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Abstract. In this paper, we show that preferences intervene twicegoraen-

tation frameworks: i) to compute standard solutions, antbirefine those solu-
tions. The two roles are independent and obey to distindutaies. After intro-

ducing and studying the postulates, we provide an examgdamal framework
which models the two roles and verifies all the proposed petstst

1 Introduction

An argumentation framework (AF) consists of a set of arguihand an attack relation
among them. Arguments are evaluated using an acceptaslityantics. This amounts
to compute acceptable sets of arguments, cadddnsionsThe attack relation is at
the heart of all existing semantics. An attacker wins unthssattacked argument is
defended by “good” arguments. Since [12], it has been argb@darguments may
not have the same strength and some of them may be strongezferrpd to others.

Consequently, several attempts have been made in thduitefar taking into account

preferences in argumentation frameworks (e.g. [2, 5]).

Besides, preferences play a key role in nonmonotonic réag®]. They are used
in order to narrow down the number of possible belief sets base theory. To say
it differently, from a given base theory, a first setatdndardsolutions (belief sets) is
computed, then a subset of those solutions (cadteterredsolutions) is chosen on the
basis of available preferences. Thus, preferences refgdimdard solutions.

In this paper, we show that preferences intervene twice irgnmentation frame-
work. They are mandatory for: i) computing the standardtsmhs of an AF, and then
i) for narrowing the number of those solutions. The firserof preferences may not
take into accoungll the available preferences. It focuses only on those which co
flict with the attacks; such attacks are sardtical. The idea is that an attack may fail
if the attacked argument is stronger than its attacker.riggahis issue may lead to
counter-intuitive standard solutions. The first role hagdty been discussed in existing
literature while the second one has only been pointed oentgcin [7]. However, the
difference between the two roles is still obscure. In thisgrawe clarify the distinction
between the two roles, and show that they are completelypentdent since none of
them can be modeled by the other one. We propose postulateshibuld be satisfied
by any preference-based argumentation framework. Sonmeof toncern the first role
while others concern the refinement role. Those postulaterm again that the two
roles are different. We propose a particular framework iiciviboth roles are modeled.
The properties of this framework are investigated.

The paper is structured as follows: We start by recallingd@sIAF, then we discuss
informally the two roles of preferences. The two next sewipropose postulates that



guide the definition of ‘approaches’ for each role. Then, wappse a particular frame-
work which considers both roles. Before concluding, we careur contribution with
existing works. Due to lack of space, the proofs are not ohetlin the paper.

2 Basics of Argumentation

The abstract argumentation framework proposed in [8] stsisif a set of arguments
and an attack relation between them.

Definition 1 (Argumentation framework) Anargumentation framewolldF) is a pair
F = (A,R), whereA is a set of arguments arid C A x A is an attack relation. The
notationaRb means that attacks.

Different acceptability semantictor evaluating arguments have been proposed in the
same paper [8]. Each semantics amounts to define sets oftablearguments, called
extensionsThe following definition recalls them.

Definition 2 (Stable semantics)Let 7 = (A, R) be an AF and3 C A.

— Bis anadmissibleset iff it is conflict-free and defends all its elements.

— Bis acompleteextension iff it is conflict-free and contains all argumehtiefends.
— Bis apreferredextension iff it is a maximal (for set inclusion) admissifde.

— Bis agroundedextension iff it is a minimal (for set inclusion) complete se

— Bis astableextension iff it is a preferred set that attacks any element \ 5.

LetExt(F) be the set of extensionsBfunder a given semantics.

Example 1 Let us consider the AFF; depicted below. It has two stable extensions:
{a,c} and{b, d}.
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Definition 3 Let F = (A, R) be an AF andty, ..., &, its extensions (under a given
semantics). Let. € A. a is skeptically accepteif there exists at least one extension
andVi = 1,...,n,a € &;. ais credulously accepteiff 3 = 1,...,ns.t.a € &. a

is rejectediff Vi = 1,...,n, a ¢ &;. LetStatus(a,F) be a function that returns the

status of an argumentin F.

Example 1 (Cont): The four arguments, b, ¢, d are credulously accepted i .



3 Preferences in Argumentation: Informal Discussion

In what follows, we assume th&t = (A, R) is an arbitrary argumentation framework
whereA is finite. Let > be a binary relation that expresses preferences betwean arg
ments of A. For instance, an argument may be preferred to anotherdfgréunded
on more certain information, or if it promotes a more impottealue. Throughout the
paper, the relatiorr C A x A is assumed to bereorder(i.e. reflexiveandtransitive).

For argumenta andb, writing a > b (or (a,b) € >) means that is at least as strong
asb. The relatiort> is the strict version of. Indeeds > b iff « > band not § > a).

Let us now analyze the role that preferences between argaman play in an
argumentation framework. We will discuss different catiexamples.

Example 1 (Cont): If we assume that > b andc > d, then the stable extensidn, c}
is better than(b, d} since each element of the latter is weaker than an elemehtof t
former. Thus,F; would have only{a, ¢} as its preferred stable extension.

It is worth mentioning that preferences in Exampleefinethe results obtained in
the standard case. Indeed, the set of preferred solutioasubset of the set of the
standard onesPreferences play here exactly the role described in nontoait logic
formalisms. Let us now consider a different example.

Example 2 LetF; = (A, R) be s.t.A = {a, b} andaRb. F;» has one stable extension:
the set{a}. Now, if we assume that> a, it is clear that the standard solution cannot
be refined anda} is the preferred solution of the framework. What happened s
that the preferred argument is rejected when computing taedard solution. Thus,
there is no way to apply the preferencebaivera.

However, is it intuitive to still considefa} as an extension af,? The answer is cer-
tainly no as illustrated next. Assume ti#&t is is built over a knowledge bage = {x}
and a set of defeasible ruléd® = {= y;y = -z} as in ASPIC system [1]. Let
a = y;y = -z andb : z. If the attack relation is the one which allows to under-
mine a premise of another argument, theandermine$ in its premiser while b does
not undermine: since it has no premise. If now we assume tha more certain than
both= y;y = —z, then it is natural to keep and to rejecta. To put it differently, the
preferred solution ofF; would be the extensiofb}.

Contrarily to Example 1, the use of preferences in Exampler@aietely modifies the
original set of extensions. Consequently, the preferradisos of a framework are not
necessarily a subset of the standard ones. This is not simgsince preferences in
this case are used in order to compute the standard solufibos, {5} is a standard
solution. Preferred solutions refine the standard onedisnetxample{b} is the only
standard solution, thus it is also the unique preferredisoiu

It is also worth mentioning that when preferences are useddmputing the standard
solutions of an argumentation framework, not all availgieferences are exploited.
Only those which conflict with the attacks, as in Example 2, ased. Consequently,
the result which is returned may need to be refined as shovireifotlowing example.



Example 3 Let us consider the argumentation framewgtk which is depicted below.
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This framework has one stable extension whicfuis:}. Assume that > ¢, d > a and
b > e. Note that onlyb > e conflicts with the attack relation sine&Rb. Thus, only this
preference is taken into account for computing the two steshdolutions{a, ¢} and
{b, d}. Consequently, the two remaining preferences can be usediar to refine the
standard result and to prefer the extensignd}.

In sum, two roles of preferences are distinguished:

1. To weaken theritical attacks (i.e. the attacks which conflict with the preferahce
in an AF, and thus to compute intuitive standard solutions.
2. To refine the standard solutions computed in the first role.

Example 2 shows that a refinement does not solve the problamitictl attacks
and Example 3 shows that the first role is not sufficient ancegsilts may need to be
refined as the first role does not exploit all the availablégreances.

4 Handling critical attacks

The aim of this section is to propose the basic postulatesatima preference-based
argumentation framework (PAF) should satisfy. We focugloerthe use of preferences
for computing the standard solutions, thus for modelinditisérole of preferences.

Definition 4 (PAF) Apreference-based argumentation framewBAF) is atuplel =
(A, R,>) whereA is a set of arguments is an attack relation and> is partial or
total preorder onA.

Note that we do not show how arguments are evaluated in suihk.drPfact, we do
not focus on a particular approach, but we propose postutlage any approach should
satisfy. Before presenting those postulates, let us fifst@érmally critical attacks.

Definition 5 (Critical attack) Let7 = (A, R,>) be a PAF. An attackb,a) € R is
critical iff @ > 0.

The role of preferences which consists of handling critittdcks has already been
identified in the literature, namely in [2, 4,5, 10]. Whilé thlese approaches agree that
a strong argument may be accepted if it is attacked by a wealg@ment, they dis-
agree on whether the weak attacker should be rejected ok eiods say it differently,
in Example 2, the works [2, 5, 10] return one stable extensgibith contains both the
attacker and the attacked argument, that is thését}. This extension violates one of
the basic requirements of acceptability semanticsgtimdlict-freenesef extensions. In



[4], the authors have argued that this is undesirable smeatuition behind an exten-
sion is that it encodes a 'coherent position’. This coheeeaaaptured by the notion
of conflict-freeness in acceptability semantics. That iy whs at the heart of all se-
mantics. The authors have then proposed an alternativéaoln which the argument
a is rejected and the only stable extension of the framew@rlks {b}. In this paper,
we argue that the extensions of an argumentation framewuwuld be conflict-free,
otherwise the whole theory of argumentation collapses. Yegse four basic postu-
lates that should be satisfied by any approach for prefereased argumentation that
models the first role of preferences. The first postulatdesthat the extensions of a
PAF should be conflict-free.

Postulate 1 (Conflict-freeness)L.et 7 = (A, R,>) be a PAF ancExt(7) it set of
extensions. Each extensiéne Ext(7) should be conflict-free wiR.

The second postulate says that when there are no critieadkattthen the output
of the PAF should coincide with that of a system without prefiees. The reason is
that we suppose that a PAF is built over a well-founded bagtesm (i.e. the system
constructed only from a paitd, R)).

Postulate 2 (Recovering existing semanticslet7 = (A, R,>) be a PAF andF =
(A, R) its basic version. If there are no critical attacks T, thenExt(7) = Ext(F)
whereExt(F) is the set of the extensionsBfunder a given semantics.

The third postulate shows how to privilege a strong arguroeet a weak attacker.

Postulate 3 (Critical attacks) Let7 = (A, R, >) be a PAF andi, b € A. Let&, &
be two conflict-free (wrR) subsets ofd s.t.£; = £ U {a} and& = £ U {b}. If aRb
andb > a, then&; ¢ Ext(7).

The last postulate states that attacks should win when tteaya critical.

Postulate 4 (Normal attacks) Let 7 = (A, R, >) be a PAF andi, b € A. Let&, &
be two conflict-free (WrR) subsets ofd s.t.&; = £ U {a} and&; = E U {b}. If aRD
and notpRa) and notp > a), then&, ¢ Ext (7).

Works in [2,5,10], proceed by removing critical attacksnfr@n argumentation
graph and applying Dung’s semantics on the remaining sapkgrit is easy to show
that when there are no critical attacks, the two graphs abénc

Property 1. Let F = (A4, R) be an AF,> C A x A, andF’ = (A, R,) be such that
R, =R\ {aRbs.t.b > a}.If fla,b € As.t.aRbandb > a,thenR = R,.

It can be shown that that such an approach violates the cefilieness in some
cases when the attack relation is not symmetric, and the: ploistulate (for example for
admissible semantics), while it satisfies Postulates 2 and 4

Proposition 1 Let7 = (A, R, >) be a PAF s.tExt(7) = Ext((A, R,.)) whereR,. =
R\ {aRbs.t.b > a}. Then,T verifies Postulates 2 and 4.



When the attack relation is symmetric, Postulates 1 and @eaified.

Proposition2 Let 7 = (A, R,>) be a PAF s.tExt(7) = Ext(F) where F =
(A, R,). If R is symmetric, thefl verifies Postulates 1 and 3.

This means that when the attack relation is symmetric, alptistulates are verified.
However, the following example shows that the result mdlratied to be refined.

Example 4 Let A = {a,b,¢,d}, R = {(a,c¢),(c,a), (a,d), (d,a), (b, c), (c,b), (b,d),
(d,b)} anda > ¢, b > d. The extensions of this PAF afe, b} and{c, d}. However,
{a,b} is clearly preferred to{c, d}. Thus, the frameworks developed in [2,5, 10] do
not take into account the second role of preferences even wigeattack relation is
symmetric.

Inthe recent paper ([4]) an approach has been proposed whiifies all postulates.

Proposition 3 The class of PAFs defined in [4] verifies Postulates 1 - 4.

5 Refining AFs by preferences

Until now, we have studied the first role of preferences. Weshgarticularly shown that
“some” preferences should be taken into account for comgutie standard solutions
of an argumentation framework. Examples 1 and 3 show thatlata solutions may
need to be narrowed down using the remaining preferenceat &orth noticing is
that a refinement amountséomparesubsets of arguments. In Example 1, the so-called
democratiaelation,>, is used for comparing the two sds, ¢} and{b, d}:

LetE, &' CAE =y & iff Vo' e E'\E,Tx e E\NE sta > 2.

Relation- 4 is not unique and different relations can be used as shown nex

Example 1 (Cont): Let us consider agaiff; and assume that ~ b andc > d. Ac-
cording to relatiorr4, the two extension&a, ¢} and{b, d} are incomparable. However,
sincea = b andc > d, it is clear that one could prefér, ¢} to {b, d}.

Let us now define the basic properties that such a relationlglsatisfy. The first
property ensures that the refinement relation is a predtaiis reflexive and transitive.
Note that these are the basic properties of any preferetat®ore

Postulate 5 (Preorder) Let.A be a set of arguments. A refinement relatioriR) is
a preorder (reflexive and transitive).

The second property ensures that the relation privilegesthat contain strong
arguments (wrt).

Postulate 6 (Privileging strong arguments)Let7 = (A, R,>) be a PAFa,b € A
and&;, & € P(A). If € =& U{a} and&; = £ U {b} anda > b, then&; = &,.

Notation: The maximal elements of a sétwrt. a given relation= are defined as
follows: Max(S, =) = {£ C S | A&’ C Ss.t.& = €}

Property 2. The democratic relation verifies the two postulates 5 and 6.



6 A particular rich PAF

In this section, we propose a particular framework which aeistboth roles of prefer-
ences and verifies all the postulates introduced in thismpdpe framework follows
two steps: at the first step, it computes the standard sakbg handling correctly the
available critical attacks. These solutions are then rdfirging an appropriate refine-
ment relation. In order to make the paper easy to read, wealllPAF the framework
which computes the standard solutions and rich PAF the onehwbfines the results
of the PAF.

Definition 6 (Rich PAFs) Arich PAFis a tuple7 = (A, R, >, =) where A is a set

of argumentsR C A x Ais an attack relation> C A x A is a (partial or total)
preorder and- C P(A) x P(A) is a relation which verifies Postulates 5 and 6. The
extensions of (under a given semantics) are elementlat(S, =), whereS is the
set of extensions (under the same semantics) of thg AR, >).

In what follows, we propose a new approach that handles cityreritical attacks
(i.e. which satisfies the four postulates introduced inisact). We exploit for that a
simple result that is proved recently in [4]. In that papke &uthors have proposed a
new approach for taking into account preferences and whievemts the shortcomings
of existing ones, namely the problem of conflicting extensidrhe basic idea is to in-
tegrate preferences in the definition of semantics. A referdrof stable semantics is
defined as a dominance relation which compares sets of arganige best sets wrt
that relation are the extensions of the PAF. In that paperatithors have shown that
all their extensions are conflict-free and Postulates 2 d3aas satisfied as well. They
have also shown an important result for semantics that retedgle one with prefer-
ences. The result says that the extensions of their appi@aclhe best sets wrt the
dominance relation) are exactly the stable extensionsedbéisic argumentation frame-
work in which each critical attack is inverted. In what falls, we show that this idea
can be generalized to any acceptability semantics.

The idea of inverting the arrows of critical attacks in aniemgntation graph allows
to take into account the preference (between the two argtsmirolved in a critical
attack) and in the same time the conflict between the two aegtsof the attack is
represented. The intuition behind this is that an attaclvéen two arguments repre-
sents two things: i) an incoherence between the two argufieribgic-based systems,
it captures inconsistency between the supports of the tgnaents), and ii) a kind of
preference determined by the direction of the attack. Timugyr approach, the direc-
tion of the arrow represents a real preference between angisiMoreover, the conflict
is kept between the two arguments. Dung'’s acceptabilityeseics are then applied on
the modified graph. In our approach, standard solutions@rgated by the following
preference-based framework.

Definition 7 (PAF) Apreference-based argumentation framewBd) is atuplel =
(A, R,>) whereA is a set of argumenty C A x A is an attack relation ang> is
a preorder onA. The extensions &f under a given semantics are the extensions of the



argumentation frameworkA4, R, calledrepaired frameworkunder the same seman-
tics with: R,. = {(a,b)|(a,b) € R and not(b > a)} U {(b,a)|(a,b) € R andb > a}.

From Definition 7, it is clear that if a PAF has no critical aka, then the repaired
framework coincides with the basic one.

Property 3. Let7T = (A, R, >) be a PAF. IfT has no critical attacks, theR, = R.

This property shows also that when a PAF has no critical kdteben preferences
do not play any role in the evaluation process.

Our approach does not suffer from the drawback of existiregoimdeed, it delivers
conflict-free extensions of arguments. Thus, it satisfiegPate 1.

Proposition4 Let 7 = (A, R,>) be a PAF and¢y, ..., &, its extensions under a
given semantics. For all=1,. .., n, & is conflict-free wrtR.

The next result confirms that our approackil-foundedn the sense that accept-
able arguments are defended by “good” arguments. Morebwarifies the orderings
between the attack relation and the preference relatioaning that it verifies Postu-
lates 3 and 4.

Proposition 5 Let7 = (A, R, >) be a PAF.

— For each admissible s¢tof 7, it holds that(Vx € &) (Va' ¢ &)
if (¢/Rx and not(z > 2’)) or (xRa’ andz’ > z) then(Jy € &) s.t. (yRa’ and
not(z’ > y)) or (z'Ry andy > /).

— For each stable extensighof 7, it holds that(Vz' ¢ £) (3z € £) s.t.(zRa’ and
not(z’ > x)) or (¢'Rx andz > 2’).

The fact of inverting the arrows of critical attacks in anwargentation graph does
not affect the status of arguments that are not related tarthements of those attacks.
This means that our approach has no side effects. Beforergieg the formal result,
let us first give a useful definition.

Definition 8 Let 7 = (A, R) be an AF anda,b € A. The arguments andb are
relatedin F iff there is exists a finite sequengg, . . ., a,, Of arguments such that, =
a,a, =bandforalli=1,...,n — 1, either(a;,a;+1) € Ror (a;4+1,a;) € R.

Proposition 6 Let7 = (A, R,>)be aPAF. Foralla € As.t.3b,c € As.t.(b,c) € R
is a critical attack andz is related withb, it holds that:

— Status(a, (A, R)) = Status(a, (A, R,)) (under preferred and grounded seman-
tics).

— If (4,R) and(A, R,) both have at least one stable extension, thestus(a, (A, R))
= Status(a, (A, R,)) (under this semantics).

Our approach privileges the strongest arguments. Indeeghaw that these argu-
ments are skeptically accepted when they are not conflidfisgch a strong argument
is not skeptically accepted, then it is for sure attacked.(®R) by another strongest
argument. Before presenting the formal result, let us defieestrongest arguments (or
the top elements) wrt. a relation.



Definition 9 (Maximal elements) LetO be a set of objects andC O x O is a (partial
or total) preorder. Thenaximal elementsf O wrt. > areMax(0,>) = {o € O | $o’ €
O s.t.o' > o}.

Property 4. Let7 = (A, R, >) be a PAF s.t> is completé.

— If Max(A, >) is conflict-free (wrt.R), thenVa € Max(A, >) :
e a is skeptically accepted i wrt. preferred and grounded semantics.
e if 7 has at least one stable extension, thénskeptically accepted wrt. stable
semantics.
— If a is not skeptically accepted (under preferred or groundethséics), or there
exists at least one stable extension anid not skeptically accepted, théth <
Max(A,>) s.t.(b,a) € R.

The following result shows that when the preference refatios a linear order (i.e.
reflexive, antisymmetric, transitive and complete), thiee ¢orresponding PAF has a
unique stable/preferred extension. Moreover, this eiteris computed irO(n?) time
where|A| = n. Itis clear that in this case, there is no need to refine thdtres

Proposition 7 Let7 = (A, R, >) be a PAF s.tR is irreflexive and> is a linear order.

— 7 has exactly one stable extension.
— Stable, preferred and grounded extensiong afoincide.
— If |A] = n, then this extension is computeddt{n?) time.

Let us now see what happens in case the attack relation is synonThe following
result shows that our approach returns the same resulte appinoach developedin [2,
5]. This means that inverting the arrows or removing thenhledld to the same result.

Property 5. Let7 = (A, R, >) be a PAF wher& is symmetric. Extensions Gf coin-
cide with extensions df4, R’) (under the same semantics) wh&e= {(a, b)|(a,b) €
R and-(b > a)}.

We can also show that when the attack relation is symmelricektensions of a PAF
are a subset of those of its basic framework. This means te&tnences filter the ex-
tensions. However, the result is not optimal since it maydneebe refined again as
shown in Example 4.

Proposition 8 Let 7 = (A, R,>) be a PAF whereR is symmetric. Iff C Ais a
preferred (stable) extension of systémthen & is a preferred (stable) extension of
(A, R).

Recall that this result is not true in case the attack refdimot symmetric as shown
in Example 2.

The following result characterizes the extension§4fR) that are discarded in a
PAF whenR is symmetric. The idea is that an extension is discardediffesargument
outside it is strictly preferred to any arguments of thaeaston with which it conflicts.

L Arelation> on a setd is complete iff for alla,b € A, a > borb > a.



Property 6. Let7 = (A, R, >) be a PAF s.tR is symmetric, and C A. £ is a stable
extension of A, R) but not of 7 iff 32’ ¢ £ s.t.Vx € &, if xR/, thena’ > z.

When the attack relation is symmetric and irreflexive, theresponding PAF is
coherent(i.e. its preferred and stable extensions coincide) andstdt least one stable
extension.

Proposition 9 Let7T = (A, R, >) be a PAF. IfR is symmetric and irreflexive, then:

— T is coherent.
— 7 has at least one stable extension.

Until now, we have proposed a particular framework for hamgithe first role of
preferences. From now on, we will use the democratic reidtio refining the results
of this framework. Recall that this relation verifies the tpastulates 5 and 6.

We will now show that when the preference relatioris a linear order, then the
democratic relation does not change the output of the uyidgrPAF.

Property 7. Let 7 = (A, R, >, =) be arich PAF and be the set of extensions (under
a given semantics) of the repaired framewQrk R,.). If R is irreflexive and> is a
linear order, themax(S, >) = S holds for stable, preferred, grounded and complete
semantics.

Itis also easy to show that when a rich PAF has no criticatk#tahen its extensions
are a subset of the extensions of its basic version (i.e owitpreferences).

Property 8. Let7 = (A, R, >, =) be arich PAF s.tR has no critical attacks. Preferred
(stable) extensions @f are exactly the elements Béx(S, ) whereS is the set of all
preferred (stable) extensions of the AR, R).

Example 1 (Cont): Let us use the demaocratic relatioty. In F;, there is no critical
attacks R, = R). The extensions of the rich PAF avex({{a,c}, {b,d}},>q) =
{{a,c}}. Thus,{a, c} is the unigue stable extension.

Example 2 (Cont): The repaired framework of; is ({a, b}, R,) wherebRa. Thus,
the PAF has one stable extensifh which is the only extension of the rich PAF:

Max({{b}}, =a) = {{b}}.

Example 3 (Cont): Recall that the repaired framework 6§ has two stable extensions:
{a,c} and{b, d}. MoreoverMax({{a, c}, {b,d}}, =4) = {{a,c}}. Thus,{a, c} is the
unique stable extension of the rich PAF that uses the deriooetation.

7 Related work

Introducing preferences in argumentation frameworks gaek to the paper by Simari
and Loui in [12]. In that work, the authors have defined an Airich arguments are
built from a propositional knowledge base. The argumerasigded on specific infor-
mation are considered as stronger than the ones built frore general information.



This preference is used to solve dilemmas between any pawrdficting arguments.
Thus, it is used for handling critical attacks. The idea a$ tpaper has been gener-
alized in [2] then in [5] to any AF and to any preference reatiUnfortunately, the
approach followed in [2, 5] delivers correct results onlyamtihe attack relation is sym-
metric. When the attack relation is not symmetric, the apphcsuffers from two main
drawbacks: the first is that it may return conflicting extensias shown in Example 1
since it may put two conflicting arguments in the same extensdne of these argu-
ments is clearly undesirable. The second drawback is a qaesee of the first one.
Indeed, since an undesirable argument may be acceptedltilea arguments that are
defended by this argument are accepted as well at the detrimhigood ones. Let us
illustrate this issue on the following example.

Example 5 Let us consider the AF depicted in the left side of the figulevihe
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Assume thai > b. The approach in [2, 5] gets the framework depicted in thétrgjde

of the same figure. Its grounded extension is thd @gt, d}. This result is incorrect for
two reasons: The first one is that the two argumenddb cannot be both accepted.
The second reason is that the argumifwhich should be rejected) defendagainst

¢, leading thus to an undesirable result. Indedds defended by a “bad” argument! It
is easy to check that our approach returns ¢} as the grounded extension and rejects
the two other arguments: i.é.andc.

Our approach overcomes the limits of the one proposed in|.[&)6reover, it is
more general since it models even the second role of prefer@e. the refinement).
Recently, in [3], the authors have pointed out the first liofithe approach followed
in [2, 5], namely the violation of conflict-freeness. Theywbagroposed a new approach
for handling critical attacks where preferences are intoed at a semantics level. As
shown in this paper, the approach developed in [3] satidfiesaur rationality postu-
lates. However, it completely neglects the second role efgpences, i.e. refinement.
Another work which handles correctly the problem of crit@a@acks is that proposed in
[11]. In that paper, Prakken has proposed a logic-basedritiation of Dung’s frame-
work in which three kinds of attacks are considered: rehudtgsumption attack and
undercut. For each relation, the author has found a way tl &ke problem of criti-
cal attack and ensured conflict-free extensions. We thiakdbr work is more general
since we solved the problem at an abstract level. This aba@diser who wants to use
another attack relation to look for new ways to avoid corifigextensions. Moreover,
our approach is axiomatic, meaning that it is well founde &lso worth mentioning
that in [11], the second role of preferences is neglectedh&dest of our knowledge,
the only work on refinement is that appeared in [7]. The agthave proposed a par-
ticular refinement relation in case of stable semanticshisigense, our work is more
general since it accepts any refinement relation. Moretiverre is no restriction to par-
ticular semantics. Finally, we would like to mention the wdone in [9]. In this paper,
the author made a survey of the critics presented in [3, 7lhagaxisting approaches
for PAFs. The author concluded that one should use a synegtaick relation in order



to avoid the problem of conflicting extensions and then tmectine result with the pref-
erence relation already mentioned in [7]. The first suggess certainly not realistic,

especially in light of new results in the literature statthgt symmetric relations should
be avoided in logic-based argumentation systems.

8 Conclusion

This paper has studied deeply the difference between theotes that preferences may
play in an AF. We have shown that preferences intervene lmothdmputing what is
called standard solutions in nonmonotonic reasoning fsma and for refining that
result, and choosing a subset of those solutions. We hawenstiat the two roles are
completely independent and should be taken into accountdrsteps. Main postulates
that any approach modeling each role have been proposallyi-ime have developed
a particular framework that considers both roles. The fraomnk satisfies the proposed
postulates and its properties show that it is well-founded.
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