On Supported Inference and Extension Selection
in Abstract Argumentation Frameworks
—long version—

Sébastien Konieczny Pierre Marquis Srdjan Vesic
CRIL
CNRS & Université d’Artois, France
{konieczny,marquis,vesj@cril.fr

June 13, 2015

Abstract

We present two approaches for deriving more arguments froabstract argu-
mentation framework than the ones obtained using scejmifesence, that is often
too cautious. The first approach consists in selecting amtyesof the extensions.
We point out several choice criteria to achieve such a gefeprocess. Choices
are based either on the attack relation between extensianstbe support of the
arguments in each extension. The second approach confsibts definition of a
new inference policy, between sceptical and credulousenfse, and based as well
on the support of the arguments. We illustrate the two ames on examples,
study their properties, and formally compare their inféig@mowers.

1 Introduction

An abstract argumentation system is often represented asiemted graph where
nodes correspond Ergumentsand arcs correspond &ttacksbetween them [15]. Dif-
ferentsemanticsire used to calculagxtensiongsets of arguments that can be accepted
together). From the extensionssttus accepted or rejected, is assigned to each ar-
gument, using somacceptance policyThey are two main acceptance policies. In the
first one, thescepticalpolicy, an argument is accepted if (there are extensionyiand
appears in each extension. For the second onesrétulouspolicy, an argument is
accepted if it belongs to (at least) one extension.

When the number of extensions is large, using a scepticatlibous approach can
be sub-optimal. Namely, if there is a lot of extensions, daly (if any) arguments are
in all of them. Thus, using sceptical inference gives almoshformation. Conversely,
the credulous approach may result in too many arguments.

There exist settings for abstract argumentation wherepeates, weighted attacks
or similar extra information are considered [19, 20, 8, 18, 4]. Those additional



data can be exploited to reduce the number of extensiongraatingly, the problem
addressed in this paper is to increase the number of accemechents when there is
no further data, i.e., other data except the arguments anatthcks between them.

We investigate this problem and present two approachesgfalindy with it. The
first one consists in selecting only some of the extensidres"“fiest” ones, for a given
semantics). The idea is to discriminate the extensionskigdadvantage of the attack
relation. The selection achieved in this way leads to irmedhe number of sceptically
accepted arguments. Two methods for selecting extensierointed out. The first
one is based on a pairwise comparison of extensions. Thedaeethod is based on a
global evaluation of each extension, followed by a seleatitthe best evaluated ones.
The second approach we developed goes through the definkiamew policy for
accepting arguments. We introduce a third acceptanceypuliich can be viewed as
a trade-off between the credulous and the sceptical pdiiteg.very idea is to consider
the number of times an argument appears in the extensionshéeceptical policy a
“good” argument is one that appears in all extensions. Ifuah@rgument exists, then
it makes sense to consider that arguments that appearsrinestension but one are
“quite good”, and better than the ones that appear in legneidns.

2 Formal Setting

This section introduces basic definitions and notations sesthroughout the paper.

Definition 1 (Argumentation system)An argumentation systeifAS) is a pair.# =
(o7, #) whereZ C of x of. o is called the set orgumentand Z is called the
attack relationWe denote by?| s the restriction of attack relatios? on sets’.

In order to simplify notation, we do not explicitly mention argumentation system
when it is clear from the context which argumentation systesrefer to. We restrict
ourselves to the case whei is finite.

In order to determine mutually acceptable sets of argumeiferent semantics
have been introduced in argumentation. We first introdued#sic notions of conflict-
freeness, defence [15] and strong defence [4].

Definition 2 (Conflict-free, strong defencelet.# = (&7, %) be an AS, and lef, &', & C
o/ and a€ 7.

¢ & isconflict-freeif and only if there exist no argumentses & such that a# b.

e & defends a if and only if for everyd.c/ we have that if 37 a then there exists
c € & such that ez b.

e Argument a is strongly defended frafti by &” (written sda,&’,&")) if and
only if (Vb € &) if (b#a) then(3c € &\ {a})((cZb)A sd(c,&”,&"\ {a})).
Let us now define usual semantics for Dung’s AS, especiallycttimplete, pre-
ferred, grounded [15], semi-stable [7] and ideal semalifiti¢k

Definition 3 (Acceptability semantics)Let.# = (&, #) be an AS and? C «/. We
say that a setZ is admissibldff it is conflict-free and defends all its elements.



% is acompleteextension iffZ is admissible and contains all the arguments it
defends.

A is apreferredextension iff it is a maximal (w.r.€) admissible set.

2 is astableextension iffZ is conflict-free and for all & 7 \ %, there exists
b € % such that b7 a.

A is asemi-stableextension iffZ is a complete extension and the union of the
set# and the set of all arguments attacked4yis maximal (for set inclusion).

e Ais agrounded extensioiff % is a minimal (for set inclusion) complete exten-
sion.

2 is anideal extension iffZ is a maximal (for set inclusion) admissible set
contained in every preferred extension.

We say that a semanticsreturns conflict-free sets iff for every AB, every extension
of Z is conflict-free.

A semanticg is said to return conflict-free sets iff for every AB, every extension
of .# is conflict-free. For an argumentation systefn= (<7, %) we denot&xt s (%);
or, by a slight abuse of notatioBxt (<, #) the set of its extensions with respect
to semantices. We use abbreviations p, s, s§ g andi for respectively complete,
preferred, stable, semi-stable, grounded and ideal sémaior exampleExt ()
denotes the set of preferred extensionsaf

Example 1. Let .7 = (24,%1) be an argumentation system wity = {a,b,c,d}
and %1 = {(b,c),(c,b),(b,d),(c,d)}. The graphical representation of the system is
shown in Figure 1. There are two preferred / stable / semipistaxtensionsExt p(.%#1)

® (b)

/
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Figure 1:.%; = (@4,%1): An argumentation system

= Exts(#1) = Extss(-F#1) = {{a,b},{a,c}}; three complete extensionBxtc(%1) =
{{a},{a, b},{a,c}}; and one ideal / grounded extensioBxtgy(.%1) = Ext;(%1) =

{{a}}- A

Definition 4 (Acceptance policies)Let # = (&, %) be an ASo a semantics and
let x € .«7. Anacceptance policis a functionInfy : Extg(.#) — 2. The two main
acceptance policies are sceptical and credulous polici¥s.say that x isceptically



acceptedinder semantice (or in short ssceptically acceptedff Exty(.%) # 0 and
X € Necextq (7)€ - X iscredulously acceptesnder semantics iff X € Ugcpxe, (7)€ -
We denote the set of sceptically accepted argumente b ) and the set of credu-
lously accepted arguments By, (7).

3 Comparing Extensions by Pairwise Comparison

Let us see now how to select only some of the extensions prdiagl some semantics.
This will allow us to derive more sceptically accepted arguts (and less credulously
accepted ones). This section studies the way to select #s™bxtensions based on
the following process:

1. Compare all pairs of extensions based on a given crit§gan the number of
arguments in one extension not attacked by the other ext@nsi

2. Choose the “best” extension(s) given the winners of pa@womparisons
We first consider several criteria for pairwise comparisbextensions.

Definition 5 (Pairwise comparison criteria)et.# = (<7, %) be an ASg a semantics
andExtq (%) the set of extensions &F. Let&, &’ € Extq(.F). Then:

1. & =nonatt & if the number of arguments ifi non attacked by” is greater than
or equal to the number of arguments4ti non attacked by arguments &f

2. & =sudet & if the number of arguments ifi strongly defended frord’ by & is
greater than or equal to the number of argumentgTirstrongly defended from
& by &’

3. & =qelarg & if the cardinality of any largest subset S &fsuch thatif all the
attacks fromSto &” are deleted thed is an extension of& U &, 2, s,¢1) iS
greater than or equal to the cardinality of any largest sut8ef & such thatf
all the attacks fron$ to & are deleted the#f is an extension of8 U&”, 2, o)

4. & =qeatt & if the maximal number of attacks froghto &” that can be deleted
such that#’ is still an extension of&’ U &”", %, s «) is greater than or equal to
the maximal number of attacks fraffi to & that can be deleted such thét is
still an extension of & U &”", %, su1)

The two first criteria are based on the number of non attackgdtmongly) de-
fended arguments. The last two ones are based on a notiobudtness from attacks
stemming from the other extension. One could also consither ariteria, for example
by comparing the total number of attacks frafio &’ and the total number of attacks
from &’ to &. For a criteriory, we write&” -, &” iff & =, & and it is not the case that
&' =y &. We also writes” ~y &' iff & =, & andé”’ = &.

Example 2. Consider the AS#, = (o5, %>) with % = {a, b, ¢, d} and%» = {(a,c),
(a,d), (b,c), (c,a),(d,b)}. depicted in Figure 2Ext n(.%2) = {&, &'} with & = {a, b},
&' ={c,d}. All the arguments are attacked, &b~nonat &’. No argument is strongly



defended, S& ~gtrger &”. We also haveé -gelarg &” since for S= {b} & is still an
extension even if all the attacks from S are deleted; whetesre are no SC &’ with
S # 0 such thats” is still a preferred extension even after deleting all thiaelts from
S. Finally, & =gelatt &' since even if the attack from a to c is deleteédjs still a
preferred extension, whereas as soon as one attacktoimdeleted£” is no longer
a preferred extension. VAN

@ve
g

Figure 2: %, = (%, %-): Pairwise comparison of extensions

Definition 6 (Copeland-based extension&ety € {nonatt strde f, delarg delatt} be
one of the criteria from Definition 5. Le¥ = (&7, %) be an argumentation system,
a semantics anflxty (%) the set of extensions oF with respect tao. We define the
set of Copeland-based extensiofBE) as follows

CBEg (Z) = argmax|{& €Exty(F)|E =y &'} —|{&" €Exto(F)| & =y &Y
ECExtg ()

We call this selection “Copeland-based” since it is ingpiby the Copeland’s
method from voting theory [21]. Of course, one can envisatperoways to select
the extensions given criterign for instance all voting methods based on the majority
graph (such as Miller, Fishburn, Schwartz, Banks or Slateréthods [6]). Clearly,
selecting some extensions is a way to increase the numbeepfically accepted ar-
guments (and to decrease the number of credulously acceqfedhents):

Fact 1. For everyy € {nonatt strde f,delarg delatt}, for every semanticg, for every
ASF = (o, %), for every xe o7

(] CBEUV(Q) g Eth’(y)
e if x is o-sceptically accepted then xd8E. ,-sceptically accepted
e if X is CBEq y-credulously accepted then it és-credulously accepted.

Example 3. Consider the argumentation system from Example 2. For elam@
have thaCBEo"de|arg(y2) == CBEo‘de|att(<g\2) == {éa}. A

Baroni and Giacomin [4, Section 3] pointed out a set of extansvaluation criteria
that can be seen as properties for characterizing good siesiave now show that the
semantics defined in this section satisfy the same propeithe underlying semantics
they are built from, with the exception of directionality.



Proposition 1. Let x be any property among I-maximality, Admissibilityp8y Ad-
missibility, Reinstatement, Weak Reinstatement, CFsRdament [4].
If the semantice satisfies property x, then the semantigg, , satisfies property x.

Proof. Follows directly from the definitions of properties. O
The next example shows that directionality is not alwayisBatl byCBE approach.

Example 4. Consider the AS#, = (o4, %4) with o7y = {a,b,c,d} andZ4 = {(a,b),
(a,c), (b,a),(b,d),(c,d)}, depicted in Figure 3. Directionality is satisfied by prest
semantics [4]. Let us show that it is not satisfieddBE approach using preferred
semantics. Let U= {a,b}. We haveExtp(#) = {{a,d},{b,c}} andExty(F |u) =
{{a},{b}}. Let us use the criterion delatt. We obtain tiBE, gejat(-#) = {{b,c}}
and CBEp gelat(-# lu) = {{a},{b}}. Note that we hav¢s NU | & € CBEp delatt} =
{{b}}. Thus, directionality does not hold, since we hg¥eNU | & € CBEp gelatt} #

C]-%E:p,delatt('g~ lu )
@g@

Figure 3:.%4 = (<4, %4): Directionality is not satisfied bgBE approach

A

Note that the relations among different semantics do nayaser in case ofBE
approach. For instance, it is not guaranteed that €agkstable extension is also a
CBE-preferred extension. Consider the following example.

Remark: for the complex examples, instead of providing kg representation,
we provide machine readable code in the appendix. This allbv reader to check
them using one of the existing software tools, e.g. Asphrtix

Example 5. Let %5 = (%5, %s5) with o = {a,b,c,d, e, X1, X2} and%s = {(x1,X1),
(X27X2)7 (av C)v (avxl)v (Xlab)a (avd)v (ave)v (aaXZ)a (b,Xz), (b,C), (Cva)v (Cv b)v (Cad)a
(c,e), (c,x2), (¢,x1), (d, @), (d,c), (e,a), (ec)}. Denotes; = {a,b}, & = {c}, 3=
{d,e}. There are exactly two stable extensio#g,and &>. There are exactly three
preferred extensionssy, & and &3. Since all arguments ef; are attacked by, and
vice versaCBEsnonatt(-Z ) = {61, 62}. Howeveré =nonatt &3 Whereasés s nonatt 63
and&z isnonatt é5. ThUS,CBEp!nonatt(ag‘\) = {éol} A

In the next example there isGBE-preferred extension that is notC2E-complete
extension.

Irul | . dbai .t uwi en. ac. at : 8080/ ASPARTI X/



Example 6. Let.7 = (&7, %) with &/ = {a,b,c,d, e x1,X2} andZ = {(x1,%1), (X2, X2),
(avb)v (a,c)7 (avd)v (ave)’ (b’a)a (b’ Xl)v (C’a)’ (daa)’ (daXZ)a (e’a)a (Xlab)a (XZad)a
(x1,C), (X2,€)}. Denoteé) = {a}, & = {b,c}, &3 = {d,e}. There are exactly two
preferred extensions$; and&>Ué&3. The same argumentation system has five complete
extensions®, &1, &>, &3, 62 U &3. Sinced) attacks all arguments of, U &3 and vice
versa, CBEp nonatt(-# ) = {61,6>U &3}. However, it can be checked that, out of all
complete extensions, U &3 has the biggest Copeland score, since it is strictly stronge
than bothg, and&z with respect to-nonatt. We 0btairCBEe nonatt(# ) = {62U3}. A

4 Comparing Extensions by Global Evaluation

In Section 3 we considered different criteria fairwise comparisonf extensions. In
this section we define the score of an argument as the numleetefsions it appears
in. One may justify this choice of score as some kind of gdimation of the prin-
ciples behind sceptical acceptance. For sceptical acuepta“good” argument is an
argument that appears in all extensions. But, if no suchraegt exists, it could make
sense to consider that arguments that appears in everysextdout one are “good”,
and typically better than the ones that appears in less ggten Note that one can use
other scores in the construction and obtain similar results

Definition 7 (Scores and support vectord)et &% = (&7, %) be an argumentation

system,o a semantics, x be an argument, abtt5(.%#) the set of extensions of

with respect tao. We definee as the number of extensions x appears in. Formally,

neg(X,.#) = |{& € Exto(F) | x € &}|. For an extensionf’ € Extq (%), with & =

{a1,...,an} we define its support assupp, (&, %) = (neg(ay, F),...,neq(an,F)).
When.# and o are clear from the context, we writee(x) and vsupp(&’) instead

of neg(x,.%#) andvsupp,(&’,.%).

Definition 8 (Aggregation functions)Let v= (v1,..., vy) be a vector of natural num-
bers. We denote by sm the sum of all elements of v, by nfexthe maximal element
of v, by mirjv) the minimal element of v, by lexim@x the re-arranged version of v
where \(, ..., v, are put in decreasing order, by lexingi) the re-arranged version of v
where v, ..., v, are put in increasing order.

For example, ifv = (2,1,4,2,5), then we havesun(v) = 14 andleximin(v) =
(1,2,2,4,5). Note that there exist other ways to aggregate vectors [13].

For the next definition we need the notion of lexicographienk e, (for leximin
andlexima®. Letv= (vq,..., vy) andV = (V,..., V;;) be two vectors of natural
numbers. We have <iex V' iff 3j € 1,...,n(Vi€ 1,...,j—1,vi = V) andvj < vj. We
also havey <jeximin V' iff leximin(v) <jex leximin(V') andv <jeximaxV' iff leximaxv) <jex
leximaxV).

Definition 9 (Order-based extensiond)et.# = (&7, #Z) be an argumentation system,
o a semanticsExtq (%) be the set of extensions.&f with respect tas, andy be an
aggregation function. We ha@BEq, (-7 ) = arg MaXecg,. ,(#) Y(vsuppg (&', F)).

The idea of the previous definition is to calculate the poptylaf an extension by
taking into account the popularity of the arguments it corgta



X min sum leximax leximin
12 4332 2334

9 3321 1233
12 4332 2334
12 4332 2334
11 4322 2234

vsupp M
{a,e,g,c} 3324
{a,e,g,d} 3321
{a,f,h,c} 3234
{b,h,c,e} 2343
{b,h,c,f} 2342

InnIN winD
ININ N s N

Table 1: Computations @fBE¢ &

Example 7. Let %7 = (o7, %7) be ASF; = (of7,%7) with o7 = {a,b,c,d,e, f,g,h}
and#7 = {(a,b), (b,a), (e f), (f.e), (b,9), (f,9), (g,h), (h,d), (d,c), (c,d)}. There

Figure 4: %7 = (of7,%7)

are five preferred extensionéa, e, g,c}, {a,e g,d}, {a, f,h,c}, {b,h,c,e}, {b,h,c, f}.
Sonep(a,.#7) = 3,nep(b,.#7) = 2, nep(c,.#7) = 4,nep(d, #7) = 1,nep(e, F7) =3,
nep(f,#7) =2,nep(9,.-%7) = 2, nep(h, .#7) = 3. The computation of the support vec-
tors of each extension and the selection (underlined) mgdaibymax min, leximin
leximax are indicated in Table 1.

We obtain0BEg max(-#7) = 0BEg min(-%#7) = {{a,e,0,c},{a, f,h, c}, {b,h,c.e},
{b,h,c,f}}. So, whereascp(.#7) = 0, we haveScogg, ,,(#7) = {c}. Similarly, we
haveOBEg sum(-#7) = OBEg jeximin(-#7) = 0BEg leximax-#7) = {{&,€,0, ¢}, {a, f,h,c},
{b,h,c,e}}.

A

Fact 2. For everyy € {summaxmin,leximinleximax, for every semantics, for
every ASY = (&7, %), for every xe "

(] OBEUV(y) g Eth’(y)
o if x is o-sceptically accepted then xU8E. ,-sceptically accepted
e if X is OBE y-credulously accepted then it és-credulously accepted.

Here also we can show that these semantics keep the sameti@®pe the under-
lying semantic they are built from.



Proposition 2. Let x be any property among I-maximality, Admissibilityp8y Ad-
missibility, Reinstatement, Weak Reinstatement, CFsRdament [4].
If the semantice satisfies property x, then the semantieg, , satisfies property x.

Proof. Follows directly from the corresponding definitions. O
Like in Section 3, directionality is not always satisfied hg 0BE approach.

Example 8. Consider the AS#g = (o5, #3) defined asws = {a,b,c,d,e} andZg =
{(a,b), (a,e), (b,a), (b,c), (b,d), (c,d), (c,e), (d,c), (d,e), (e,c), (e,d)}. depicted
in Figure 5. Directionality is satisfied by preferred semast[4]. Let us show that
it is not satisfied by0BE approach using preferred semantics. Let2){a,b}. We
haveExt (%) = {{a,c},{a,d},{b,e} } andExtn(Z [u) ={{a},{b}}. Letususethe
criterion leximax. We obtaifBEp jeximax(-# ) = {{a,c},{a,d}} andOBE jeximax-# u
)={{a},{b}}. Note that{&’NU | & € OBEp jeximaxt = {{a} }. Thus, directionality does
not hold, sincg& NU | & € OBEp jeximax} 7 OBEp jeximax(-# lu)-

Figure 5: #g = (73, #3g): Directionality is not satisfied bgBE approach

A

A natural issue is to determine how the proposed criterizanmected. Do some
of the rules coincide? Are some of them refinements of othénsthe rest of this
section we provide the answer to this question. Essentallthe criteria give different
results; the exceptions come from the obvious factlgsdmin (resp.leximay refines
min (resp. max). We used the preferred semantics to constreicounter-examples; a
similar study can be conducted for the other semantics. 4 &itst formalise what we
mean by inclusion between the criteria.

Definition 10. Letl" andl"’ be two functions. We write C '’ iff for every.# [ (%) C
I'(#). The relationC is a pre-order. Let us denote its strict part by its symmetric
part by= and its negation byZ. We writel ind I’ iff T Z " andl Z I"".

Proposition 3. For every acceptability semantics
OBEg Jeximin &= 0BEg min @Nd0BEg jeximax = OBEg, max

Proof. Let us show that for every semantigsfor every argumentation systefa, for
every extensiod’ of .# undero, if & € OBEg jeximin(-# ) then&” € 0BEg min(-#). Sup-
pose that’ € 0BEq jeximin(-# ). If & is the only extension of#, the proof is over. Else,



let &’ be another extension of. Since&’ € 0BEg jeximin(-%# ), thenmin(vsupp, (&, %))
> min(vsupp, (&,-%#")). This is true for every extensiofi’ € Extq (%), thusé €
DBEU,min(j)- Hence 0BE; jeximin & 0BEg min.

Let us show that for every semantias for every argumentation systef, for every
extensiong’ of .# undero, if & € 0BEg jeximax-# ) thené& € OBEg max(-#). Suppose
& € 0BEg jeximax(-Z ). If & is the only extension of#, the proof is over. Else, lef’
be another extension of. Since& € 0BEg jeximax(-% ), thenmaxvsupp,(&,.%)) >
maxvsupp, (&,.#")). This is true for every’ € Extq(.#), thusé’ € 0BEg max(-# ).
Hence 0BEg |eximax € OBEg max- O

We now provide a complete comparison between pairs of @iterder preferred
semantics.

Proposition 4. The inclusion links between rules for preferred semantresas de-
picted in Figure 6. Namel¥BE jeximin = OBEp min @NdOBEp jeximax— OBEp maxWhereas
the other pairs of rulegx,y) with Xy € {0BEpsum OBEpmin, OBEpmax OBEp leximin,
OBEp leximax}» X7 Y are incomparable, i.e., xnd y.

|OBEp,sum DBEp,min DBEp,max DBEp,leximin OBE'-p,leximax

OBEp)min ind
DBEp’max ind ind
OBEp)|ex|maX ind ind [ ind

Figure 6: Inclusion relationships between rules for prefgésemantics. 17 is the row
rule and%’ is the column rule, symbal- means thatZ C %’; symbol ind means
that# ind Z'.

Proof. Let us first construct three counter examples that will be uiséhis proof.

Example 9. Let %y = (o, Z9) With oy = {Xq, X2, X3, X4, X5, X6, X7 ,& ,b} and Zy =
{(Xl,Xz), (X27X1)7 (X37X4)7 (X47X3)7 (X1’X5)a (XZ’XS)a (X37X5)7 (X47X5)7 (X57X5)7 (X41X6)1
(X57X5)7 (X27X7)’ (X7’X7)a (X7’b)’ (XS’a)a (Xﬁab)}

We haVE'.ti(yg) = {531752,5’3,534} with & = {X17X4,a}, & = {X27X3,a}, &3 =
{X1,%3,a}, & = {Xo,x4,a,b}. Their supports al’eVsuppp(gl, F9) = vsuppp(a?z,ﬂ‘g)
= vsuppy(&3, F9) = (4,2,2), vsuppy(&s, F9) = (4,2,2,1).

Hence, we obtain thalBEp sur(-%9) = {&4}, 0BEp min(-F9) = {61, 62,63},
?BE}?,max(ﬁb) = {‘531752753754}, OBEp,Ieximin(fgg) = {éala &2, 0@3}1 OBEp,Ieximax(fgb) =

Ent. A

Example 10. Let %10 = (w10, %Z10) With <710 = {a, X1, X2, X3, X4, X5, b1, b2, b3, b4, y1,
Y2, Y3} andZ10= {(x1,%2), (X2,X1), (X3,Xa), (Xa,X3), (X1,X5), (X2,X5), (X3,X5), (X4,X5),
(X17X3) (X37X1) (X17 ) (X4’X1)a (X2,X3), (X37X2)7 (X27X4)7 (X47X2)7 (XS’XS) (XSa )a
(Y1,¥2), (Y2,¥1), (Y1.¥3), (Y2,¥3), (¥3,¥3), (¥3,01), (Y3,b2), (y3,b3), (¥3,04), (X1,¥1),
(X1,¥2), (X2, Y1), (X2,¥2), (X3,¥1), (X3,¥2), (Xa,¥1), (Xa,¥2), (Y1,%0), (Y2,%1), (Y1,%2),
(¥2,%2), (Y1,X3), (Y2,%3), (Y1,%X4), (Y2,%a)}.

10



There are exactly six preferred extensiods= {a,xa}, &2 = {a,x3}, 63={a, %2},
&y = {a, Xl}, &5 = {bl, bz, b3, b4, yz}, &6 = {bl,bz,b37b4,y1}. Their supports are:
vsuppp(&1, #10) = vsuppp (&2, F10) = vsuppy (63, F10) = vsuppy (64, F10) = (4,1),
vsuppp(&s,-#10) = vsuppp(Se,-F10) = (2,2,2,2,1).
We ObtainOBEpvsun{fj_o) = {55,56}, DBEp,min(g\lO) = {51, &, &3, 64, 65, 56},
OBEp,max(ylo) = OBEp,Ieximin(ylo) = OBEp,Ieximax(ylo) = {5317527537@@4}-
A

Example 11. Let %11 = (@1, %11) With /11 = {X1, X2, X3, X4, X5, @, Y1, Y2, ¥3,Y4} and
F11 = {(X1,%2), (X2, X1), (X1,%3), (X3,%1), (X1,Xa), (Xa,%1), (X2,X3), (X3,%2), (X2,Xa),
(Xa,%2), (X3,%a), (X4,%3), (X1,%5), (X2,X5), (X3,X5), (X4,X5), (X5,X5), (X5,8), (Y1,Y2),
(Y2,¥1)s (¥3,Ya), (Ya,¥3), (X1,¥1), (X1,¥2), (X1,¥3), (X1,¥4), (X2,¥1), (X2,¥2), (X2,¥3),
(X27y4)7 (X3ay1)a (X37y2)7 (X31y3)a (X37Y4)7 (X4ay1)a (X47y2)7 (x4,y3), (X4,Y4), (ylaxl)a
(Y1,%2), (Y1,%3), (Y1,Xa), (Y2,%1), (Y2,%2), (Y2,X3), (Y2,Xa), (Y3,X1), (Y3,%2), (Y3,X3),
(V3,%a), (Ya,X1), (Ya,%2), (Ya,X3), (Y4, Xa) }-

There are exactly eight preferred extension$; = {x4,a}, &> = {x3,a}, &3 =
{xo,a}, &4 = {x1,a}, & = {y2,¥a}, 66 = {Y2.¥3}, 67 = {y1,¥3}, &8 = {y1,Ya}.

Their supports arewsupp,(&1,-#11) = vsupp, (2, F11) = vsupp,(&3,-#11) =
vsuppp(éﬁ,yll) = (4, 1); VSuppp((%,yll) = vsuppp(ébe,yll) = Vsuppp(é?,ﬁll)
=vsupp, (68, F11) = (2,2).

Thus, we obtaimBEpvsun{ﬁ‘ll) = DBEp,max(jll) = OBEp,Ieximax(jll) ={&1, &,
&3, 64}, OBEp min(-#11) = OBEp jeximin(-#11) = {&5, &6, 67,68}

A

Let us now show the proposition by using the previous threemptes.
e 0BEp min ind OBEp sum follows from Example 9.

e 0BEpmax ind OBEpsum follows from Example 10.

e 0BEp max ind OBEp min, follows from Example 11.

® 0BEp jeximin ind OBEp sum follows from Example 9.

® 0BEp jeximin = OBEp min. From Proposition 8BEp jeximin & O0BEp min. Example 10
shows thabBE eximin 7 O0BEp min. Consequenth\)BE eximin = OBEmin.

® 0BEp jeximin ind OBEp max, follows from Example 11.
® 0BEp eximax ind OBEpsum follows from Example 10.
® 0BEp jeximax ind OBEp min, follows from Example 11.

® OBEp eximax = OBEpmax. From Proposition 30BE jeximax= OBEpmax. Example
9 shows thabBE jeximax7 O0BEpmax. Consequently)BE jeximax = OBEp max-
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5 Support-Based Acceptance Policy

This section presents a completely different approach étecing arguments. We
focus on arguments that have the greatest supports amagsexis to construct what
we call “candidate sets”. Then, an argument is caflegportedly accepteid it is in
all the candidate sets.

Definition 11 (Candidate sets)Let.Z# = (<7, %) be an AS and let be a semantics.
Let > be any pre-order defined o#. Let|</| = m. For a permutatior® of {1,...,m},
let > be the linear order onz defined by g1) >¢ ... >p agm). >¢ is said to be
compatible with= iff agq) = ... = agm). A seté’ C o7 is a candidate set of# under
semanticso w.r.t. > iff there exists a permutatiol of {1,...,m} such that>g is
compatible with= and &’ is obtained by the following greedy procedure:

S:=0;

forj=1,...,mdo
if (neg(ag(j),#) > 1) and(SU{agj} is conflict-free
then S= SU {ag(J)}

end for;

&:=S

Note that= from previous definition depends oA ando but we do not make it
explicit (e.g. by writing>= z ) in order to simplify the notation.

Roughly speaking, the previous definition says that to cansa candidate set, we
first take the arguments with the maximal scgréaen, we add as many arguments with
scores— 1 as possible (by taking into account that the resultingstais conflict-free);
then arguments with scose- 2 are added etc. There might be several possibilities (e.g.
incompatible arguments having the same score) thus theyktiné several candidate
sets.

In the following, we consider the pre-orderon < defined by for allx,y € <7,

X = yiff neg(X,.%#) > neq(y,-%#). We denote the set of candidate sets/fundero
w.r.t. this pre-order bgSq(.%).

Note that, in general, neither each candidate set is an®gtenor each extension
is a candidate set. Observe also that the construction dafidate sets is reminis-
cent to the one of preferred subbases from a stratified Hedieé with respect to the
inclusion-based ordering [5]; here the belief base comsisall the arguments and the
stratification is based on thes (.,.%) score.

The notion of candidate set allows us to define a new inferereshanism that we
call supported inferencsince for an argument, being “supported” by more extensions
means more chance to be accepted.

Definition 12 (Supported acceptancelet.# = («/,#) be an ASo be a seman-
tics and let xe «/. We say that x is supportedly accepted under semaotid$
X € Neecsq (7). We denote the set of supportedly accepted argunsegts” ).

We can show that supported inference is “between” scemitdicredulous infer-
ence. Namely, every sceptically accepted argument is stgaplp accepted, and every
supportedly accepted argument is credulously accepted.

12



Proposition 5. For every AS% = (&7, %), for every semantics returning conflict-
free extensions:
Sco(F) C8py(F) C Crg(F).

Proof. Suppose that there are exactlyextensions, i.e. thdExty(%)| = m. The
casem = 0 is trivial; in the rest of the proof we suppose timat> 1. Observe that
we haveScq(.7) = {x € & | neg(X,.-%) = m}. Sinceo returns conflict-free sets, all
elements ofxty (%) are conflict-free. Hence, their intersection is confligefr Thus,
every candidate extension contafts; (%), formally for everyé; € CSq (%), we have
Scg(F) C &. ThereforeScy (%) C Spy(F#).

Let x € Sp,(-#); thenx s in all candidate sets. From Definition 11 we conclude
thatnes(x,%#) > 1 (since only arguments appearing in at least one extensiorbe
added to candidate sets). This meansx@trq(.%). O

Note that the condition telling that returns conflict-free extensions is necessary
to ensure the link between sceptical and supported acaaptdan show why, consider
the following example.

Example 12. Let # = (&7, %) with &/ = {a,b} andZ = {(a,b),(b,a)}. Suppose
thatExty (%) = {{a,b}}. ThusScs(.%#) = {a,b}. Note thatcs, (%) = {{a}, {b}};
hencegp, (%) = 0. A

However, this is not an issue, since all the well-known sdmaneturn conflict-free
sets. Let us now illustrate the results one can obtain wekdltandidate sets.

Example 13. Let 13 = (@3, %13) be an AS withez13 = {a,b,c,d, e f,g,h} and
Z#13={(a,b),(b,a),(b,g),(c,d),(d,c),(d,9). (e f),(f,e),(f,g9).(g.h)}, shownin Fig-
ure 7. There are eight preferred extensiofa;c, e g}, {a,d,e h}, {a,c, f,h}, {a,d, f,h},

Figure 7: %13 = (9#13,%13): Argumenth is almost sceptically accepted

{b,c,e h}, {b,d,e h}, {b,c, f,h}, {b,d, f,h}. There are no sceptically accepted argu-
ments, i.eScp(F13) = 0. But h is accepted by seven out of the eight extensions, and it
is supportedly accepted, i.8p,(F13) = {h}. A

Let us illustrate the behaviour of supported inference oroeermomplex example:

Example 14. Let %14 = (%14, %14) be an argumentation system shown in Figure 8.
There are four preferred extensiongb, d, e, j, k}, {a,i,q, f,k}, {c,b,j,e h} and
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Figure 8:. %14 = (444, %#14)

{a,d,e, j,k}. There is no sceptically accepted argument, 8ep(F#14) = 0. We can
build two candidate setsb,d, e, j,k} and{a,d,e, j,k}. So we can supportedly accept
four argumentsSp,,(:#14) = {d, &, j,k}.

A

Note that the set of candidate set is not always a subset afethef extensions.
Consider for instance the AS from Example 7, where there g @ne candidate set
{c,a, e h}, thatisnotan extension. Itis interesting to note that in that exantped are
four supportedly inferred arguments, whereas withaBie methods only is inferred.

A major drawback of credulous inference is that the set @frirgfd arguments is not
always conflict-free. This is problematic since all thegguarents cannot be accepted
together in such a case. Sceptical inference does not gtdferthis problem since
the set of inferred arguments is ensured to be conflict-fiaterestingly, supported
inference offers the same important property:

Fact 3. For any.7, the set of supportedly accepted arguments is conflict-free

Note that this set is not necessarily admissible. This shoat be shocking since
the same observation can be made for the set of scepticakypted arguments. Con-
sider the following example:

Example 15. Let. %15 = (@15, %15) With o715 = {a,b,c,d} and %15 = {(a,b), (a,c),
(b,a), (b,c), (c,d)}, shown in Figure 9.

©
O—©
®)

Figure 9: %15 = (915, %15): The set of sceptical arguments is not admissible
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There are two preferred extension§a,d} and {b,d}, Scp(-#15) = {d}, but {d}
is not an admissible set. Observe that in this particularecag havesp,(.#1s) =
Scp(F15) = {d}.

Finally, an interesting issue is to determine whether sooreections exist be-
tween supported inference and the approach presented préki®us section. We
provide a systematic study of the links between the two agres under preferred
semantics.

Proposition 6. For everyy € {summin, max leximin leximax, 0BE, andCS are in-
comparable under preferred semantics, i0BEp, , ind CSp.

|OBEp,sum OBEp,min OBEp,max CJBEp,leximin OBEp,Ieximax
CSp| ind ind ind ind ind

Figure 10: Inclusion relationships between rules for pref@ semantics:
OBEp,y ind CSp, for all y from Definition 9.

Proof. The proof of this proposition follows from Example 16. Namehat example
shows that for every € {sum min, max, leximin, leximax, OBEp y ind CSp.

Example 16. Let %16 = (16, %16) With 16 = {X1, X2, X3, X4, X5, X6, %7,8,b,C} and
P16 = {(X1,%2), (X1,X3), (X1,Xa), (X1,X5), (X1,X6), (X2,X1), (X2,X3), (X2, Xa), (X2,Xs5),
(X2, X6), (X3, X1), (X3,X2), (X3,%4), (X3,X5), (X3,X7), (Xa,X1), (Xa,%2), (X4.X3), (X4,Xs5),
(x4,%7), (X5,%5), (X5,), (X6,%6), (X6,b), (X7,%7), (x7,0)}.

There are exactly four preferred extensio§: = {x1,a,b}, & = {xz,a,b}, &3 =
{xs,a,c}, 64 = {x4,a,C}. Their supports arevsuppy, (61, #16) = vsuppy(62,-F16) =
vsuppy (63, #16) = vsuppp(&a, F16) = (4, 2, 1). ThUSOBEp sun{-#16) = OBEp min(F16)
= OBEp max(-#16) = OBEp jeximin(-#16) = OBEp jeximax(-716) = {61,862, 3,64}

Note thatCSy(.F16) = {&7, 85, 85.6, 1 with & = {a,b,c,x1}, &5 = {a, b, ¢, X2},
&3 ={ab,c,xs}, & ={a,b,c,xa}. AN

O

The previous proposition shows that, in general case, thef @&tensions ir0BE
approach is not comparable with the set of candidate setsetr, in Example 16, the
set of sceptically accepted arguments with respegBR(independently of used) is
{a}; the set of supportedly accepted arguments in this exampke b, c}. One could
ask whether the set gfsceptically accepted arguments is always a subset of the se
of supportedly accepted arguments for soyrfeom 0BE approach? The next result
provides the answer to this question. Namely, the satatsceptically accepted argu-
ments is always a subset of the set of supportedly acceead@nts under hypothesis
that the argumentation semantics returns conflict-free dedr other criteria used in
OBE approach, the sets gfsceptically accepted arguments and supportedly accepted
arguments are independent. Let us first show that ed&Ey max-sceptically accepted
argument is also supportedly accepted, for every semathitsreturns conflict-free
extensions.
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Proposition 7. Let o be a semantics returning conflict-free extensions. We have

SCUBEa,max C SPO"

Proof. Let us show that for every argumentation systéim= (<7, %), for every se-
manticso that returns conflict-free extensiorBcoer, (%) C Spy(-#). Letae
ScoBEs max(7 ); this means that for every € OBEo,maX(ﬂ‘), aecé.

Denotes = maxc »neq(X,-% ), and let us show that no argument has better score
thana, i.e.neq(a,.#) = s. By means of contradiction, suppose the contrary, i.e. let
b € &7 be such thatey (b, %) = s> nes(a,-#). This means that there exisfs €
Exty (&) suchthab € & anda ¢ &. Sinceb € &, & € 0BEg max(:# ). Contradiction
with hypothesis € Nsegpe, may(7) ¢ - HENCE, by reductio ad absurdum, we conclude
neq(a,.7) =s.

Denotestrat; = {x € & | neqs(X,.%) = s} and let us show that for everyc strat;,
set{a,x} is conflict-free. By means of contradiction, suppose thetreoyn. Letb €
strat; be an argument such thga, b} is not conflict-free. Since € Scoge, oy (F ),

Z has at least one extension; consequenttyl. This means also thétis in at least
one extension, say’. Because of the conflict betwearandb, and sinceo returns
conflict-free extensions,¢ &”’. Butsinceb € strat;, &’ € 0BEg max(-# ). Contradiction
with hypothesis that € Nscopr, ma(.7) ¢~ BY reductio ad absurdum, we conclude
that no argument fronstrat; is in conflict witha. Thus,a is in all candidate sets,
a € Ngecsy (7)€ In other wordsa € Sp, (7). We conclude thacoge, max = SPg»
for all semantico returning conflict-free sets. O

Let us now illustrate the indifference betwegsceptical acceptance and supported
acceptance foy £ max again on the case of preferred semantics.

Proposition 8. The links betweegic, andsp under preferred semantics are as follows:
1. SCOBEp,max C Spp.

2. for everyy € {sum min, leximin, leximax, Scoge,, ind Spy,.

|SCOBEp,sum SCDBEp,min SCOBEp,max SCOBEp.Ieximin SCOBEp.|e><imal><
Spp | ind ind 3 ind ind

Figure 11: Inclusion relationships (for differept between sceptical inference using
OBEp,y and supported inferenceg). If % is the row rule and?’ is the column rule,
symbold means thatZ? 3 %', i.e.Z' = %; symbol ind means thatZ ind %’'.

Proof. To prove this proposition, we need several counter examples

Example 17. Let Z17 = (A7, %17) With o7 = {Xq, X2, X3,X4, X5, X6, X7, X8, X9, X10,
X11, @, b, ¢} and Z17 = {(x1,%2), (X1,Xa), (X1,Xa), (X1,X5), (X1,X6), (X1,X7), (X1,X8),
(X17X9)7 (XZ,Xl)a (X27X3)7 (X2,X4), (X27X5)7 (XZ’XG)a (X27X7)7 (X2ax8)a (X27X9)7 (X31X1)1
(X37X2)7 (X3’X4)a (X37X5)7 (X3’X6)a (X37X7)7 (X31X8)a (X37X9)7 (X4,X1), (X47X2)7 (X41X3)1
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(X4 X5) (X4’X6)a (X47X7)7 (X4’X8)a (X47X9)7 (X5,X1), (X57X2) (X5,X3) (X57 ) (XSa )a
(X57X7) (X5ax8)a (X5,X10), (Xﬁaxl)a (Xa,Xz), (X57X3) (X57 )7 (X57X5) (XG X7) ( )’
(Xe,%10), (X7,X1), (X7,%2), (X7,X3), (X7,Xa), (X7,Xs), (X7,X6), (X7,X8), (X7,X10), (X7,X11),
(X8,X1), (X8,X2), (X8,X3), (X8, Xa), (X8, X5), (X8,X6), (X8,X7), (X8,X10), (X8 X11), (Xo,Xo),
(X9,@), (X10,X10), (X10,b), (X11,%11), (X11,C), (&, b), (b,a)}.

There are exactly eight preferred extension$; = {x1,a}, & = {xp,a}, &3 =
{x3,a}, &y = {x4,a}, = {X5, b}, & = {Xe,b}, & = {X7,b,C}, &g = {Xg,b,C}.

Their supports are:vsuppy, (61, #17) = vsuppy(&2, #17) = vsuppy (63, F#17) =
vSuppp (64, #17) = vsuppy (85, - #17) = vsuppy(&s, F17) = (4,1); vsuppy (67, #17) =
vsuppy, (s, F17) = (4,2,1).

Thus, we obtaiBE sun{-#17) = {67, &8} ThereforeScp sum(-#17) = {b,c}.

We haVeEsy = (&, &4, 53, 6. 64, &4 64 64. 64, Elo, Sy, B1 S, s Els, Sl
with & = {a,c,x1}, & = {a,c,x}, & = {a,c,xs}, & = {a,c,xa}, & = {a,c,xs},
6§ =1{a,c, X}, &7 ={a,c,x7}, & = {a,c,xg}, & = {b,c,x1}, &1 = {b,c,x2}, 11 =
{b,c,xs}, 51’2 = {b,c,xa}, glIS = {b,c,xs}, 51’4 = {b,c, %}, é()21{5 = {b,c,x7}, é021{6 =

{b,c,xs}. ThusSpp(ﬁly) = {c}. This example shows thet ose,, o £ SPp- A
Example 18. Let.#1g = (Fex17, Zex17) With g = {X1, X2, X3, X4, X5, Y1, Y2, ¥3, Y4, Y5,
a, b}and %218 = {(x1,X2), (X1,Xs), (X1,¥1), (X1,¥2), (X1,¥3), (X1,¥a), (X2,X1), (X2,%s),
(X2,¥1), (X2,¥2), (X2,¥3), (X2,¥a), (X3,Xa), (X3,Xs), (X3,¥1), (X3,¥2), (X3,Y3), (X4,X3),
(Xa,%5), (Xa,Y1), (Xa:¥2), (Xa,¥3), (Xa,Ya), (X5,%5), (X5,8), (Y1,X1), (Y1,%2), (Y1,%3),
(Y1,X4), (Y1,¥2), (Y1,¥3), (Y1,¥4), (Y1,¥5), (Y2,X1), (Y2, X2), (Y2,X3), (Y2,X4), (¥Y2,Y1),
(¥2,¥3); (Y2,¥a), (¥2,¥5), (Y3,%1), (¥3,X2), (¥3,X3), (¥3,X4); (¥3,¥1), (¥3,Y2), (¥3,Ya),
(¥3,¥5), (Ya;X1), (Ya,%2), (Ya,%3), (Ya,Xa), (Ya,¥1), (Ya,Y2), (Ya,Y3), (Ya,Y5), (¥5,Y5),

(ys,b), (a,b), (b,a)}. We obtainExtp(F1g) = {{X1,xs,a}, {x1,%4,8}, {x2,X3,a},
{X23X47a}' {yla b}' {y27 b}' {y37 b}' {y47 b}} ThUS, we havscDBEpmin (‘7@\18) =

SCDBEp,Ieximin(jls) = {a} We Obtalncsp(‘gzls) = {{a7X17X3}1 {a7 X17X4}’ {a7 X27X3}’
{a,x2,xa}, {b,x1,x3}, {b,X1, X4}, {b, X2, X3}, {b, X2, %4} }. We havesp,,(.F1g) = 0. This
shows thaBcos, ,,, £ Spp and thatScose,, ,imin £ SPp- A

Example 19. Let %19 = (@49, %19), With 719 = {X1, X2, X3, X4, X5, Y1, Y2, ¥3, Y4, &,
b, c} andZ19 = {(X1,%2), (X1,%3), (X1,Xa), (X1,Y1), (X1,¥2), (X1,¥3), (X2,X1), (X2, X3),
(X27X4)7 (X2,X5), (X27y1)7 (X2ay2)a (X27y3)7 (X3’X1)a (X37X2) ( )7 (X37X5)7 (X3ay1)7
(X3,¥2), (X3,¥3), (X4,%a), (X4,8), (X5,%s5), (X5,C), (Y1,X1), (Y17X2)7 (Y1,%3), (Y1,Y2),
(Y1,¥3), (Y1,¥a), (Y2,%1), (Y2,%2), (Y2,X3), (Y2,¥1), (Y2,¥3), (Y2,Ya), (Y3,%1), (Y3,%2),
(¥3,X3), (Y3,Y1), (¥3,¥2), (¥3,¥4), (Ya,¥4), (Ya,b), (a,b), (b,a), (b,c), (c,b)}.

There are exactly six preferred extensiong; = {x1,a}, & = {xp,a,c}, &3 =
{xs,a,c}, &4 = {y1,b}, & = {y2,b}, & = {y3,b}. We haveOBE; eximax-#19) =
{£2,63}. HenceScose, oyima = {@ CH However{a, ¢, x} € CSp(F19) and{b,y1} €
CSp(F19), thusSp,(F19) = 0. This example shows thathEpileXImaxz Spp. A

Let us now present the proof:

® Scopeygym ind Spp. From Example 173 coBep sum £ SPps from Example 16 we
haveSpp z SCUBEp,sum'

® Scose,,, ind Sp,. From Example 18500BEp.mm iZ Spy,; from Example 16 we
haveSpp LZ SCDBEp,min'
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® SCoBEmax — SPp- From Proposition 7, we have tI’faa:thEpvmaX C Sp,,. Tosee that
SPp £ Scorp maxs consider Example 16.

® SCOBEp eimin 10:d SPp. From Example 185cosk, je,min £ SPp; EXample 16 shows
thatSpy, £ Scose, jeximin-

® SCOBE jeximax 1224 SPp. From Example 195 CosEy evima Z Spp- From Example 16
we havesp, IZ Scoee, eimax

O

The two previous propositions show tHzRE and supported inference, although
both using the scores of arguments defined as the numberarf®ans they belong to,
induce intrinsically different reasoning mechanisms.

6 Conclusion and Related Work

This paper aimed at defining approaches for a better infersnm abstract argumen-
tation framework. Indeed, a large number of extensionsltesua low number of
sceptically accepted arguments. Several approaches kavedescribed for dealing
with this problem. First, different criteria for pairwisemparison of extensions and a
method for selecting only the best extensions given the arimof pairwise duels have
been pointed out. Second, several criteria for orderingeiiensions have been pre-
sented. Both approaches resultin a decrease of the numdsdeosions; consequently,
the number of sceptical arguments increases (and the nuwwhberdulous arguments
diminishes). The third approach we have put forward doesimmbse between existing
extensions. Instead, it uses extensions to assign a scexetp argument (the score
of an argument is the number of extensions it belongs to)nTsiarting from the ar-
guments having the maximal score, candidate sets can besgiethand on this ground
supportedly accepted arguments have been defined.

Several papers in the literature are relevant to our workersense that their objec-
tives are somehow similar. Thus, some previous work aimddfating different levels
of acceptability for arguments [9, 22, 18, 3]. Such levels ba obtained by attaching
numerical scores between 0 and 1 to each argument, or byngakjuments over an
ordinal scale. Contrastingly, the goal of the present papeot to tackle the problem
of gradual acceptance. In this work our objective is not tegtion the classical binary
framework for inference, where an argument is inferred dr Imat to define inference
relations allowing to infer more arguments than scepticgrence; to make a parallel
with logical inference, a similar distinction exists beemeparaconsistent logics and
some weighted logics (such as possibilistic or fuzzy lggics

Settings where argumentation systems are based on preésrenattack weights
can also be exploited for reducing the number of extensiddewever, those ap-
proaches suppose the availability of some extra informagiech as weights or prefer-
ences, whereas our approach is based solely on the arguimeststem# = (o7, Z).

Other approaches calculate arguments’ scores / statuesnvelying on the no-
tion of extension [1, 12]. Unlike our approach, semanticg.(estable, preferred) are
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not used at all. Here, we suppose the use of an (arbitraryaustics to calculate ex-
tensions and then point out a way to augment the number ofhaagts which are
accepted. Our criteria are orthogonal to the notion of s¢icgrso that each criterion
can be combined with each semantics.

Another related work is [10] which addresses the problemafinghg more pru-
dent inference relations for Dung’s argumentation framw@i.e., the objective is to
derive less arguments). Contrariwise to the present payséead of selecting some ex-
tensions or defining a new inference policy, the approackistmin strengthening the
usual (direct) conflict-freeness property to indirect dotfireenesss. Thus a prudent
extension cannot contain two arguments when there existelaect attack among the
first one and the second one. When the credulous policy angréfierred semantics
(or the stable semantics) are considered, the set of dé&iaapuments from prudent
extensions is included in the set of arguments derivabla tte standard extensions.

Baroni et al. [3] show how to define some fine-grained argurjustification sta-
tuses for abstract argumentation frameworks. For extadsased semantics, the jus-
tification status of an argument basically depends on th&tende of extensions con-
taining it and the existence of extensions attacking it. a@yeenough, the problem
of selecting extensions is orthogonal to the problem of dediargument justification
statuses; thus, Baroni’s et al. results can be exploited@s & some extensions exist,
even if they come from a selection process. Our notion of aupd inference is closer
to their proposal since it induces an intermediate argurseattis, supported accep-
tance, between sceptical acceptance and credulous acceptdowever, the mecha-
nisms at work for defining this intermediate status and itionale are quite different
from those considered in Baroni’s at al. paper: in our wdrk,gupport of an argument
is based on the number of extensions containing it.

Our approach also departs from the work by Dunne et el. [17¢hfocusses on
ideal semantics. Indeed, ideal acceptance is more dentaihdin sceptical acceptance.
As such, it proves useful when sceptical acceptance is matgmt enough, i.e. when
unexpected arguments are sceptically accepted. Conghstour work is motivated
by the remaining cases, when sceptical inference is todozeuand discards some
expected arguments.

Caminada and Wu [22] defined different labelling-basedfjaation statuses of ar-
guments. Indeed, they propose to attach to each argumesetloéits possible labels
(i.e. the collection of all labels it obtains in all compld#bellings). Whereas Dung-
based approach allows to split the arguments into thresedaceptically accepted,
credulously accepted, rejected), their contribution fifes a way for fine-graded clas-
sification, by defining six different justification status€¢sn}, {in,undec}, {undec},
{in,out,undec}, {out,undec} and{out}. The work of Caminada and Wu is re-
lated to our work since it could also be used to reason in cakes there are no (or
when there are not enough) accepted arguments. Howeveacthal way to do it is
drastically different from our approach.
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Appendix
Example 5:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(x2).
arg(x1).

att(x1, x1).
att(x2,x2).

att(a,c).
att(a, x1).
att (x1,b).
att(a,d).
att(a,e).
att(a, x2).
att (b, x2).
att(b,c).
att(c,a).
att(c, b).
att(c,d).
att(c,e).
att(c, x2).
att(c, x1).
att(d, a).
att(d,c).
att(e, a).
att(e,c).

Example 6:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(x1).
arg(x2).

att(x1, x1).
att(x2,x2).

att(a,b).
att(a,c).
att(a,d).
att(a,e).
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att (b,
att (b,
att(c,
att(d,
att(d,
att (e,

att (x1,b).
att(x2,d).
att(x1,c).
att(x2,e).

a).

x1).

a).
a).

X2).

a).

Example 7:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(f).
arg(g).
arg(h).

att(a,
att (b,
att (e,
att (f,
att (b,
att(f
att (g,
att(h,
att(d,
att(c,

b).
a).

f).

e).
g) .

,9) -

h) .
d).
c).
d).

Example 8:

arg(a)
arg(b)
arg(c)
arg(d)
arg(e)
att(a,
att(a,
att (b,
att (b,
att (b,
att(c,
att(c,
att(d,
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att(d,e).
att(e,c).
att(e, d).

Example 9:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(x6).
arg(x7).
arg(a).

arg(b).

att(x1, x2).
att(x2,x1).
att(x3,x4).
att (x4, x3).
att(x1, x5).
att(x2,x5).
att(x3, x5).
att (x4, x5).
att (x5, x5).
att (x4, x6) .
att(x6, x6) .
att(x2,x7).
att(x7,x7).

att (x7,b).
att(x5,a).
att(x6,b).

Example 10:

arg(a).

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(bl).
arg(b2).
arg(b3).
arg(b4).
arg(yl).
arg(y2).
arg(y3).
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att(x1, x2).
att(x2,x1).
att(x3, x4).
att (x4, x3).
att(x1, x5).
att(x2,x5).
att(x3, x5).
att (x4, x5).
att(x1, x3).
att(x3,x1).
att(x1, x4).
att (x4, x1).
att(x2,x3).
att(x3,x2).
att(x2,x4).
att (x4, x2).
att (x5, x5).

att(x5,a).

att(yl,y2).
att(y2,yl).
att(y1,y3).
att(y2,y3).
att(y3,y3).
att(y3, bl).
att(y3, b2).
att(y3, b3).
att (y3, b4).
att(x1,yl).
att(x1,y2).
att(x2,y1).
att(x2,y2).
att(x3,yl).
att(x3,y2).
att(x4,yl).
att(x4,y2).
att(y1, x1).
att(y2,x1).
att(yl, x2).
att(y2,x2).
att(y1, x3).
att(y2,x3).
att(y1, x4).
att(y2, x4).

Example 11:
arg(x1).
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arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(a).

arg(yl).
arg(y2).
arg(y3).
arg(y4).

att(x1, x2).
att(x2,x1).
att(x1, x3).
att(x3,x1).
att(x1, x4).
att (x4, x1).
att(x2,x3).
att(x3,x2).
att(x2,x4).
att (x4, x2).
att(x3, x4).
att (x4, x3).
att(x1, x5).
att(x2,x5).
att(x3, x5).
att (x4, x5).
att (x5, x5).

att(x5,a).

att(yl,y2).
att(y2,y1).
att(y3,y4).
att(y4,y3).
att(x1,yl).
att(x1,y2).
att(x1,y3).
att(x1,y4).
att(x2,yl).
att(x2,y2).
att(x2,y3).
att(x2,y4).
att(x3,yl).
att(x3,y2).
att(x3,y3).
att(x3,y4).
att(x4,yl).
att(x4,y2).
att(x4,y3).
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att (x4,
att(y1l,
att(y1,
att(y1,
att(y1,
att(y2,
att(y2,
att(y2,
att(y2,
att(y3,
att(y3,
att(y3,
att(y3,
att(y4,
att(y4,
att(y4,
att(y4,

Example 13:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(f).
arg(g).
arg(h).

att(a,
att (b,
att (b,
att(c,
att(d,
att(d,
att (e,
att (f,
att(f
att (g,

b) .
a).
)
d).
c).
g9) -
f).

e).

,9) -

h).

Example 14:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
arg(f).

y4).
x1).
X2).
x3) .
x4) .
x1).
X2) .
x3) .
x4) .
x1).
X2) .
x3).
x4) .
x1).
X2).
x3).
x4) .
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arg(g)
arg(h)
arg(i)
arg(j)
arg(k)
att(a,
att (b,
att(c,
att(d,
att (e,
att (f,
att (g,
att(h,
att(g,
att(a,
att(c,
att (b,
att (b,
att (e,
att (i,

b) .
a).
d).
c).
f).
e).
h) .
g9) -
e).
c).
a).
f).
i).
i).
d).

att(i,j).

att(j,
att(c,
att (k,

g9).
k).
h) .

Example 16:

arg(x1
arg(x2
arg(x3
arg(x4
ar g( x5
arg(x6
arg(x7
arg(a)
arg(b)
arg(c)

att(x1,
att(x1,
att(x1,
att(x2,
att(x2,
att(x2,
att(x3,
att(x3,
att(x3,

).
).
).
).
).
).
).

X2).
x3) .
x4) .
x1).
x3).
x4) .
x1).
X2) .
x4) .
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att (x4, x1).
att (x4, x2).
att (x4, x3).
att (x5, x5).
att(x6, x6) .
att(x7,x7).
att(x1, x5).
att(x2,x5).
att(x3, x5).
att (x4, x5).
att(x1, x6).
att(x2,x6).
att(x3, x7).
att (x4, x7).

att(x5,a).
att (x6,b).
att(x7,c).

Example 17:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(x6) .
arg(x7).
arg(x8).
arg(x9).
ar g(x10).
arg(x11).
arg(a).
arg(b).
arg(c).

att(x1, x2).
att(x1, x3).
att(x1, x4).
att(x1, x5).
att(x1, x6).
att(x1, x7).
att(x1, x8).
att(x2,x1).
att(x2,x3).
att(x2,x4).
att(x2,x5).
att(x2,x6).
att(x2,x7).
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att(x2,x8).
att(x3,x1).
att(x3,x2).
att(x3, x4).
att(x3, x5).
att(x3, x6).
att(x3, x7).
att(x3,x8).
att (x4, x1).
att (x4, x2).
att (x4, x3).
att (x4, x5).
att (x4, x6).
att (x4, x7).
att (x4, x8).
att(x5,x1).
att (x5, x2).
att (x5, x3).
att (x5, x4).
att (x5, x6) .
att (x5, x7).
att (x5, x8).
att(x6,x1).
att(x6, x2).
att(x6, x3).
att(x6, x4).
att(x6, x5).
att(x6, x7).
att(x6, x8).
att(x7,x1).
att(x7,x2).
att(x7,x3).
att(x7,x4).
att(x7,x5).
att(x7,x6).
att(x7,x8).
att(x8,x1).
att(x8,x2).
att(x8,x3).
att(x8,x4).
att(x8,x5).
att(x8, x6).
att(x8, x7).
att(x1, x9).
att(x2,x9).
att(x3,x9).
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att (x4, x9).
att (x5, x10).
att(x6, x10).
att(x7,x10).
att(x8, x10).
att(x7,x11).
att(x8,x11).
att(x9, x9).
att(x10, x10).
att(x11, x11).
att(x9,a).
att (x10, b).
att(x11,c).
att(a,b).

att (b, a).

Example 18:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(yl).
arg(y2).
arg(y3).
arg(y4).
arg(ys).
arg(a).
arg(b).
att(x1, x2).
att(x2,x1).
att(x3,x4).
att (x4, x3).
att(yl,y2).
att(yl,y3).
att(yl,y4).
att(y2,yl).
att(y2,y3).
att(y2,y4).
att(y3,yl).
att(y3,y2).
att(y3,y4).
att(y4,yl).
att(y4,y2).
att(y4,y3).
att(x1,yl).
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att(x1,y2).
att(x1,y3).
att(x1,y4).
att(x2,y1).
att(x2,y2).
att(x2,y3).
att(x2,y4).
att(x3,yl).
att(x3,y2).
att(x3,y3).
att(x3,y3).
att(x4,yl).
att(x4,y2).
att(x4,y3).
att(x4,y4).
att(yl, x1).
att(yl, x2).
att(y1, x3).
att(y1, x4).
att(y2,x1).
att(y2,x2).
att(y2, x3).
att(y2, x4).
att(y3,x1).
att(y3, x2).
att(y3, x3).
att(y3, x4).
att(y4, x1).
att(y4, x2).
att(y4, x3).
att(y4, x4).
att(x1, x5).
att(x2,x5).
att(x3, x5).
att (x4, x5).
att (x5, x5).
att(yl,y5).
att(y2,y5).
att(y3,y5).
att(y4,y5).
att(y5,y5).

att(x5,a).
att(y5, b).
att(a, b).
att(b, a).
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Example 19:

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(yl).
arg(y2).
arg(y3).
arg(y4).
arg(a).

arg(b).

arg(c).

att(x1, x2).
att(x1, x3).
att(x2,x1).
att(x2,x3).
att(x3,x1).
att(x3,x2).
att(yl,y2).
att(yl,y3).
att(y2,yl).
att(y2,y3).
att(y3,yl).
att(y3,y2).
att(x1,yl).
att(x1,y2).
att(x1,y3).
att(x2,y1).
att(x2,y2).
att(x2,y3).
att(x3,yl).
att(x3,y2).
att(x3,y3).
att(yl, x1).
att(yl, x2).
att(y1, x3).
att(y2,x1).
att(y2,x2).
att(y2, x3).
att(y3, x1).
att(y3, x2).
att(y3, x3).
att(x1, x4).
att(x2,x4).
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att(x3,x4).
att (x4, x4).
att(x2,x5).
att(x3, x5).
att (x5, x5).
att(yl,y4).
att(y2,y4).
att(y3,y4).
att(y4,y4).

att (x4, a)
att(x5,c).
att(y4,b).
att(a, b).
att (b, a).
att (b, c).
att(c, b).
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