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Abstract
Time and space are fundamental concepts of study
in Artificial Intelligence and, in particular, Knowl-
edge Representation. In this paper, we investigate
the task of ordering a temporal sequence of quali-
tative spatial configurations to meet certain transi-
tion constraints. This ordering is constrained by the
use of conceptual neighbourhood graphs defined on
qualitative spatial constraint languages. In partic-
ular, we show that the problem of ordering a se-
quence of qualitative spatial configurations to meet
such transition constraints is NP-complete for the
the well known languages of RCC-8, Interval Alge-
bra, and Rectangle Algebra. Our results lie within
the area of Graph Traversal and allow for many
practical and diverse applications, such as identi-
fying optimal routes in mobile robot navigation,
modelling changes of topology in biological pro-
cesses, and computing sequences of segmentation
steps used in image processing algorithms.

1 Introduction
Time and space are fundamental cognitive concepts that have
been the focus of study in many scientific disciplines, in-
cluding Artificial Intelligence and, in particular, Knowledge
Representation. In this context, an emphasis has been made
on qualitative spatiotemporal reasoning, which abstracts from
numerical quantities of space and time using qualitative val-
ues instead (e.g., earlier, bigger, left of). The conciseness
of the representational language used in the qualitative ap-
proach provides a promising framework that further boosts
research and applications in spatiotemporal reasoning [Haz-
arika, 2012; Wolter and Zakharyaschev, 2003].

In this paper, we focus on a particular spatiotemporal rea-
soning problem that lies within the area of Graph Traversal,
which is one of the oldest areas of inquiry in Graph Theory.
Graph Traversal commonly deals with visiting all the nodes
in a graph in a particular manner, updating and/or checking
their values along the way. We are interested in a problem
related to the Hamiltonian path problem for a given graph,
which is the graph traversal problem of finding a path in the
graph that visits each vertex exactly once. Hamiltonian path
related problems naturally extend into use cases where routes

Figure 1: Left: segmented cell bodies (green), lobulated cell
nuclei (yellow and red) and background (black), Middle: seg-
mented cell nucleus extending outside border of host cell (red
pixels), Right: the result of applying a morphological erosion
operator; in this case the original partially overlaps relation
changes to proper part

need to be ordered or optimised, minimising the traversal of
paths and vertices already visited. This abstraction has many
practical and diverse applications, from identifying optimal
routes in mobile robot navigation, to modelling changes of
topology in biological processes and computing sequences of
segmentation steps used in image processing algorithms. All
these application examples can be modelled as a sequence of
successive states where we look for ways to order the states
so that an assumed set of a priori contraints are satisfied. For
example, in the case of a phagocyte ingesting food, one con-
straint may be that the food has to be part of a food vacuole
in the animal before it can be digested and absorbed.

After introducing the general context of the problem we
wish to study here, we specify our problem of interest as a
Hamiltonian path related problem where we want to order a
sequence of qualitative spatial configurations to meet certain
transition constraints. This ordering is constrained by the use
of conceptual neighbourhood graphs defined on qualitative
spatial constraint languages. For this problem, we consider
several well known qualitative constraint languages, such as
RCC-8 [Randell et al., 1992], Interval Algebra (IA) [Allen,
1983], and Rectangle Algebra (RA) [Guesgen, 1989]. In par-
ticular, RCC-8 encodes topological relations between two re-
gions that are non-empty regular subsets of some topological
space, IA encodes relative position relations between inter-
vals, and RA encodes relative position and containment rela-
tions between multi-dimensional objects.

We have already claimed that this abstraction has practi-
cal applications and now give a detailed example to better



motivate the subject of our paper. In [Randell et al., 2013]
the authors use a discrete version of the spatial logic RCC
(from which the constraint language RCC-8 is derived) called
DM (for Discrete Mereotopology) to model the topological
organization of segmented cells and their parts and cellular
structure in tissue. The domain model assumes an a priori
constraint that cell nuclei form parts of their host cells, how-
ever in the example shown in Figure 1 the RCC-8 relation re-
turned is partially overlaps and not proper part. There are
several reasons why this scenario may happen in practice,
e.g., if the regions initially segmented out as cell nuclei are
being over-segmented, or variations in the histological stain
density results in a less than optimal threshold level being se-
lected. The result means the labelled regions extracted from
the image cannot be a model. The task then is to repair the
segmentation to restore consistency and/or optimise the se-
quence of segmentation steps needed. As such, a conceptual
neighbourhood graph for DM is used to encode legal topolog-
ical transitions, and successive states from a start to end state
are generated, and then optimised. Paths through the network
are then cashed out as a series of image processing segmenta-
tion steps. A single histological image may have many hun-
dreds of cells, and the generation of symbolic models may
or may not be realised in an actual image. Moreoever, some
segmentation operations on regions will reduce their size and
may fragment a region into sub-parts, or separated regions
that increase their size may merge, so the computational task
of finding an optimal segmentation model can easily grow in
complexity.

Two closely related contributions that deal with sequences
of qualitative spatial or temporal configurations consist of the
works of Westphal et al. in [Westphal et al., 2013] and Cui et
al. in [Cui et al., 1992]. In both of these papers, qualitative
configurations extracted follow a predefined ordering; where
all pairs of consecutive qualitative configurations in the se-
quence produced, meet certain transition constraints with re-
spect to an assumed conceptual neighbourhood graph. In our
case, our knowledge base already comprises a set of qualita-
tive configurations, and the problem is that of finding an or-
dering of those qualitative configurations when positioned in
a sequence, such that all the pairs of consecutive qualitative
configurations in the ordered sequence meet the aforemen-
tioned transition constraints. Thus, we define a novel problem
in the context of qualitative spatiotemporal reasoning, whose
computational properties we are the first to study. In par-
ticular, we make the following contribution: we consider a
sequence of qualitative spatial configurations of RCC-8, IA,
or RA, and show that it is NP-complete to order the config-
urations in a way such that the transition constraints are met
with respect to the conceptual neighbourhood graph of the
considered language.

The paper is organized as follows. In Section 2 we intro-
duce the notions of a qualitative constraint language, a qual-
itative constraint network, and a conceptual neighbourhood
graph. Section 3 is our main section where we introduce the
notions of a qualitative spatiotemporal sequence and a tran-
sition graph which encodes certain transition constraints, but
also define our main problem, that of obtaining a desired or-
dering of the configurations in a given sequence, and provide
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Figure 2: 2D examples of the RCC-8 base relations

complexity results for different variations of it. Finally, in
Section 4 we conclude and discuss future work.

2 Qualitative constraint networks and
conceptual neighbourhood graphs

A (binary) qualitative temporal or spatial constraint language
[Renz and Ligozat, 2005] is based on a finite set B of jointly
exhaustive and pairwise disjoint (JEPD) relations defined on
a domain D, called the set of base relations. The base rela-
tions of set B of a particular qualitative constraint language
can be used to represent the definite knowledge between any
two entities with respect to the given level of granularity. B
contains the identity relation Id, and is closed under the con-
verse operation (−1). Indefinite knowledge can be specified
by unions of possible base relations, and is represented by
the set containing them. Hence, 2B represents the total set of
relations. 2B is equipped with the usual set-theoretic opera-
tions union and intersection, the converse operation, and the
weak composition operation denoted by symbol � [Renz and
Ligozat, 2005]. We note that the notion of a qualitative con-
straint language is not consistent in literature, an issue which
is nicely explained in the work of Dylla et al. in [Dylla et al.,
2013]. In this paper we consider a qualitative constraint lan-
guage to be a relation algebra [Dylla et al., 2013], which is
the case for the most well known calculi such as RCC-8 [Ran-
dell et al., 1992], Interval Algebra (IA) [Allen, 1983], and
Rectangle Algebra (RA) [Guesgen, 1989] (where its base re-
lations can be embedded by an isomorphism into the base
relations of IA).

Example. As an example, the qualitative spatial con-
straint language RCC-8 [Randell et al., 1992] comprises the
set of base relations {DC (disconnected), EC (externally
connected), PO (partially overlaps), TPP (tangential proper
part),NTPP (non-tangential proper part), TPPi (tangential
proper part inverse), NTPPi (non-tangential proper part in-
verse), EQ (equals)}, with EQ being the identity relation, as
depicted in Figure 2.
Likewise, there exist other qualitative spatial constraint lan-
guages, such as the Interval Algebra (IA) [Allen, 1983] and
the Rectangle Algebra (RA) [Guesgen, 1989], with their own
sets of base relations.

In what follows, if L is a qualitative constraint language,
we will denote by BL its set of base relations. Qualitative
temporal or spatial constraint configurations can be formu-
lated as qualitative constraint networks (QCNs) as follows:

Definition 1 Given a qualitative constraint language L, a
QCN N of L is a pair (V,C) where: V is a non-empty finite
set of variables; C is a mapping that associates a relation
C(v, v′) ∈ 2BL to each pair (v, v′) of V × V . C is such that
C(v, v) = {Id} and C(v, v′) = (C(v′, v))−1.
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Figure 3: A RCC-8 configuration (left) along with its QCN
describing it (right)

An example of a QCN of RCC-8 is depicted in Figure 3.
Note that we always regard a QCN as a complete network.
In what follows, given a QCN N = (V,C) and v, v′ ∈ V ,
N [v, v′] will denote the relation C(v, v′). Given a QCN
N = (V,C) defined in some qualitative constraint language
L, we have the following definitions: N is said to be trivially
inconsistent iff ∃v, v′ ∈ V with N [v, v′] = ∅. A solution of
N is a mapping σ defined from V to the domain D, yielding
a spatial configuration, such that for every pair (v, v′) of vari-
ables in V , (σ(v), σ(v′)) can be described by N [v, v′], i.e.,
there exists a base relation b ∈ N [v, v′] such that the base
relation defined by (σ(v), σ(v′)) is b.

Definition 2 A QCN N is satisfiable iff it admits a solution.

A sub-QCN N ′ of N , is a QCN (V,C ′) such that
N ′[v, v′] ⊆ N [v, v′] ∀v, v′ ∈ V . If b is a base relation, then
{b} is a singleton relation. An atomic QCN is a QCN where
each constraint is a singleton relation. Given a solution σ of
N , a scenario N (σ) of N is an atomic satisfiable sub-QCN
ofN , such that ∀v, v′ ∈ V ,N (σ)[v, v′] is defined by the base
relation defined by (σ(v), σ(v′)). A subclass of relations is a
set A ⊆ 2BL closed under converse, intersection, and weak
composition. In what follows, all the considered subclasses
will contain the singleton relations and the universal relation
BL of 2BL .

Definition 3 Given a qualitative constraint language L, a
subclass A ⊆ 2BL is a tractable subclass if the satisfiability
problem for a QCN N of L comprising only relations from
A is tractable. A subclass A ⊆ 2BL is a maximal tractable
subclass if there is no other tractable subclass properly con-
taining A.

A QCN N is �-consistent or closed under weak composi-
tion iff ∀v, v′, v′′ ∈ V we have that N [v, v′] ⊆ N [v, v′′] �
N [v′′, v′]. Given a QCN N = (V,C), �-consistency can
be applied in O(|V |3) time [Renz and Ligozat, 2005]. The
constraint graph of a QCN N = (V,C) is the graph (V,E),
denoted by G(N ), for which we have that (v, v′) ∈ E iff
N [v, v′] 6= B.

Checking the satisfiability of a QCN is NP-complete in
general for the most well known calculi such as RCC-8, IA,
and RA. However, there exist maximal tractable subclasses
for those calculi for which the satisfiability problem for not
trivially inconsistent and �-consistent QCNs comprising rela-
tions only from one of those subclasses becomes tractable,
as noted earlier. For example, the maximal tractable sub-
classes for RCC-8 are the classes Ĥ8, C8, and Q8 [Renz and
Nebel, 2001]. For other calculi, their whole class of rela-
tions is tractable, as is the case with Point Algebra (PA) [van
Beek, 1992], i.e., 2BPA is the maximal tractable subclass of
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Figure 4: A conceptual neighbourhood graph of RCC-8

PA. Regarding PA in particular, checking the satisfiability of
a QCN of PA can be done in O(|V |2) time with a dedicated
algorithm presented in [van Beek, 1992, chap. 3]. However,
�-consistency, as a more general approach, is still suitable for
deciding the satisfiability of a QCN of PA.

The notion of conceptually neighbouring relations in some
qualitative constraint language is strongly related to the con-
tinuity and proximity that these relations might exhibit. In
particular, we recall the following definition from [Freksa,
1991]:

Definition 4 ([Freksa, 1991]) Given a qualitative constraint
language L, we have that two base relations b(u, v) and
b′(u, v), with b, b′ ∈ BL and u, v being two entities, are
conceptual neighbours if they are proximal and can be di-
rectly transformed into one another by continuous deforma-
tion (e.g., in shape, size, or position) of entities u and v.

Example. As an example, in RCC-8 the base relations
DC(x, y) and EC(x, y) are conceptual neighbours since a
continuous movement of the spatial entity x towards spatial
entity y may cause a direct transition from relation DC(x, y)
to relation EC(x, y). The relations DC(x, y) and PO(x, y)
are not conceptual neighbours since a transition between
those relations must go through relation EC(x, y).

Clearly, by Definition 4 it follows that every base relation
is a conceptual neighbour of itself, however, we do not depict
any loops in our graphs to follow for simplicity.

Conceptually neighbouring relations in any given qualita-
tive constraint language L can be captured with a conceptual
neighbourhood graph, which is defined as follows:

Definition 5 ([Freksa, 1991]) Given a qualitative constraint
language L, a conceptual neighbourhood graph of L is a
graph Γ = (BL, E) where E = {(b(u, v), b′(u, v)) | b, b′ ∈
BL and u, v being two entities; and b(u, v) and b′(u, v) being
conceptual neighbours}.

Conceptual neighbourhood graphs can be established for
all qualitative constraint languages, a subset of which can
be found in [Freksa, 1991; Santos and Moreira, 2009; Egen-
hofer, 2010]. It is important to note that conceptual neigh-
bourhood graphs are not unique for every qualitative con-
straint language as they can be subject to further restrictions,
such as constraints subject to user preference, or restrictions
on deformation.

Example. As an example, the conceptual neighbourhood
graph of RCC-8 is depicted in Figure 4. The dashed edges



ta tb tc td te tf
t

Na Nb Nc Nd Ne Nf

x x x x x x

y
y y

y
y y

z z

z z z

z

Figure 5: Example of a spatiotemporal sequence based on
RCC-8

represent transitions of base relations that are not allowed if
we require that regions do not change size.

3 Qualitative spatiotemporal sequences and
transition graphs

In general, a spatial QCN, as described in Section 2, consti-
tutes a static spatial configuration in some domain, over a set
of spatial entities. To be able to describe a spatial configu-
ration that changes over time, we can define the notion of a
qualitative spatiotemporal sequence, which is nothing more
than a sequence of spatial QCNs. The ordering of the QCNs
in the aforementioned sequence constitutes a timeline that al-
lows us to view how a spatial configuration evolves over time.
We can define a qualitative spatiotemporal sequence (QSS) as
follows:

Definition 6 Given a qualitative constraint language L, a
QSS S of L is a sequence (N1 = (V,C1), N2 = (V,C2),
. . ., Nk = (V,Ck)) of k QCNs of L over a set of n variables
V , for some integers k and n.

An atomic QSS is a QSS that comprises only atomic
QCNs. Further, a solution and a scenario of a QSS is the
sequence of solutions and scenarios of all its QCNs respec-
tively.

Definition 7 A QSS S is satisfiable iff it admits a solution.

In what follows, we will be interested in studying atomic
QSSs, as the results obtained for that case can be carried to
the general case of QSSs as well.

Example. An example of a spatiotemporal sequence
based on RCC-8 is given in Figure 5. Figure 5 depicts the
sequence (Na = (V,Ca), Nb = (V,Cb), Nc = (V,Cc),
Nd = (V,Cd), Ne = (V,Ce), Nf = (V,Cf )), where
V = {x, y, z} is its set of variables and Na, Nb, Nc, Nd,
Ne, and Nf are RCC-8 configurations over V . In particular,
Na defines the set of constraints {DC(x, y), DC(y, z),
DC(x, z)}, Nb defines the set of constraints {EC(x, y),
DC(y, z), DC(x, z)}, Nc defines the set of constraints
{EC(x, y), DC(y, z), EC(x, z)}, Nd defines the set of
constraints {PO(x, y), DC(y, z), EC(x, z)}, Ne defines
the set of constraints {TPPi(x, y), DC(y, z), EC(x, z)},
and finally Nf defines the set of constraints {NTPPi(x, y),
DC(y, z), DC(x, z)}. Each spatial QCN in the sequence
corresponds to a unique point of time in the timeline t.
For example, spatial configuration Nc corresponds to the
point of time tc in the timeline t. Thus, the ordering of the
spatial QCNs in a given sequence yields a spatiotemporal
configuration that describes how a spatial configuration

Na Nb

Nc

NdNe

Nf

Figure 6: Transition graph of a spatiotemporal sequence

evolves over time.

At this point, we can extend the notion of conceptually
neighbouring relations to the notion of conceptually neigh-
bouring atomic QCNs as follows:

Definition 8 Given a qualitative constraint language L and
a conceptual neighbourhood graph Γ of L, we have that two
atomic QCNs N = (V,C) and N ′ = (V,C ′) of L are con-
ceptual neighbours with respect to Γ if ∀u, v ∈ V we have
that b(u, v) and b′(u, v) are conceptual neighbours with re-
spect to Γ, where b(u, v) and b′(u, v) are the base relations
defined by the singleton relations C(u, v) and C ′(u, v) re-
spectively.

Intuitively, two atomic QCNs are conceptual neighbours if
they can transition from one another by simultaneous trans-
formation of their base relations to conceptually neighbouring
base relations. We can also give the following definition of a
conceptual neighbourhood graph for a set of atomic QCNs,
but to avoid any confusion with the conceptual neighbour-
hood graph of the base relations of a qualitative constraint
language L we will refer to it as a transition graph1:

Definition 9 Given a qualitative constraint language L, a
conceptual neighbourhood graph Γ of L, and a satisfiable
atomic QSS S = (N1,N2, . . .,Nk) of L, the transition graph
of S defined with respect to Γ is the graph M = ({N1, N2,
. . ., Nk}, E) where E = {(Ni,Nj) | Ni,Nj ∈ {N1, N2,
. . ., Nk}; and Ni and Nj being conceptual neighbours with
respect to Γ}.

The transition graph of a satisfiable atomic QSS S of k
QCNs encodes all the conceptually allowed transitions be-
tween its spatial QCNs, i.e., it encodes all the pairs of atomic
QCNs that are conceptual neighbours with respect to an
assumed conceptual neighbourhood graph. Clearly, if the
QCNs are defined over a set of variables V , it takes O(|V |2)
time to calculate if a transition is possible between the QCNs
of a given pair of QCNs. As the transition graph of S has k
nodes and, thus, O(k2) possible edges, i.e., pairs of QCNs,
obtaining the entire transition graph can be done in polyno-
mial time. It is also the case that every node, i.e., every QCN,
in a transition graph is a conceptual neighbour of itself.

Example. As an example, the transition graph of the
spatiotemporal sequence depicted in Figure 5, is shown
in Figure 6. Indeed, we can have continuous transitions
between the spatial QCNs in the pairs (Na,Nb), (Nb,Nc),

1In fact, the reader can easily verify that in the case where we
have the set of all possible atomic QCNs of L over exactly two spa-
tial entities, the transition graph defined by those QCNs corresponds
to the conceptual neighbourhood graph of L.



(Nc,Nd), (Nd,Ne), (Ne,Nf ) of consecutive QCNs in the
sequence (Na, Nb, Nc, Nd, Ne, Nf ), but also continuous
transitions between spatial configurations Na and Nc (i.e.,
the pair (Na,Nc)), andNb andNd (i.e., the pair (Nb,Nd)).

Let us recall the definition of a Hamiltonian path.

Definition 10 ([Garey and Johnson, 1979]) Given a graph
G, a Hamiltonian path in G is a path that visits each vertex
v ∈ V (G) exactly once.

It is easy to see that the pairs of consecutive QCNs in
the sequence of the aforementioned example correspond to a
Hamiltonian path illustrated with dashed arrows in Figure 6.
Based on this observation, we will now formally introduce
the main problem that we are interested in studying in this
paper and sketch its relation with the problem of finding a
Hamiltonian path in a given graph, which is known to beNP-
complete [Garey and Johnson, 1979]. In fact, we will make a
polynomial-time reduction of the Hamiltonian path problem
to our problem. We call our problem the sequence ordering
problem (SOP) and define it as follows:

Definition 11 Given a qualitative constraint language L, a
conceptual neighbourhood graph Γ of L, and a satisfiable
atomic QSS S = (N1, N2, . . ., Nk) of L, the SOP for S is
the problem of obtaining an ordered sequence of the QCNs
of S such that the spatial QCNs Ni and Nj in every pair
of consecutive QCNs (Ni, Nj) in the ordered sequence are
conceptual neighbours with respect to Γ.

The relation between the Hamiltonian path problem and
the SOP is as follows:

Lemma 1 Given a qualitative constraint language L, a con-
ceptual neighbourhood graph Γ of L, a satisfiable atomic
QSS S of L, and the transition graph M of S defined with
respect to Γ, solving the SOP for S is equivalent to obtaining
a Hamiltonian path in M .

Indeed, as Lemma 1 suggests, a Hamiltonian path in the
transition graph of a given qualitative spatiotemporal se-
quence, will provide us with an ordered sequence of its QCNs
such that the QCNs in every pair of consecutive QCNs in the
ordered sequence are conceptual neighbours with respect to
some conceptual neighbourhood graph, and vice versa, as ex-
plained earlier in light of our example.

We provide a definition on graph isomorphism that will be
of use in what follows.

Definition 12 A graph G1 = (V1, E1) is isomorphic to a
graph G2 = (V2, E2) iff there is a bijection f : V1 → V2
such that (u, v) ∈ E1 iff (f(u), f(v)) ∈ E2.

It might be tempting at this point to suggest that the SOP
for a given QSS S is NP-complete, as is the case with the
Hamiltonian path problem. However, we first need to show
that any arbitrary graph G can be translated to an isomor-
phic to G transition graph M in polynomial time. This is
a necessary requirement in our line of reasoning for prov-
ing NP-completeness for the SOP, as it could be the case
that for a given qualitative constraint language and its concep-
tual neighbourhood graph, the family of transition graphs that
can be constructed allow for obtaining a Hamiltonian path in

b1(x, y) b2(x, y) b3(x, y)

Figure 7: A conceptual neighbourhood graph

polynomial time. A trivial case, for example, would be know-
ing for a fact that any transition graph is a complete graph.
Further, to be able to prove NP-completeness for the SOP,
we require that a qualitative constraint language has the P3

property, defined as follows:

Property 1 (Property P3) A qualitative constraint lan-
guage L will be said to have the P3 property if it satisfies
the following conditions:
• BL consists of at least three base relations b1, b2, and
b3;
• The conceptual neighbourhood graph defined by base

relations b1, b2, and b3 is the graph Γ = ({b1(u, v),
b2(u, v), b3(u, v)}, {(b1(u, v), b2(u, v)), (b2(u, v),
b3(u, v))}), with u and v being two entities, as shown
in Figure 7 (omitting loops);
• Base relation b1 belongs to all the possible weak com-

positions among base relations b1, b2, and b3, viz., b1 ∈
bi � bj ∀i, j ∈ {1, 2, 3};
• The satisfiability of an atomic QCN defined by base re-

lations b1, b2, and b3 can be decided by �-consistency.

By considering the base relations DC (disconnected),
EC (externally connected), and PO (partially overlaps) for
RCC-8 [Randell et al., 1992], the base relations < (before),
m (meets), and o (overlaps) for IA [Allen, 1983], and the base
relations< (left of),≤ (attached to), and⇐ (overlapping) for
RA [Guesgen, 1989], we can obtain the following proposi-
tion:

Proposition 1 The qualitative constraint languages RCC-8,
IA, and RA have the P3 property.

Let us go back to being able to construct a transition graph
out of any given arbitrary graph in polynomial time. We prove
the following proposition:

Proposition 2 Given a graph G, and a qualitative constraint
language L having the P3 property, we have that we can con-
struct a satisfiable atomic QSS S of L that yields an isomor-
phic to G transition graph M in polynomial time.

Proof. Given an arbitrary graph G = (V,E), and a qualita-
tive constraint language L that has the P3 property, we can
construct a set of satisfiable atomic QCNs of L that yield
a transition graph which is isomorphic to G using algoritm
Arachni, depicted in Algorithm 1. We prove the correctness
of Arachni as follows. If the order of graph G is k, i.e., if k =
|V |, we create a set {N1, N2, · · · , Nk} of k QCNs of L. In
fact, we have a bijection between sets V and {N1, N2, · · · ,
Nk}, as we consider to have a one-to-one correspondance be-
tween an element of V and a QCN in the set of k QCNs of
L. This bijection is defined by a dictionary map that given
a node v ∈ V returns the index i of a QCN Ni in the set of
k QCNs of L, i.e., i = map[u], with i ∈ {1, 2, · · · , k}. For
every i ∈ {1, 2, · · · , k}, we have that every QCN Ni shares
the set of variables {v1, v2, · · · , vk+1}, viz., all k QCNs of L
are defined over the same set of variables {v1, v2, · · · , vk+1}.



Algorithm 1: Arachni(G,L)
in : A graph G = (V,E), and a qualitative constraint

language L that has the P3 property.
output : A set of satisfiable atomic QCNs of L that yield a

transition graph which is isomorphic to graph G.
1 begin
2 i← 1;
3 χ← ∅;
4 map← dict();
5 while V do
6 map[V.pop()]← i;
7 Vi ← {v1, v2, · · · , v|V (G)|+1};
8 foreach vk, vl ∈ Vi do
9 if k = l then

10 Ci(vk, vl)← {Id};
11 else if k < l then
12 if k = i and l = k + 1 then
13 Ci(vk, vl)← {b3};

Ci(vl, vk)← {b3−1};
14 else
15 Ci(vk, vl)← {b1};

Ci(vl, vk)← {b1−1};

16 Ni ← (Vi, Ci);
17 χ← χ ∪ {Ni};
18 i← i+ 1;

19 while E do
20 (u, u′)← E.pop();
21 (i, j)← (map[u],map[u′]);
22 Ni[vj , vj+1]← {b2};Ni[vj+1, vj ]← {b2−1};
23 Nj [vi, vi+1]← {b2};Nj [vi+1, vi]← {b2−1};
24 return χ;

We assume first that G is an edgeless graph, therefore, the k
QCNs of L are initially constructed in a manner such that
there exists no pair of QCNs where the QCNs in the pair are
conceptual neighbours of one another. This is achieved by
initializing relation Ni[vi, vi+1] for every QCN Ni with the
singleton relation {b3} while initializing all other relations
Ni[vj , vo] with i 6= j and j < o with the singleton relation
{b1}. Then, for any pair of QCNs (Ni,Nj) from our set of k
QCNs ofL, we have thatNi andNj are not conceptual neigh-
bours, since the base relations b3 and b1 defined by relations
Ni[vi, vi+1] and Nj [vi, vi+1] respectively (and equivalently,
the base relations b1 and b3 defined by relations Ni[vj , vj+1]
andNj [vj , vj+1] respectively) are not conceptual neighbours.
Up to this point it should be clear that we have constructed a
set of atomic QCNs that yield a transition graph which is iso-
morphic to an edgeless graph of order k. Since every QCN
in our set of k QCNs of L is defined over k + 1 entities, and
assuming that we use a matrix to represent a given QCN, the
construction of our QCNs is achieved in O(k3) time. Now,
we need to iterate the set of edges of graph G and change the
QCNs in the corresponding pairs of QCNs into being concep-
tual neighbours of one another. Using dictionary map, we
obtain a pair of QCNs (Ni,Nj) for every edge (u, u′) ∈ E,
where i = map[u] and j = map[u′]. As noted earlier,Ni and
Nj are not conceptual neighbours, since the base relations b3
and b1 defined by relations Ni[vi, vi+1] and Nj [vi, vi+1] re-

spectively (and equivalently, the base relations b1 and b3 de-
fined by relationsNi[vj , vj+1] andNj [vj , vj+1] respectively)
are not conceptual neighbours. Therefore, we need to change
the aforementioned base relations b1 into being base relation
b2, so that we can achieve conceptual proximity with base
relation b3. In particular, we set relations Nj [vi, vi+1] and
Ni[vj , vj+1] to {b2} from {b1}. Note that QCNs Ni and Nj

become conceptual neighbours only of one another, as any
other QCN No with i 6= o 6= j is not a conceptual neigh-
bour to either Ni or Nj , since relation No[vo, vo+1] is de-
fined by b3, and relations Ni[vo, vo+1] and Nj [vo, vo+1] are
still defined by b1 (and equivalently, relations No[vi, vi+1]
andNo[vj , vj+1] are defined by b1, and relationsNi[vi, vi+1]
andNj [vj , vj+1] are defined by b3). After iterating the whole
set of edges of graph G, we will have that any two nodes
u and u′ of G are adjacent in G if and only if Nmap[u] and
Nmap[u′] are adjacent in the transition graph that is defined
by the set {N1, N2, · · · , Nk} of k QCNs of L. Formally,
if M is the transition graph defined by the set {N1, N2,
· · · , Nk} of k QCNs of L, we have that (u, u′) ∈ E(G)
iff (Nmap[u],Nmap[u′]) ∈ E(M). Thus, graph M is isomor-
phic to graph G. To fix the pairs of QCNs that are concep-
tual neighbours and consequently introduce the edges in our
transition graph, we require O(k2) time, as there can only be
O(k2) edges in a k order graph (and given that our QCNs are
represented by matrices we can alter their relations in O(1)
time). In conclusion, algorithm Arachni requires O(k3) run-
ning time in total to process its input and produce an out-
put. Finally, we also need to show that every QCN in the set
of k atomic QCNs of L that we have constructed is satisfi-
able. Due to our construction, for every QCN Ni = (Vi, Ci),
with i ∈ {1, 2, · · · , k}, we have that every triple of vari-
ables vo, v′o and v′′o in Vi, with o < o′ < o′′, defines a set
of relations Ni[vo, vo′ ], Ni[vo′ , vo′′ ], and Ni[vo, vo′′ ], such
that Ni[vo, vo′′ ] is always defined by the base relation b1,
and Ni[vo, vo′ ] and Ni[vo′ , vo′′ ] are defined by either of the
three base relations b1, b2, and b3. Due to the fact that b1 ∈
bi�bj ∀i, j ∈ {1, 2, 3}, we have thatNi[vo, vo′′ ]⊆Ni[vo, vo′ ]
� Ni[vo′ , vo′′ ]. Further, as L is a relation algebra and there-
fore satisfies the axioms of �-associativity, −1-involution, −1-
involutive distributivity, and Peircean law (sometimes called
cycle law) [Dylla et al., 2013], we can decude that every
path of length 2 in Ni is closed under the weak composi-
tion operation defined by operator �, thus, Ni is �-consistent.
As �-consistency decides the satisfiability of atomic QCNs
of L, we have that Ni is a satisfiable QCN of L for every
i ∈ {1, 2, · · · , k}. a

We proceed with obtaining a complexity result for the
SOP, for the case where the considered satisfiable atomic
QSS S is defined over a qualitative constraint language L sat-
isfying property P3.
Theorem 1 The SOP for any satisfiable atomic QSS S of a
qualitative constraint language L satisfying property P3, is
NP-complete.
Proof. NP-hardness follows from the fact that the Hamilto-
nian path problem isNP-complete, and we can translate any
input of the Hamiltonian path problem, which is an arbitrary
graph G, to an isomorphic to G transition graph M of some



QSS S in polynomial time, due to Proposition 2. Further, due
to the notion of isomorphism, it is clear that we can have a
Hamiltonian path in M iff we can have a Hamiltonian path in
G. By Lemma 1, we have that obtaining a Hamiltonian path
in M is equivalent to solving the SOP for S, thus, we ulti-
mately have obtained a polynomial-time reduction from the
Hamiltonian path problem to the SOP. We can also explicitly
define membership in NP due to the fact that provided with
a candidate ordered satisfiable atomic QSS S , we can check
if the QCNs in every pair of consecutive QCNs in S are con-
ceptual neighbours in polynomial time. In particular, if S
comprises k QCNs, we can only have k − 1 pairs of consec-
utive QCNs in the sequence, and we can check if the QCNs
in a pair are conceptual neighbours in O(n2) time, given the
fact than the QCNs are defined over n entities. (Note also that
as suggested in the proof of Proposition 2, n can be equal to
k + 1). Thus, the SOP for any satisfiable atomic QSS S of
a qualitative constraint language L satisfying property P3, is
NP-complete. a
Due to Proposition 1, we can obtain the following result:
Corollary 1 The SOP for any satisfiable atomic QSS S of
RCC-8, IA, or RA, is NP-complete.

We can obtain a variation of the SOP for a satisfiable
atomic QSS S, where we allow one to consider a number of
up to m QCNs in addition to the number of QCNs of S and
solve the SOP for the new augmented QSS S ′. This is partic-
ularly useful if given a QSS S we are unable to solve the SOP
for S, because S, for example, yields a disconnected transi-
tion graph and, thus, does not allow obtaining a Hamiltonian
path in its transition graph. We provide a simple, but, never-
theless, sufficient example to better explain this problem.

Example. Let RCC-8 be our qualitative constraint
language of choice with its usual conceptual neighbourhood
graph as depicted in Figure 4, and (Na,Nb, ) a QSS S of
RCC-8, where Na defines the set of constraints {DC(x, y)}
and Nb defines the set of constraints {PO(x, y)}. Clearly,
the transition graph of S is disconnected as Na and Nb

are not conceptual neighbours and, thus, there can be no
transition from Na to Nb, and vice versa. In particular, the
transition graph of S is the graph M = ({Na,Nb}, ∅). As
such, the SOP for S is unsolvable, since there can be no
Hamiltonian path in M . However, we can augment S with
the QCN Nc that defines the set of constraints {EC(x, y)},
and obtain the QSS S ′ = (Na,Nb,Nc). Then, the transi-
tion graph of S ′ will be the graph M ′ = ({Na,Nb,Nc},
{(Na,Nb), (Nb,Nc)}). The Hamiltonian path (Na,Nc,Nb)
in M ′ is exactly a solution of the SOP for S ′, where we
considered one extra QCN with respect to the number of
QCNs of S.

We call this new problem the relaxed sequence ordering
problem (rSOP) and define it as follows:
Definition 13 Given an integer m, a qualitative constraint
language L, a conceptual neighbourhood graph Γ of L, and
a satisfiable atomic QSS S = (N1, N2, . . ., Nk) of L over a
set of variables V , the rSOP for S is the SOP for QSS S ′,
where S ′ is the sequence S augmented with a set {N ′1, N ′2,
. . ., N ′n} of n QCNs of L over V , with n ≤ m.

We proceed with obtaining a complexity result for the
rSOP, for the case where the considered satisfiable atomic
QSS S is defined over a qualitative constraint language L sat-
isfying property P3.

Theorem 2 The rSOP for any satisfiable atomic QSS S of a
qualitative constraint language L satisfying property P3 and
some integer m, is NP-complete.

Proof. NP-hardness follows from the fact that the SOP,
which is NP-complete due to Theorem 1, can be reduced to
the rSOP in polynomial time, by just considering an integer
value of m = 0 for the rSOP. With the aforementioned re-
quirement for integer m, it is clear that any input for the SOP
serves as an input for the rSOP and a solution of the rSOP
is also a solution of the SOP, and vice versa. Membership
in NP follows from the fact that provided with a candidate
ordered satisfiable atomic QSS S ′ which corresponds to an
input satisfiable atomic QSS S augmented with ≤ m QCNs,
we can check if S ′ is a solution of the SOP for S ′ in poly-
nomial time, as the SOP is in NP . Also, we can check if S ′
contains ≤ m more QCNs than S in linear time in the num-
ber of QCNs of S ′. Thus, the rSOP for any satisfiable atomic
QSS S of a qualitative constraint language L satisfying prop-
erty P3 and some integer m, is NP-complete. a
Due to Proposition 1, we can obtain the following result:

Corollary 2 The rSOP for any satisfiable atomic QSS S of
RCC-8, IA, or RA and some integer m, is NP-complete.

The rSOP, as is the case with the SOP, is a decision prob-
lem where we try to decide if an adequate ordered sequence
exists, and if so, present that sequence as a solution of some
input instance. However, we can also view the rSOP as an
optimization problem [Krentel, 1988; Creignou et al., 2001]
where we try to minimize the integer value of m.

Before closing this section, let us introduce yet an-
other problem that deals with digraphs (also called directed
graphs). We can view the transition graph of a satisfiable
atomic QSS as a digraph, where the edges, i.e., the pairs of
QCNs, have a direction associated with them that specifies
which QCN in the pair can transition to the other one. We
call the corresponding problem the directed sequence order-
ing problem (dSOP) and define it as follows:

Definition 14 Given a qualitative constraint language L, a
conceptual neighbourhood graph Γ of L, a satisfiable atomic
QSS S = (N1, N2, . . ., Nk) of L, and a transition digraph
Md = ({N1, N2, . . ., Nk}, A), with A = {(Ni, Nj) and/or
(Nj , Ni) | (Ni, Nj) ∈ E}, where M = ({N1, N2, . . ., Nk},
E) is the transition graph of S defined with respect to Γ, the
dSOP for S is the problem of obtaining an ordered sequence
of the QCNs of S such that the spatial QCNs Ni and Nj

in every pair of consecutive QCNs (Ni, Nj) in the ordered
sequence are conceptual neighbours with respect to Γ and
(Ni, Nj) ∈ A.

We proceed with obtaining a complexity result for the
dSOP, for the case where the considered satisfiable atomic
QSS S is defined over a qualitative constraint language L sat-
isfying property P3.



Theorem 3 The dSOP for any satisfiable atomic QSS S of
a qualitative constraint language L satisfying property P3, is
NP-complete.
Proof. NP-hardness follows from the fact that the SOP,
which is NP-complete due to Theorem 1, can be reduced to
the dSOP in polynomial time, by just considering a transition
digraphMd = (V,A) of S, withA= {(Ni,Nj) and (Nj ,Ni)
| (Ni, Nj) ∈ E}, where M = (V,E) is the transition graph
of S defined with respect to Γ. Namely, for every edge in M
we introduce both directions of this edge, i.e., both arcs, in
Md. With the aforementioned requirement for the transition
digraph Md, it is clear that any input for the SOP serves as
an input for the dSOP and a solution of the dSOP is also
a solution of the SOP, and vice versa. Membership in NP
follows from the fact that provided with a candidate ordered
satisfiable atomic QSS S, we need to check if S is a solution
of the SOP for S and also check if the QCNs in every pair
of k − 1 pairs of consecutive QCNs in S form an arc that
belongs to the transition digraph Md. We can perform the
former check in polynomial time as the SOP is in NP . For
the latter check, if we assume that we use a matrix to store the
transition digraph Md, we can check if a pair of QCNs forms
an arc that belongs to the transition digraph Md in O(1) time,
thus, we need O(k − 1) time in total for all k − 1 pairs of
QCNs. As such, the dSOP for any satisfiable atomic QSS S
of a qualitative constraint language L satisfying property P3,
is NP-complete. a
Due to Proposition 1, we can obtain the following result:
Corollary 3 The dSOP for any satisfiable atomic QSS S of
RCC-8, IA, or RA, is NP-complete.

4 Conclusion and future work
In this paper, we investigated the task of ordering a temporal
sequence of qualitative spatial configurations, where specific
transition constraints with respect to a conceptual neighbour-
hood graph of a qualitative spatial constraint language are as-
sumed. In particular, we showed that the problem of order-
ing a sequence of qualitative spatial configurations to meet
such transition constraints is NP-complete for the the well
known languages of RCC-8, Interval Algebra, and Rectangle
Algebra. As our results lie within the area of Graph Traver-
sal, they allow for many practical and diverse applications,
such as identifying optimal routes in mobile robot naviga-
tion, modelling changes of topology in biological processes,
and computing sequences of segmentation steps used in im-
age processing algorithms. A direct consequence of our work
would be to generalize to tree and graph structures to capture
the temporal aspect of qualitative spatial configurations.
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