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Abstract. In this paper, we show that preferences intervene twice in argumen-
tation frameworks: i) to compute standard solutions, and ii) to refine those solu-
tions. The two roles are independent and obey to distinct postulates. After intro-
ducing and studying the postulates, we provide an example ofa formal framework
which models the two roles and verifies all the proposed postulates.

1 Introduction

An argumentation framework (AF) consists of a set of arguments and an attack relation
among them. Arguments are evaluated using an acceptabilitysemantics. This amounts
to compute acceptable sets of arguments, calledextensions. The attack relation is at
the heart of all existing semantics. An attacker wins unlessthe attacked argument is
defended by “good” arguments. Since [12], it has been arguedthat arguments may
not have the same strength and some of them may be stronger or preferred to others.
Consequently, several attempts have been made in the literature for taking into account
preferences in argumentation frameworks (e.g. [2, 5]).

Besides, preferences play a key role in nonmonotonic reasoning [6]. They are used
in order to narrow down the number of possible belief sets of abase theory. To say
it differently, from a given base theory, a first set ofstandardsolutions (belief sets) is
computed, then a subset of those solutions (calledpreferredsolutions) is chosen on the
basis of available preferences. Thus, preferences refine the standard solutions.

In this paper, we show that preferences intervene twice in anargumentation frame-
work. They are mandatory for: i) computing the standard solutions of an AF, and then
ii) for narrowing the number of those solutions. The first role of preferences may not
take into accountall the available preferences. It focuses only on those which con-
flict with the attacks; such attacks are saidcritical. The idea is that an attack may fail
if the attacked argument is stronger than its attacker. Ignoring this issue may lead to
counter-intuitive standard solutions. The first role has largely been discussed in existing
literature while the second one has only been pointed out recently in [7]. However, the
difference between the two roles is still obscure. In this paper, we clarify the distinction
between the two roles, and show that they are completely independent since none of
them can be modeled by the other one. We propose postulates that should be satisfied
by any preference-based argumentation framework. Some of them concern the first role
while others concern the refinement role. Those postulates confirm again that the two
roles are different. We propose a particular framework in which both roles are modeled.
The properties of this framework are investigated.

The paper is structured as follows: We start by recalling Dung’s AF, then we discuss
informally the two roles of preferences. The two next sections propose postulates that



guide the definition of ‘approaches’ for each role. Then, we propose a particular frame-
work which considers both roles. Before concluding, we compare our contribution with
existing works. Due to lack of space, the proofs are not included in the paper.

2 Basics of Argumentation

The abstract argumentation framework proposed in [8] consists of a set of arguments
and an attack relation between them.

Definition 1 (Argumentation framework) Anargumentation framework(AF) is a pair
F = (A,R), whereA is a set of arguments andR ⊆ A×A is an attack relation. The
notationaRb means thata attacksb.

Different acceptability semanticsfor evaluating arguments have been proposed in the
same paper [8]. Each semantics amounts to define sets of acceptable arguments, called
extensions. The following definition recalls them.

Definition 2 (Stable semantics)LetF = (A,R) be an AF andB ⊆ A.

– B is anadmissibleset iff it is conflict-free and defends all its elements.
– B is acompleteextension iff it is conflict-free and contains all argumentsit defends.
– B is apreferredextension iff it is a maximal (for set inclusion) admissibleset.
– B is agroundedextension iff it is a minimal (for set inclusion) complete set.
– B is astableextension iff it is a preferred set that attacks any element in A \ B.

LetExt(F) be the set of extensions ofF under a given semantics.

Example 1 Let us consider the AFF1 depicted below. It has two stable extensions:
{a, c} and{b, d}.

a b

d c

Definition 3 Let F = (A,R) be an AF andE1, . . . , En its extensions (under a given
semantics). Leta ∈ A. a is skeptically acceptediff there exists at least one extension
and∀i = 1, . . . , n, a ∈ Ei. a is credulously acceptediff ∃i = 1, . . . , n s.t.a ∈ Ei. a
is rejectediff ∀i = 1, . . . , n, a /∈ Ei. Let Status(a,F) be a function that returns the
status of an argumenta in F .

Example 1 (Cont): The four argumentsa, b, c, d are credulously accepted inF1.



3 Preferences in Argumentation: Informal Discussion

In what follows, we assume thatF = (A,R) is an arbitrary argumentation framework
whereA is finite. Let ≥ be a binary relation that expresses preferences between argu-
ments ofA. For instance, an argument may be preferred to another if it is grounded
on more certain information, or if it promotes a more important value. Throughout the
paper, the relation≥⊆ A×A is assumed to be apreorder(i.e. reflexiveandtransitive).
For argumentsa andb, writing a ≥ b (or (a, b) ∈ ≥) means thata is at least as strong
asb. The relation> is the strict version of≥. Indeeda > b iff a ≥ b and not (b ≥ a).

Let us now analyze the role that preferences between arguments can play in an
argumentation framework. We will discuss different critical examples.

Example 1 (Cont): If we assume thata > b andc > d, then the stable extension{a, c}
is better than{b, d} since each element of the latter is weaker than an element of the
former. Thus,F2 would have only{a, c} as its preferred stable extension.

It is worth mentioning that preferences in Example 1refinethe results obtained in
the standard case. Indeed, the set of preferred solutions isa subset of the set of the
standard ones. Preferences play here exactly the role described in nonmonotonic logic
formalisms. Let us now consider a different example.

Example 2 LetF2 = (A,R) be s.t.A = {a, b} andaRb.F2 has one stable extension:
the set{a}. Now, if we assume thatb > a, it is clear that the standard solution cannot
be refined and{a} is the preferred solution of the framework. What happened here is
that the preferred argument is rejected when computing the standard solution. Thus,
there is no way to apply the preference ofb overa.
However, is it intuitive to still consider{a} as an extension ofF2? The answer is cer-
tainly no as illustrated next. Assume thatF2 is is built over a knowledge baseK = {x}
and a set of defeasible rulesD = {⇒ y; y ⇒ ¬x} as in ASPIC system [1]. Let
a :⇒ y; y ⇒ ¬x and b : x. If the attack relation is the one which allows to under-
mine a premise of another argument, thena underminesb in its premisex while b does
not underminea since it has no premise. If now we assume thatx is more certain than
both⇒ y; y ⇒ ¬x, then it is natural to keepb and to rejecta. To put it differently, the
preferred solution ofF2 would be the extension{b}.

Contrarily to Example 1, the use of preferences in Example 2 completely modifies the
original set of extensions. Consequently, the preferred solutions of a framework are not
necessarily a subset of the standard ones. This is not surprising since preferences in
this case are used in order to compute the standard solutions. Thus,{b} is a standard
solution. Preferred solutions refine the standard ones. In this example,{b} is the only
standard solution, thus it is also the unique preferred solution.

It is also worth mentioning that when preferences are used for computing the standard
solutions of an argumentation framework, not all availablepreferences are exploited.
Only those which conflict with the attacks, as in Example 2, are used. Consequently,
the result which is returned may need to be refined as shown in the following example.



Example 3 Let us consider the argumentation frameworkF3, which is depicted below.

a b

e

d c

This framework has one stable extension which is{a, c}. Assume thatb > c, d > a and
b > e. Note that onlyb > e conflicts with the attack relation sinceeRb. Thus, only this
preference is taken into account for computing the two standard solutions{a, c} and
{b, d}. Consequently, the two remaining preferences can be used inorder to refine the
standard result and to prefer the extension{b, d}.

In sum, two roles of preferences are distinguished:

1. To weaken thecritical attacks (i.e. the attacks which conflict with the preferences)
in an AF, and thus to compute intuitive standard solutions.

2. To refine the standard solutions computed in the first role.

Example 2 shows that a refinement does not solve the problem ofcritical attacks
and Example 3 shows that the first role is not sufficient and itsresults may need to be
refined as the first role does not exploit all the available preferences.

4 Handling critical attacks

The aim of this section is to propose the basic postulates that any preference-based
argumentation framework (PAF) should satisfy. We focus here on the use of preferences
for computing the standard solutions, thus for modeling thefirst role of preferences.

Definition 4 (PAF) Apreference-based argumentation framework(PAF) is a tupleT =
(A,R,≥) whereA is a set of arguments,R is an attack relation and≥ is partial or
total preorder onA.

Note that we do not show how arguments are evaluated in such a PAF. In fact, we do
not focus on a particular approach, but we propose postulates that any approach should
satisfy. Before presenting those postulates, let us first define formally critical attacks.

Definition 5 (Critical attack) Let T = (A,R,≥) be a PAF. An attack(b, a) ∈ R is
critical iff a > b.

The role of preferences which consists of handling criticalattacks has already been
identified in the literature, namely in [2, 4, 5, 10]. While all these approaches agree that
a strong argument may be accepted if it is attacked by a weakerargument, they dis-
agree on whether the weak attacker should be rejected or not.Let us say it differently,
in Example 2, the works [2, 5, 10] return one stable extensionwhich contains both the
attacker and the attacked argument, that is the set{a, b}. This extension violates one of
the basic requirements of acceptability semantics, theconflict-freenessof extensions. In



[4], the authors have argued that this is undesirable since the intuition behind an exten-
sion is that it encodes a ’coherent position’. This coherence is captured by the notion
of conflict-freeness in acceptability semantics. That is why it is at the heart of all se-
mantics. The authors have then proposed an alternative solution in which the argument
a is rejected and the only stable extension of the frameworkF2 is {b}. In this paper,
we argue that the extensions of an argumentation framework should be conflict-free,
otherwise the whole theory of argumentation collapses. We propose four basic postu-
lates that should be satisfied by any approach for preference-based argumentation that
models the first role of preferences. The first postulates states that the extensions of a
PAF should be conflict-free.

Postulate 1 (Conflict-freeness)Let T = (A,R,≥) be a PAF andExt(T ) it set of
extensions. Each extensionE ∈ Ext(T ) should be conflict-free wrtR.

The second postulate says that when there are no critical attacks, then the output
of the PAF should coincide with that of a system without preferences. The reason is
that we suppose that a PAF is built over a well-founded basic system (i.e. the system
constructed only from a pair(A,R)).

Postulate 2 (Recovering existing semantics)Let T = (A,R,≥) be a PAF andF =
(A,R) its basic version. If there are no critical attacks inT , thenExt(T ) = Ext(F)
whereExt(F) is the set of the extensions ofF under a given semantics.

The third postulate shows how to privilege a strong argumentover a weak attacker.

Postulate 3 (Critical attacks) Let T = (A,R,≥) be a PAF anda, b ∈ A. LetE1, E2

be two conflict-free (wrtR) subsets ofA s.t.E1 = E ∪ {a} andE2 = E ∪ {b}. If aRb
andb > a, thenE1 /∈ Ext(T ).

The last postulate states that attacks should win when they are not critical.

Postulate 4 (Normal attacks) Let T = (A,R,≥) be a PAF anda, b ∈ A. LetE1, E2

be two conflict-free (wrtR) subsets ofA s.t.E1 = E ∪ {a} andE2 = E ∪ {b}. If aRb
and not(bRa) and not(b > a), thenE2 /∈ Ext(T ).

Works in [2, 5, 10], proceed by removing critical attacks from an argumentation
graph and applying Dung’s semantics on the remaining sub-graph. It is easy to show
that when there are no critical attacks, the two graphs coincide.

Property 1. Let F = (A,R) be an AF,≥ ⊆ A × A, andF ′ = (A,Rr) be such that
Rr = R \ {aRb s.t.b > a}. If ∄a, b ∈ A s.t.aRb andb > a, thenR = Rr.

It can be shown that that such an approach violates the conflict-freeness in some
cases when the attack relation is not symmetric, and the third postulate (for example for
admissible semantics), while it satisfies Postulates 2 and 4.

Proposition 1 LetT = (A,R,≥) be a PAF s.t.Ext(T ) = Ext((A,Rr)) whereRr =
R \ {aRb s.t.b > a}. Then,T verifies Postulates 2 and 4.



When the attack relation is symmetric, Postulates 1 and 3 areverified.

Proposition 2 Let T = (A,R,≥) be a PAF s.t.Ext(T ) = Ext(F) whereF =
(A,Rr). If R is symmetric, thenT verifies Postulates 1 and 3.

This means that when the attack relation is symmetric, all the postulates are verified.
However, the following example shows that the result may still need to be refined.

Example 4 LetA = {a, b, c, d}, R = {(a, c), (c, a), (a, d), (d, a), (b, c), (c, b), (b, d),
(d, b)} anda > c, b > d. The extensions of this PAF are{a, b} and{c, d}. However,
{a, b} is clearly preferred to{c, d}. Thus, the frameworks developed in [2, 5, 10] do
not take into account the second role of preferences even when the attack relation is
symmetric.

In the recent paper ([4]) an approach has been proposed whichverifies all postulates.

Proposition 3 The class of PAFs defined in [4] verifies Postulates 1 - 4.

5 Refining AFs by preferences

Until now, we have studied the first role of preferences. We have particularly shown that
“some” preferences should be taken into account for computing the standard solutions
of an argumentation framework. Examples 1 and 3 show that standard solutions may
need to be narrowed down using the remaining preferences. What is worth noticing is
that a refinement amounts tocomparesubsets of arguments. In Example 1, the so-called
democraticrelation,�d, is used for comparing the two sets{a, c} and{b, d}:

Let E , E ′ ⊆ A. E �d E ′ iff ∀x′ ∈ E ′ \ E , ∃x ∈ E \ E ′ s.t.x > x′.

Relation�d is not unique and different relations can be used as shown next.

Example 1 (Cont): Let us consider againF1 and assume thata ≈ b andc > d. Ac-
cording to relation�d, the two extensions{a, c} and{b, d} are incomparable. However,
sincea ≈ b andc > d, it is clear that one could prefer{a, c} to {b, d}.

Let us now define the basic properties that such a relation should satisfy. The first
property ensures that the refinement relation is a preorder,that is reflexive and transitive.
Note that these are the basic properties of any preference relation.

Postulate 5 (Preorder) LetA be a set of arguments. A refinement relation onP(A) is
a preorder (reflexive and transitive).

The second property ensures that the relation privileges sets that contain strong
arguments (wrt).

Postulate 6 (Privileging strong arguments)Let T = (A,R,≥) be a PAF,a, b ∈ A
andE1, E2 ∈ P(A). If E1 = E ∪ {a} andE2 = E ∪ {b} anda > b, thenE1 � E2.

Notation: The maximal elements of a setS wrt. a given relation� are defined as
follows: Max(S,�) = {E ⊆ S | ∄E ′ ⊆ S s.t.E ′ ≻ E}.

Property 2. The democratic relation verifies the two postulates 5 and 6.



6 A particular rich PAF

In this section, we propose a particular framework which models both roles of prefer-
ences and verifies all the postulates introduced in this paper. The framework follows
two steps: at the first step, it computes the standard solutions by handling correctly the
available critical attacks. These solutions are then refined using an appropriate refine-
ment relation. In order to make the paper easy to read, we willcall PAF the framework
which computes the standard solutions and rich PAF the one which refines the results
of the PAF.

Definition 6 (Rich PAFs) A rich PAF is a tupleT = (A,R,≥,�) whereA is a set
of arguments,R ⊆ A × A is an attack relation,≥ ⊆ A × A is a (partial or total)
preorder and� ⊆ P(A) × P(A) is a relation which verifies Postulates 5 and 6. The
extensions ofT (under a given semantics) are elements ofMax(S,�), whereS is the
set of extensions (under the same semantics) of the PAF(A,R,≥).

In what follows, we propose a new approach that handles correctly critical attacks
(i.e. which satisfies the four postulates introduced in section 4). We exploit for that a
simple result that is proved recently in [4]. In that paper, the authors have proposed a
new approach for taking into account preferences and which prevents the shortcomings
of existing ones, namely the problem of conflicting extensions. The basic idea is to in-
tegrate preferences in the definition of semantics. A refinement of stable semantics is
defined as a dominance relation which compares sets of arguments. The best sets wrt
that relation are the extensions of the PAF. In that paper, the authors have shown that
all their extensions are conflict-free and Postulates 2, 3 and 4 as satisfied as well. They
have also shown an important result for semantics that refinestable one with prefer-
ences. The result says that the extensions of their approach(i.e. the best sets wrt the
dominance relation) are exactly the stable extensions of the basic argumentation frame-
work in which each critical attack is inverted. In what follows, we show that this idea
can be generalized to any acceptability semantics.

The idea of inverting the arrows of critical attacks in an argumentation graph allows
to take into account the preference (between the two arguments involved in a critical
attack) and in the same time the conflict between the two arguments of the attack is
represented. The intuition behind this is that an attack between two arguments repre-
sents two things: i) an incoherence between the two arguments (in logic-based systems,
it captures inconsistency between the supports of the two arguments), and ii) a kind of
preference determined by the direction of the attack. Thus,in our approach, the direc-
tion of the arrow represents a real preference between arguments. Moreover, the conflict
is kept between the two arguments. Dung’s acceptability semantics are then applied on
the modified graph. In our approach, standard solutions are computed by the following
preference-based framework.

Definition 7 (PAF) Apreference-based argumentation framework(PAF) is a tupleT =
(A,R,≥) whereA is a set of arguments,R ⊆ A × A is an attack relation and≥ is
a preorder onA. The extensions ofT under a given semantics are the extensions of the



argumentation framework(A,Rr), calledrepaired framework, under the same seman-
tics with:Rr = {(a, b)|(a, b) ∈ R and not(b > a)} ∪ {(b, a)|(a, b) ∈ R andb > a}.

From Definition 7, it is clear that if a PAF has no critical attacks, then the repaired
framework coincides with the basic one.

Property 3. Let T = (A,R,≥) be a PAF. IfT has no critical attacks, thenRr = R.

This property shows also that when a PAF has no critical attacks, then preferences
do not play any role in the evaluation process.

Our approach does not suffer from the drawback of existing ones. Indeed, it delivers
conflict-free extensions of arguments. Thus, it satisfies Postulate 1.

Proposition 4 Let T = (A,R,≥) be a PAF andE1, . . . , En its extensions under a
given semantics. For alli = 1, . . . , n, Ei is conflict-free wrt.R.

The next result confirms that our approach iswell-foundedin the sense that accept-
able arguments are defended by “good” arguments. Moreover,it verifies the orderings
between the attack relation and the preference relation, meaning that it verifies Postu-
lates 3 and 4.

Proposition 5 LetT = (A,R,≥) be a PAF.

– For each admissible setE of T , it holds that(∀x ∈ E) (∀x′ /∈ E)
if (x′Rx and not(x > x′)) or (xRx′ andx′ > x) then(∃y ∈ E) s.t. (yRx′ and
not (x′ > y)) or (x′Ry andy > x′).

– For each stable extensionE of T , it holds that(∀x′ /∈ E) (∃x ∈ E) s.t.(xRx′ and
not (x′ > x)) or (x′Rx andx > x′).

The fact of inverting the arrows of critical attacks in an argumentation graph does
not affect the status of arguments that are not related to thearguments of those attacks.
This means that our approach has no side effects. Before presenting the formal result,
let us first give a useful definition.

Definition 8 Let F = (A,R) be an AF anda, b ∈ A. The argumentsa and b are
relatedin F iff there is exists a finite sequencea1, . . . , an of arguments such thata1 =
a, an = b and for all i = 1, . . . , n − 1, either(ai, ai+1) ∈ R or (ai+1, ai) ∈ R.

Proposition 6 LetT = (A,R,≥) be a PAF. For alla ∈ A s.t.∄b, c ∈ A s.t.(b, c) ∈ R
is a critical attack anda is related withb, it holds that:

– Status(a, (A,R)) = Status(a, (A,Rr)) (under preferred and grounded seman-
tics).

– If (A,R) and(A,Rr) both have at least one stable extension, thenStatus(a, (A,R))
= Status(a, (A,Rr)) (under this semantics).

Our approach privileges the strongest arguments. Indeed, we show that these argu-
ments are skeptically accepted when they are not conflicting. If such a strong argument
is not skeptically accepted, then it is for sure attacked (wrt. R) by another strongest
argument. Before presenting the formal result, let us definethe strongest arguments (or
the top elements) wrt. a relation≥.



Definition 9 (Maximal elements) LetO be a set of objects and≥⊆ O×O is a (partial
or total) preorder. Themaximal elementsofO wrt. ≥ areMax(O,≥) = {o ∈ O | ∄o′ ∈
O s.t.o′ > o}.

Property 4. Let T = (A,R,≥) be a PAF s.t≥ is complete1.

– If Max(A,≥) is conflict-free (wrt.R), then∀a ∈ Max(A,≥) :
• a is skeptically accepted inT wrt. preferred and grounded semantics.
• if T has at least one stable extension, thena is skeptically accepted wrt. stable

semantics.
– If a is not skeptically accepted (under preferred or grounded semantics), or there

exists at least one stable extension anda is not skeptically accepted, then∃b ∈
Max(A,≥) s.t.(b, a) ∈ R.

The following result shows that when the preference relation≥ is a linear order (i.e.
reflexive, antisymmetric, transitive and complete), then the corresponding PAF has a
unique stable/preferred extension. Moreover, this extension is computed inO(n2) time
where|A| = n. It is clear that in this case, there is no need to refine the result.

Proposition 7 LetT = (A,R,≥) be a PAF s.t.R is irreflexive and≥ is a linear order.

– T has exactly one stable extension.
– Stable, preferred and grounded extensions ofT coincide.
– If |A| = n, then this extension is computed inO(n2) time.

Let us now see what happens in case the attack relation is symmetric. The following
result shows that our approach returns the same results as the approach developed in [2,
5]. This means that inverting the arrows or removing them will lead to the same result.

Property 5. LetT = (A,R,≥) be a PAF whereR is symmetric. Extensions ofT coin-
cide with extensions of(A,R′) (under the same semantics) whereR′ = {(a, b)|(a, b) ∈
R and¬(b > a)}.

We can also show that when the attack relation is symmetric, the extensions of a PAF
are a subset of those of its basic framework. This means that preferences filter the ex-
tensions. However, the result is not optimal since it may need to be refined again as
shown in Example 4.

Proposition 8 Let T = (A,R,≥) be a PAF whereR is symmetric. IfE ⊆ A is a
preferred (stable) extension of systemT then E is a preferred (stable) extension of
(A,R).

Recall that this result is not true in case the attack relation is not symmetric as shown
in Example 2.

The following result characterizes the extensions of(A,R) that are discarded in a
PAF whenR is symmetric. The idea is that an extension is discarded iff some argument
outside it is strictly preferred to any arguments of that extension with which it conflicts.

1 A relation≥ on a setA is complete iff for alla, b ∈ A, a ≥ b or b ≥ a.



Property 6. Let T = (A,R,≥) be a PAF s.t.R is symmetric, andE ⊆ A. E is a stable
extension of(A,R) but not ofT iff ∃x′ /∈ E s.t.∀x ∈ E , if xRx′, thenx′ > x.

When the attack relation is symmetric and irreflexive, the corresponding PAF is
coherent(i.e. its preferred and stable extensions coincide) and it has at least one stable
extension.

Proposition 9 LetT = (A,R,≥) be a PAF. IfR is symmetric and irreflexive, then:

– T is coherent.
– T has at least one stable extension.

Until now, we have proposed a particular framework for handling the first role of
preferences. From now on, we will use the democratic relation for refining the results
of this framework. Recall that this relation verifies the twopostulates 5 and 6.

We will now show that when the preference relation≥ is a linear order, then the
democratic relation does not change the output of the underlying PAF.

Property 7. Let T = (A,R,≥,�) be a rich PAF andS be the set of extensions (under
a given semantics) of the repaired framework(A,Rr). If R is irreflexive and≥ is a
linear order, thenMax(S,�) = S holds for stable, preferred, grounded and complete
semantics.

It is also easy to show that when a rich PAF has no critical attacks, then its extensions
are a subset of the extensions of its basic version (i.e. without preferences).

Property 8. LetT = (A,R,≥,�) be a rich PAF s.t.R has no critical attacks. Preferred
(stable) extensions ofT are exactly the elements ofMax(S,�) whereS is the set of all
preferred (stable) extensions of the AF(A,R).

Example 1 (Cont): Let us use the democratic relation�d. In F1, there is no critical
attacks (Rr = R). The extensions of the rich PAF areMax({{a, c}, {b, d}},�d) =
{{a, c}}. Thus,{a, c} is the unique stable extension.

Example 2 (Cont): The repaired framework ofF2 is ({a, b},Rr) wherebRa. Thus,
the PAF has one stable extension{b} which is the only extension of the rich PAF:
Max({{b}},�d) = {{b}}.

Example 3 (Cont): Recall that the repaired framework ofF3 has two stable extensions:
{a, c} and{b, d}. Moreover,Max({{a, c}, {b, d}},�d) = {{a, c}}. Thus,{a, c} is the
unique stable extension of the rich PAF that uses the democratic relation.

7 Related work

Introducing preferences in argumentation frameworks goesback to the paper by Simari
and Loui in [12]. In that work, the authors have defined an AF inwhich arguments are
built from a propositional knowledge base. The arguments grounded on specific infor-
mation are considered as stronger than the ones built from more general information.



This preference is used to solve dilemmas between any pair ofconflicting arguments.
Thus, it is used for handling critical attacks. The idea of this paper has been gener-
alized in [2] then in [5] to any AF and to any preference relation. Unfortunately, the
approach followed in [2, 5] delivers correct results only when the attack relation is sym-
metric. When the attack relation is not symmetric, the approach suffers from two main
drawbacks: the first is that it may return conflicting extensions as shown in Example 1
since it may put two conflicting arguments in the same extension. One of these argu-
ments is clearly undesirable. The second drawback is a consequence of the first one.
Indeed, since an undesirable argument may be accepted, thenall the arguments that are
defended by this argument are accepted as well at the detriment of good ones. Let us
illustrate this issue on the following example.

Example 5 Let us consider the AF depicted in the left side of the figure below.

a b c d a b c d

Assume thata > b. The approach in [2, 5] gets the framework depicted in the right side
of the same figure. Its grounded extension is the set{a, b, d}. This result is incorrect for
two reasons: The first one is that the two argumentsa andb cannot be both accepted.
The second reason is that the argumentb (which should be rejected) defendsd against
c, leading thus to an undesirable result. Indeed,d is defended by a “bad” argument! It
is easy to check that our approach returns{a, c} as the grounded extension and rejects
the two other arguments: i.e.b andc.

Our approach overcomes the limits of the one proposed in [2, 5]. Moreover, it is
more general since it models even the second role of preference (i.e. the refinement).
Recently, in [3], the authors have pointed out the first limitof the approach followed
in [2, 5], namely the violation of conflict-freeness. They have proposed a new approach
for handling critical attacks where preferences are introduced at a semantics level. As
shown in this paper, the approach developed in [3] satisfies the four rationality postu-
lates. However, it completely neglects the second role of preferences, i.e. refinement.
Another work which handles correctly the problem of critical attacks is that proposed in
[11]. In that paper, Prakken has proposed a logic-based instantiation of Dung’s frame-
work in which three kinds of attacks are considered: rebuttal, assumption attack and
undercut. For each relation, the author has found a way to avoid the problem of criti-
cal attack and ensured conflict-free extensions. We think that our work is more general
since we solved the problem at an abstract level. This avoid the user who wants to use
another attack relation to look for new ways to avoid conflicting extensions. Moreover,
our approach is axiomatic, meaning that it is well founded. It is also worth mentioning
that in [11], the second role of preferences is neglected. Tothe best of our knowledge,
the only work on refinement is that appeared in [7]. The authors have proposed a par-
ticular refinement relation in case of stable semantics. In this sense, our work is more
general since it accepts any refinement relation. Moreover,there is no restriction to par-
ticular semantics. Finally, we would like to mention the work done in [9]. In this paper,
the author made a survey of the critics presented in [3, 7] against existing approaches
for PAFs. The author concluded that one should use a symmetric attack relation in order



to avoid the problem of conflicting extensions and then to refine the result with the pref-
erence relation already mentioned in [7]. The first suggestion is certainly not realistic,
especially in light of new results in the literature statingthat symmetric relations should
be avoided in logic-based argumentation systems.

8 Conclusion

This paper has studied deeply the difference between the tworoles that preferences may
play in an AF. We have shown that preferences intervene both for computing what is
called standard solutions in nonmonotonic reasoning formalisms and for refining that
result, and choosing a subset of those solutions. We have shown that the two roles are
completely independent and should be taken into account in two steps. Main postulates
that any approach modeling each role have been proposed. Finally, we have developed
a particular framework that considers both roles. The framework satisfies the proposed
postulates and its properties show that it is well-founded.
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