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Abstract. We present two approaches for deriving more arguments from an ab-
stract argumentation framework than the ones obtained using sceptical inference,
that is often too cautious. The first approach consists in selecting only some of
the extensions. We point out several choice criteria to achieve such a selection
process. Choices are based either on the attack relation between extensions or
on the support of the arguments in each extension. The second approach con-
sists of the definition of a new inference policy, between sceptical and credulous
inference, and based as well on the support of the arguments. We illustrate the
two approaches on examples, study their properties, and formally compare their
inferential powers.

1 Introduction

An abstract argumentation system is often represented as an oriented graph, where
nodes correspond to arguments and arcs correspond to attacks between them [15]. Dif-
ferent semantics are used to calculate extensions (sets of arguments that can be accepted
together). From the extensions, a status, accepted or rejected, is assigned to each argu-
ment, using some acceptance policy. They are two main acceptance policies. In the first
one, the sceptical policy, an argument is accepted if (there are extensions and) it appears
in each extension. For the second one, the credulous policy, an argument is accepted if
it belongs to (at least) one extension.

When the number of extensions is large, using a sceptical / credulous approach can
be sub-optimal. Namely, if there is a lot of extensions, only few (if any) arguments are
in all of them. Thus, using sceptical inference gives almost no information. Conversely,
the credulous approach may result in too many arguments.

There exist settings for abstract argumentation where preferences, weighted attacks
or similar extra information are considered [20,21,8,16,11,2]. Those additional data can
be exploited to reduce the number of extensions. Contrastingly, the problem addressed
in this paper is to increase the number of accepted arguments when there is no further
data, i.e., other data except the arguments and the attacks between them.

We investigate this problem and present two approaches for dealing with it. The
first one consists in selecting only some of the extensions (the “best” ones, for a given
semantics). The idea is to discriminate the extensions by taking advantage of the attack
relation. The selection achieved in this way leads to increase the number of sceptically
accepted arguments. Two methods for selecting extensions are pointed out. The first



one is based on a pairwise comparison of extensions. The second method is based on a
global evaluation of each extension, followed by a selection of the best evaluated ones.
The second approach we developed goes through the definition of a new policy for
accepting arguments. We introduce a third acceptance policy, which can be viewed as
a trade-off between the credulous and the sceptical policy. The very idea is to consider
the number of times an argument appears in the extensions. For the sceptical policy a
”good” argument is one that appears in all extensions. If no such argument exists, then
it makes sense to consider that arguments that appears in every extension but one are
”quite good”, and better than the ones that appear in less extensions.

A technical report [19] containing all the proofs, more explanations, more examples
and more figures is available online at http://www.cril.fr/∼vesic.

2 Formal Setting

This section introduces basic definitions and notations we use throughout the paper. An
argumentation system (AS) is a pair F = (A ,R) where R ⊆ A ×A . A is called the
set of arguments and R is called the attack relation. We restrict ourselves to the case
when A is finite.

Let F = (A ,R) be an AS, and let E ,E ′,E ′′ ⊆ A and a ∈ A . E is conflict-free if
and only if there exist no arguments a,b ∈ E such that a R b. E defends a if and only if
for every b ∈A we have that if b R a then there exists c ∈ E such that c R b. Argument
a is strongly defended from E ′ by E ′′ (written sd(a,E ′,E ′′)) if and only if (∀b ∈ E ′) if
(bRa) then (∃c ∈ E ′′ \{a})((cRb)∧ sd(c,E ′,E ′′ \{a})).

Usual semantics for Dung’s AS are considered, especially the complete, preferred,
grounded [15], semi-stable [7] and ideal semantics [14]. A semantics σ is said to return
conflict-free sets iff for every AS F , every extension of F is conflict-free. For an argu-
mentation system F = (A ,R) we denote Extσ (F ); or, by a slight abuse of notation,
Extσ (A ,R) the set of its extensions with respect to semantics σ . We use abbreviations
c, p, s, ss, g and i for respectively complete, preferred, stable, semi-stable, grounded and
ideal semantics. For example, Extp(F ) denotes the set of preferred extensions of F .

An acceptance policy is a function Infσ : Extσ (F ) → 2A . The two main accep-
tance policies are sceptical and credulous policies. We say that x is sceptically ac-
cepted under semantics σ (or in short s-sceptically accepted) iff Extσ (F ) 6= /0 and
x ∈

∩
E∈Extσ (F ) E . x is credulously accepted under semantics σ iff x ∈

∪
E∈Extσ (F ) E .

We denote the set of sceptically accepted arguments by Scσ (F ) and the set of cred-
ulously accepted arguments by Crσ (F ). We denote by R↓E the restriction of attack
relation R on set E .

3 Comparing Extensions by Pairwise Comparison

This section studies the way to select the ”best” extensions based on the following
process:

1. Compare all pairs of extensions based on a given criterion (e.g. the number of
arguments in one extension not attacked by the other extension)
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2. Choose the ”best” extension(s) given the winners of pairwise comparisons

Definition 1 (Pairwise comparison criteria). Let F = (A ,R) be an AS, σ a seman-
tics and Extσ (F ) the set of extensions of F . Let E ,E ′ ∈ Extσ (F ). Then:

1. E �nonatt E ′ if the number of arguments in E non attacked by E ′ is greater than or
equal to the number of arguments in E ′ non attacked by arguments of E

2. E �strde f E ′ if the number of arguments in E strongly defended from E ′ by E is
greater than or equal to the number of arguments in E ′ strongly defended from E
by E ′

3. E �delarg E ′ if the cardinality of any largest subset S of E such that if all the attacks
from S to E ′ are deleted then E is an extension of (E ∪E ′,R↓E∪E ′) is greater than
or equal to the cardinality of any largest subset S′ of E ′ such that if all the attacks
from S′ to E are deleted then E is an extension of (E ∪E ′,R↓E∪E ′)

4. E ′ �delatt E ′ if the maximal number of attacks from E to E ′ that can be deleted
such that E is still an extension of (E ∪E ′,R↓E∪E ′) is greater than or equal to the
maximal number of attacks from E ′ to E that can be deleted such that E ′ is still an
extension of (E ∪E ′,R↓E∪E ′)

The two first criteria are based on the number of non attacked or (strongly) defended
arguments. The last two ones are based on a notion of robustness from attacks stemming
from the other extension. One could also consider other criteria, for example by com-
paring the total number of attacks from E to E ′ and the total number of attacks from E ′

to E . For a criterion γ , we write E �γ E ′ iff E �γ E ′ and it is not the case that E ′ �γ E .
We also write E ∼γ E ′ iff E �γ E ′ and E ′ �γ E .

Example 1. Consider the AS F1 = (A1,R1) with A1 = {a, b, c, d} and R1 = {(a,c),
(a,d), (b,c), (c,a),(d,b)}. Extp(F1) = {E ,E ′} with E = {a,b}, E ′ = {c,d}. All the
arguments are attacked, so E ∼nonatt E ′. No argument is strongly defended, so E ∼strde f
E ′. We also have E �delarg E ′ since for S = {b} E is still an extension even if all the
attacks from S are deleted; whereas there are no S′ ⊆ E ′ with S′ 6= /0 such that E ′ is still
a preferred extension even after deleting all the attacks from S′. Finally, E �delatt E ′

since even if the attack from a to c is deleted, E is still a preferred extension, whereas
as soon as one attack from E ′ is deleted, E ′ is no longer a preferred extension.

Definition 2 (Copeland-based extensions). Let γ ∈ {nonatt,strde f ,delarg,delatt}
be one of the criteria from Definition 1. Let F = (A ,R) be an argumentation system,
σ a semantics and Extσ (F ) the set of extensions of F with respect to σ . We define the
set of Copeland-based extensions (CBE) as follows

CBEσ ,γ(F )= argmax
E∈Extσ (F )

|{E ′ ∈ Extσ (F ) |E �γ E ′}|−|{E ′′ ∈ Extσ (F ) |E ′′�γ E }|

We call this selection “Copeland-based” since it is inspired by the Copeland’s rule
from voting theory [22]. Of course, one can envisage other ways to select the extensions
given criterion γ , for instance all voting methods based on the majority graph (such as
Miller, Fishburn, Schwartz, Banks or Slater’s methods [6]). Clearly, selecting some
extensions is a way to increase the number of sceptically accepted arguments (and to
decrease the number of credulously accepted arguments):



Fact 1 For every γ ∈ {nonatt,strde f ,delarg,delatt}, for every semantics σ , for every
AS F = (A ,R), for every x ∈ A :

– CBEσ ,γ(F ) ⊆ Extσ (F )
– if x is σ -sceptically accepted then x is CBEσ ,γ -sceptically accepted
– if x is CBEσ ,γ -credulously accepted then it is σ -credulously accepted.

Example 2. Consider the argumentation system from Example 1. For example, we have
that CBEσ ,delarg(F1) = CBEσ ,delatt(F1) = {E }.

Baroni and Giacomin [4] pointed out a set of extension evaluation criteria that can be
seen as properties for characterizing good semantics. We now show that the semantics
defined in this section satisfy the same properties as the underlying semantics they are
built from, with the exception of directionality.

Proposition 1. Let x be any property among I-maximality, Admissibility, Strong Admis-
sibility, Reinstatement, Weak Reinstatement, CF-Reinstatement [4].
If the semantics σ satisfies property x, then the semantics CBEσ ,γ satisfies property x.

Note that the relations among different semantics do not carry over in case of CBE
approach. For instance, it is not guaranteed that each CBE-stable extension is also a
CBE-preferred extension.

4 Comparing Extensions by Global Evaluation

In Section 3 we considered different criteria for pairwise comparison of extensions. In
this section we define the score of an argument as the number of extensions it appears
in. One may justify this choice of score as some kind of generalization of the principles
behind sceptical acceptance. For sceptical acceptance a ”good” argument is an argument
that appears in all extensions. But, if no such argument exists, it could make sense
to consider that arguments that appears in every extension but one are ”good”, and
typically better than the ones that appears in less extensions. Note that one can use
other scores in the construction and obtain similar results.

Definition 3 (Scores and support vectors). Let F = (A ,R) be an argumentation
system, σ a semantics, x be an argument, and Extσ (F ) the set of extensions of F
with respect to σ . We define ne as the number of extensions x appears in. Formally,
neσ (x,F ) = |{E ∈ Extσ (F ) | x ∈ E }|. For an extension E ∈ Extσ (F ), with E =
{a1, . . . ,an} we define its support as vsuppσ (E ,F ) = (neσ (a1,F ), . . . ,neσ (an,F )).

When F and σ are clear from the context, we write ne(x) and vsupp(E ) instead
of neσ (x,F ) and vsuppσ (E ,F ).

Definition 4 (Aggregation functions). Let v = (v1, . . . , vn) be a vector of natural num-
bers. We denote by sum(v) the sum of all elements of v, by max(v) the maximal element
of v, by min(v) the minimal element of v, by leximax(v) the re-arranged version of v
where v1, . . . ,vn are put in decreasing order, by leximin(v) the re-arranged version of v
where v1, . . . ,vn are put in increasing order.



For example, if v = (2,1,4,2,5), then we have sum(v) = 14 and leximin(v) =
(1,2,2,4,5). Note that there exist other ways to aggregate vectors [13].

For the next definition we need the notion of lexicographic order <lex (for leximin
and leximax). Let v = (v1, . . . , vn) and v′ = (v′1, . . . , v′n) be two vectors of natural num-
bers. We have v <lex v′ iff ∃ j ∈ 1, . . . ,n(∀i ∈ 1, . . . , j− 1,vi = v′i) and v j < v′j. We also
have v <leximin v′ iff leximin(v) <lex leximin(v′) and v <leximax v′ iff leximax(v) <lex
leximax(v′).

Definition 5 (Order-based extensions). Let F = (A , R) be an argumentation sys-
tem, σ a semantics, Extσ (F ) be the set of extensions of F with respect to σ , and γ be
an aggregation function. We have OBEσ ,γ(F ) = argmaxE∈Extσ (F ) γ(vsuppσ (E ,F )).

The idea of the previous definition is to calculate the popularity of an extension by
taking into account the popularity of the arguments it contains.

Example 3. Let F3 = (A3,R3) be AS F3 = (A3,R3) with A3 = {a,b,c,d,e, f ,g,h}
and R3 = {(a,b), (b,a), (e, f ), ( f ,e), (b,g), ( f ,g), (g,h), (h,d), (d,c), (c,d)}. There
are five preferred extensions: {a,e,g,c}, {a,e,g,d}, {a, f ,h,c}, {b,h,c,e}, {b,h,c, f}.
So nep(a,F3) = 3, nep(b,F3) = 2, nep(c,F3) = 4, nep(d, F3) = 1, nep(e, F3) = 3,
nep( f ,F3) = 2, nep(g,F3) = 2, nep(h, F3) = 3.

We obtain OBEσ ,max(F3) = OBEσ ,min(F3) = {{a,e,g,c},{a, f ,h, c}, {b,h,c,e},
{b,h,c, f}}. So, whereas Scp(F3) = /0, we have ScOBEp,min(F3) = {c}. Similarly, we
have OBEσ ,sum(F3) = OBEσ ,leximin(F3) = OBEσ ,leximax(F3) = {{a,e,g, c}, {a, f ,h,c},
{b,h,c,e}}.

Fact 2 For every γ ∈ {sum,max,min, leximin, leximax}, for every semantics σ , for ev-
ery AS F = (A ,R), for every x ∈ A :

– OBEσ ,γ(F ) ⊆ Extσ (F )
– if x is σ -sceptically accepted then x is OBEσ ,γ -sceptically accepted
– if x is OBEσ ,γ -credulously accepted then it is σ -credulously accepted.

Proposition 2. Let x be any property among I-maximality, Admissibility, Strong Admis-
sibility, Reinstatement, Weak Reinstatement, CF-Reinstatement [4].
If the semantics σ satisfies property x, then the semantics OBEσ ,γ satisfies property x.

Like in Section 3, directionality is not always satisfied by the OBE approach.
A natural issue is to determine how the proposed criteria are connected. Do some of

the rules coincide? Are some of them refinements of others? In the rest of this section we
provide the answer to this question. Essentially, all the criteria give different results; the
exceptions come from the obvious fact that leximin (resp. leximax) refines min (resp.
max). We used the preferred semantics to construct the counter-examples; a similar
study can be conducted for the other semantics.

Definition 6. Let Γ and Γ ′ be two functions. We write Γ vΓ ′ iff for every F ,Γ (F )⊆
Γ ′(F ). The relation v is a pre-order. Let us denote its strict part by <, its symmetric
part by .= and its negation by 6v. We write Γ ind Γ ′ iff Γ 6v Γ ′ and Γ 6v Γ ′.



Proposition 3. For every acceptability semantics σ ,

OBEσ ,leximin v OBEσ ,min and OBEσ ,leximax v OBEσ ,max

We now provide a complete comparison between pairs of criteria under preferred
semantics.

Proposition 4. It holds that OBEp,leximin < OBEp,min and OBEp,leximax < OBEp,max. The
other pairs of rules (x,y) with x,y ∈ {OBEsum, OBEmin, OBEmax, OBEleximin, OBEleximax},
x 6= y are incomparable, i.e., x ind y.

5 Support-Based Acceptance Policy

This section presents a completely different approach for selecting arguments. We focus
on arguments that have the greatest supports among extensions to construct what we
call “candidate sets”. Then, an argument is called supportedly accepted if it is in all the
candidate sets.

Definition 7 (Candidate sets). Let F = (A ,R) be an AS and let σ be a semantics.
Let � be any pre-order defined on A . Let |A | = m. For a permutation θ of {1, . . . ,m},
let >θ be the linear order on A defined by aθ(1) >θ . . . >θ aθ(m). >θ is said to be
compatible with � iff aθ(1) � . . . � aθ(m). A set E ⊆ A is a candidate set of F un-
der semantics σ w.r.t. � iff there exists a permutation θ of {1, . . . ,m} such that >θ is
compatible with � and E is obtained by the following greedy procedure:

S := /0;
for j = 1, . . . ,m do

if (neσ (aθ( j),F ) ≥ 1) and (S∪{aθ( j)} is conflict-free)
then S := S∪{aθ( j)}

end for;
E := S.

In the following, we consider the pre-order � on A defined by for all x,y ∈ A ,
x � y iff neσ (x,F ) ≥ neσ (y,F ). We denote the set of candidate sets of F under σ
w.r.t. this pre-order by CSσ (F ).

Note that, in general, neither each candidate set is an extension nor each extension
is a candidate set. Observe also that the construction of candidate sets is reminiscent to
the one of preferred subbases from a stratified belief base with respect to the inclusion-
based ordering [5]; here the belief base consists of all the arguments and the stratifica-
tion is based on the neσ (.,F ) score.

Definition 8 (Supported acceptance). Let F = (A ,R) be an AS, σ be a seman-
tics and let x ∈ A . We say that x is supportedly accepted under semantics σ iff x ∈∩

E∈CSσ (F ). We denote the set of supportedly accepted arguments Spσ (F ).

We can show that supported inference is “between” sceptical and credulous infer-
ence.



Proposition 5. For every AS F = (A ,R), for every semantics σ returning conflict-
free extensions:

Scσ (F ) ⊆ Spσ (F ) ⊆ Crσ (F ).

Note that the condition telling that σ returns conflict-free extensions is necessary
to ensure the link between sceptical and supported acceptance. However, this is not an
issue, since all the well-known semantics return conflict-free sets.

Example 4. Let F4 = (A4,R4) be an AS with A4 = {a,b,c,d,e, f ,g,h} and R4 =
{(a,b),(b,a),(b,g),(c,d),(d,c),(d,g),(e, f ),( f ,e),( f ,g),(g,h)}. There are eight pre-
ferred extensions: {a,c,e,g}, {a,d,e,h}, {a,c, f ,h}, {a,d, f ,h}, {b,c,e,h}, {b,d,e,h},
{b,c, f ,h}, {b,d, f ,h}. There are no sceptically accepted arguments, i.e. Scp(F4) = /0.
But h is accepted by seven out of the eight extensions, and it is supportedly accepted,
i.e., Spp(F4) = {h}.

In the above example the set of candidates is a subset of the set of extensions, but
this is not always the case. Consider for instance the AS from Example 3, where there
is only one candidate set {c,a,e,h}, that is not an extension. So it is interesting to note
that on this example there are four supportedly inferred arguments, whereas with the
OBE methods only c is inferred.

A major drawback of credulous inference is that the set of inferred arguments is not
always conflict-free. This is problematic since all these arguments cannot be accepted
together in such a case. Sceptical inference does not suffer from this problem since the
set of inferred arguments is ensured to be conflict-free. Interestingly, supported infer-
ence offers the same important property:

Fact 3 For any F , the set of supportedly accepted arguments is conflict-free.

Note that this set is not necessarily admissible. This should not be shocking since
the same observation can be made for the set of sceptically accepted arguments.

Finally, an interesting issue is to determine whether some connections exist between
supported inference and the approaches presented in the previous sections. We provide
a systematic study of the links between the two approaches under preferred semantics.

Proposition 6. For every γ ∈ {sum,min,max, leximin, leximax}, OBEγ and CS are in-
comparable under preferred semantics, i.e., OBEγ ind CS.

Let us first show that every OBEσ ,max-sceptically accepted argument is also support-
edly accepted, for every semantics that returns conflict-free extensions.

Proposition 7. Let σ be a semantics returning conflict-free extensions. We have

ScOBEσ ,max v Spσ .

Let us now illustrate the indifference between γ-sceptical acceptance and supported
acceptance for γ 6= max, again on the case of preferred semantics.

Proposition 8. The links between Scγ and Sp under preferred semantics are as follows:



1. ScOBEp,max < Spp.
2. for every γ ∈ {sum, min, leximin, leximax}, ScOBEp,γ ind Spp.

The two previous propositions show that OBE and supported inference, although
both using the scores of arguments defined as the number of extensions they belong to,
induce intrinsically different reasoning mechanisms.

6 Conclusion and Related Work

This paper aimed at defining approaches for a better inference from abstract argumen-
tation framework. Indeed, a large number of extensions results in a low number of
sceptically accepted arguments. Several approaches have been described for dealing
with this problem. First, different criteria for pairwise comparison of extensions and a
method for selecting only the best extensions given the winners of pairwise duels have
been pointed out. Second, several criteria for ordering the extensions have been pre-
sented. Both approaches result in a decrease of the number of extensions; consequently,
the number of sceptical arguments increases (and the number of credulous arguments
diminishes). The third approach we have put forward does not choose between existing
extensions. Instead, it uses extensions to assign a score to every argument (the score of
an argument is the number of extensions it belongs to). Then, starting from the argu-
ments having the maximal score, candidate sets can be generated and on this ground
supportedly accepted arguments have been defined.

Several papers in the literature are relevant to our work in the sense that their objec-
tives are somehow similar. Thus, some previous work aimed at defining different levels
of acceptability for arguments [9,23,18,3]. Such levels can be obtained by attaching
numerical scores between 0 and 1 to each argument, or by ranking arguments over an
ordinal scale. Contrastingly, the goal of the present paper is not to tackle the problem
of gradual acceptance. In this work our objective is not to question the classical binary
framework for inference, where an argument is inferred or not, but to define inference
relations allowing to infer more arguments than sceptical inference; to make a parallel
with logical inference, a similar distinction exists between paraconsistent logics and
some weighted logics (such as possibilistic or fuzzy logics).

Settings where argumentation systems are based on preferences or attack weights
can also be exploited for reducing the number of extensions. However, those approaches
suppose the availability of some extra information such as weights or preferences,
whereas our approach is based solely on the argumentation system F = (A ,R).

Other approaches calculate arguments’ scores / statuses without relying on the no-
tion of extension [1,12]. Unlike our approach, semantics (e.g., stable, preferred) are not
used at all. Here, we suppose the use of an (arbitrary) semantics to calculate extensions
and then point out a way to augment the number of arguments which are accepted. Our
criteria are orthogonal to the notion of semantics, so that each criterion can be combined
with each semantics.

Another related work is [10] which addresses the problem of defining more prudent
inference relations for Dung’s argumentation frameworks (i.e., the objective is to derive
less arguments). Contrariwise to the present paper, instead of selecting some extensions



or defining a new inference policy, the approach consists in strengthening the usual (di-
rect) conflict-freeness property to indirect conflict-freenesss. Thus a prudent extension
cannot contain two arguments when there exists an indirect attack among the first one
and the second one. When the credulous policy and the preferred semantics (or the sta-
ble semantics) are considered, the set of derivable arguments from prudent extensions
is included in the set of arguments derivable from the standard extensions.

Baroni et al. [3] show how to define some fine-grained argument justification sta-
tuses for abstract argumentation frameworks. For extension-based semantics, the justifi-
cation status of an argument basically depends on the existence of extensions containing
it and the existence of extensions attacking it. Clearly enough, the problem of selecting
extensions is orthogonal to the problem of defining argument justification statuses; thus,
Baroni’s et al. results can be exploited as soon as some extensions exist, even if they
come from a selection process. Our notion of supported inference is closer to their pro-
posal since it induces an intermediate argument status, supported acceptance, between
sceptical acceptance and credulous acceptance. However, the mechanisms at work for
defining this intermediate status and its rationale are quite different from those consid-
ered in Baroni’s at al. paper: in our work, the support of an argument is based on the
number of extensions containing it.

Our approach also departs from the work by Dunne et el. [17] which focusses on
ideal semantics. Indeed, ideal acceptance is more demanding than sceptical acceptance.
As such, it proves useful when sceptical acceptance is not prudent enough, i.e. when
unexpected arguments are sceptically accepted. Contrastingly, our work is motivated
by the remaining cases, when sceptical inference is too cautious and discards some
expected arguments.

Caminada and Wu [23] defined different labelling-based justification statuses of ar-
guments. Indeed, they propose to attach to each argument the set of its possible labels
(i.e. the collection of all labels it obtains in all complete labellings). Whereas Dung-
based approach allows to split the arguments into three classes (sceptically accepted,
credulously accepted, rejected), their contribution provides a way for fine-graded clas-
sification, by defining six different justification statuses: {in}, {in,undec}, {undec},
{in,out,undec}, {out,undec} and {out}. The work of Caminada and Wu is related
to our work since it could also be used to reason in cases when there are no (or when
there are not enough) accepted arguments. However, the actual way to do it is drastically
different from our approach.
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