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Abstract

We present two approaches for deriving more arguments from an abstract argu-
mentation framework than the ones obtained using scepticalinference, that is often
too cautious. The first approach consists in selecting only some of the extensions.
We point out several choice criteria to achieve such a selection process. Choices
are based either on the attack relation between extensions or on the support of the
arguments in each extension. The second approach consists of the definition of a
new inference policy, between sceptical and credulous inference, and based as well
on the support of the arguments. We illustrate the two approaches on examples,
study their properties, and formally compare their inferential powers.

1 Introduction

An abstract argumentation system is often represented as anoriented graph, where
nodes correspond toargumentsand arcs correspond toattacksbetween them [15]. Dif-
ferentsemanticsare used to calculateextensions(sets of arguments that can be accepted
together). From the extensions, astatus, accepted or rejected, is assigned to each ar-
gument, using someacceptance policy. They are two main acceptance policies. In the
first one, thescepticalpolicy, an argument is accepted if (there are extensions and) it
appears in each extension. For the second one, thecredulouspolicy, an argument is
accepted if it belongs to (at least) one extension.

When the number of extensions is large, using a sceptical / credulous approach can
be sub-optimal. Namely, if there is a lot of extensions, onlyfew (if any) arguments are
in all of them. Thus, using sceptical inference gives almostno information. Conversely,
the credulous approach may result in too many arguments.

There exist settings for abstract argumentation where preferences, weighted attacks
or similar extra information are considered [19, 20, 8, 16, 11, 2]. Those additional
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data can be exploited to reduce the number of extensions. Contrastingly, the problem
addressed in this paper is to increase the number of acceptedarguments when there is
no further data, i.e., other data except the arguments and the attacks between them.

We investigate this problem and present two approaches for dealing with it. The
first one consists in selecting only some of the extensions (the “best” ones, for a given
semantics). The idea is to discriminate the extensions by taking advantage of the attack
relation. The selection achieved in this way leads to increase the number of sceptically
accepted arguments. Two methods for selecting extensions are pointed out. The first
one is based on a pairwise comparison of extensions. The second method is based on a
global evaluation of each extension, followed by a selection of the best evaluated ones.
The second approach we developed goes through the definitionof a new policy for
accepting arguments. We introduce a third acceptance policy, which can be viewed as
a trade-off between the credulous and the sceptical policy.The very idea is to consider
the number of times an argument appears in the extensions. For the sceptical policy a
“good” argument is one that appears in all extensions. If no such argument exists, then
it makes sense to consider that arguments that appears in every extension but one are
“quite good”, and better than the ones that appear in less extensions.

2 Formal Setting

This section introduces basic definitions and notations we use throughout the paper.

Definition 1 (Argumentation system). An argumentation system(AS) is a pairF =
(A ,R) whereR ⊆ A ×A . A is called the set ofargumentsandR is called the
attack relation. We denote byR↓E the restriction of attack relationR on setE .

In order to simplify notation, we do not explicitly mention an argumentation system
when it is clear from the context which argumentation systemwe refer to. We restrict
ourselves to the case whenA is finite.

In order to determine mutually acceptable sets of arguments, different semantics
have been introduced in argumentation. We first introduce the basic notions of conflict-
freeness, defence [15] and strong defence [4].

Definition 2 (Conflict-free, strong defence). LetF = (A ,R) be an AS, and letE ,E ′,E ′′ ⊆
A and a∈ A .

• E is conflict-freeif and only if there exist no arguments a,b∈ E such that aR b.

• E defends a if and only if for every b∈ A we have that if bR a then there exists
c∈ E such that cR b.

• Argument a is strongly defended fromE ′ by E ′′ (written sd(a,E ′,E ′′)) if and
only if (∀b∈ E ′) if (bRa) then(∃c∈ E ′′ \ {a})((cRb)∧ sd(c,E ′,E ′′ \ {a})).

Let us now define usual semantics for Dung’s AS, especially the complete, pre-
ferred, grounded [15], semi-stable [7] and ideal semantics[14].

Definition 3 (Acceptability semantics). Let F = (A , R) be an AS andB ⊆ A . We
say that a setB is admissibleiff it is conflict-free and defends all its elements.
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• B is a completeextension iffB is admissible and contains all the arguments it
defends.

• B is apreferredextension iff it is a maximal (w.r.t.⊆) admissible set.

• B is a stableextension iffB is conflict-free and for all a∈ A \B, there exists
b∈ B such that bR a.

• B is a semi-stableextension iffB is a complete extension and the union of the
setB and the set of all arguments attacked byB is maximal (for set inclusion).

• B is agrounded extensioniff B is a minimal (for set inclusion) complete exten-
sion.

• B is an ideal extension iffB is a maximal (for set inclusion) admissible set
contained in every preferred extension.

We say that a semanticsσ returns conflict-free sets iff for every ASF , every extension
of F is conflict-free.

A semanticsσ is said to return conflict-free sets iff for every ASF , every extension
of F is conflict-free. For an argumentation systemF = (A ,R) we denoteExtσ (F );
or, by a slight abuse of notation,Extσ (A ,R) the set of its extensions with respect
to semanticsσ . We use abbreviationsc, p, s, ss, g and i for respectively complete,
preferred, stable, semi-stable, grounded and ideal semantics. For example,Extp(F )
denotes the set of preferred extensions ofF .

Example 1. Let F1 = (A1,R1) be an argumentation system withA1 = {a,b,c,d}
andR1 = {(b,c),(c,b),(b,d),(c,d)}. The graphical representation of the system is
shown in Figure 1. There are two preferred / stable / semi-stable extensions:Extp(F1)

c d

a b

Figure 1:F1 = (A1,R1): An argumentation system

= Exts(F1) = Extss(F1) = {{a,b},{a,c}}; three complete extensions:Extc(F1) =
{{a},{a, b},{a,c}}; and one ideal / grounded extension:Extg(F1) = Exti(F1) =
{{a}}. △

Definition 4 (Acceptance policies). Let F = (A ,R) be an AS,σ a semantics and
let x∈ A . An acceptance policyis a functionInfσ : Extσ (F ) → 2A . The two main
acceptance policies are sceptical and credulous policies.We say that x issceptically
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acceptedunder semanticsσ (or in short s-sceptically accepted) iff Extσ (F ) 6= /0 and
x∈

⋂
E∈Extσ (F ) E . x iscredulously acceptedunder semanticsσ iff x ∈

⋃
E∈Extσ (F ) E .

We denote the set of sceptically accepted arguments byScσ (F ) and the set of credu-
lously accepted arguments byCrσ (F ).

3 Comparing Extensions by Pairwise Comparison

Let us see now how to select only some of the extensions provided by some semantics.
This will allow us to derive more sceptically accepted arguments (and less credulously
accepted ones). This section studies the way to select the “best” extensions based on
the following process:

1. Compare all pairs of extensions based on a given criterion(e.g. the number of
arguments in one extension not attacked by the other extension)

2. Choose the “best” extension(s) given the winners of pairwise comparisons

We first consider several criteria for pairwise comparison of extensions.

Definition 5 (Pairwise comparison criteria). LetF = (A ,R) be an AS,σ a semantics
andExtσ (F ) the set of extensions ofF . LetE ,E ′ ∈ Extσ (F ). Then:

1. E �nonatt E
′ if the number of arguments inE non attacked byE ′ is greater than

or equal to the number of arguments inE ′ non attacked by arguments ofE

2. E �strde f E
′ if the number of arguments inE strongly defended fromE ′ byE is

greater than or equal to the number of arguments inE ′ strongly defended from
E byE ′

3. E �delarg E ′ if the cardinality of any largest subset S ofE such thatif all the
attacks fromS to E ′ are deleted thenE is an extension of(E ∪E ′,R↓E∪E ′) is
greater than or equal to the cardinality of any largest subset S′ of E ′ such thatif
all the attacks fromS′ to E are deleted thenE is an extension of(E ∪E ′,R↓E∪E ′)

4. E ′ �delatt E
′ if the maximal number of attacks fromE to E ′ that can be deleted

such thatE is still an extension of(E ∪E ′,R↓E∪E ′) is greater than or equal to
the maximal number of attacks fromE ′ to E that can be deleted such thatE ′ is
still an extension of(E ∪E ′,R↓E∪E ′)

The two first criteria are based on the number of non attacked or (strongly) de-
fended arguments. The last two ones are based on a notion of robustness from attacks
stemming from the other extension. One could also consider other criteria, for example
by comparing the total number of attacks fromE to E ′ and the total number of attacks
from E ′ to E . For a criterionγ, we writeE ≻γ E ′ iff E �γ E ′ and it is not the case that
E ′ �γ E . We also writeE ∼γ E ′ iff E �γ E ′ andE ′ �γ E .

Example 2. Consider the ASF2 = (A2,R2) with A2 = {a, b, c, d} andR2 = {(a,c),
(a,d), (b,c), (c,a),(d,b)}. depicted in Figure 2.Extp(F2) = {E ,E ′} with E = {a,b},
E ′ = {c,d}. All the arguments are attacked, soE ∼nonatt E

′. No argument is strongly
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defended, soE ∼strde f E
′. We also haveE ≻delarg E ′ since for S= {b} E is still an

extension even if all the attacks from S are deleted; whereasthere are no S′ ⊆ E ′ with
S′ 6= /0 such thatE ′ is still a preferred extension even after deleting all the attacks from
S′. Finally, E ≻delatt E ′ since even if the attack from a to c is deleted,E is still a
preferred extension, whereas as soon as one attack fromE ′ is deleted,E ′ is no longer
a preferred extension. △

c

d

a

b

Figure 2:F2 = (A2,R2): Pairwise comparison of extensions

Definition 6 (Copeland-based extensions). Let γ ∈ {nonatt,strde f,delarg,delatt} be
one of the criteria from Definition 5. LetF = (A ,R) be an argumentation system,σ
a semantics andExtσ (F ) the set of extensions ofF with respect toσ . We define the
set of Copeland-based extensions (CBE) as follows

CBEσ ,γ(F )= argmax
E∈Extσ (F )

|{E ′ ∈ Extσ (F ) |E �γ E
′}|−|{E ′′ ∈ Extσ (F ) |E ′′ �γ E }|

We call this selection “Copeland-based” since it is inspired by the Copeland’s
method from voting theory [21]. Of course, one can envisage other ways to select
the extensions given criterionγ, for instance all voting methods based on the majority
graph (such as Miller, Fishburn, Schwartz, Banks or Slater’s methods [6]). Clearly,
selecting some extensions is a way to increase the number of sceptically accepted ar-
guments (and to decrease the number of credulously acceptedarguments):

Fact 1. For everyγ ∈ {nonatt,strde f,delarg,delatt}, for every semanticsσ , for every
ASF = (A ,R), for every x∈ A :

• CBEσ ,γ(F ) ⊆ Extσ (F )

• if x is σ -sceptically accepted then x isCBEσ ,γ -sceptically accepted

• if x is CBEσ ,γ -credulously accepted then it isσ -credulously accepted.

Example 3. Consider the argumentation system from Example 2. For example, we
have thatCBEσ ,delarg(F2) = CBEσ ,delatt(F2) = {E }. △

Baroni and Giacomin [4, Section 3] pointed out a set of extension evaluation criteria
that can be seen as properties for characterizing good semantics. We now show that the
semantics defined in this section satisfy the same properties as the underlying semantics
they are built from, with the exception of directionality.
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Proposition 1. Let x be any property among I-maximality, Admissibility, Strong Ad-
missibility, Reinstatement, Weak Reinstatement, CF-Reinstatement [4].
If the semanticsσ satisfies property x, then the semanticsCBEσ ,γ satisfies property x.

Proof. Follows directly from the definitions of properties.

The next example shows that directionality is not always satisfied byCBE approach.

Example 4. Consider the ASF4 = (A4,R4) with A4 = {a ,b ,c ,d} andR4 = {(a,b),
(a,c), (b,a),(b,d),(c,d)}, depicted in Figure 3. Directionality is satisfied by preferred
semantics [4]. Let us show that it is not satisfied byCBE approach using preferred
semantics. Let U= {a,b}. We haveExtp(F ) = {{a,d},{b,c}} andExtp(F ↓U) =
{{a},{b}}. Let us use the criterion delatt. We obtain thatCBEp,delatt(F ) = {{b,c}}
andCBEp,delatt(F ↓U) = {{a},{b}}. Note that we have{E ∩U | E ∈ CBEp,delatt} =
{{b}}. Thus, directionality does not hold, since we have{E ∩U | E ∈ CBEp,delatt} 6=
CBEp,delatt(F ↓U).

b

c

a

d

Figure 3:F4 = (A4,R4): Directionality is not satisfied byCBE approach

△

Note that the relations among different semantics do not carry over in case ofCBE
approach. For instance, it is not guaranteed that eachCBE-stable extension is also a
CBE-preferred extension. Consider the following example.

Remark: for the complex examples, instead of providing graphical representation,
we provide machine readable code in the appendix. This allows the reader to check
them using one of the existing software tools, e.g. Aspartix1.

Example 5. LetF5 = (A5,R5) with A5 = {a,b,c,d,e,x1,x2} andR5 = {(x1,x1),
(x2,x2), (a,c), (a,x1), (x1,b), (a,d), (a,e), (a,x2), (b,x2), (b,c), (c,a), (c,b), (c,d),
(c,e), (c,x2), (c,x1), (d, a), (d,c), (e,a), (e,c)}. DenoteE1 = {a,b}, E2 = {c}, E3 =
{d,e}. There are exactly two stable extensions,E1 and E2. There are exactly three
preferred extensions:E1,E2 andE3. Since all arguments ofE1 are attacked byE2 and
vice versa,CBEs,nonatt(F ) = {E1,E2}. However,E1 ≻nonatt E3 whereasE2 �s,nonatt E3

andE3 �s,nonatt E2. Thus,CBEp,nonatt(F ) = {E1}. △

In the next example there is aCBE-preferred extension that is not aCBE-complete
extension.

1rull.dbai.tuwien.ac.at:8080/ASPARTIX/
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Example 6. LetF =(A ,R) withA = {a,b,c,d,e,x1,x2} andR = {(x1,x1), (x2,x2),
(a,b), (a,c), (a,d), (a,e), (b,a), (b, x1), (c,a), (d,a), (d,x2), (e,a), (x1,b), (x2,d),
(x1,c), (x2,e)}. DenoteE1 = {a}, E2 = {b,c}, E3 = {d,e}. There are exactly two
preferred extensions:E1 andE2∪E3. The same argumentation system has five complete
extensions:/0, E1, E2, E3, E2∪E3. SinceE1 attacks all arguments ofE2∪E3 and vice
versa,CBEp,nonatt(F ) = {E1,E2 ∪ E3}. However, it can be checked that, out of all
complete extensions,E2∪E3 has the biggest Copeland score, since it is strictly stronger
than bothE2 andE3 with respect to�nonatt. We obtainCBEc,nonatt(F ) = {E2∪E3}. △

4 Comparing Extensions by Global Evaluation

In Section 3 we considered different criteria forpairwise comparisonof extensions. In
this section we define the score of an argument as the number ofextensions it appears
in. One may justify this choice of score as some kind of generalization of the prin-
ciples behind sceptical acceptance. For sceptical acceptance a “good” argument is an
argument that appears in all extensions. But, if no such argument exists, it could make
sense to consider that arguments that appears in every extension but one are “good”,
and typically better than the ones that appears in less extensions. Note that one can use
other scores in the construction and obtain similar results.

Definition 7 (Scores and support vectors). Let F = (A ,R) be an argumentation
system,σ a semantics, x be an argument, andExtσ (F ) the set of extensions ofF

with respect toσ . We definene as the number of extensions x appears in. Formally,
neσ (x,F ) = |{E ∈ Extσ (F ) | x ∈ E }|. For an extensionE ∈ Extσ (F ), with E =
{a1, . . . ,an} we define its support asvsuppσ (E ,F ) = (neσ (a1,F ), . . . ,neσ (an,F )).

WhenF andσ are clear from the context, we writene(x) andvsupp(E ) instead
of neσ (x,F ) andvsuppσ (E ,F ).

Definition 8 (Aggregation functions). Let v= (v1, . . . , vn) be a vector of natural num-
bers. We denote by sum(v) the sum of all elements of v, by max(v) the maximal element
of v, by min(v) the minimal element of v, by leximax(v) the re-arranged version of v
where v1, . . . ,vn are put in decreasing order, by leximin(v) the re-arranged version of v
where v1, . . . ,vn are put in increasing order.

For example, ifv = (2,1,4,2,5), then we havesum(v) = 14 andleximin(v) =
(1,2,2,4,5). Note that there exist other ways to aggregate vectors [13].

For the next definition we need the notion of lexicographic order<lex (for leximin
and leximax). Let v = (v1, . . . , vn) and v′ = (v′1, . . . , v′n) be two vectors of natural
numbers. We havev <lex v′ iff ∃ j ∈ 1, . . . ,n(∀i ∈ 1, . . . , j −1,vi = v′i) andv j < v′j . We
also havev<leximinv′ iff leximin(v) <lex leximin(v′) andv<leximaxv′ iff leximax(v) <lex

leximax(v′).

Definition 9 (Order-based extensions). LetF = (A , R) be an argumentation system,
σ a semantics,Extσ (F ) be the set of extensions ofF with respect toσ , andγ be an
aggregation function. We haveOBEσ ,γ (F ) = argmaxE∈Extσ (F ) γ(vsuppσ (E ,F )).

The idea of the previous definition is to calculate the popularity of an extension by
taking into account the popularity of the arguments it contains.
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vsupp max min sum leximax leximin
{a,e,g,c} 3324 4 2 12 4332 2334
{a,e,g,d} 3321 3 1 9 3321 1233
{a, f ,h,c} 3234 4 2 12 4332 2334
{b,h,c,e} 2343 4 2 12 4332 2334
{b,h,c, f} 2342 4 2 11 4322 2234

Table 1: Computations ofOBEσ ,⊕

Example 7. LetF7 = (A7,R7) be ASF7 = (A7,R7) with A7 = {a,b,c,d,e, f ,g,h}
andR7 = {(a,b), (b,a), (e, f ), ( f ,e), (b,g), ( f ,g), (g,h), (h,d), (d,c), (c,d)}. There

a b

e f

g h d c

Figure 4:F7 = (A7,R7)

are five preferred extensions:{a,e,g,c}, {a,e,g,d}, {a, f ,h,c}, {b,h,c,e}, {b,h,c, f}.
Sonep(a,F7) = 3, nep(b,F7) = 2, nep(c,F7) = 4, nep(d, F7) = 1, nep(e, F7) = 3,
nep( f ,F7) = 2, nep(g,F7) = 2, nep(h, F7) = 3. The computation of the support vec-
tors of each extension and the selection (underlined) made by sum,max,min, leximin,
leximax are indicated in Table 1.

We obtainOBEσ ,max(F7) = OBEσ ,min(F7) = {{a,e,g,c},{a, f ,h, c}, {b,h,c,e},
{b,h,c, f}}. So, whereasScp(F7) = /0, we haveScOBEp,min(F7) = {c}. Similarly, we
haveOBEσ ,sum(F7) = OBEσ ,leximin(F7) = OBEσ ,leximax(F7) = {{a,e,g, c}, {a, f ,h,c},
{b,h,c,e}}.

△

Fact 2. For everyγ ∈ {sum,max,min, leximin, leximax}, for every semanticsσ , for
every ASF = (A ,R), for every x∈ A :

• OBEσ ,γ(F ) ⊆ Extσ (F )

• if x is σ -sceptically accepted then x isOBEσ ,γ -sceptically accepted

• if x is OBEσ ,γ -credulously accepted then it isσ -credulously accepted.

Here also we can show that these semantics keep the same properties as the under-
lying semantic they are built from.
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Proposition 2. Let x be any property among I-maximality, Admissibility, Strong Ad-
missibility, Reinstatement, Weak Reinstatement, CF-Reinstatement [4].
If the semanticsσ satisfies property x, then the semanticsOBEσ ,γ satisfies property x.

Proof. Follows directly from the corresponding definitions.

Like in Section 3, directionality is not always satisfied by theOBE approach.

Example 8. Consider the ASF8 = (A8,R8) defined asA8 = {a,b,c,d,e} andR8 =
{(a,b), (a,e), (b,a), (b,c), (b,d), (c,d), (c,e), (d,c), (d,e), (e,c), (e,d)}. depicted
in Figure 5. Directionality is satisfied by preferred semantics [4]. Let us show that
it is not satisfied byOBE approach using preferred semantics. Let U= {a,b}. We
haveExtp(F ) = {{a,c},{a,d},{b,e}}andExtp(F ↓U) = {{a},{b}}. Let us use the
criterion leximax. We obtainOBEp,leximax(F ) = {{a,c},{a,d}} andOBEp,leximax(F ↓U

)= {{a},{b}}. Note that{E ∩U |E ∈ OBEp,leximax}= {{a}}. Thus, directionality does
not hold, since{E ∩U | E ∈ OBEp,leximax} 6= OBEp,leximax(F ↓U).

b

d

a

e

c

Figure 5:F8 = (A8,R8): Directionality is not satisfied byCBE approach

△

A natural issue is to determine how the proposed criteria areconnected. Do some
of the rules coincide? Are some of them refinements of others?In the rest of this
section we provide the answer to this question. Essentially, all the criteria give different
results; the exceptions come from the obvious fact thatleximin (resp.leximax) refines
min (resp. max). We used the preferred semantics to construct the counter-examples; a
similar study can be conducted for the other semantics. Let us first formalise what we
mean by inclusion between the criteria.

Definition 10. LetΓ andΓ′ be two functions. We writeΓ ⊑ Γ′ iff for everyF ,Γ(F )⊆
Γ′(F ). The relation⊑ is a pre-order. Let us denote its strict part by❁, its symmetric
part by

.
= and its negation by6⊑. We writeΓ ind Γ′ iff Γ 6⊑ Γ′ andΓ 6⊑ Γ′.

Proposition 3. For every acceptability semanticsσ ,

OBEσ ,leximin⊑ OBEσ ,min andOBEσ ,leximax⊑ OBEσ ,max

Proof. Let us show that for every semanticsσ , for every argumentation systemF , for
every extensionE of F underσ , if E ∈ OBEσ ,leximin(F ) thenE ∈ OBEσ ,min(F ). Sup-
pose thatE ∈ OBEσ ,leximin(F ). If E is the only extension ofF , the proof is over. Else,
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letE ′ be another extension ofF . SinceE ∈ OBEσ ,leximin(F ), thenmin(vsuppσ (E ,F ))
≥ min(vsuppσ (E ,F ′)). This is true for every extensionE ′ ∈ Extσ (F ), thusE ∈
OBEσ ,min(F ). Hence,OBEσ ,leximin⊑ OBEσ ,min.

Let us show that for every semanticsσ , for every argumentation systemF , for every
extensionE of F underσ , if E ∈ OBEσ ,leximax(F ) thenE ∈ OBEσ ,max(F ). Suppose
E ∈ OBEσ ,leximax(F ). If E is the only extension ofF , the proof is over. Else, letE ′

be another extension ofF . SinceE ∈ OBEσ ,leximax(F ), thenmax(vsuppσ (E ,F )) ≥
max(vsuppσ (E ,F ′)). This is true for everyE ′ ∈ Extσ (F ), thusE ∈ OBEσ ,max(F ).
Hence,OBEσ ,leximax⊆ OBEσ ,max.

We now provide a complete comparison between pairs of criteria under preferred
semantics.

Proposition 4. The inclusion links between rules for preferred semantics are as de-
picted in Figure 6. Namely,OBEp,leximin❁ OBEp,min andOBEp,leximax❁ OBEp,maxwhereas
the other pairs of rules(x,y) with x,y ∈ {OBEp,sum, OBEp,min, OBEp,max, OBEp,leximin,
OBEp,leximax}, x 6= y are incomparable, i.e., xind y.

OBEp,sum OBEp,min OBEp,max OBEp,leximin OBEp,leximax

OBEp,min ind

OBEp,max ind ind

OBEp,leximin ind ❁ ind

OBEp,leximax ind ind ❁ ind

Figure 6: Inclusion relationships between rules for preferred semantics. IfR is the row
rule andR ′ is the column rule, symbol❁ means thatR ❁ R ′; symbol ind means
thatR ind R ′.

Proof. Let us first construct three counter examples that will be used in this proof.

Example 9. LetF9 = (A9,R9) with A9 = {x1, x2, x3, x4, x5, x6, x7 ,a ,b} andR9 =
{(x1,x2), (x2,x1), (x3,x4), (x4,x3), (x1,x5), (x2,x5), (x3,x5), (x4,x5), (x5,x5), (x4,x6),
(x6,x6), (x2,x7), (x7,x7), (x7,b), (x5,a), (x6,b)}.

We haveExtp(F9) = {E1,E2,E3,E4} with E1 = {x1,x4,a}, E2 = {x2,x3,a}, E3 =
{x1,x3,a}, E4 = {x2,x4,a,b}. Their supports are:vsuppp(E1,F9) = vsuppp(E2,F9)
= vsuppp(E3,F9) = (4,2,2), vsuppp(E4,F9) = (4,2,2,1).

Hence, we obtain thatOBEp,sum(F9) = {E4}, OBEp,min(F9) = {E1,E2,E3},
OBEp,max(F9) = {E1,E2,E3,E4}, OBEp,leximin(F9) = {E1, E2, E3}, OBEp,leximax(F9) =
{E4}. △

Example 10. LetF10 = (A10,R10) with A10 = {a, x1, x2, x3, x4, x5, b1, b2, b3,b4,y1,
y2, y3} andR10= {(x1,x2), (x2,x1), (x3,x4), (x4,x3), (x1,x5), (x2,x5), (x3,x5), (x4,x5),
(x1,x3), (x3,x1), (x1,x4), (x4,x1), (x2,x3), (x3,x2), (x2,x4), (x4,x2), (x5,x5), (x5,a),
(y1,y2), (y2,y1), (y1,y3), (y2,y3), (y3,y3), (y3,b1), (y3,b2), (y3,b3), (y3,b4), (x1,y1),
(x1,y2), (x2,y1), (x2,y2), (x3,y1), (x3,y2), (x4,y1), (x4,y2), (y1,x1), (y2,x1), (y1,x2),
(y2,x2), (y1,x3), (y2,x3), (y1,x4), (y2,x4)}.
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There are exactly six preferred extensions:E1 = {a,x4}, E2 = {a,x3}, E3 = {a,x2},
E4 = {a,x1}, E5 = {b1, b2, b3, b4, y2}, E6 = {b1,b2,b3,b4,y1}. Their supports are:
vsuppp(E1,F10)= vsuppp(E2,F10) = vsuppp(E3,F10)= vsuppp(E4,F10)= (4,1),
vsuppp(E5,F10) = vsuppp(E6,F10) = (2,2,2,2,1).

We obtainOBEp,sum(F10) = {E5,E6}, OBEp,min(F10) = {E1, E2, E3, E4, E5, E6},
OBEp,max(F10) = OBEp,leximin(F10) = OBEp,leximax(F10) = {E1,E2,E3,E4}.

△

Example 11. LetF11 = (A11,R11) with A11 = {x1, x2, x3, x4, x5, a, y1, y2,y3,y4} and
R11 = {(x1,x2),(x2,x1), (x1,x3), (x3,x1), (x1,x4), (x4,x1), (x2,x3), (x3,x2), (x2,x4),
(x4,x2), (x3,x4), (x4,x3), (x1,x5), (x2,x5), (x3,x5), (x4,x5), (x5,x5), (x5,a), (y1,y2),
(y2,y1), (y3,y4), (y4,y3), (x1,y1), (x1,y2), (x1,y3), (x1,y4), (x2,y1), (x2,y2), (x2,y3),
(x2,y4), (x3,y1), (x3,y2), (x3,y3), (x3,y4), (x4,y1), (x4,y2), (x4,y3), (x4,y4), (y1,x1),
(y1,x2), (y1,x3), (y1,x4), (y2,x1), (y2,x2), (y2,x3), (y2,x4), (y3,x1), (y3,x2), (y3,x3),
(y3,x4), (y4,x1), (y4,x2), (y4,x3), (y4,x4) }.

There are exactly eight preferred extensions:E1 = {x4,a}, E2 = {x3,a}, E3 =
{x2,a}, E4 = {x1,a}, E5 = {y2,y4}, E6 = {y2,y3}, E7 = {y1,y3}, E8 = {y1,y4}.

Their supports are:vsuppp(E1,F11) = vsuppp(E2,F11) = vsuppp(E3,F11) =
vsuppp(E4,F11) = (4,1); vsuppp(E5,F11) = vsuppp(E6,F11) = vsuppp(E7,F11)
=vsuppp(E8,F11) = (2,2).

Thus, we obtainOBEp,sum(F11) = OBEp,max(F11) = OBEp,leximax(F11) = {E1, E2,
E3, E4}; OBEp,min(F11) = OBEp,leximin(F11) = {E5,E6,E7,E8}.

△

Let us now show the proposition by using the previous three examples.

• OBEp,min ind OBEp,sum, follows from Example 9.

• OBEp,max ind OBEp,sum, follows from Example 10.

• OBEp,max ind OBEp,min, follows from Example 11.

• OBEp,leximin ind OBEp,sum, follows from Example 9.

• OBEp,leximin ❁ OBEp,min. From Proposition 3OBEp,leximin⊑ OBEp,min. Example 10
shows thatOBEp,leximin 6

.
= OBEp,min. Consequently,OBEp,leximin ❁ OBEmin.

• OBEp,leximin ind OBEp,max, follows from Example 11.

• OBEp,leximax ind OBEp,sum, follows from Example 10.

• OBEp,leximaxind OBEp,min, follows from Example 11.

• OBEp,leximax❁ OBEp,max. From Proposition 3,OBEp,leximax⊑ OBEp,max. Example
9 shows thatOBEp,leximax 6

.
= OBEp,max. Consequently,OBEp,leximax❁ OBEp,max.

• OBEp,leximaxind OBEp,leximin, follows from Example 11.
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5 Support-Based Acceptance Policy

This section presents a completely different approach for selecting arguments. We
focus on arguments that have the greatest supports among extensions to construct what
we call “candidate sets”. Then, an argument is calledsupportedly acceptedif it is in
all the candidate sets.

Definition 11 (Candidate sets). Let F = (A ,R) be an AS and letσ be a semantics.
Let� be any pre-order defined onA . Let |A |= m. For a permutationθ of {1, . . . ,m},
let >θ be the linear order onA defined by aθ(1) >θ . . . >θ aθ(m). >θ is said to be
compatible with� iff aθ(1) � . . . � aθ(m). A setE ⊆ A is a candidate set ofF under
semanticsσ w.r.t. � iff there exists a permutationθ of {1, . . . ,m} such that>θ is
compatible with� andE is obtained by the following greedy procedure:

S:= /0;
for j = 1, . . . ,m do

if (neσ (aθ( j),F ) ≥ 1) and(S∪{aθ( j)} is conflict-free)
then S:= S∪{aθ( j)}

end for;
E := S.

Note that� from previous definition depends onF andσ but we do not make it
explicit (e.g. by writing�F ,σ ) in order to simplify the notation.

Roughly speaking, the previous definition says that to construct a candidate set, we
first take the arguments with the maximal scores; then, we add as many arguments with
scores−1 as possible (by taking into account that the resulting setsstays conflict-free);
then arguments with scores−2 are added etc. There might be several possibilities (e.g.
incompatible arguments having the same score) thus there might be several candidate
sets.

In the following, we consider the pre-order� on A defined by for allx,y ∈ A ,
x � y iff neσ (x,F ) ≥ neσ (y,F ). We denote the set of candidate sets ofF underσ
w.r.t. this pre-order byCSσ (F ).

Note that, in general, neither each candidate set is an extension nor each extension
is a candidate set. Observe also that the construction of candidate sets is reminis-
cent to the one of preferred subbases from a stratified beliefbase with respect to the
inclusion-based ordering [5]; here the belief base consists of all the arguments and the
stratification is based on theneσ (.,F ) score.

The notion of candidate set allows us to define a new inferencemechanism that we
call supported inferencesince for an argument, being “supported” by more extensions
means more chance to be accepted.

Definition 12 (Supported acceptance). Let F = (A ,R) be an AS,σ be a seman-
tics and let x∈ A . We say that x is supportedly accepted under semanticsσ iff
x∈

⋂
E∈CSσ (F ). We denote the set of supportedly accepted argumentsSpσ (F ).

We can show that supported inference is “between” scepticaland credulous infer-
ence. Namely, every sceptically accepted argument is supportedly accepted, and every
supportedly accepted argument is credulously accepted.

12



Proposition 5. For every ASF = (A ,R), for every semanticsσ returning conflict-
free extensions:

Scσ (F ) ⊆ Spσ (F ) ⊆ Crσ (F ).

Proof. Suppose that there are exactlym extensions, i.e. that|Extσ (F )| = m. The
casem = 0 is trivial; in the rest of the proof we suppose thatm≥ 1. Observe that
we haveScσ (F ) = {x∈ A | neσ (x,F ) = m}. Sinceσ returns conflict-free sets, all
elements ofExtσ (F ) are conflict-free. Hence, their intersection is conflict-free. Thus,
every candidate extension containsScσ (F ), formally for everyEi ∈ CSσ (F ), we have
Scσ (F ) ⊆ Ei . Therefore,Scσ (F ) ⊆ Spσ (F ).

Let x ∈ Spσ (F ); thenx is in all candidate sets. From Definition 11 we conclude
thatneσ (x,F ) ≥ 1 (since only arguments appearing in at least one extension can be
added to candidate sets). This means thatx∈ Crσ (F ).

Note that the condition telling thatσ returns conflict-free extensions is necessary
to ensure the link between sceptical and supported acceptance. To show why, consider
the following example.

Example 12. Let F = (A ,R) with A = {a,b} and R = {(a,b),(b,a)}. Suppose
thatExtσ (F ) = {{a,b}}. Thus,Scσ (F ) = {a,b}. Note thatCSσ (F ) = {{a},{b}};
hence,Spσ (F ) = /0. △

However, this is not an issue, since all the well-known semantics return conflict-free
sets. Let us now illustrate the results one can obtain with these candidate sets.

Example 13. Let F13 = (A13,R13) be an AS withA13 = {a,b,c,d,e, f ,g,h} and
R13= {(a,b),(b,a),(b,g),(c,d),(d,c),(d,g),(e, f ),( f ,e),( f ,g),(g,h)}, shown in Fig-
ure 7. There are eight preferred extensions:{a,c,e,g}, {a,d,e,h}, {a,c, f ,h}, {a,d, f ,h},

a b
f

c d

e

g h

Figure 7:F13 = (A13,R13): Argumenth is almost sceptically accepted

{b,c,e,h}, {b,d,e,h}, {b,c, f ,h}, {b,d, f ,h}. There are no sceptically accepted argu-
ments, i.e.Scp(F13) = /0. But h is accepted by seven out of the eight extensions, and it
is supportedly accepted, i.e.,Spp(F13) = {h}. △

Let us illustrate the behaviour of supported inference on a more complex example:

Example 14. Let F14 = (A14,R14) be an argumentation system shown in Figure 8.
There are four preferred extensions:{b, d, e, j, k}, {a, i,g, f ,k}, {c,b, j,e,h} and
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Figure 8:F14 = (A14,R14)

{a,d,e, j,k}. There is no sceptically accepted argument, i.e.Scp(F14) = /0. We can
build two candidate sets:{b,d,e, j,k} and{a,d,e, j,k}. So we can supportedly accept
four arguments:Spp(F14) = {d,e, j,k}.

△

Note that the set of candidate set is not always a subset of theset of extensions.
Consider for instance the AS from Example 7, where there is only one candidate set
{c,a,e,h}, that isnotan extension. It is interesting to note that in that example there are
four supportedly inferred arguments, whereas with theOBE methods onlyc is inferred.

A major drawback of credulous inference is that the set of inferred arguments is not
always conflict-free. This is problematic since all these arguments cannot be accepted
together in such a case. Sceptical inference does not sufferfrom this problem since
the set of inferred arguments is ensured to be conflict-free.Interestingly, supported
inference offers the same important property:

Fact 3. For anyF , the set of supportedly accepted arguments is conflict-free.

Note that this set is not necessarily admissible. This should not be shocking since
the same observation can be made for the set of sceptically accepted arguments. Con-
sider the following example:

Example 15. LetF15 = (A15,R15) with A15 = {a,b,c,d} andR15 = {(a,b), (a,c),
(b,a), (b,c), (c,d)}, shown in Figure 9.

c d

a

b

Figure 9:F15 = (A15,R15): The set of sceptical arguments is not admissible
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There are two preferred extensions:{a,d} and{b,d}, Scp(F15) = {d}, but {d}
is not an admissible set. Observe that in this particular case we haveSpp(F15) =
Scp(F15) = {d}. △

Finally, an interesting issue is to determine whether some connections exist be-
tween supported inference and the approach presented in theprevious section. We
provide a systematic study of the links between the two approaches under preferred
semantics.

Proposition 6. For everyγ ∈ {sum,min,max, leximin, leximax}, OBEγ andCS are in-
comparable under preferred semantics, i.e.,OBEp,γ ind CSp.

OBEp,sum OBEp,min OBEp,max OBEp,leximin OBEp,leximax

CSp ind ind ind ind ind

Figure 10: Inclusion relationships between rules for preferred semantics:
OBEp,γ ind CSp for all γ from Definition 9.

Proof. The proof of this proposition follows from Example 16. Namely, that example
shows that for everyγ ∈ {sum, min, max, leximin, leximax}, OBEp,γ ind CSp.

Example 16. Let F16 = (A16,R16) with A16 = {x1, x2, x3, x4, x5, x6,x7,a,b,c} and
R16 = {(x1,x2), (x1,x3), (x1,x4), (x1,x5), (x1,x6), (x2,x1), (x2,x3), (x2,x4), (x2,x5),
(x2,x6), (x3,x1), (x3,x2), (x3,x4), (x3,x5), (x3,x7), (x4,x1), (x4,x2), (x4,x3), (x4,x5),
(x4,x7), (x5,x5), (x5,a), (x6,x6), (x6,b), (x7,x7), (x7,c)}.

There are exactly four preferred extensions:E1 = {x1,a,b}, E2 = {x2,a,b}, E3 =
{x3,a,c}, E4 = {x4,a,c}. Their supports are:vsuppp(E1,F16) = vsuppp(E2,F16) =
vsuppp(E3,F16)= vsuppp(E4,F16)= (4, 2, 1). Thus,OBEp,sum(F16) = OBEp,min(F16)
= OBEp,max(F16) = OBEp,leximin(F16) = OBEp,leximax(F16) = {E1,E2,E3,E4}.

Note thatCSp(F16) = {E ′
1,E

′
2,E

′
3,E

′
4} with E ′

1 = {a,b,c,x1}, E ′
2 = {a, b, c, x2},

E ′
3 = {a,b,c,x3}, E ′

4 = {a,b,c,x4}. △

The previous proposition shows that, in general case, the set of extensions inOBE
approach is not comparable with the set of candidate sets. However, in Example 16, the
set of sceptically accepted arguments with respect toOBE (independently ofγ used) is
{a}; the set of supportedly accepted arguments in this example is {a,b,c}. One could
ask whether the set ofγ-sceptically accepted arguments is always a subset of the set
of supportedly accepted arguments for someγ from OBE approach? The next result
provides the answer to this question. Namely, the set ofmax-sceptically accepted argu-
ments is always a subset of the set of supportedly accepted arguments under hypothesis
that the argumentation semantics returns conflict-free sets. For other criteria used in
OBE approach, the sets ofγ-sceptically accepted arguments and supportedly accepted
arguments are independent. Let us first show that everyOBEσ ,max-sceptically accepted
argument is also supportedly accepted, for every semanticsthat returns conflict-free
extensions.
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Proposition 7. Let σ be a semantics returning conflict-free extensions. We have

ScOBEσ ,max ⊑ Spσ .

Proof. Let us show that for every argumentation systemF = (A ,R), for every se-
manticsσ that returns conflict-free extensions,ScOBEσ ,max(F ) ⊆ Spσ (F ). Let a ∈
ScOBEσ ,max(F ); this means that for everyE ∈ OBEσ ,max(F ), a∈ E .

Denotes= maxx∈A neσ (x,F ), and let us show that no argument has better score
thana, i.e. neσ (a,F ) = s. By means of contradiction, suppose the contrary, i.e. let
b ∈ A be such thatneσ (b,F ) = s > neσ (a,F ). This means that there existsE ′ ∈
Extσ (F ) such thatb∈ E anda /∈ E . Sinceb∈ E , E ∈ OBEσ ,max(F ). Contradiction
with hypothesisa∈

⋂
E∈OBEσ ,max(F ) E . Hence, by reductio ad absurdum, we conclude

neσ (a,F ) = s.
Denotestrat1 = {x∈ A | neσ (x,F ) = s} and let us show that for everyx∈ strat1,

set{a,x} is conflict-free. By means of contradiction, suppose the contrary. Letb ∈
strat1 be an argument such that{a,b} is not conflict-free. Sincea ∈ ScOBEσ ,max(F ),
F has at least one extension; consequentlys≥ 1. This means also thatb is in at least
one extension, sayE ′. Because of the conflict betweena andb, and sinceσ returns
conflict-free extensions,a /∈ E ′. But sinceb∈ strat1, E ′ ∈ OBEσ ,max(F ). Contradiction
with hypothesis thata ∈

⋂
E∈OBEσ ,max(F ) E . By reductio ad absurdum, we conclude

that no argument fromstrat1 is in conflict with a. Thus,a is in all candidate sets,
a ∈

⋂
E∈CSσ (F ) E . In other words,a ∈ Spσ (F ). We conclude thatScOBEσ ,max ⊑ Spσ ,

for all semanticsσ returning conflict-free sets.

Let us now illustrate the indifference betweenγ-sceptical acceptance and supported
acceptance forγ 6= max, again on the case of preferred semantics.

Proposition 8. The links betweenScγ andSp under preferred semantics are as follows:

1. ScOBEp,max ❁ Spp.

2. for everyγ ∈ {sum, min, leximin, leximax}, ScOBEp,γ ind Spp.

ScOBEp,sum ScOBEp,min ScOBEp,max ScOBEp,leximin ScOBEp,leximax

Spp ind ind ❂ ind ind

Figure 11: Inclusion relationships (for differentγ) between sceptical inference using
OBEp,γ and supported inference (Spp). If R is the row rule andR ′ is the column rule,
symbol❂ means thatR ❂ R ′, i.e.R ′

❁ R; symbol ind means thatR ind R ′.

Proof. To prove this proposition, we need several counter examples.

Example 17. Let F17 = (A17,R17) with A17 = {x1,x2, x3,x4, x5, x6, x7, x8, x9, x10,
x11, a, b, c} andR17 = {(x1,x2), (x1,x3), (x1,x4), (x1,x5), (x1,x6), (x1,x7), (x1,x8),
(x1,x9), (x2,x1), (x2,x3), (x2,x4), (x2,x5), (x2,x6), (x2,x7), (x2,x8), (x2,x9), (x3,x1),
(x3,x2), (x3,x4), (x3,x5), (x3,x6), (x3,x7), (x3,x8), (x3,x9), (x4,x1), (x4,x2), (x4,x3),
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(x4,x5), (x4,x6), (x4,x7), (x4,x8), (x4,x9), (x5,x1), (x5,x2), (x5,x3), (x5,x4), (x5,x6),
(x5,x7), (x5,x8), (x5,x10), (x6,x1), (x6,x2), (x6,x3), (x6,x4), (x6,x5), (x6,x7), (x6,x8),
(x6,x10), (x7,x1), (x7,x2), (x7,x3), (x7,x4), (x7,x5), (x7,x6), (x7,x8), (x7,x10), (x7,x11),
(x8,x1), (x8,x2), (x8,x3), (x8,x4), (x8,x5), (x8,x6), (x8,x7), (x8,x10), (x8,x11), (x9,x9),
(x9,a), (x10,x10), (x10,b), (x11,x11), (x11,c), (a,b), (b,a)}.

There are exactly eight preferred extensions:E1 = {x1,a}, E2 = {x2,a}, E3 =
{x3,a}, E4 = {x4,a}, E5 = {x5,b}, E6 = {x6,b}, E7 = {x7,b,c}, E8 = {x8,b,c}.

Their supports are:vsuppp(E1,F17) = vsuppp(E2,F17) = vsuppp(E3,F17) =
vsuppp(E4,F17) = vsuppp(E5,F17)= vsuppp(E6,F17)= (4,1); vsuppp(E7,F17)=
vsuppp(E8,F17) = (4,2,1).

Thus, we obtainOBEp,sum(F17) = {E7,E8}. ThereforeScp,sum(F17) = {b,c}.
We haveCSp = {E ′

1, E
′
2, E

′
3, E

′
4, E

′
5, E

′
6, E

′
7, E

′
8, E

′
9, E

′
10, E

′
11, E

′
12, E

′
13, E

′
14, E

′
15, E

′
16}

with E ′
1 = {a,c,x1}, E ′

2 = {a,c,x2}, E ′
3 = {a,c,x3}, E ′

4 = {a,c,x4}, E ′
5 = {a,c,x5},

E ′
6 = {a,c,x6}, E ′

7 = {a,c,x7}, E ′
8 = {a,c,x8}, E ′

9 = {b,c,x1}, E ′
10 = {b,c,x2}, E ′

11 =
{b,c,x3}, E ′

12 = {b,c,x4}, E ′
13 = {b,c,x5}, E ′

14 = {b,c,x6}, E ′
15 = {b,c,x7}, E ′

16 =
{b,c,x8}. ThusSpp(F17) = {c}. This example shows thatScOBEp,sum 6⊑ Spp. △

Example 18. LetF18 =(Aex:17,Rex:17) with A18 = {x1, x2, x3, x4, x5, y1, y2, y3, y4, y5,
a, b}andR18 = {(x1,x2), (x1,x5), (x1,y1), (x1,y2), (x1,y3), (x1,y4), (x2,x1), (x2,x5),
(x2,y1), (x2,y2), (x2,y3), (x2,y4), (x3,x4), (x3,x5), (x3,y1), (x3,y2), (x3,y3), (x4,x3),
(x4,x5), (x4,y1), (x4,y2), (x4,y3), (x4,y4), (x5,x5), (x5,a), (y1,x1), (y1,x2), (y1,x3),
(y1,x4), (y1,y2), (y1,y3), (y1,y4), (y1,y5), (y2,x1), (y2,x2), (y2,x3), (y2,x4), (y2,y1),
(y2,y3), (y2,y4), (y2,y5), (y3,x1), (y3,x2), (y3,x3), (y3,x4), (y3,y1), (y3,y2), (y3,y4),
(y3,y5), (y4,x1), (y4,x2), (y4,x3), (y4,x4), (y4,y1), (y4,y2), (y4,y3), (y4,y5), (y5,y5),
(y5,b), (a,b), (b,a)}. We obtainExtp(F18) = {{x1,x3,a}, {x1,x4,a}, {x2,x3,a},
{x2,x4,a}, {y1,b}, {y2,b}, {y3,b}, {y4,b}}. Thus, we haveScOBEp,min(F18) =
ScOBEp,leximin(F18) = {a}. We obtainCSp(F18) = {{a,x1,x3}, {a,x1,x4}, {a,x2,x3},
{a,x2,x4}, {b,x1,x3}, {b,x1,x4}, {b,x2,x3}, {b,x2,x4}}. We haveSpp(F18) = /0. This
shows thatScOBEp,min 6⊑ Spp and thatScOBEp,leximin 6⊑ Spp. △

Example 19. Let F19 = (A19,R19), with A19 = {x1, x2, x3, x4, x5, y1, y2, y3, y4, a,
b, c} andR19 = {(x1,x2), (x1,x3), (x1,x4), (x1,y1), (x1,y2), (x1,y3), (x2,x1), (x2,x3),
(x2,x4), (x2,x5), (x2,y1), (x2,y2), (x2,y3), (x3,x1), (x3,x2), (x3,x4), (x3,x5), (x3,y1),
(x3,y2), (x3,y3), (x4,x4), (x4,a), (x5,x5), (x5,c), (y1,x1), (y1,x2), (y1,x3), (y1,y2),
(y1,y3), (y1,y4), (y2,x1), (y2,x2), (y2,x3), (y2,y1), (y2,y3), (y2,y4), (y3,x1), (y3,x2),
(y3,x3), (y3,y1), (y3,y2), (y3,y4), (y4,y4), (y4,b), (a,b), (b,a), (b,c), (c,b)}.

There are exactly six preferred extensions:E1 = {x1,a}, E2 = {x2,a,c}, E3 =
{x3,a,c}, E4 = {y1,b}, E5 = {y2,b}, E6 = {y3,b}. We haveOBEp,leximax(F19) =
{E2,E3}. Hence,ScOBEp,leximax = {a,c}. However,{a,c,x1} ∈ CSp(F19) and{b,y1} ∈
CSp(F19), thusSpp(F19) = /0. This example shows thatScOBEp,leximax 6⊑ Spp. △

Let us now present the proof:

• ScOBEp,sum ind Spp. From Example 17,ScOBEp,sum 6⊑ Spp; from Example 16 we
haveSpp 6⊑ ScOBEp,sum.

• ScOBEp,min ind Spp. From Example 18,ScOBEp,min 6⊑ Spp; from Example 16 we
haveSpp 6⊑ ScOBEp,min.
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• ScOBEp,max ❁ Spp. From Proposition 7, we have thatScOBEp,max ⊑ Spp. To see that
Spp 6⊑ ScOBEp,max, consider Example 16.

• ScOBEp,leximin ind Spp. From Example 18,ScOBEp,leximin 6⊑ Spp; Example 16 shows
thatSpp 6⊑ ScOBEp,leximin.

• ScOBEp,leximax ind Spp. From Example 19,ScOBEp,leximax 6⊑ Spp. From Example 16
we haveSpp 6⊑ ScOBEp,leximax.

The two previous propositions show thatOBE and supported inference, although
both using the scores of arguments defined as the number of extensions they belong to,
induce intrinsically different reasoning mechanisms.

6 Conclusion and Related Work

This paper aimed at defining approaches for a better inference from abstract argumen-
tation framework. Indeed, a large number of extensions results in a low number of
sceptically accepted arguments. Several approaches have been described for dealing
with this problem. First, different criteria for pairwise comparison of extensions and a
method for selecting only the best extensions given the winners of pairwise duels have
been pointed out. Second, several criteria for ordering theextensions have been pre-
sented. Both approaches result in a decrease of the number ofextensions; consequently,
the number of sceptical arguments increases (and the numberof credulous arguments
diminishes). The third approach we have put forward does notchoose between existing
extensions. Instead, it uses extensions to assign a score toevery argument (the score
of an argument is the number of extensions it belongs to). Then, starting from the ar-
guments having the maximal score, candidate sets can be generated and on this ground
supportedly accepted arguments have been defined.

Several papers in the literature are relevant to our work in the sense that their objec-
tives are somehow similar. Thus, some previous work aimed atdefining different levels
of acceptability for arguments [9, 22, 18, 3]. Such levels can be obtained by attaching
numerical scores between 0 and 1 to each argument, or by ranking arguments over an
ordinal scale. Contrastingly, the goal of the present paperis not to tackle the problem
of gradual acceptance. In this work our objective is not to question the classical binary
framework for inference, where an argument is inferred or not, but to define inference
relations allowing to infer more arguments than sceptical inference; to make a parallel
with logical inference, a similar distinction exists between paraconsistent logics and
some weighted logics (such as possibilistic or fuzzy logics).

Settings where argumentation systems are based on preferences or attack weights
can also be exploited for reducing the number of extensions.However, those ap-
proaches suppose the availability of some extra information such as weights or prefer-
ences, whereas our approach is based solely on the argumentation systemF =(A ,R).

Other approaches calculate arguments’ scores / statuses without relying on the no-
tion of extension [1, 12]. Unlike our approach, semantics (e.g., stable, preferred) are
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not used at all. Here, we suppose the use of an (arbitrary) semantics to calculate ex-
tensions and then point out a way to augment the number of arguments which are
accepted. Our criteria are orthogonal to the notion of semantics, so that each criterion
can be combined with each semantics.

Another related work is [10] which addresses the problem of defining more pru-
dent inference relations for Dung’s argumentation frameworks (i.e., the objective is to
derive less arguments). Contrariwise to the present paper,instead of selecting some ex-
tensions or defining a new inference policy, the approach consists in strengthening the
usual (direct) conflict-freeness property to indirect conflict-freenesss. Thus a prudent
extension cannot contain two arguments when there exists anindirect attack among the
first one and the second one. When the credulous policy and thepreferred semantics
(or the stable semantics) are considered, the set of derivable arguments from prudent
extensions is included in the set of arguments derivable from the standard extensions.

Baroni et al. [3] show how to define some fine-grained argumentjustification sta-
tuses for abstract argumentation frameworks. For extension-based semantics, the jus-
tification status of an argument basically depends on the existence of extensions con-
taining it and the existence of extensions attacking it. Clearly enough, the problem
of selecting extensions is orthogonal to the problem of defining argument justification
statuses; thus, Baroni’s et al. results can be exploited as soon as some extensions exist,
even if they come from a selection process. Our notion of supported inference is closer
to their proposal since it induces an intermediate argumentstatus, supported accep-
tance, between sceptical acceptance and credulous acceptance. However, the mecha-
nisms at work for defining this intermediate status and its rationale are quite different
from those considered in Baroni’s at al. paper: in our work, the support of an argument
is based on the number of extensions containing it.

Our approach also departs from the work by Dunne et el. [17] which focusses on
ideal semantics. Indeed, ideal acceptance is more demanding than sceptical acceptance.
As such, it proves useful when sceptical acceptance is not prudent enough, i.e. when
unexpected arguments are sceptically accepted. Contrastingly, our work is motivated
by the remaining cases, when sceptical inference is too cautious and discards some
expected arguments.

Caminada and Wu [22] defined different labelling-based justification statuses of ar-
guments. Indeed, they propose to attach to each argument theset of its possible labels
(i.e. the collection of all labels it obtains in all completelabellings). Whereas Dung-
based approach allows to split the arguments into three classes (sceptically accepted,
credulously accepted, rejected), their contribution provides a way for fine-graded clas-
sification, by defining six different justification statuses: {in}, {in,undec}, {undec},
{in,out,undec}, {out,undec} and{out}. The work of Caminada and Wu is re-
lated to our work since it could also be used to reason in caseswhen there are no (or
when there are not enough) accepted arguments. However, theactual way to do it is
drastically different from our approach.
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Appendix

Example 5:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(x2).
arg(x1).
att(x1,x1).
att(x2,x2).
att(a,c).
att(a,x1).
att(x1,b).
att(a,d).
att(a,e).
att(a,x2).
att(b,x2).
att(b,c).
att(c,a).
att(c,b).
att(c,d).
att(c,e).
att(c,x2).
att(c,x1).
att(d,a).
att(d,c).
att(e,a).
att(e,c).

Example 6:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(x1).
arg(x2).
att(x1,x1).
att(x2,x2).
att(a,b).
att(a,c).
att(a,d).
att(a,e).
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att(b,a).
att(b,x1).
att(c,a).
att(d,a).
att(d,x2).
att(e,a).
att(x1,b).
att(x2,d).
att(x1,c).
att(x2,e).

Example 7:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(f).
arg(g).
arg(h).
att(a,b).
att(b,a).
att(e,f).
att(f,e).
att(b,g).
att(f,g).
att(g,h).
att(h,d).
att(d,c).
att(c,d).

Example 8:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
att(a,b).
att(a,e).
att(b,a).
att(b,c).
att(b,d).
att(c,d).
att(c,e).
att(d,c).

23



att(d,e).
att(e,c).
att(e,d).

Example 9:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(x6).
arg(x7).
arg(a).
arg(b).
att(x1,x2).
att(x2,x1).
att(x3,x4).
att(x4,x3).
att(x1,x5).
att(x2,x5).
att(x3,x5).
att(x4,x5).
att(x5,x5).
att(x4,x6).
att(x6,x6).
att(x2,x7).
att(x7,x7).
att(x7,b).
att(x5,a).
att(x6,b).

Example 10:

arg(a).
arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(b1).
arg(b2).
arg(b3).
arg(b4).
arg(y1).
arg(y2).
arg(y3).
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att(x1,x2).
att(x2,x1).
att(x3,x4).
att(x4,x3).
att(x1,x5).
att(x2,x5).
att(x3,x5).
att(x4,x5).
att(x1,x3).
att(x3,x1).
att(x1,x4).
att(x4,x1).
att(x2,x3).
att(x3,x2).
att(x2,x4).
att(x4,x2).
att(x5,x5).
att(x5,a).
att(y1,y2).
att(y2,y1).
att(y1,y3).
att(y2,y3).
att(y3,y3).
att(y3,b1).
att(y3,b2).
att(y3,b3).
att(y3,b4).
att(x1,y1).
att(x1,y2).
att(x2,y1).
att(x2,y2).
att(x3,y1).
att(x3,y2).
att(x4,y1).
att(x4,y2).
att(y1,x1).
att(y2,x1).
att(y1,x2).
att(y2,x2).
att(y1,x3).
att(y2,x3).
att(y1,x4).
att(y2,x4).

Example 11:

arg(x1).
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arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(a).
arg(y1).
arg(y2).
arg(y3).
arg(y4).
att(x1,x2).
att(x2,x1).
att(x1,x3).
att(x3,x1).
att(x1,x4).
att(x4,x1).
att(x2,x3).
att(x3,x2).
att(x2,x4).
att(x4,x2).
att(x3,x4).
att(x4,x3).
att(x1,x5).
att(x2,x5).
att(x3,x5).
att(x4,x5).
att(x5,x5).
att(x5,a).
att(y1,y2).
att(y2,y1).
att(y3,y4).
att(y4,y3).
att(x1,y1).
att(x1,y2).
att(x1,y3).
att(x1,y4).
att(x2,y1).
att(x2,y2).
att(x2,y3).
att(x2,y4).
att(x3,y1).
att(x3,y2).
att(x3,y3).
att(x3,y4).
att(x4,y1).
att(x4,y2).
att(x4,y3).
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att(x4,y4).
att(y1,x1).
att(y1,x2).
att(y1,x3).
att(y1,x4).
att(y2,x1).
att(y2,x2).
att(y2,x3).
att(y2,x4).
att(y3,x1).
att(y3,x2).
att(y3,x3).
att(y3,x4).
att(y4,x1).
att(y4,x2).
att(y4,x3).
att(y4,x4).

Example 13:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(f).
arg(g).
arg(h).
att(a,b).
att(b,a).
att(b,g).
att(c,d).
att(d,c).
att(d,g).
att(e,f).
att(f,e).
att(f,g).
att(g,h).

Example 14:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(f).
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arg(g).
arg(h).
arg(i).
arg(j).
arg(k).
att(a,b).
att(b,a).
att(c,d).
att(d,c).
att(e,f).
att(f,e).
att(g,h).
att(h,g).
att(g,e).
att(a,c).
att(c,a).
att(b,f).
att(b,i).
att(e,i).
att(i,d).
att(i,j).
att(j,g).
att(c,k).
att(k,h).

Example 16:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(x6).
arg(x7).
arg(a).
arg(b).
arg(c).
att(x1,x2).
att(x1,x3).
att(x1,x4).
att(x2,x1).
att(x2,x3).
att(x2,x4).
att(x3,x1).
att(x3,x2).
att(x3,x4).
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att(x4,x1).
att(x4,x2).
att(x4,x3).
att(x5,x5).
att(x6,x6).
att(x7,x7).
att(x1,x5).
att(x2,x5).
att(x3,x5).
att(x4,x5).
att(x1,x6).
att(x2,x6).
att(x3,x7).
att(x4,x7).
att(x5,a).
att(x6,b).
att(x7,c).

Example 17:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(x6).
arg(x7).
arg(x8).
arg(x9).
arg(x10).
arg(x11).
arg(a).
arg(b).
arg(c).
att(x1,x2).
att(x1,x3).
att(x1,x4).
att(x1,x5).
att(x1,x6).
att(x1,x7).
att(x1,x8).
att(x2,x1).
att(x2,x3).
att(x2,x4).
att(x2,x5).
att(x2,x6).
att(x2,x7).
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att(x2,x8).
att(x3,x1).
att(x3,x2).
att(x3,x4).
att(x3,x5).
att(x3,x6).
att(x3,x7).
att(x3,x8).
att(x4,x1).
att(x4,x2).
att(x4,x3).
att(x4,x5).
att(x4,x6).
att(x4,x7).
att(x4,x8).
att(x5,x1).
att(x5,x2).
att(x5,x3).
att(x5,x4).
att(x5,x6).
att(x5,x7).
att(x5,x8).
att(x6,x1).
att(x6,x2).
att(x6,x3).
att(x6,x4).
att(x6,x5).
att(x6,x7).
att(x6,x8).
att(x7,x1).
att(x7,x2).
att(x7,x3).
att(x7,x4).
att(x7,x5).
att(x7,x6).
att(x7,x8).
att(x8,x1).
att(x8,x2).
att(x8,x3).
att(x8,x4).
att(x8,x5).
att(x8,x6).
att(x8,x7).
att(x1,x9).
att(x2,x9).
att(x3,x9).
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att(x4,x9).
att(x5,x10).
att(x6,x10).
att(x7,x10).
att(x8,x10).
att(x7,x11).
att(x8,x11).
att(x9,x9).
att(x10,x10).
att(x11,x11).
att(x9,a).
att(x10,b).
att(x11,c).
att(a,b).
att(b,a).

Example 18:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(y1).
arg(y2).
arg(y3).
arg(y4).
arg(y5).
arg(a).
arg(b).
att(x1,x2).
att(x2,x1).
att(x3,x4).
att(x4,x3).
att(y1,y2).
att(y1,y3).
att(y1,y4).
att(y2,y1).
att(y2,y3).
att(y2,y4).
att(y3,y1).
att(y3,y2).
att(y3,y4).
att(y4,y1).
att(y4,y2).
att(y4,y3).
att(x1,y1).
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att(x1,y2).
att(x1,y3).
att(x1,y4).
att(x2,y1).
att(x2,y2).
att(x2,y3).
att(x2,y4).
att(x3,y1).
att(x3,y2).
att(x3,y3).
att(x3,y3).
att(x4,y1).
att(x4,y2).
att(x4,y3).
att(x4,y4).
att(y1,x1).
att(y1,x2).
att(y1,x3).
att(y1,x4).
att(y2,x1).
att(y2,x2).
att(y2,x3).
att(y2,x4).
att(y3,x1).
att(y3,x2).
att(y3,x3).
att(y3,x4).
att(y4,x1).
att(y4,x2).
att(y4,x3).
att(y4,x4).
att(x1,x5).
att(x2,x5).
att(x3,x5).
att(x4,x5).
att(x5,x5).
att(y1,y5).
att(y2,y5).
att(y3,y5).
att(y4,y5).
att(y5,y5).
att(x5,a).
att(y5,b).
att(a,b).
att(b,a).
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Example 19:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(y1).
arg(y2).
arg(y3).
arg(y4).
arg(a).
arg(b).
arg(c).
att(x1,x2).
att(x1,x3).
att(x2,x1).
att(x2,x3).
att(x3,x1).
att(x3,x2).
att(y1,y2).
att(y1,y3).
att(y2,y1).
att(y2,y3).
att(y3,y1).
att(y3,y2).
att(x1,y1).
att(x1,y2).
att(x1,y3).
att(x2,y1).
att(x2,y2).
att(x2,y3).
att(x3,y1).
att(x3,y2).
att(x3,y3).
att(y1,x1).
att(y1,x2).
att(y1,x3).
att(y2,x1).
att(y2,x2).
att(y2,x3).
att(y3,x1).
att(y3,x2).
att(y3,x3).
att(x1,x4).
att(x2,x4).
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att(x3,x4).
att(x4,x4).
att(x2,x5).
att(x3,x5).
att(x5,x5).
att(y1,y4).
att(y2,y4).
att(y3,y4).
att(y4,y4).
att(x4,a).
att(x5,c).
att(y4,b).
att(a,b).
att(b,a).
att(b,c).
att(c,b).
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