.62 0.00 1.52 10
miconic24 0.16 3.31 350.99 0.04 921.91 14
miconic25 0.04 3.79 574.59 0.03 - 16
miconic26 0.71 4.04 353.35 0.13 - 14
miconic27 0.08 5.12 438.61 0.11 - 15
miconic28 2.38 20.63 506.44 0.21 - 16
miconic29 2.63 17.19 549.54 0.14 - 16
miconic30 30.69 42.18 765.94 0.21 - 18
miconic31 6.89 69.74 808.73 0.88 - 18
miconic32 339.13 150.71 1254.80 1.27 - 20
miconic33 27.82 20.63 676.15 0.66 - 17
miconic34 45.48 33.91 697.31 0.86 - 17
miconic35 0.13 1149.07 1964.92 1.52 - 23
miconic36 8.02 398.61 1717.08 6.26 - 22
miconic37 - 1702.56 - 6.76 - 23
miconic38 958.34 148.81 1273.84 5.44 - 20
miconic39 - 1802.74 2173.08 7.08 - 24
miconic40 - 504.42 1598.66 6.53 - 22
miconic4l - - - 34.64 - 26
miconic42 28.24 2240.95 - 29.55 - 24
miconic43 0.32 2317.58 - 34.50 - 24
miconic44 | 3110.23 - - 34.02 - 28
miconic45 - 587.12 - 35.49 - 21
miconic46 - - - 166.68 - 27
miconic47 - - - 146.43 - 25
miconic48 - 2425.37 - 134.89 - 24
miconic49 | 3282.31 - - 162.68 - 28
miconic50 - - - 149.78 - 26

dynamically during the search. The resulting scheme can be understood as provid-
ing a lazy implementation of an action domain with an infinite collection of action
tokens or instances. Indeed, the action types are used as place holders for the infor-
mation that is common to all the action instances of that type that have not yet made
it into the plan. The move from canonical to general planning where ground actions

31




Table 5

Results for four parallel domains from IPC3

CPU time (sec.) Makespan
CPT BLACKBOX  SATPLAN IPP TP4
depots01 0.02 0.02 0.14 0.00 0.08 5
depots02 0.11 0.11 0.34 0.01 1.45 8
depots03 0.46 0.67 68.68 0.20 143.38 12
depots04 3.32 2.14 353.33 0.38 - 14
depots05 349.22 - - 20
depots06 - - - - - -
driver01 0.02 0.02 0.15 0.00 0.08 6
driver02 0.03 0.14 1.10 0.02 2.03 9
driver03 0.03 0.06 0.20 0.01 0.15 7
driver04 0.04 0.12 0.38 0.07 4.54 7
driver05 0.06 0.17 0.44 0.75 69.01 8
driver06 0.07 0.06 0.17 0.01 2.37 5
driver07 0.09 0.14 0.21 0.08 32.79 6
driver08 0.10 0.23 0.32 1.92 168.21 7
driver09 0.34 0.88 32.67 5.73 584.05 10
driver10 0.31 0.56 7.02 9.65 2113.08 7
driverll 0.92 1.52 23.32 1.27 72.06 9
driverl2 1186.49 - - - 16
satellite01 | 0.01 0.05 10.23 0.00 0.02 8
satellite02 0.09 0.84 265.85 0.01 12.38 12
satellite03| 0.04 0.15 4.99 0.01 0.36 6
satellite04 | 0.18 0.78 129.91 4.10 - 10
satellite05 | 0.74 0.85 52.33 79.03 7
satellite06 | 0.18 0.75 25.25 40.96 8
satellite07 0.63 1.02 26.00 571.25 6
satellite08 | 46.59 133.79 295.17 - 8
satellite09 | 3.84 2.62 39.01 - 6
satellite10 | 96.44 24.10 193.68 - 8
satellitell| 11.53 13.90 172.87 - 8
satellite12 - - - - - -
zeno01 0.01 0.01 0.12 0.00 0.05 1
zeno02 0.02 0.08 0.18 0.00 0.06 5
zeno03 0.07 0.20 0.28 0.01 0.30 5
zeno04 0.06 0.16 0.22 0.00 0.63 5
zeno05 0.15 0.27 0.37 0.01 1.49 5
zeno06 0.19 0.36 0.91 0.02 40.72 5
zeno07 0.22 0.39 0.54 0.02 266.24 6
zeno08 1.28 0.89 5.50 0.12  2088.00 5
zeno09 1.58 1.44 45.62 0.38 - 6
zenol0 5.42 2.28 102.21 123.58 6
zenoll 4.36 3.13 140.87 17.55 6
zenol2 4.67 6.32 201.85 743.63 6
zenol3 56.03 6.44 353.82 - 7
zenol4 - - - - -

can be repeated many times, involves however an overhead. In Tables 7 to 9, we
actually compare the gener@bT planner with thecpT planner with the canonicity
restriction. The latter planner, that we refer tocasr-CA in the tables, is a planner

that is optimal only when some of the optimal plans are canonical. This happens
automatically in domains like Blocks World for example, where all instances are
canonical in this sense (they never require repeating the same ground action twice).
In general, however, when this assumption is not tares-CA may result in non-
optimal plans (non-optimality), or may even find no plan at all (incompleteness).
Interestingly by looking at the tables, we only find four examples of non-optimality

32




Table 6
Results for four temporal domains from IPC3

CPU time (sec.) | Makespan CPU time (sec.)| Makespan
CPT TP404 CPT  TP404
driver01 0.02 4.18 91 depotsO1| 0.02 0.08 28
driver02 - 365.89 92 depots02| 0.50 19.73 36
driver03 0.03 0.18 40 depots03 - - -
driver04 - - - depots04 -
driver05 40.67 - 51 depots05 -
driver06 - - - depots06 - - -
driver07 0.43 45.52 40 zeno01 0.02 0.07 173
driver08 - - - zeno02 0.07 0.28 592
driver09 - - - zeno03 0.09 0.43 280
driver10 6.16 - 38 zeno04 1.09 - 522
driverll - - - zeno05 0.44 30.54 400
driver12 - - - zeno06 0.35 4.87 323
satellite01 0.01 0.01 46 zeno07 3.07 - 665
satellite02 1.19  466.63 70 zeno08 | 17.52 - 522
satellite03 0.06 1.17 34 zeno09 | 90.64 - 522
satellite04 0.82 - 58 zenolO | 82.62 - 453
satellite05 1.55 - 36 zenoll 7.77 - 423
satellite06 0.28 - 46 zenol2 - -
satellite07 1.10 - 34 zenol3 -
satellite08 - - - zenol4 -
satellite09 6.21 - 34
satellitel0 | 1897.84 - 43
satellitell 42.32 - 46
satellite12 - - -

(log-ipc09 , log-ipcl0 , depotsO3 anddriver02 ), and no example of
incompleteness; indicating that while not valid, the canonicity restriction is often
reasonable. At the same time, since the consideration of non-canonical plans in-
volves an overhead, the canonical planaer-caA ends up actually solving more
problems in the given time window (1 hour) than the generat planner. This is

most prominent in the temporal DriverLog instances where the former solves 11
out of the 12 instances, while the latter solves only 5, but it is also true for Blocks
World and Logistics. In addition, in all instances, with the four exceptions men-
tioned above, when botbpT and cpT-CA find a plan,cPT-CA finds a plan that

is as good in less time. It remains an open challenge to determine the conditions
under which restrictions like canonicity or suitable variations (e.g., that certain ac-
tions are ‘canonical’ but not others) can be detected and exploited. In the future,
we would also like to analyze in further detail the constraints that are most critical
in pruning the search space @pT, and whether this pruning power can be fur-
ther extended by explicating additional constraints in the formulation such as those
encoding ‘landmark’ information [38].

Acknowledgements

The first author thanks &ard Verfaillie for comments on earlier versions of this
paper and numerous discussions, and Patrick Haslum for his assistance on the use

33



Table 7
General planning in CPT vs. Restricted canonical planning in CPT over Blocks World and

Logistics
Blocks World CPU time (sec.) Makespan Logistics CPU time (sec.) Makespan
CPT CPT-CA| CPT CPT-CA CPT CPT-CA| CPT CPT-CA

bw-12step 0.10 0.08 12 12 log.easy 0.02 0.02 9 9
bw-large.a 0.10 0.09 12 12 rocket.a 0.11 0.09 7 7
bw-large.b 1.02 0.98 18 18 rocket.b 0.08 0.06 7 7
bw-large.c 140.30 129.93 28 28 log.a 0.15 0.15 11 11
bw-large.d - - - - log.b 1.85 0.38 13 13
bw-ipc01 0.00 0.00 6 6 log.c 2.22 0.53 13 13
bw-ipc02 0.01 0.01 10 10 log.d 2.82 1.33 14 14
bw-ipc03 0.01 0.01 6 6 log.d3 1.25 1.22 13 13
bw-ipc04 0.03 0.02 12 12 log.dl - 121.12 - 17
bw-ipc05 0.01 0.01 10 10 log-ipcO1 0.02 0.02 9 9
bw-ipc06 0.02 0.02 16 16 log-ipc02 0.02 0.02 9 9
bw-ipc07 0.04 0.03 12 12 log-ipc03 0.02 0.02 9 9
bw-ipc08 0.02 0.02 10 10 log-ipc04 0.02 0.02 9 9
bw-ipc09 0.03 0.03 20 20 log-ipc05 0.02 0.01 9 9
bw-ipc10 0.04 0.04 20 20 log-ipc06 0.01 0.01 3 3
bw-ipcl1 26.63 3.04 22 22 log-ipc07 0.02 0.02 9 9
bw-ipc12 1.21 0.31 20 20 log-ipc08 0.02 0.02 9 9
bw-ipc13 0.16 0.10 18 18 log-ipc09 0.02 0.02 9 11
bw-ipc14 0.82 0.30 20 20 log-ipc10 0.09 0.09 12 13
bw-ipc15 0.10 0.09 16 16 log-ipc1l 0.13 0.08 13 13
bw-ipc16 0.24 0.19 30 30 log-ipc12 0.07 0.06 11 11
bw-ipcl7 0.95 0.49 28 28 log-ipc13 0.11 0.08 12 12
bw-ipc18 0.12 0.11 26 26 log-ipcl4 0.07 0.06 11 11
bw-ipc19 0.23 0.22 34 34 log-ipc15 0.07 0.07 10 10
bw-ipc20 1018.47 88.93 32 32 log-ipc16 1.56 0.25 15 15
bw-ipc21 16.51 4.04 34 34 log-ipcl7 0.21 0.18 12 12
bw-ipc22 - 1041.98 - 32 log-ipc18 0.43 0.23 13 13
bw-ipc23 - 2898.88 - 30 log-ipcl9 3.06 0.28 15 15
bw-ipc24 1.11 0.56 34 34 log-ipc20 0.22 0.19 12 12
bw-ipc25 574.46 94.27 34 34 log-ipc21 11.39 0.46 15 15
bw-ipc26 5.86 1.82 34 34 log-ipc22 51.12 5.12 13 13
bw-ipc27 0.82 0.79 42 42 log-ipc23 2.60 1.10 13 13
bw-ipc28 6.43 1.60 44 44 log-ipc24 2.36 1.50 12 12
bw-ipc29 - 1672.96 - 38 log-ipc25 2.56 1.16 13 13
bw-ipc30 - - - - log-ipc26 2.50 1.16 13 13
bw-ipc31 1434.88 554.87 40 40 log-ipc27 29.54 7.57 12 12
bw-ipc32 6.57 2.91 52 52 log-ipc28 6.28 3.57 13 13
bw-ipc33 - - - - log-ipc29 - - - -
bw-ipc34 1706.01 654.64 52 52 log-ipc30 | 1505.16 10.64 14 14
bw-ipc35 - - - - log-ipc31 - - - -
bw-ipc36 - - - - log-ipc32 - 507.39 - 15
bw-ipc37 - - - - log-ipc33 | 1298.66 146.18 13 13
bw-ipc38 - - - - log-ipc34 - 34.80 - 15
bw-ipc39 34.15 8.93 62 62 log-ipc35 - 140.01 - 14
bw-ipc40 358.65 257.16 58 58 log-ipc36 - - - -
bw-ipc41 - - - - log-ipc37 - - - -
bw-ipc42 170.45 20.23 72 72 log-ipc38 - - - -
bw-ipc43 16.86 15.76 78 78 log-ipc39 - - - -
bw-ipc44 1563.39 249.01 68 68 log-ipc40 - - - -
bw-ipc45 - - - -
bw-ipc46 - - - -
bw-ipc47 - - - -
bw-ipc48 - - - -
bw-ipc49 - - - -
bw-ipc50 - - - -

34



BBOX running time (seconds)

Fig

SATPLAN running time (seconds)

Fig

IPP running time (seconds)

of TP4’04. Part of this work was done while the second author visited Nasa Ames
and the Universita di Genova in the Summer of 2000. He thanks Nicola Muscettola
and Enrico Giunchiglia for their hospitality and a number of useful discussions. He
has also benefited from discussions with P. Haslum, P. Laborie, C. Beck, S. Kamb-
hampati, D. Smith, A. Jonsson, J. Frank, and P. Morris. He also thaadt®HPala-

T T T T T
1000 ©. -
o s
"
100 + e B
© . oy
+ + o3
o, "o o
10 * g o 2
o + o v.97 v o
34 -
° * ﬁ o +* /‘%;(va +o ©
0%g o
1 1 8 + Lo} o) -
EARE- IR +  blocks
o *+° e D o X depots
O me? o driver
T.oE e o logistics
0.1 vy ©  miconic E
g ® "¢ & rovers
e o satellite
0.01 o 1 1 1 - Zeno I
0.01 0.1 1 10 100 1000

. 1. Performance afPTvs.BLACKBOX over parallel domains.

CPT running time (seconds)

1000 T T T T N <>’ -
k3 'y -
o + & e o
© o o° & X o av o)
o + n v o ° @
100 for? e S <
X 0° o -
+ “ Vo O .
+ 0 0o go g
10
B vO
1) +
o o o
4
1 w8 v +  blocks B
50 to, ¥ X depots
. -8 R o driver
] o logistics
0.1 P ©  miconic E
A4 rovers
o satellite
0.01 o 1 1 1 -~ 2610 I
0.01 0.1 1 10 100 1000

. 2. Performance afPTvs. SATPLANO4 over parallel domains.

CPT running time (seconds)

1000 -
0 ® oL
4
100 5 v
o -
o /G’
v
10 o +
O
o o [a] . o
1 ODo<> [, o *
= o * PR +  blocks B
. % x  depots
o T o o o driver
T o g © o logistics
0.1 P o miconic E
© o o, A rovers
o ++ o + o satellite
B a] o] +vv + v zeno
001 el i 1 1 T T
0.01 0.1 1 10 100 1000

CPT running time (seconds)

Fig. 3. Performance afpTvs. PP over parallel domains.

35



TP4 running time (seconds)

Fig. 4. Performance afPTvs. TP4’04 over parallel domains.

TP4 running time (seconds)

1000

-
o
o

o

o

blocks
depots
driver
logistics
miconic
rovers
satellite
zeno

N« o>oo0mx+

0.01 8=

0.01

L
0.1

L
1

CPT running time (seconds)

L
10

o
s

1000

]

1000

-
o
o

o

o

N« osoo0ox+

blocks
depots
driver
logistics
miconic
rovers
satellite
zeno

0.01 t—

0.01

L
0.1

L
1

L
10

o
o

1000

CPT running time (seconds)
Fig. 5. Performance afPTvs. TP4’04 over temporal domains.

cios for the related joint work in [36]. V. Vidal is partially supported by the “IUT
de Lens”, the CNRS and the&gion Nord/Pas-de-Calais” under the COCOA pro-
gram. H. Geffner is partially supported by Grant TIC2002-04470-C03-02, MCyT,
Spain.

References

[1] F. Bacchus. The 2000 Al Planning Systems Competitiofrtificial Intelligence
Magazing 22(3):47-56, 2001.

[2] P. Baptiste, C. Le Pape, and W. NuijtenConstraint-based scheduling: Applying
constraint programming to scheduling probleniuwer, 2001.

[3] A.Blum and M. Furst. Fast planning through planning graph analysiBrdneedings
of IJCAI-95 pages 1636—-1642. Morgan Kaufmann, 1995.

[4] B. Bonet and H. Geffner. Planning as heuristic seawstificial Intelligence 129(1-
2):5-33, 2001.

36



Table 8
General planning in CPT vs. Restricted canonical planning in CPT over Miconic

CPU time (sec.) Makespan CPU time (sec.) Makespan
CPT CPT-CA| CPT CPT-CA CPT CPT-CA| CPT CPT-CA

miconicO1 | 0.00 0.00 4 4 miconic26 0.71 0.68 14 14
miconic02 | 0.00 0.00 3 3 miconic27 0.08 0.07 15 15
miconic03 | 0.00 0.00 4 4 miconic28 2.38 2.26 16 16
miconic04 | 0.00 0.00 4 4 miconic29 2.63 2.58 16 16
miconic05 | 0.00 0.00 4 4 miconic30 30.69 28.71 18 18
miconic06 | 0.00 0.00 6 6 miconic31 6.89 6.49 18 18
miconic07 | 0.00 0.00 6 6 miconic32 339.13 328.26 20 20
miconic08 | 0.00 0.01 6 6 miconic33 27.82 26.39 17 17
miconic09 | 0.00 0.00 6 6 miconic34 45.48 43.06 17 17
miconic10 | 0.00 0.00 6 6 miconic35 0.13 0.12 23 23
miconicll | 0.01 0.01 8 8 miconic36 8.02 7.51 22 22
miconicl2 | 0.01 0.01 10 10 miconic37 - - - -
miconicl3 | 0.01 0.01 8 8 miconic38 958.34 922.00 20 20
miconicl4 | 0.01 0.01 9 9 miconic39 - - - -
miconicl5 | 0.01 0.01 8 8 miconic40 - - -
miconicl6 | 0.02 0.01 12 12 miconic4l - - - -
miconicl7 | 0.02 0.02 11 11 miconic42 28.24 26.53 24 24
miconicl8 | 0.11 0.10 14 14 miconic43 0.32 0.32 24 24
miconicl9 | 0.14 0.14 14 14 miconic44 | 3110.23  3089.62 28 28
miconic20 | 0.18 0.17 14 14 miconic45 - - - -
miconic21 | 0.35 0.32 14 14 miconic46 - - -
miconic22 | 0.81 0.76 15 15 miconic47 - - -
miconic23 | 0.05 0.04 10 10 miconic48 - - - -
miconic24 | 0.16 0.14 14 14 miconic49 | 3282.31 3212.65 28 28
miconic25 | 0.04 0.04 16 16 miconic50 - - - -

[5] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism
for planning. InProceedings of AAAI-Qpages 714—-719. MIT Press, 1997.

[6] J. Carlier and E. Pinson. An algorithm for solving the job shop scheduling problem.
Management Sciencg5(2):164-176, 1989.

[7] Y. Caseau, F. X. Josset, and F. Laburthe. CLAIRE: Combining sets, search and rules
to better express algorithms. Broceedings of ICLP-9%ages 245-259, 1999.

[8] Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In
Proceedings of ICLP-94ages 369-383. MIT Press, 1994.

[9] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint netwokksficial Intelligence
49:61-95, 1991.

[10] M. B. Do and S. Kambhampati. Solving planning-graph by compiling it into CSP. In
Proceedings of AIPS-Q@pages 82-91, 2000.

[11] S. Edelkamp and J. Hoffmann. The 4th international planning competition. At
http://ipc04.icaps-conference.org , 2004.

[12] F. Focacci, A. Lodi, and M. Milano. Solving TSPs with time windows with constraints.
In Proceedings of ICLP-9%ages 515-529. MIT Press, 1999.

[13] F. Focacci and M. Milano. Connections and integrations of dynamic programming
and constraint programming. FProceedings of CP-Al-OR’QR001.

[14] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domainsJournal of Artificial Intelligence Researchages 61-124, 2003.

37



Table 9
General planning in CPT vs. Restricted canonical planning in CPT over four parallel and
temporal domains from IPC3

Parallel domains Temporal domains
CPU time (sec.) Makespan CPU time (sec.) Makespan
CPT CPT-CA| CPT CPT-CA CPT CPT-CA| CPT CPT-CA
depotsO1 | 0.02 0.02 5 5 0.02 0.02 28 28
depots02 | 0.11 0.10 8 8 0.50 0.17 36 36
depots03 0.46 0.79 12 13 - - - -
depots04 3.32 1.43 14 14 - 18.73 - 40
depots05 - - - - - - - -
depots06 - - - - - - - -
driver01 0.02 0.02 6 6 0.02 0.01 91 91
driver02 0.03 0.07 9 10 - 355.68 - 92
driver03 0.03 0.03 7 7 0.03 0.03 40 40
driver04 0.04 0.03 7 7 - 29.28 - 52
driver05 0.06 0.05 8 8 40.67 0.52 51 51
driver06 0.07 0.07 5 5 - 46.33 - 52
driver07 0.09 0.08 6 6 0.43 0.22 40 40
driver08 0.10 0.10 7 7 - 2686.41 - 52
driver09 0.34 0.28 10 10 - 114.08 - 92
driver10 0.31 0.29 7 7 6.16 2.33 38 38
driverll 0.92 0.76 9 9 - 3365.36 - 65
driverl2 - - - - - - - -
satellite01 | 0.01 0.01 8 8 0.01 0.00 46 46
satellite02 | 0.09 0.06 12 12 1.19 0.56 70 70
satellite03 | 0.04 0.04 6 6 0.06 0.05 34 34
satellite04 | 0.18 0.15 10 10 0.82 0.61 58 58
satellite05 0.74 0.57 7 7 1.55 1.22 36 36
satellite06 | 0.18 0.18 8 8 0.28 0.26 46 46
satellite07 | 0.63 0.63 6 6 1.10 0.95 34 34
satellite08 | 46.59 41.82 8 8 - 1921.27 - 46
satellite09 | 3.84 3.87 6 6 6.21 5.58 34 34
satellitel0 | 96.44 88.28 8 8 1897.84  1474.57 43 43
satellite1l | 11.53 10.91 8 8 42.32 30.96 46 46
satellite12 - - - - - - - -
zeno01 0.01 0.02 1 1 0.02 0.02 | 173 173
zeno02 0.02 0.02 5 5 0.07 0.06 | 592 592
zeno03 0.07 0.06 5 5 0.09 0.09 | 280 280
zeno04 0.06 0.06 5 5 1.09 0.45 | 522 522
zeno05 0.15 0.15 5 5 0.44 0.40 | 400 400
zeno06 0.19 0.19 5 5 0.35 0.34 | 323 323
zeno07 0.22 0.22 6 6 3.07 1.42 665 665
zeno08 1.28 1.32 5 5 17.52 9.68 522 522
zeno09 1.58 1.66 6 6 90.64 38.18 | 522 522
zenol0 5.42 5.35 6 6 82.62 12.54 | 453 453
zenoll 4.36 4.36 6 6 7.7 7.81 | 423 423
zenol2 4.67 4.48 6 6 - - - -
zenol3 | 56.03 50.22 7 7 - - - -
zenol4 - - - - - - - -

[15] H. Geffner.  Planning as branch and bound and its relation to constraint-
based approaches. Technical report, UniversidadéBirBolivar, 2001. At
www.tecn.upf.es/ ~hgeffner

[16] P. Haslum and H. Geffner. Admissible heuristics for optimal plannin@rateedings
of the Fifth International Conference on Al Planning Systems (AIPS-20@8gs 70—
82, 2000.

[17] P. Haslum and H. Geffner. Heuristic planning with time and resourcdrdceedings

38



of European Conference of Planning (ECP-0dages 121-132, 2001.

[18] A. Jonsson, P. Morris, N. Muscettola, and K. Rajan. Planning in interplanetary space:
Theory and practice. IRroceedings of AIPS-200pages 177-186, 2000.

[19] D. Joslin and M. E. Pollack. Is "early commitment” in plan generation ever a good
idea? InProceedings of AAAI-9fpages 1188-1193, 1996.

[20] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A
unified framework for evaluating design tradeoffs in partial-order plannirgficial
Intelligence 76(1-2):167-238, 1995.

[21] S. Kambhampati and B. Srivastava. Universal classical planner: An algorithm for
unifying state-space and plan-space planning. In M. Ghallab and A. Milani, editors,
New Directions in Al Planningpages 61-78. IOS Press (Amsterdam), 1996.

[22] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. In
Proceedings of KR-9pages 374-384, 1996.

[23] H. Kautz and B. Selman. Unifying SAT-based and Graph-based planning. In T. Dean,
editor,Proceedings of IJCAI-Q%ages 318-327. Morgan Kaufmann, 1999.

[24] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopoulos. Extending planning graphs to
an ADL subset. In S. Steel and R. Alami, editdRecent Advances in Al Planning.
Proceedings of 4th European Conf. on Planning (ECP-97). Lect. Notes in Al, 1348
pages 273-285. Springer, 1997.

[25] J. Koehler and K. Schuster. Elevator control as a planning probleRrolceedings of
AIPS-0Q pages 331-338, 2000.

[26] P. Laborie. Algorithms for propagating resource constraints in Al planning and
scheduling Artificial Intelligence 143:151-188, 2003.

[27] P. Laborie and M. Ghallab. Planning with sharable resources constraints. In C. Mellish,
editor, Proceedings of IJCAI-9%ages 1643-1649. Morgan Kaufmann, 1995.

[28] F. Laburthe. CHOCO: implementing a CP kernel.Pioceedings of CP-00, Lecture
Notes in CS, Vol 18946pringer, 2000.

[29] O. Lhomme. Consistency techniques for numeric CSP®rdceedings of IJCAI-93
pages 232-238. Morgan Kaufmann, 1993.

[30] D. Long and M. Fox. The 3rd international planning competition: Results and analysis.
Journal of Artificial Intelligence ResearcB0:1-59, 2003.

[31] A. Mali and A. Kambhampati. On the utility of plan-space (causal) encodings. In
Proceedings of AAAI-9®ages 557-563, 1999.

[32] D. McAllester and D. Rosenblitt. Systematic nonlinear planningProceedings of
AAAI-9], pages 634—-639, Anaheim, CA, 1991. AAAI Press.

[33] D. McDermott. A heuristic estimator for means-ends analysis in planning. In
Proceedings of AIPS-9®ages 142-149, 1996.

39



[34] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. Rroceedings of DAC-Qpages 530-535, 2001.

[35] X. L. Nguyen and S. Kambhampati. Reviving partial order planningPrisceedings
of IJCAI-01, pages 459-466, 2001.

[36] H. Palacios and H. Geffner. Planning as branch and bound: A constraint programming
implementation. InProceedings of XXVIII Conf. Latinoamericana de Inf@tioa,
pages 239-251, 2002.

[37]1J. S. Penberthy and D. S. Weld. Temporal planning with continous change. In
Proceedings of AAAI-9dages 1010-1015, 1994.

[38] J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, ordering, and usage of
landmarks in planning. IRroceedings of ECP-Qpages 37-48, 2001.

[39] D. Smith, J. Frank, and A. Jonsson. Bridging the gap between planning and
scheduling.Knowledge Engineering Revieitb(1):61-94, 2000.

[40] D. Smith and D. S. Weld. Temporal planning with mutual exclusion reasoning. In
Proceedings of IJCAI-9Pages 326-337, 1999.

[41] S. Smith and C. Cheng. Slack-based heuristics for the constraint satisfaction
scheduling. IrProceedings of AAAI-9Pages 139-144, 1993.

[42] P. Van Beek and X. Chen. CPlan: a constraint programming approach to planning. In
Proceedings AAAI-99ages 585-590, 1999.

[43] P. Van HentenryckThe OPL Optimization Programming Languad# T Press, 1999.

[44] P. Van Hentenryck, H. Simonis, and M. Dincbhas. Constraint satisfaction using
constraint logic programmindArtificial Intelligence 58(1-3):113-159, 1992.

[45] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner
based on constraint programming. MPmoceedings of AAAI-2004ages 570-577,
2004.

[46] D. S. Weld. An introduction to least commitment planniAgMagazing 15(4):27-61,
1994,

[47] H. L. S. Younes and R. G. Simmons. VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence ResearcB0:405-430, 2003.

[48] Y. Zhang and R. Yap. Arc consistency on n-ary monotonic and linear constraints. In
Proceedings of CP 200@ages 470-483, 2000.

40



