Preference-based argumentation systems

Leila Amgoud and Srdjan Vesić

IRIT - CNRS CRIL - CNRS

Preferences in argumentation frameworks

- An argument may be stronger than another:
 - is built from more certain information
 - refers to important goals
 - promotes more important value
 - . . .

Preferences in argumentation frameworks

- An argument may be stronger than another:
 - is built from more certain information
 - refers to important goals
 - promotes more important value
 - . . .
- Need to take into account the strengths of arguments (captured by a preference relation $\geq \subseteq A \times A$)

Overview

Two roles of preferences in argumentation

- Handling critical attacks
- Refining the result
- A framework integrating the two roles
- Sinks with non-argumentative approaches

Two roles of preferences

Handling critical attacks

b > a

Two roles of preferences

Handling critical attacks

b > *a*

• We should accept *b* and reject *a*

Two roles of preferences)

A new approach for handling critical attacks

Link with other approaches

Two roles of preferences

Handling critical attacks

b > a

• We should accept *b* and reject *a*

Refining the result

$$a > b$$
, $c > d$

Preference-based argumentation systems

4 / 20

Two roles of preferences

Handling critical attacks

b > a

• We should accept *b* and reject *a*

Refining the result

- Two stable extensions: {*a*, *c*} and {*b*, *d*}
- However, $\{a, c\} \succ \{b, d\}$

a > b, c > d, b > e

a > b, c > d, b > e

$$a > b$$
, $c > d$, $b > e$

Argument *e* should be rejected

$$a > b$$
, $c > d$, $b > e$

Argument *e* should be rejected

• The first role saves b from $e \implies$ extensions $\{a, c\}$ and $\{b, d\}$

$$a > b$$
, $c > d$, $b > e$

Argument *e* should be rejected

- The first role saves b from $e \implies$ extensions $\{a, c\}$ and $\{b, d\}$
- The second role allows to refine: $\{a, c\} \succ \{b, d\}$

Rich PAF: integrating both roles of preferences

Input: $T = (A, R, \geq, \succeq)$

where $\geq \subseteq \mathcal{A} \times \mathcal{A}$ and $\succeq \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A})$

Rich PAF: integrating both roles of preferences

Input: $T = (A, R, \geq, \succeq)$

where $\geq \subseteq \mathcal{A} \times \mathcal{A}$ and $\succeq \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A})$

- First step: to handle critical attacks in the PAF $(\mathcal{A}, \mathcal{R}, \geq)$
 - To compute extensions $\mathcal{E}_1, \ldots, \mathcal{E}_n$

Rich PAF: integrating both roles of preferences

Input: $T = (A, R, \geq, \succeq)$

$$\mathsf{where} \geq \; \subseteq \mathcal{A} \times \mathcal{A} \mathsf{ and} \succeq \; \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A})$$

- First step: to handle critical attacks in the PAF $(\mathcal{A}, \mathcal{R}, \geq)$
 - To compute extensions $\mathcal{E}_1, \ldots, \mathcal{E}_n$
- Second step: to use the relation ≥ to compare the extensions
 - Example: $\mathcal{E} \succeq_d \mathcal{E}'$ iff $\forall x' \in \mathcal{E}' \setminus \mathcal{E}, \exists x \in \mathcal{E} \setminus \mathcal{E}'$ s.t. x > x'
 - \mathcal{E}_i is an extension of \mathcal{T} iff $\nexists \mathcal{E}_j$ s.t. $\mathcal{E}_j \succ \mathcal{E}_i$

Preference-based argumentation systems

6 / 20

Existing approaches may lead to non conflict-free extensions

 $a\mathcal{R}b$ b > a

Existing approaches may lead to non conflict-free extensions

 $a\mathcal{R}b$ b > a

Existing approaches may lead to non conflict-free extensions

Existing approaches may lead to non conflict-free extensions

Existing approaches may lead to non conflict-free extensions

- $\mathcal{E} = \{a, b\}$
- An extension containing conflicting arguments

(Two roles of preferences)

Need for comparing sets of arguments

(Two roles of preferences)

Need for comparing sets of arguments

• Stable / preferred / grounded extension: {*a*, *c*, *d*}

Two roles of preferences)

Need for comparing sets of arguments

- Stable / preferred / grounded extension: {*a*, *c*, *d*}
- It is impossible to conclude that:
 - $\{a, c\} \succ \{b\}$ • $\{d\} \succ \{b\}$
 - . . .

Idea: to define new acceptability semantics that:

Idea: to define new acceptability semantics that:

• are based on preferences and attacks between arguments

Idea: to define new acceptability semantics that:

- are based on preferences and attacks between arguments
- generalize Dung's semantics

Idea: to define new acceptability semantics that:

- are based on preferences and attacks between arguments
- generalize Dung's semantics
- ensure conflict-free extensions

Idea: to define new acceptability semantics that:

- are based on preferences and attacks between arguments
- generalize Dung's semantics
- ensure conflict-free extensions
- allow to compare any pair of subsets of arguments

Definition (New semantics)

Let $(\mathcal{A}, \mathcal{R}, \geq)$ be a PAF. A semantics is defined by a dominance relation $\succeq \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A})$.

The extensions of $(\mathcal{A}, \mathcal{R}, \geq)$ are the maximal elements of \succeq .

Definition (Maximal element)

 $\mathcal{E} \in \mathcal{P}(\mathcal{A})$ is a maximal element of a dominance relation \succeq iff $\forall \mathcal{E}' \in \mathcal{P}(\mathcal{A}), \ \mathcal{E} \succeq \mathcal{E}'.$

 \succeq_{max} = the set of all maximal elements wrt \succeq .

Definition (Pref-stable semantics)

Let $\mathcal{T} = (\mathcal{A}, \mathcal{R}, \geq)$ be a PAF and $\mathcal{E}, \mathcal{E}' \in \mathcal{P}(\mathcal{A})$. $\mathcal{E} \succeq_{st} \mathcal{E}'$ iff:

- \mathcal{E} is conflict-free and \mathcal{E}' is not conflict-free, or
- *E* and *E'* are conflict-free and ∀a' ∈ *E'* \ *E*, ∃a ∈ *E* \ *E'* s.t. (a*Ra'* and a' ≯ a) or (a > a')

Definition (Pref-stable semantics)

Let $\mathcal{T} = (\mathcal{A}, \mathcal{R}, \geq)$ be a PAF and $\mathcal{E}, \mathcal{E}' \in \mathcal{P}(\mathcal{A})$. $\mathcal{E} \succeq_{st} \mathcal{E}'$ iff:

- $\bullet~ {\cal E}$ is conflict-free and ${\cal E}'$ is not conflict-free, or
- *E* and *E'* are conflict-free and ∀a' ∈ *E'* \ *E*, ∃a ∈ *E* \ *E'* s.t. (a*Ra'* and a' ≯ a) or (a > a')

Definition (Pref-stable semantics)

Let $\mathcal{T} = (\mathcal{A}, \mathcal{R}, \geq)$ be a PAF and $\mathcal{E}, \mathcal{E}' \in \mathcal{P}(\mathcal{A})$. $\mathcal{E} \succeq_{st} \mathcal{E}'$ iff:

- $\bullet~ {\cal E}$ is conflict-free and ${\cal E}'$ is not conflict-free, or
- *E* and *E'* are conflict-free and ∀a' ∈ *E'* \ *E*, ∃a ∈ *E* \ *E'* s.t. (a*Ra'* and a' ≯ a) or (a > a')

- $\{a\} \succ_{st} \{b\}$
- $\emptyset \succ_{st} \{a, b, c\}$
- $\{b\} \succ_{st} \emptyset$

• . . .

• $\succeq_{st,max} = \{\{a,c\}\}$

Definition (Pref-stable semantics)

Let $\mathcal{T} = (\mathcal{A}, \mathcal{R}, \geq)$ be a PAF and $\mathcal{E}, \mathcal{E}' \in \mathcal{P}(\mathcal{A})$. $\mathcal{E} \succeq_{st} \mathcal{E}'$ iff:

- \mathcal{E} is conflict-free and \mathcal{E}' is not conflict-free, or
- *E* and *E'* are conflict-free and ∀a' ∈ *E'* \ *E*, ∃a ∈ *E* \ *E'* s.t. (a*Ra'* and a' ≯ a) or (a > a')

Theorem

Let $\mathcal{T} = (\mathcal{A}, \mathcal{R}, \geq)$ be a PAF.

- The relation \succeq_{st} generalizes stable semantics.
- For all $\mathcal{E} \in \succeq_{st,max}$, \mathcal{E} is a maximal conflict-free subset of \mathcal{A} .

• Are there other relations that generalize this semantics?

• Are there other relations that generalize this semantics?

• If yes,

- what are the differences between them?
- how to compare them?
- are they all meaningful?

• This relation generalizes stable semantics

- This relation generalizes stable semantics
- However:

•
$$\{a, b, c\} \succ \{b, c\}$$

- This relation generalizes stable semantics
- However:

- This relation generalizes stable semantics
- However:

•
$$\{a, b, c\} \succ \{b, c\}$$

•
$$\{b\} \succ \{c\}$$

Postulate (1)
$$\mathcal{E} \in C\mathcal{F}$$
 $\mathcal{E}' \notin C\mathcal{F}$ $\mathcal{E} \succ \mathcal{E}'$

Postulate (1)

$$\frac{\mathcal{E} \in C\mathcal{F} \qquad \mathcal{E}' \notin C\mathcal{F}}{\mathcal{E} \succ \mathcal{E}'}$$
Postulate (2)
Let $\mathcal{E}, \mathcal{E}' \in C\mathcal{F}.$

$$\frac{\mathcal{E} \succeq \mathcal{E}'}{\mathcal{E} \setminus \mathcal{E}' \succeq \mathcal{E}' \setminus \mathcal{E}}$$

$$\frac{\mathcal{E} \setminus \mathcal{E}' \succeq \mathcal{E}' \setminus \mathcal{E}}{\mathcal{E} \succeq \mathcal{E}'}$$

Postulate (3) Let $\mathcal{E}, \mathcal{E}' \in C\mathcal{F}$ and $\mathcal{E} \cap \mathcal{E}' = \emptyset$. $(\exists a' \in \mathcal{E}')(\forall a \in \mathcal{E})$ $\neg(a\mathcal{R}a' \land a' \neq a) \land a \neq a'$ $\neg(\mathcal{E} \succeq \mathcal{E}')$

Postulate (3) Let $\mathcal{E}, \mathcal{E}' \in C\mathcal{F}$ and $\mathcal{E} \cap \mathcal{E}' = \emptyset$. $(\exists a' \in \mathcal{E}')(\forall a \in \mathcal{E})$ $\neg(a\mathcal{R}a' \land a' \neq a) \land a \neq a'$ $\neg(\mathcal{E} \succeq \mathcal{E}')$

Postulate (4) Let $\mathcal{E}, \mathcal{E}' \in C\mathcal{F}$ and $\mathcal{E} \cap \mathcal{E}' = \emptyset$. $(\forall a' \in \mathcal{E}')(\exists a \in \mathcal{E})$ $(a\mathcal{R}a' \land a' \neq a) \text{ or } (a\mathcal{R}a' \land a > a')$ $\mathcal{E} \succeq \mathcal{E}'$

Properties of relations satisfying the postulates

Theorem

If \succeq satisfies Postulates 1-4, then \succeq generalizes stable semantics.

Theorem

. . .

If \succeq and \succeq' both satisfy Postulates 1-4, then $\succeq_{max} = \succeq'_{max}$.

Preferred sub-theories (Brewka'89)

Let $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_n$ be a stratified propositional knowledge base.

Preferred sub-theories (Brewka'89)

Let $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_n$ be a stratified propositional knowledge base.

Definition

Let $S \subseteq \Sigma$ and $S_i = S \cap \Sigma_i$. S is a preferred sub-theory iff for every $1 \le k \le n$, $S_1 \cup \ldots \cup S_k$ is a maximal consistent set in $\Sigma_1 \cup \ldots \cup \Sigma_k$

Preferred sub-theories (Brewka'89)

Let $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_n$ be a stratified propositional knowledge base.

Definition

Let $S \subseteq \Sigma$ and $S_i = S \cap \Sigma_i$. S is a preferred sub-theory iff for every $1 \le k \le n$, $S_1 \cup \ldots \cup S_k$ is a maximal consistent set in $\Sigma_1 \cup \ldots \cup \Sigma_k$

Preferred sub-theories (Brewka'89)

Let $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_n$ be a stratified propositional knowledge base.

Definition

Let $S \subseteq \Sigma$ and $S_i = S \cap \Sigma_i$. S is a preferred sub-theory iff for every $1 \le k \le n$, $S_1 \cup \ldots \cup S_k$ is a maximal consistent set in $\Sigma_1 \cup \ldots \cup \Sigma_k$

Preferred sub-theories and stable extensions of basic PAF

Let $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_n$ be a stratified knowledge base

Theorem

There is a bijection between the set of preferred sub-theories of Σ and the set of stable extensions of $(\operatorname{Arg}(\Sigma), Undercut, \geq_{wlp})$.

Preferred sub-theories and stable extensions of basic PAF

 $\begin{array}{ll} a_1:(\{x\},x) & a_2:(\{\neg y\},\neg y) \\ a_3:(\{x \to y\},x \to y) & a_4:(\{x,\neg y\},x \land \neg y) \\ a_5:(\{\neg y,x \to y\},\neg x) & a_6:(\{x,x \to y\},y) \end{array}$

 $\begin{aligned} \mathcal{S}_1 &= \{x, x \to y\} \\ \mathcal{S}_2 &= \{x, \neg y\} \end{aligned}$

Democratic sub-theories and stable extensions of Rich PAF

• More general case: $\supseteq \subseteq \Sigma \times \Sigma$ is not total

Definition (Cayrol & Royer & Saurel'93)

Given (Σ, \succeq) , a set $S \subseteq \Sigma$ is a democratic sub-theory iff S is consistent and $(\nexists S' \subseteq \Sigma)$ s.t. S' is consistent and $S' \succeq_d S$.

Democratic sub-theories and stable extensions of Rich PAF

• More general case: $\supseteq \subseteq \Sigma \times \Sigma$ is not total

Definition (Cayrol & Royer & Saurel'93)

Given (Σ, \succeq) , a set $S \subseteq \Sigma$ is a democratic sub-theory iff S is consistent and $(\nexists S' \subseteq \Sigma)$ s.t. S' is consistent and $S' \succeq_d S$.

Theorem

There is a bijection between the set of democratic sub-theories of Σ and the set of stable extensions of the rich PAF (Arg(Σ), Undercut, \geq_{gwlp}, \succeq_d).

Conclusion

- Clear distinction between two roles of preferences
- Rich model that takes into account both roles of preferences
- Novel approach for handling critical attacks
- Links with non-argumentative approaches for inconsistency handling

Conclusion

- Clear distinction between two roles of preferences
- Rich model that takes into account both roles of preferences
- Novel approach for handling critical attacks
- Links with non-argumentative approaches for inconsistency handling

Thank you