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Abstract

One of the better studied properties for operators in judgment
aggregation is independence, which essentially dictates that
the collective judgment on one issue should not depend on
the individual judgments given on some other issue(s) in the
same agenda. Independence, although considered a desirable
property, is too strong, because together with mild additional
conditions it implies dictatorship. We propose here a weak-
ening of independence, named agenda separability: a judg-
ment aggregation rule satisfies it if, whenever the agenda is
composed of several independent sub-agendas, the resulting
collective judgment sets can be computed separately for each
sub-agenda and then put together. We show that this property
is discriminant, in the sense that among judgment aggregation
rules so far studied in the literature, some satisfy it and some
do not. We briefly discuss the implications of agenda separa-
bility on the computation of judgment aggregation rules.

1 Introduction
Judgment aggregation consists in finding collective judg-
ments that are representative of a collection of individual
judgments on some logically interrelated issues. Judgment
aggregation problems originate in political theory and public
choice, however they also occur in various areas of artificial
intelligence, as a consequence of the increased distributivity
of computing systems and social networks, together with the
rise of artificial agency. Judgment aggregation generalises
voting and preference aggregation (Dietrich and List 2007a;
Lang and Slavkovik 2013), and has links with belief revision
(Everaere, Konieczny, and Marquis 2015; Pigozzi 2006) as
well as abstract argumentation (Caminada and Pigozzi 2011;
Awas et al. 2015; Booth 2015; Booth, Awad, and Rahwan
2014). For an overview of applications of judgment aggre-
gation in artificial intelligence see for instance the work by
Grossi and Pigozzi (2014) or Endriss (2015).

The main focus of research in judgment aggregation is the
development and analysis of judgement aggregation opera-
tors. Numerous impossibility results – see the survey by List
and Puppe (2009) for an overview – have dashed the hope
of finding a universally applicable operator. Consequently,
the suitability of an operator for a given judgment aggrega-
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tion problem has to be identified with respect to the desirable
properties that the aggregation process should satisfy.

One of the better studied properties for operators in judg-
ment aggregation is the independence property, which essen-
tially dictates that the collective judgment on any one issue
in the agenda should not depend on the individual judgments
given on any of the other issues in the same agenda. Indepen-
dence is a desirable property because, among other reasons,
it is a necessary condition for strategyproofness (Dietrich
and List 2007c), and it leads to rules that are both conceptu-
ally simple and easy to compute. However, independence is
too strong; in particular, together with mild additional con-
ditions, it implies dictatorship (Dietrich and List 2007a).

We propose a natural weakening of independence, named
agenda separability. A judgment aggregation rule satisfies
it if, whenever the agenda is composed of several inde-
pendent sub-agendas (with an extreme form of indepen-
dence being when the sub-agendas are syntactically un-
related to each other), the resulting collective judgment
sets can be computed separately for each sub-agenda and
then put together. Resorting to syntactically independent
sub-languages is reminiscent of Parikh’s language splitting
(Parikh 1999), where decomposing a logical theory into sev-
eral subtheories over disjoint sub-languages simplifies many
tasks in knowledge representation, such as belief change
(Peppas, Chopra, and Foo 2004) or inconsistency handling
(Chopra and Parikh 1999).

The agenda separability property is very intuitive and mo-
tivations for it can be easily found. For instance, in com-
putational linguistics, we may want to aggregate annota-
tions from several agents about parts of texts (Kruger et
al. 2014); then, finding collective annotations about parts of
two unrelated texts can (and should) be performed indepen-
dently. When a rule satisfies agenda separability, it also be-
comes computationally simpler when applied to decompos-
able agendas, because the rule can be applied independently
to every subagenda of the decomposition. Agenda separabil-
ity also offers a weak form of strategyproofness: no agent is
able to influence the outcome on some issue from one sub-
agenda of the partition by strategically reporting judgments
about another subagenda.

Of course, a weakening of independence is meaningful
only if there are rules that satisfy it. Not only we show that
this is the case, but we also show that agenda separability



is discriminant, in the sense that among the known judg-
ment aggregation rules, some satisfy it and some do not. This
leads us to see agenda independence as a possible means of
choosing a judgment aggregation rule against another.

The paper is structured as follows. Section 2 introduces
the background. Section 3 discusses the independence prop-
erty. In Sections 4 and 5 we define two notions of agenda
separability, and we identify some rules that satisfy them
and some that do not. Section 6 contains a summary and
discussion.

2 Preliminaries
Let L be a set of well-formed propositional logical formu-
las, including > (tautology) and ⊥ (contradiction). An issue
is a pair of formulas ϕ,¬ϕ where ϕ ∈ L and ϕ is neither a
tautology nor a contradiction. An agenda A is a finite set of
issues and has the formA = {ϕ1,¬ϕ1, . . . , ϕm,¬ϕm}. The
preagenda [A] associated withA is [A] = {ϕ1, . . . , ϕm}. A
sub-agenda is a subset of issues from A. A sub-preagenda
is a subset of [A]. An agenda usually comes with an in-
tegrity constraint Γ, which is a consistent formula whose
role is to filter out inadmissible judgment sets. (A,Γ) is
called a constrained agenda. As a classical example, given a
set of candidates C = {x1, . . . , xm}, the preference agenda
over C (Dietrich and List 2007a) is AC = {xiPxj |1 ≤
i < j ≤ m}, and the associated integrity constraint is
ΓC =

∧
i,j,k (xiPxj ∧ xjPxk → xiPxk). When Γ is not

specified, by default it is equal to >.
A judgment on ϕ ∈ [A] is one of ϕ or ¬ϕ. A judgment

set J is a subset of A. J is complete iff for each ϕ ∈ [A],
either ϕ ∈ J or ¬ϕ ∈ J . A judgment set J (and in general,
a set of propositional formulas) is Γ-consistent if and only
if J ∪ {Γ} 2 ⊥. Let JA,Γ be the set of all complete and
consistent judgment sets. To lighten the notations, we will
generally say that a judgment set is consistent instead of Γ-
consistent, and note JA instead of JA,Γ.

A profile P = 〈J1, . . . , Jn〉 ∈ J nA is a collection of com-
plete and consistent individual judgment sets. We further de-
fine N(P,ϕ) = |{i | ϕ ∈ Ji}| to be the number of all
agents in P whose judgment set includes ϕ. The order %P
is the weak order over A defined by ϕ %P φ if and only if
N(P,ϕ) ≥ N(P, φ).

The restriction of P = 〈J1, . . . , Jn〉 over a sub-agenda
A1 of A is defined as P↓A1

= 〈J1 ∩ A1, . . . , Jn ∩ A1〉.
Every consistent subset of the agenda S ⊂ A can be ex-

tended in order to obtain a complete judgment set (there
might be several such extensions). For a set S of subsets of
agenda , we define ext(S) = {J ∈ JA | there exists J ′ ∈
S such that J ′ ⊆ J}.

A judgment aggregation rule, for n agents, is a function
R that maps any constrained agenda (A,Γ) and any profile
P ∈ J nA,Γ to a non-empty set of complete consistent judg-
ment sets over A.1 If R always outputs a singleton then it

1The reason why the (constrained) agenda is an argument of
rules is that the notions we study need a rule to be applied to a
variable agenda. We omit writing A,Γ as an argument of R when
defining R to improve the readability of the text.

is called a resolute rule. The majoritarian judgment set as-
sociated with profile P contains all elements of the agenda
that are supported by a majority of judgment sets in P :
m(P ) = {ϕ ∈ A | N(P,ϕ) > n

2 }. A profile P is majority-
consistent iff m(P ) is consistent.

Let S ⊆ L. We define Atoms(S) as the set of all proposi-
tional variables appearing in S. For example, Atoms({p, q ∧
r,¬s→ ¬¬p}) = {p, q, r, s}.

Given a set of formulas S and a formula Γ, S′ ⊆ S is
Γ-consistent if S′ ∪ {Γ} is consistent, S′ is a maximal Γ-
consistent subset of S, if S′ is Γ-consistent and there is no
S′′ ⊃ S′, S′′ ⊆ S that is Γ-consistent. . We use max(S,⊆)
to denote the maximal consistent subsets of S. The set S′ ⊆
S is a maxcard Γ-consistent subset of S if S′ is Γ-consistent
and there exists no Γ-consistent set S′′ ⊆ S such that |S′| <
|S′′|. We use max(S, |.|) to denote the maxcard consistent
subsets of S.

We now give the definitions of seven judgment aggrega-
tion rules. They come from various places in the literature,
where they sometimes appear with different names (Lang
et al. 2011; Lang and Slavkovik 2013; Nehring and Pivato
2013; Nehring, Pivato, and Puppe 2014; Miller and Osher-
son 2009; Everaere, Konieczny, and Marquis 2014).

Throughout the subsection, P = 〈J1, . . . , Jn〉 is a pro-
file. For two consistent and complete judgment sets J, J ′ we
denote their Hamming distance as dH(J, J ′) = |J \ J ′|.

MC,MCC. The maximum Condorcet rule (MC) and the
maxcard Condorcet rule (MCC) rules are defined as fol-
lows. For every agenda A, for every profile P ∈ J nA ,
MC(P ) = {ext(S) | S ∈ max(m(P ),⊆)} and
MCC(P ) = {ext(S) | S ∈ max(m(P ), |.|)}.

RA. For A = {ψ1, . . . , ψ2m} and a permutation σ of
{1, . . . , 2m}, let >σ be the linear order on A defined by
ψσ(1) >σ ... >σ ψσ(2m). We say that >σ is compatible
with %P if ψσ(1) %P ... %P ψσ(2m). The ranked agenda
rule RA is defined as J ∈ RA(P ) if and only if there exists
a permutation σ such that >σ is compatible with %P and
such that J = Jσ is obtained by the following procedure:

• S := ∅;
• for j = 1, . . . , 2m do
• if S ∪ {ψσ(j)} is consistent, let S := S ∪ {ψσ(j)};
• Jσ := S.

RdH ,MAX(P ) = argmin
J∈JA

n
max
i=1

dH(Ji, J).

RS . A scoring function (Dietrich 2014) is defined as
s : JA × A → R+. Given a scoring func-
tion s, the judgment aggregation rule Rs is defined as
RS(P ) = argmax

J∈JA

∑
Ji∈P

∑
ϕ∈J

s(Ji, ϕ). If we choose the

reversal scoring function srev(Ji, ϕ) as the minimal num-
ber of judgment reversals needed in Ji in order to reject
ϕ then we get the reversal scoring rule Rrev (Dietrich
2014). If we choose the scoring function s defined by
smed(Ji, ϕ) = 1 if ϕ ∈ Ji and 0 if ϕ /∈ Ji then Rs is
exactly the median rule, i.e. Rs ≡ MED.



MED(P ) =

argmax
J∈JA

∑
ϕ∈J

N(P,ϕ) = argmin
J∈JA

∑
Ji∈P

dH(Ji, J).

FULLH . Given profiles P = 〈J1, . . . , Jn〉 and Q =

〈J ′1, . . . , J ′n〉 in J nA , let DH(P,Q) =
n∑
i=1

dH(Ji, J
′
i).

FULLH(P ) = {ext(m(Q)) | Q ∈ argmin
Q′∈Jn

A

DH(P,Q′)}.

The rules defined here are irresolute, but similarly as in
voting theory, can be made resolute by composing them with
a tie-breaking mechanism. A simple way of defining a tie-
breaking mechanism θ is via a priority relation>θ over con-
sistent and complete judgment sets. Given an irresolute rule
R and a tie-breaking mechanism θ, the resolute rule Rθ is
the rule that, given P , returns the maximal (with respect to
>θ) element of R(P ).

3 Relaxing Independence
A judgment aggregation rule F satisfies independence of ir-
relevant alternatives (IIA) if for every two profiles P, P ′ ∈
J nA , and every ϕ ∈ A, if P↓{ϕ,¬ϕ} = P ′↓{ϕ,¬ϕ}, then
ϕ ∈ F (P ) iff ϕ ∈ F (P ′). Independence is a very strong
property: together with three seemingly innocuous proper-
ties, namely universal domain (F is defined for every pro-
file), unanimity principle, and collective rationality (F out-
puts complete and consistent judgment sets), it implies dic-
tatorship (Dietrich and List 2007a).

Now, while it is natural to expect that the individual judg-
ments on logically related issues will influence the choice
of collective judgments for those issues, it is also natural to
expect that individual judgments over logically unrelated is-
sues will have no impact on them. To illustrate this point, we
give an example from a collective decision making problem
that occurs in crowdcomputing.

There are a lot of tasks that are rather simple for a hu-
man to do, but fairly complicated for a computer, such as
labelling images, choosing the best out of several images,
identifying music segments etc. These types of tasks are
called human intelligence tasks (HITs). Considering the task
of cataloguing pictures by location, that is outsourced as
HITs to an unspecified, but finite, group of people. The peo-
ple undertaking these tasks should label each photo in a se-
ries and also indicate reasons for their labelling. For exam-
ple: the photo is of Paris (p) if the Eiffel tower can be seen
on it (e) or the Triumphal arc can be seen on it (t); the photo
is of Rome (r) if the Colosseum can be seen on it (c) or
the Spanish Steps can be seen on it (s). The commissioner
of the HITs will aggregate the individual labelings and as-
sign the labels that are collectively supported. The prob-
lem of finding which labelings are collectively supported
can be solved as a judgment aggregation problem; see the
work by Endriss and Fernández (2013) for a similar view
of crowdsourcing as a judgment aggregation problem. As-
sume, for simplicity, that we have three labellers (or agents)
and two pictures. Furthermore, the commissioner is only in-
terested in whether the first photo is of Paris and whether

the second one is of Rome. The problem for the first photo
is represented with the agenda [A1] = {p, e, t, e ∨ t → p},
while the problem for the second photo is represented with
the agenda [A2] = {r, c, s, c ∨ s → r}. Observe that
Atoms(A1) ∩ Atoms(A2) = ∅. The agents get the pictures
at the same time. Clearly, whether the first picture is of Paris
or not has nothing to do with whether the second picture is
of Rome or not, consequently we would expect that the col-
lective judgments regarding issues inA1 depend only on the
judgments given for these issues, but not on the individual
judgments given for issues in A2.

In the next section we relax independence along this prin-
ciple, defining a new property called agenda separability.

4 Agenda Separability
Following the idea that only judgments on logically related
issues should influence the collective judgment on each is-
sue, we define agenda separability as the property requiring
that when two agendas can be split into sub-agendas that are
independent from each other, the output judgment sets can
be obtained by first applying the rule on each sub-agenda
separately and then taking the pairwise unions of judgment
sets from the two resulting sets.

A partition {A1,A2} of A is an independent partition of
A if for every J1 ∈ JA1

and J2 ∈ JA2
, J1 ∪ J2 is Γ-

consistent.2

Definition 1 (Agenda separability) We say that ruleR sat-
isfies agenda separability (AS) if for every agenda A, ev-
ery independent partition {A1,A2} of A, and all profiles
P ∈ J nA , we have

R(P ) = {J1 ∪ J2 | J1 ∈ R(P↓A1
) and J2 ∈ R(P↓A2

)}.

If R is a resolute rule, then the last line of the definition
simplifies into R(P ) = R(P↓A1

) ∪R(P↓A2
).

Also, by associativity of ∪, this notion generalises
to agendas that can be partitioned into a collection
{A1, . . . ,Ak} such that for every J1 ∈ JA1

, . . . , Jk ∈ JAk
,

J1 ∪ . . . ∪ Jk is consistent. In that case,

R(P ) =

{
k⋃
i=1

J i
∣∣∣ J1 ∈ R(P↓A1

), . . . , Jk ∈ R(P↓Ak
)

}
.

IIA is defined for resolute rules only. We show that agenda
separability restricted to resolute rules is a weakening of IIA.

Proposition 1 Any resolute judgment aggregation rule that
satisfies IIA is agenda separable.

2A stronger notion of independence, which makes sense only
when Γ = >, is syntactical agenda independence: a partition
{A1,A2} of A is syntactically independent if Atoms(A1) ∩
Atoms(A2) = ∅. Clearly, syntactical agenda independence im-
plies agenda independence, because Atoms(A1)∩Atoms(A2) = ∅
implies that A1 and A2 are independent. Note that the implica-
tion is strict: for example, let A = {x,¬x, x ↔ y,¬(x ↔
y)} = A1 ∪ A2, Γ = >, A1 = {x,¬x} and A2 = {x ↔
y,¬(x↔ y)}. {A1,A2} is an independent partition ofA although
Atoms(A1) ∩ Atoms(A2) 6= ∅.



Proof. If a resolute rule R satisfies IIA, we can write
R(P ) =

⋃m
i=1 Fi(P↓{ϕi,¬ϕi}) where [A] = {ϕ1, . . . ϕm}

and F1, . . . , Fm are resolute rules. Let {A1,A2} be
an independent partition of A. Without loss of gen-
erality, assume [A1] = {ϕ1, . . . , ϕk} and [A2] =

{ϕk+1, . . . , ϕm}. We have R(P ) =
⋃k
i=1 Fi(P↓{ϕi,¬ϕi})∪⋃m

i=k+1 Fi(P↓{ϕi,¬ϕi}) = R(P↓A1
) ∪R(P↓A2

). �

We shall see that the reverse implication does not hold.

Definition 2 The scoring function s is separable if for every
A and every independent partition {A1,A2} of A, for i ∈
{1, 2}, and every J ∈ JA and ϕ ∈ Ai, we have s(J, ϕ) =
s(J ∩ Ai, ϕ).

We omit the easy proofs of the next two results.

Proposition 2 If s is a separable scoring function, then RS
is agenda separable.

Corollary 1 MED and Rrev are agenda separable.

Proposition 3 MC, MCC, RA, and FULLH are agenda sepa-
rable. RdH ,MAX is not agenda separable.

Proof. For MC and RA, this will be a consequence of a
stronger result proven in Section 5, therefore we give a proof
only for MCC and FULLH . Let {A1,A2} be an independent
partition of A.
MCC. Denote B1 = m(P1), B2 = m(P2) and B = m(P ).
Let ΠP1,P2

= {J1 ∪ J2 | J1 ∈ MCC(P1) and J2 ∈
MCC(P2)}. We first show that MCC(P ) ⊆ ΠP1,P2

. Let J∗ ∈
MCC(P ); thus J∗ ∈ ext(max(B, |.|)). Let J1

∗ = J∗ ∩ A1

and J2
∗ = J∗ ∩ A2. J1

∗ and J2
∗ are consistent, because J∗

is consistent. Assume J1
∗ /∈ ext(max(B1, |.|)). Since J1

∗ is
consistent, there exists J1

∗∗ ∈ ext(max(B1, |.|)) such that
|J1
∗∗| > |J1

∗ |. Let J∗∗ = J1
∗∗ ∪ J2

∗ . Because {A1,A2} is
an independent partition of A, the consistency of J1

∗∗ and of
J2
∗ implies the consistency of J∗∗. But then |J∗∗| > |J∗|,

which contradicts J∗ ∈ ext(max(B, |.|)). Therefore, J1
∗ ∈

ext(max(B1, |.|)). Similarly, J2
∗ ∈ ext(max(B2, |.|)).

Thus, J∗ ∈ ΠP1,P2 .
Now we show that ΠP1,P2 ⊆ MCC(P ). Let J1 ∈

MCC(P1) and J2 ∈ MCC(P2), that is, J1 ∈
ext(max(B1, |.|)) and J2 ∈ ext(max(B2, |.|)). Let us
show that J = J1 ∪ J2 ∈ ext(max(B, |.|)). Because
{A1,A2} is an independent partition of A, J is consistent.
Suppose that there exists J∗ ∈ ext(max(B, |.|)) such that
|J∗| > |J |. Let J1

∗ = J∗∩B1 and J2
∗ = J∗∩B2. Both J1

∗ and
J2
∗ are consistent, and |J∗| > |J | implies that |J1

∗∗| > |J1
∗ |

or |J2
∗∗| > |J2

∗ |, which contradicts J1
∗ /∈ ext(max(B1, |.|))

and J2
∗ /∈ ext(max(B2, |.|)). Thus, it must be that J ∈

ext(max(B, |.|)) and, consequently, J ∈ MCC(P ).
FULLH . Let X ⊆ J nA be the set of all profiles Q such that
ext(m(Q)) ⊆ JA, CMC(P ) = argminQ∈XDH(P,Q), and
UA12 = {J1∪J2 | J1 ∈ FULLH(P↓A1

) and FULLH(P↓A2
)}.

We first show that FULLH(P ) ⊆ UA12. Let J◦ ∈
FULLH(P ). Let J1

◦ = J◦ ∩ A1 and J2
◦ = J◦ ∩ A2.

Since J◦ ∈ FULLH(P ) then there exists Q ∈ CMC(P )
such that J◦ ∈ ext(m(Q)). Let us show that Q↓A1 ∈
CMC(P↓A1

). Suppose that Q↓A1
/∈ CMC(P↓A1

). Then, there

exists a majority-consistent Q∗1 ∈ J nA1
, Q∗1 = 〈I∗1 , . . . , I∗n〉

such that DH(Q∗1, P↓A1) < DH(Q↓A1 , P↓A1). Let Q =
〈I1, . . . , In〉. Let Q↓A1

= 〈I1
1 , . . . , I

1
n〉 and Q↓A2

=
〈I2

1 , . . . , I
2
n〉. Define Q∗ = 〈I∗1 ∪ I2

1 , . . . , I
∗
n ∪ I2

n〉. Be-
cause {A1,A2} is an independent partition of A, Q∗ is a
majority-consistent profile. Note also that DH(Q∗, P ) <
DH(Q,P ). Contradiction. Thus, Q↓A1

∈ CMC(P↓A1
), and

for the same reasons, Q↓A2
∈ CMC(P↓A2

). Therefore, J1
◦ ∈

FULLH(P↓A1), J2
◦ ∈ FULLH(P↓A2), and FULLH ⊆ UA12.

We now show that UA12 ⊆ FULLH . Let J1
◦ ∈

FULLH(P↓A1
) and J2

◦ ∈ FULLH(P↓A2
). Thus, there ex-

ist profiles Q1 ∈ CMC(P↓A1
) and Q2 ∈ CMC(P↓A2

) such
that J1

◦ ∈ ext(m(Q1)) and J2
◦ ∈ ext(m(Q2)). Let Q1 =

〈Q1
1, . . . , Q

1
n〉, Q2 = 〈Q2

1, . . . , Q
2
n〉, and Q = 〈Q1

1 ∪
Q2

1, . . . , Q
1
n ∪ Q2

n〉. Because {A1,A2} is an independent
partition of A, Q is majority-consistent.

Let us show that Q ∈ CMC(P ). Assume that
Q /∈ CMC(P ). Then there exists Q∗ ∈ CMC(P ) s.t.
DH(Q∗, P ) < DH(Q,P ). Observe that DH(Q∗↓A1

, P ) +
DH(Q∗↓A2

, P ) < DH(Q↓A1
, P ) + DH(Q↓A2

, P ).
This means that DH(Q∗↓A1

, P ) < DH(Q↓A1
, P ) or

DH(Q∗↓A2
, P ) < DH(Q↓A2

, P ). Recall that Q↓A1
= Q1

and Q↓A2
= Q2. Thus, DH(Q∗↓A1

, P ) < DH(Q1, P ) or
DH(Q∗↓A2

, P ) < DH(Q2, P ), which, together with the
fact that Q∗↓A1

and Q∗↓A2
are majority-consistent, con-

tradicts Q1 ∈ CMC(P↓A1
) and Q2 ∈ CMC(P↓A2

). Thus,
Q ∈ CMC(P ). Note that J1

◦ ∪ J2
◦ ∈ m(Q). This implies

that J1
◦ ∪ J2

◦ ∈ FULLH(P ).
RdH ,MAX. We provide a counter example.Let

A = A1 ∪ A2 with [A1] = {p, q, p ∧ q} and
[A2] = {t}. Consider the profile P from Figure
1 with P1 = P↓A1 and P2 = P↓A2 . We obtain

Agents p q p ∧ q t
J1 + + + +
J2 + - - +
J3 - + - -

P1 P2

Figure 1: Counter example to RdH ,MAX being agenda separable.

RdH ,MAX(P ) = {{¬p, q,¬(p ∧ q), t}}. However
RdH ,MAX(P2) = {{t}, {¬t}} and RdH ,MAX(P1) =
{{¬p, q,¬(p ∧ q)}, {p, q, (p ∧ q)}, {p,¬q,¬(p ∧ q)}}. �

The fact that a rule satisfies agenda separability does not
imply that a resolute rule obtained by composing it with
a tie-breaking mechanism satisfies agenda separability as
well. For instance, if tie-breaking favours {¬a} over {a}
when A = {a}, {¬b} over {b} when A = {b}, and
{a, b} over all other judgment sets when A = {a, b}, and
if P contains one judgment set {a, b} and one judgment set
{¬a,¬b}, then for any one of our rules, and with A1 =
{a,¬a} and A2 = {b,¬b}, we have R(P↓A1

) = {¬a},
R(P↓A2

) = {¬b}, and R(P ) = {a, b}. However, if the tie-
breaking priority relation >θ satisfies the following decom-
posability property, then agenda separability of an irresolute



rule implies agenda separability of its composition with θ.
A tie-breaking priority relation >θ is agenda separa-

ble if for every agenda A, for every independent partition
{A1,A2} of A, and every J1

∗ , J
1
◦ ∈ JA1

, and J2
∗ , J

2
◦ ∈

JA2
, J1
∗ >θ J

1
◦ and J2

∗ >θ J
2
◦ imply J1

∗ ∪ J2
∗ >θ J

1
◦ ∪ J2

◦ .

Observation 1 If >θ is an agenda separable tie-breaking
priority relation and R is agenda separable, then Rθ is
agenda separable.

Let >θ be an agenda separable tie-breaking priority rela-
tion, then RAθ is agenda separable. However, since it sat-
isfies universal domain, unanimity principle (Lang et al.
2011), and collective rationality, then it does not satisfy IIA.
Hence, the implication stated in Proposition 1 is strict.

Lastly, we would like to state two observations about the
properties of rules that are agenda separable.

Observation 2 Let K be a constant and say that agenda
A is K-decomposable if A can be partitioned into p syn-
tactically unrelated agendas A1, . . . ,Ap such that for all i
|Atoms(Ai)| ≤ K. If a rule satisfies agenda separability,
then the collective judgment sets can be computed in time
O(2Kn) whenever the agenda is K-decomposable.

In other terms, computing these rules is parameterized
tractable when he parameter is the degree K of decompos-
ability, which is a complexity gap, since winner determina-
tion for these rules is Θ2

p-hard or even Π2
p-hard (Lang and

Slavkovik 2014; Endriss and de Haan 2015).
Moreover, agenda separability allows for a weak form of

strategyproofness. Indeed, if A can be partitioned into p syn-
tactically unrelated agendas A1, . . . ,Ap, then no agent is
able to influence the outcome on some issue inAi by report-
ing strategic judgments about issues of Aj for j 6= i.

5 Overlapping Agenda Separability
In this section, we consider a stricter property than agenda
separability. We first need the notion of independent over-
lapping decomposition.

Definition 3 (Independent overlapping decomposition)
Let A be an agenda and let A = A1 ∪ A2 (but not
necessarily A1 ∩ A2 = ∅). We say that {A1,A2} is an
independent overlapping decomposition (IOD) of A if and
only if for every J1 ∈ JA1 , for every J2 ∈ JA2

if J1 ∩ A2 = J2 ∩ A1 then J1 ∪ J2 ∈ JA.

Example 1 Let [A] = {p,¬p ∨ t, p↔ q}, [A1] = {p,¬p ∨
t} and [A2] = {¬p ∨ t, p ↔ q}. Note that {A1,A2} is an
independent overlapping decomposition of A.

Observation 3 Every independent partition is an indepen-
dent overlapping decomposition.

Example 1 shows that the contrary of the previous obser-
vation does not hold. Indeed, as soon as the intersection of
the two sub-agendas is non-empty, they do not form an in-
dependent partition.

There is a clear connection between independent over-
lapping decompositions and conditional independence in
propositional logic (Darwiche 1997; Lang, Liberatore, and

Marquis 2002); we do not give technical details here, but we
mention that this connection gives us several characteriza-
tions as well as complexity results for finding independent
overlapping decompositions.

We can now introduce the definition of overlapping
agenda separability.

Definition 4 (Overlapping agenda separability) We say
that rule R satisfies overlapping agenda separability (OAS)
if for every agenda A and every independent overlapping
decomposition {A1,A2} of A, for every profile P over A
it holds that: if for every J1 ∈ R(P↓A1), for every J2 ∈
R(P↓A2

), we have J1 ∩ A2 = J2 ∩ A1 then R(P ) =
{J1 ∪ J2 | J1 ∈ R(P↓A1

) and J2 ∈ R(P↓A2
)}.

Observation 4 Overlapping agenda separability implies
agenda separability.

Proof. Let {A1,A2} be an independent partition ofA. From
Observation 3 {A1,A2} is an IOD. SinceA1∩A2 = ∅, con-
dition J1∩A2 = J2∩A1 is satisfied for every J1, J2. Thus,
R(P ) = {J1 ∪ J2 | J1 ∈ R(P↓A1

) and J2 ∈ R(P↓A2
)}. �

Proposition 4 MC and RA satisfy OAS.

Proof.
MC. Suppose that for every J1 ∈ MC(P1), for every J2 ∈
MC(P2), J1 ∩ A2 = J2 ∩ A1. Let ΠP1,P2 = {J1 ∪ J2 |
J1 ∈ MC(P1) and J2 ∈ MC(P2)}.

We first show that MC(P ) ⊆ ΠP1,P2
. Let J ∈ MC(P ).

Denote J1 = J ∩ A1 and J2 = J ∩ A2. We claim that
J1 ∈ MC(P1) and J2 ∈ MC(P2). Note that J1 and J2 are
consistent. By means of contradiction, and without loss of
generality, assume J1 /∈ MC(P1). Thus, there exists J1

? ∈
JA1

such that J1∩m(P ) ⊂ J1
? ∩m(P ). Denote J? = J1

? ∪
J2. Observe that J? is consistent. Furthermore, J ∩m(P ) ⊂
J? ∩m(P ), thus J /∈ MC(P ), contradiction.

We now show that ΠP1,P2
⊆ MC(P ). Let J1 ∈ MC(P1)

and J2 ∈ MC(P2). Denote J = J1 ∪ J2. Since {A1,A2} is
an IOD, J is consistent. Suppose J /∈ MC(P ). Thus, there
exists J ′ ∈ JA such that J ∩ m(P ) ⊂ J ′ ∩ m(P ). Let
ϕ ∈ (J ′ ∩m(P )) \ (J ∩m(P )). Without loss of generality,
assume ϕ ∈ A1. Denote J1

? = J ′ ∩ A1. Note that J1
? is

consistent and J1 ∩m(P ) ⊂ J1
? ∩m(P ), contradiction.

RA. We give only a proof sketch.
Suppose that for every J1 ∈ RA(P1), for every J2 ∈

RA(P2), J1 ∩ A2 = J2 ∩ A1. Let ΠP1,P2
= {J1 ∪ J2 |

J1 ∈ RA(P1) and J2 ∈ RA(P2)}. Let J1 ∈ RA(P1), J2 ∈
RA(P2). Denote J = J1 ∪ J2. We claim that J ∈ RA(P ).
Because J1 ∈ RA(P1), there is an order>σ1 onA1, refining
%P1

such that J1 = Jσ1 . Similarly, there is an order >σ2 on
A2, refining %P2

, such that J2 = Jσ2 . We first claim that
without loss of generality, we can assume that >σ1 and >σ2

coincide onA1 ∩A2. For this we construct σ′′ onA2, refin-
ing %P2 , such that >σ′′ coincides with >σ1 onA1 ∩A2 and
Jσ′′ = Jσ2 = J2.

Now, let >σ be an order on A refining %P and extending
both >σ1 and >σ2 . Let A = {α1, . . . , α2m}. Without loss
of generality, suppose α1 >σ . . . >σ α2m. Let Si ⊆ A be



the set obtained at the step i of construction of J = Jσ . We
show by induction on i that

(Hi) ∀j ∈ {1, . . . , i} we have αj ∈ Si iff αj ∈ J1∪J2.

From (H2m), we obtain J = J1 ∪ J2.
We now show that RA(P ) ⊆ ΠP1,P2 . Suppose J ∈

RA(P ). Let >σ be an order onA such that J = Jσ . Without
loss of generality, suppose α1 >σ . . . >σ α2m. Denote by
>σ1 (resp. >σ2 ) the restriction of >σ on A1 (resp. A2). Let
J1 = Jσ1 and J2 = Jσ2 . Observe that J1 ∩A2 = J2 ∩A1.
Since {A1,A2} is an IOD, J1 ∪ J2 is consistent.

Let Si ⊆ A be the set obtained at the step i of construction
of J = Jσ . We show by induction on i that

(Hi) ∀j ∈ {1, . . . , i} we have αj ∈ Si iff αj ∈ J1∪J2.

By putting i = 2m, we obtain J = J1 ∪ J2. �

Proposition 5 MCC, MED, FULLH , and Rrev do not satisfy
OAS.

Proof.
MCC, MED and FULLH . We now provide a counter-
example to show that MCC and MED do not satisfy OAS.
Let [A1] = {p, p → q, p → r, q, r}, [A2] = {q, r, s, s →
q, s → r}, and A = A1 ∪ A2. Observe that {A1,A2}
is an IOD of A. Consider the profile from Figure 2.

p p→ q p→ r q r s s→ q s→ r

J1 + + + + + + + +
J2 - + + - - - + +
J3 + - - - - + - -

Figure 2: The counter example used to show that several
rules do not satisfy OAS.

We obtain MCC(P1) = MED(P1) = FULLH(P1) =
{ { ¬p, p→ q, p→ r, ¬q, ¬r, } } , and
MCC(P2) = MED(P2) = FULLH(P2) =
{ { ¬s, s→ q, s→ r, ¬q, ¬r, } } . How-
ever, MCC(P ) = MED(P ) = FULLH(P ) =
{{¬p, p → q, p → r,¬q,¬r,¬s, s → q, s → r},
{p, p→ q, p→ r, q, r, s, s→ q, s→ r}}.

Rrev . The proof is omitted due to space limitations. �

The preference agenda (Dietrich and List 2007b) associ-
ated with a set of alternatives C = {x1, . . . , xq} is AC =
{xiPxj | 1 ≤ i < j ≤ q}. When j > i, xiPxj is not a
proposition of AC , but we write xjPxi as a shorthand for
¬(xjPxi). Conversely, given a judgment set J on AC , the
binary relation �J over C is defined by: for all xi, xj ∈ C,
xi �J xj if xiPxj ∈ J and xj �J xi if ¬xiPxj ∈ J .
Observation 5 For any m ≥ 3, there exists no (non-trivial)
independent overlapping decomposition of the preference
agenda over the set of alternatives C = {x1, . . . , xm}.
Proof. We first establish the following lemma: if {A1,A2}
is an independent overlapping decomposition, then for all
xi, xj , xk, xiPxj and xiPxk are both in A1 or both in A2.
Assume that it is not the case: without loss of generality,

xiPxj ∈ A1 and xiPxk ∈ A2. Also without loss of gen-
erality, assume xjPxk ∈ A1. Let J1 and J2 be two consis-
tent judgment sets over A1 and A2 such that J1 contains
{xiPxj , xjPxk}, J2 contains xkPxi, and J1 and J2 are
completed in an arbitrary way such that J1∩A2 = J2∩A1;
J1∪J2 is an inconsistent judgment set overA1∪A2, which
contradicts the assumption that {A1,A2} is an independent
overlapping decomposition.

Assume without loss of generality that x1Px2 ∈ A1.
Let x′, x′′ ∈ {x1, . . . , xk}. If x′ = x1 or x′′ = x1 then
the above lemma implies that x′Px′′ ∈ A1. If neither
x′ = x1 nor x′′ = x1, then the above lemma implies
that x1Px

′ ∈ A1, and applying the lemma again leads
to x′Px′′ ∈ A1. This being true for all x′, x′′, we have
A1 = A, and {A1,A2} is a trivial decomposition. �

6 Discussion
We proposed a new property for judgment aggregation,
namely agenda separability. It is a relaxation of the classical
independence property, and unlike it, it is satisfied by several
non-degenerate judgment aggregation rules. We have de-
fined a stronger version of agenda separability, namely over-
lapping agenda separability, which is even more discrimi-
nant, since we have identified only two of the previously
studied judgment aggregation rules that satisfy it, namely
MC and RA. Note that RA satisfied furthermore unanimity
principle (Lang et al. 2011). Also, two rules were left out of
this paper due to space limitations: the judgment aggrega-
tion version of the Young rule, which does not satisfy agenda
separability, and the ‘geodesic’ distance-base rule of Duddy
and Piggins (2012), which satisfies agenda separability but
not overlapping agenda separability.

A possible reason why agenda separability has not been
studied sooner is that it is not applicable to common agen-
das such as the preference agenda, simply because they are
not decomposable (cf. Observation 5). A similar observation
would hold for other agendas of interest, such as those used
for the aggregation of equivalence relations or for committee
elections. However, agenda separability does apply to vari-
ants of these problems. Suppose for instance that we have
to elect a committee made of K men and K women; then
agenda separability applies and says that the election of the
K men and the K women do not interfere.

This notion of agenda separability should not be confused
with a notion of separability, also known as consistency or
reinforcement, considered in voting theory (Young 1975)
and generalized to judgment aggregation (Lang et al. 2011):
these notions say that if a profile P can be decomposed into
two subprofiles P1 and P2 for which the output is the same,
then this should also be the output for P .

An ambitious issue for further work would be character-
izing the set of rules that satisfy agenda separability, or one
of its variants.
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