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‡Université Lille-Nord de France - Université d’Artois - LGI2A
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Abstract—We introduce and study the problem of obtaining a
spatial or temporal configuration that maximizes the number of
constraints satisfied in a qualitative constraint network (QCN).
We call this problem the MAX-QCN problem and prove that it
is NP-hard for most of the qualitative calculi. We also propose
a complete generic branch and bound algorithm for solving the
MAX-QCN problem. This algorithm builds on techniques used
in the literature for solving the consistency checking problem
and the minimal labeling problem of a given QCN. In particular,
we make use of a tractable subclass of relations, a chordal graph
provided by a triangulation of the input QCN, and the partial
weak composition as a filtering method. The experimentation
that we have conducted with QCNs from the Interval Algebra
and the Region Connection Calculus shows the interest of our
proposed algorithm.

I. INTRODUCTION

Spatial and temporal reasoning is a major field of study in
Artificial Intelligence; particularly in Knowledge Representa-
tion. This field has gained a lot of attention during the last
few years as it extends to a plethora of areas and domains that
include, but are not limited to, ambient intelligence, dynamic
GIS, cognitive robotics, and spatiotemporal design [1]. In
this context, an emphasis has been made on qualitative
spatial and temporal reasoning, which abstracts from nu-
merical quantities of space and time using qualitative values
instead (e.g., earlier, bigger, left of). The conciseness of the
representational language used in the qualitative approach
provides a promising framework that further boosts research
and applications in spatial and temporal reasoning.

The Interval Algebra (IA) [2] and a subset of the Region
Connection Calculus (RCC) [3], namely RCC-8, are the
dominant Artificial Intelligence approaches for representing
and reasoning about qualitative temporal and topological
relations respectively. These qualitative calculi use constraints
to encode knowledge about the spatial or temporal rela-
tionships between entities. Thus, qualitative information can
be modelled as a domain-specific variant of a Constraint
Satisfaction Problem (CSP) [4]. Infinite domains is the main
difference of spatial or temporal CSPs to normal CSPs. For
instance, there are infinitely many time points or temporal
intervals on the time line and infinitely many regions in a
two or three dimensional space. One way of dealing with

infinite domains is using constraints over a finite set of binary
relations by employing an algebra [5]. This particular type of
infinite-domain CSP that makes use of an algebra to handle
qualitative constraints can be formulated as a Qualitative
Constraint Network (QCN), which comprises a set of spatial
or temporal entities V and a mapping C that associates a
binary spatial or temporal relation respectively with each pair
of entities.

Given a QCN N , we are particularly interested in the
MAX-QCN problem, which is the problem of obtaining a
spatial or temporal configuration that maximizes the number
of constraints satisfied in N . The MAX-QCN is a general-
ization of the well studied consistency checking problem,
which is the problem of determining if a QCN admits a
solution. Contrary to the consistency checking problem, the
MAX-QCN problem is an optimization problem that can be
greatly useful for reasoning about a set of spatial or temporal
qualitative constraints representing inconsistent information.
Handling such inconsistent information can be necessary
for a number of applications in Artificial Intelligence such
as temporal planning, reasoning about preferences or rea-
soning with manually annotated corpus containing spatial
or temporal information. Consider, for example, a planning
problem specified by a QCN of IA representing inconsistent
information. In this case, solve MAX-QCN for this set of
constraints allows to obtain a temporal planning that best
meets the specification given.

The main objective of this paper is to propose an efficient
algorithm for solving the MAX-QCN problem. To this end, we
elaborate a branch and bound algorithm built on the following
techniques that have proven to be useful for the consistency
checking problem of a QCN: the use of a tractable class
of relations to minimize the width of the search tree, the
use of a chordal graph corresponding to a triangulation of a
given QCN to reduce the number of constraints processed
during search, and the use of the partial closure under
weak composition as an inference method to filter out some
unfeasible base relations.

The paper is organized as follows. After some prelimi-
naries about temporal and spatial QCNs, we introduce the
MAX-QCN problem and state its complexity in the general



case. Section IV is devoted to particular sets of optimal
consistent scenarios for which some technical results are es-
tablished. In Section V we describe the algorithm proposed to
solve the MAX-QCN problem. We report some experimental
results about this algorithm in Section V. Finally, we conclude
and give some perspectives for future work.

II. PRELIMINARIES

A (binary) temporal or spatial qualitative calculus considers
a domain D to represent temporal or spatial entities respec-
tively and a finite set B of jointly exhaustive and pairwise
disjoint (JEPD) relations defined on this domain D [5]. The
elements of B are called base relations and represent the set
of possible configurations between two temporal or spatial
entities. Set B contains the identity relation Id, and is closed
under the converse operation (−1). Indefinite knowledge
between two temporal or spatial entities can be described
by a relation that corresponds to a union of base relations
and is represented by the set containing them. Hence, 2B

represents the total set of relations. Given x, y ∈ D and
r ∈ 2B, x r y will denote that x and y satisfy a base
relation b ∈ r. The set 2B is equipped with the usual set-
theoretic operations (union and intersection), the converse
operation, and the weak composition operation (also called
algebraic closure). The converse of a relation is the union
of the converses of its base relations. The weak composition
� of two base relations b and b′ belonging to a set of base
relations B is the relation of 2B defined by b � b′ = {b′′ :
∃x, y, z ∈ D such that x b y, y b′ z and x b′′ z}. For two
relations r, r′ ∈ 2B, r � r′ is the relation of 2B defined by
r�r′ = ⋃

b∈r,b′∈r′ b�b′. A subclass A is a subset of relations,
i.e., A ⊆ 2B, closed under intersection, converse, and weak
composition. In the sequel, we will assume that a considered
subclass contains all the singletons relations defined on B
and the universal relation B. Given a relation r ∈ 2B, A(r)
denotes the smallest relation of A including r.

As illustration, consider the well-know qualitative cal-
culi of the Interval Algebra (IA) and the Region Con-
nection Calculus (RCC8). IA, introduced by Allen [2],
serves for temporal reasoning. IA considers intervals to
represent temporal entities and the set of base relations
BIA = {eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}. Each base
relation of BIA represents a particular ordering of the four
endpoints of two intervals on the timeline (see Figure
1a). RCC8 [3] serves for reasoning about spatial config-
urations, and considers spatial regions which can be in-
terpreted as non-empty regular closed subsets of some
topological space and the set of base relations BRCC8 =
{DC,EC, TPP,NTPP, PO,EQ, TPPi,NTPPi}. These
base relations allow us to specify how regions and their
interiors are related to each other (see Figure 1b).

A. A Qualitative Constraint Network (QCN)
Temporal or spatial information about the relative positions

of a set of entities can be represented by a Qualitative
Constraint Network (QCN). A QCN is a pair formed by a set
of variables and a set of constraints. Each variable represents
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Fig. 1: (a) The base relations of IA (b) and RCC8 (b).

a temporal or spatial entity. Each constraint is defined by a
relation of 2B and specifies the set of acceptable qualitative
configurations between two entities.

Definition 1: A QCN is a pair N = (V,C) where: V
is a non-empty finite set of variables; C is a mapping that
associates a relation C(v, v′) ∈ 2B with each pair (v, v′)
of V × V . C is such that C(v, v) ⊆ {Id} and C(v, v′) =
(C(v′, v))−1.

Given a QCNN = (V,C) and v, v′ ∈ V ,N [v, v′] will denote
the relation C(v, v′) in what follows. N[v,v′]/r with r ∈ 2B

is the QCN N ′ defined by N ′[v, v′] = r, N ′[v′, v] = r−1,
and N ′[v′′, v′′′] = N [v′′, v′′′] ∀(v′′, v′′′) ∈ (V × V ) \
{(v, v′), (v′, v)}. Given a set of variables V , ⊥V will denote
the particular QCN over V where each constraint is defined
by the empty relation ∅, and >V will denote the QCN (V,C)
where C(v, v) = {Id} and C(v, v′) = B for all v, v′ ∈ V .
Given a QCN N = (V,C) we have the following definitions
[6]: N is said to be trivially inconsistent iff ∃v, v′ ∈ V
with C(v, v′) = ∅. An instantiation of V is a mapping σ
defined from V to the domain D. A solution σ of N is an
instantiation of V such that for every pair (v, v′) of variables
in V , (σ(v), σ(v′)) satisfies C(v, v′), i.e., there exists a base
relation b ∈ C(v, v′) such that b is defined by (σ(v), σ(v′)).
N is consistent iff it admits a solution. Two QCNs are
equivalent iff they admit the same set of solutions. A sub-
QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′)
such that C(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V . A scenario S is
a QCN whose contraints are defined by singleton relations,
i.e., |C(v, v′)| = 1 for all pairs of variables of the QCN.
A (consistent) scenario S of N is a (consistent) scenario
which is a sub-QCN of N . In the sequel, we assume that
for the qualitative calculi considered, the consistency of a
scenario can be decided in polynomial time. The set of
consistent scenarios of N will be denoted by [[N ]]. N is



�-consistent or closed under weak composition iff ∀v, v′,
v′′ ∈ V , C(v, v′) ⊆ C(v, v′′) � C(v′′, v′). The closure under
weak composition of N , denoted by �(N ), is the greatest
�-consistent sub-QCN of N . This closure can be computed
in O(n3) time, where n is the number of variables of N .

As illustration, let us consider the two QCNs N0 and N1 of
the IA depicted in Figure 2. In each of the graphs, a variable
is represented by a node, and a constraint by an arc labeled
with the associated relation; there is no arc going from v to v′
when there is an arc going from v′ to v or when v = v′. We
can check that N0 is an inconsistent QCN and N1 a consistent
one. A solution σ of N1 is depicted in Figure 2c, with the
corresponding consistent scenario shown in Table I.

Given a subclassA and a QCNN , the closure ofN w.r.t.A
denoted byA(N ) is the QCN (V,C ′) defined by : C ′(v, v′) =
A(C(v, v′)) for all v, v′ ∈ V . Given a QCN N ′ = (V,C ′),
N ∪N ′ denotes the QCN N ′′ = (V,C ′′) where C ′′(v, v′) =
C(v, v′) ∪ C ′(v, v′) for all v, v′ ∈ V .

Given two (undirected) graphs G = (V,E) and G′ =
(V ′, E′), G is a subgraph of G′, denoted by G ⊆ G′, iff
V ⊆ V ′ and E ⊆ E′. A graph G = (V,E) is a chordal (or
triangulated) graph iff each of its cycles of length > 3 has a
chord, i.e., an edge joining two vertices that are not adjacent
in the cycle. The constraint graph of a QCN N = (V,C) is
the graph (V,E), denoted by G(N ), for which we have that
(v, v′) ∈ E iff C(v, v′) 6= B. Given a QCN N = (V,C)
and a graph G = (V,E), N is partially �-consistent w.r.t.
graph G or �G-consistent [7] iff for ∀(v, v′), (v, v′′), (v′′, v′) ∈
E, C(v, v′) ⊆ C(v, v′′) � C(v′′, v′). The closure under
�
G-consistency of N , denoted by �G(N ), is the greatest sub-
QCN of N which is �G-consistent. Note that �G(N ) is equiva-
lent to N . In what follows, �G-consistency will be said to be
complete for a subclass A, if for any QCN N defined on A
and a chordal graph G such that G(N ) ⊆ G, we have that
N is consistent iff �G(N ) is not trivially inconsistent.

v0 v1 v2 v3 v4 v5
v0 {eq} {bi} {mi} {s} {d} {bi}
v1 {b} {eq} {d} {b} {d} {f}
v2 {m} {di} {eq} {m} {d} {oi}
v3 {si} {bi} {mi} {eq} {d} {bi}
v4 {di} {di} {di} {di} {eq} {oi}
v5 {b} {fi} {o} {b} {o} {eq}

Tab. I: A consistent scenario S of IA.

III. THE MAXIMUM CONSISTENCY PROBLEM OF QCNS

In this section we introduce the maximum consistency
problem of QCNs, denoted by MAX-QCN, which corresponds
to the well known problems of MAX-SAT [8] and MAX-CSP
[9] in SAT and constraint programming respectively. Given a
QCN N over a set of variables V , the MAX-QCN problem
is the problem of finding a consistent scenario over V which
maximizes the number of constraints satisfied in N .

Before formally introducing the MAX-QCN problem, we
introduce two operators, namely, #disjC and #satC, which
will allow measuring the number of unsatisfied constraints
and the number of satisfied constraints respectively between
a scenario and a QCN. Given two QCNs N = (V,C)

and N ′ = (V,C ′) defined on the same set of variables V ,
#disjC(N ,N ′) will denote the integer corresponding to the
number of constraints of N and N ′ that do not share a
base relation. More formally, #disjC(N ,N ′) = 1

2 .|{(v, v′) ∈
V × V : v 6= v′ and C(v, v′) ∩ C ′(v, v′) = ∅}| + |{v ∈
V : C(v, v) ∩ C ′(v, v) = ∅}|. Note that the factor 1

2 is used
for taking into account the fact that C(v, v′) and C(v′, v)
represent the same constraint since C(v, v′) = C(v′, v)−1

for any QCN N = (V,C) and (v, v′) ∈ V × V . We can
extend the operator #disjC to instantiations of QCNs by
considering their associated scenarios. Given an instantiation
σ and a QCN N over a set of variables V , #disjC(σ,N ) =
#disjC(Sσ,N ), where Sσ is the unique scenario over V
corresponding to σ. Note that #disjC(σ,N ) corresponds to
the number of constraints of N that are not satisfied by
σ. Given a consistent scenario S = (V,C ′) over V and
a QCN N = (V,C), we introduce the operator #satC to
allow measuring the number of constraints of N satisfied by
S in the following manner: #satC(S,N ) = 1

2 .|{(v, v′) ∈
V × V : v 6= v′ and C ′(v, v′) ⊆ C(v, v′)}| + |{v ∈
V : C ′(v, v) ⊆ C(v, v)}|. For an instantiation σ over V ,
#satC(σ,N ) = #satC(Sσ,N ), where Sσ is the consistent
scenario corresponding to σ.

As example, let us consider the two QCNs N0 and N1

of IA, and the instantiation σ of N1 depicted in Figure 2
along with its associated consistent scenario shown in Table
I. We can check that #disjC(N1,N0) = #disjC(S,N0) =
#disjC(σ,N0) = 2 and #disjC(S,N1) = #disjC(σ,N1) =
0. Also, #satC(S,N0) = #satC(σ,N0) = 19 and
#satC(S,N1) = #satC(σ,N1) = 21.

Concerning the operator #disjC we have :

Proposition 1: Let N = (V,C) and N ′ = (V,C ′) be two
QCNs. We have:
(a) #disjC(N ′,N ) = #disjC(N ,N ′);
(b) For any QCN N ′′ = (V,C ′′) such that N ′′ ⊆ N ′ we

have that #disjC(N ′′,N ) ≥ #disjC(N ′,N ).

Proposition 2: Let N = (V,C) and N ′ = (V,C ′) be two
QCNs such that for all (v, v′) ∈ V ×V , C ′(v, v′) ⊆ C(v, v′)
or C ′(v, v′) ∩ C(v, v′) = ∅. We have: for all S ∈ [[N ′]],
#disjC(S,N ) = #disjC(N ′,N ).

Now, it is time to formally define the MAX-QCN problem:

Definition 2: (MAX-QCN) Given a QCN N = (V,C), the
MAX-QCN problem consists of finding a consistent scenario
S over V such that #satC(S,N ) = max{#satC(S ′,N ) :
S ′ is a consistent scenario over V }.
Note that we could propose an alternative definition of
the MAX-QCN problem by considering as solution of the
MAX-QCN problem a consistent scenario S over V that
minimizes the unsatisfied contraints of N , i.e., a sce-
nario S such that #disjC(S,N ) = min{#disjC(S ′,N ) :
S ′ is a consistent scenario over V }. Moreover, we could
consider instantiations over V rather than consistent scenarios
over V . For the purpose of this paper, the aforementioned
definition would be equivalent to Definition 2, as for the
calculi considered here one can build a solution out of a
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Fig. 2: Two QCNs N0 and N1 of IA and a solution σ of N1.

consistent scenario in polynomial time and vice versa. The
MAX-QCN problem is an optimization problem; the related
decision problem, denoted by KMAX-QCN in the sequel, can
be defined in the following way:

Definition 3: (KMAX-QCN) Given a QCN N = (V,C)
and an integer k ≥ 0, the problem KMAX-QCN consists of
deciding whether there exists or not a consistent scenario S
over V such that #satC(S,N ) ≥ k.

We have the following complexity result:

Theorem 1: Let Q be a qualitative calculus for which the
consistency checking problem is NP-Complete. We have: the
KMAX-QCN problem for Q is NP-complete.

Proof: The KMAX-QCN problem for Q is in NP as
we can, in PTIME, guess a scenario over V , check if it is a
consistent scenario over V , and check if #satC(S,N ) ≥ k.
Further, we can solve the consistency checking problem of a
QCN N = (V,C) by determining if the KMAX-QCN prob-
lem has a solution for N and the integer k = 1

2 .|V |.(|V | −
1) + |V |. Hence, Q is NP-hard as the consistency checking
problem for Q is an NP-hard problem.

Corollary 1: The KMAX-QCN problem is NP-complete
for the Interval Algebra and the RCC8 calculus.

IV. OPTIMAL CONSISTENT SCENARIOS

Given two QCNs N and N ′ defined on the same set of
variables, and an integer α, in the sequel we will consider the
consistent scenarios of N ′ which satisfy the maximal number
of constraints of N and which are disjoint from N in strictly
less than α constraints. We call these scenarios the optimal
consistent scenarios of N ′ for N w.r.t. the integer α. This
set of scenarios will be denoted by [N ′]<αN and is formally
defined in the following way:

Definition 4: Let N and N ′ be two QCNs defined over
V and α an integer such that α > 0. [N ′]<αN is the
subset of consistent scenarios of N ′ defined by [N ′]<αN =
{S ∈ [[N ′]] : #disjC(S,N ) < α and there is no S ′ ∈
[[N ′]] with #disjC(S ′,N ) < #disjC(S,N )}.
Note that, given a QCN N = (V,C), the solutions of
the MAX-QCN problem for N correspond to the set of
consistent scenarios over V belonging to the set [>V ]<αN with
α = 1

2 .|V |.(|V | − 1) + |V | + 1. Next, we will state some

properties about the set of optimal consistent scenarios. These
technical results will be used in the next section to prove the
soundness and the completeness of the proposed algorithm
for solving the MAX-QCN problem. The first result shows
that the optimal consistent scenarios of N ′ for N w.r.t. the
integer α can be obtained by considering a QCN having the
same set of solutions as N ′:

Proposition 3: Let N ,N ′,N ′′ be three QCNs over a set
of variables V and α an integer such that α ≥ 0. We have:
if N ′ and N ′′ are equivalent QCNs then [N ′]<αN = [N ′′]<αN .

The following result characterizes a case for which we have
no optimal consistent scenario:

Proposition 4: Let N = (V,C) and N ′ = (V,C ′) be two
QCNs and α an integer such that α ≥ 0. If #disjC(N ′,N ) ≥
α then [N ′]<αN = ∅.

Proof: Suppose that #disjC(N ′,N ) ≥ α. Let S
be a consistent scenario of N ′. S is a subQCN of N ′,
hence, from Proposition 1 (b) we know that #disjC(S,N ) ≤
#disjC(N ′,N ). It follows that S cannot belong to the set
[N ′]<αN . Consequently, we have that [N ′]<αN = ∅ since it
cannot contain any consistent scenario of N ′.
Now, we characterize a case where the optimal consistent
scenarios of N ′ for N w.r.t. the integer α correspond exactly
to the set of the consistent scenarios of N ′.

Proposition 5: Let N = (V,C) and N ′ = (V,C ′)
be two QCNs and α an integer such that α ≥ 0 and:
(a) #disjC(N ′,N ) < α, (b) for all (v, v′) ∈ V × V ,
C ′(v, v′) ⊆ C(v, v′) or C ′(v, v′) ∩ C(v, v′) = ∅. We have:
[N ′]<αN = [[N ′]].

Proof: By definition, we know that [N ′]<αN ⊆
[[N ′]]. Now, we prove that [N ′]<αN ⊇ [[N ′]]. By hy-
pothesis on N ′ and Proposition 2, we know that for all
S ∈ [[N ′]], #disjC(S,N ) = #disjC(N ′,N ). Moreover, as
#disjC(N ′,N ) < α, we can assert that #disjC(S,N ) < α.
From this, for all S ∈ [[N ′]], #disjC(S,N ) < α, there is no
S ′ ∈ [[N ′]] such that #disjC(S ′,N ) < #disjC(S,N ). We
can conclude that S ∈ [N ′]<αN .

Proposition 6: Let N ,N ′,N ′′ be three QCNs over a set
of variables V such that [[N ′′]] ⊆ [[N ′]] and α an integer such
that α > 0. We have: for all scenarios S ∈ [N ′]<αN , if S ∈



[[N ′′]] then S ∈ [N ′′]<α′N for any integer α′ > #disjC(S,N ).

Proposition 7: Let N = (V,C) and N ′ = (V,C) be two
QCNs, α an integer such that α ≥ 0, and (N ′1, . . . ,N ′k) a
sequence of QCNs such that [[N ′]] = [[N ′1]] ∪ . . . ∪ [[N ′k]].
We have that [N ′]<αN ⊆ [N ′1]<αN ∪ . . . ∪ [N ′k]<αN .

Proof: Let S ∈ [N ′]<αN . Since [[N ′]] = [[N ′1]] ∪ . . . ∪
[[N ′k]] there exists an integer i ∈ {1, . . . , k} such that S ∈
[[N ′i ]]. Moreover, we can note that [[N ′i ]] ⊆ [[N ′]] and α >
#disjC(S,N ). From Prop. 6, we can assert that S ∈ [N ′i ]<αN .

The following result will be fundamental in the proof of the
completeness of the proposed algorithm for MAX-QCN:

Proposition 8: Let N = (V,C) and N ′ = (V,C) be two
QCNs, α an integer such that α > 0, and (N ′1, . . . ,N ′k) a
sequence of QCNs such that [[N ′]] = [[N ′1]]∪ . . .∪ [[N ′k]]. By
defining the sequence of integers (α1, . . . , αk) with k ≥ 1 in
the following manner: α1 = α; for i ∈ {2, . . . , k}, αi = αi−1
if [N ′i−1]

<αi−1

N = ∅ else αi = #disjC(Si−1,N ), where Si−1
is some consistent scenario of [N ′i−1]

<αi−1

N ; we have:
(a) if for all i ∈ {1, . . . , k}, [N ′]<αi

N = ∅ then [N ′]<αN = ∅.
(b) if for some i ∈ {1, . . . , k}, [N ′]<αi

N 6= ∅ then [N ′l ]<αl

N ⊆
[N ′]<αN with l = max{i : i ∈ {1, . . . , k} and [N ′]<αi

N 6= ∅}.
Proof: (Sketch) We give just a partial proof for (b).

Suppose that there exists an integer i ∈ {1, . . . , k} such that
[N ′]<αi

N 6= ∅. Let S ∈ [N ′l ]<αl

N . We can show that αi ≤ α for
all i ∈ {1, . . . , k}. Hence, we have #disjC(S,N ) < αl ≤ α.
Moreover, we can assert that S ∈ [[N ′]] since N ′l ⊆ N ′. Sup-
pose by contradiction, that S 6∈ [N ′]<αN . As #disjC(S,N ) <
α and S ∈ [[N ′]], there exists a scenario S ′ different from S
such that S ′ ∈ [N ′]<αN and #disjC(S ′,N ) < #disjC(S,N ).
Note that, as S ′ ∈ [N ′]<αN , we have that S ′ ∈ [[N ′]].
Moreover, since [[N ′]] = [[N ′1]] ∪ . . . ∪ [[N ′k]], there exists
m ∈ {1, . . . , k} such that S ′ ∈ [[N ′m]]. By considering
the three possible cases m ∈ {1, . . . , l − 1}, m = l, and
m ∈ {l + 1, . . . , k}, we can show that such a scenario S ′
cannot exist. Consequentely S ∈ [N ′]<αN .

V. A COMPLETE ALGORITHM FOR MAX-QCN

To solve the MAX-QCN problem, we present here the
algorithm MaxQCN. Function MaxQCN has two parameters,
the first one being a QCN N = (V,C) for which we aim to
characterize a consistent scenario over V corresponding to a
solution of the MAX-QCN problem for N , and the second
one being a subclass A for which �G-consistency is complete
(for the consistency checking problem). Function MaxQCN
uses two main auxiliary functions called MaxQCNAux and
ExtractConsScen.

Function MaxQCNAux takes as parameters two QCNs N
and N ′ defined on a same set of variables V , an integer
α, a graph G = (V,E) intended to be a triangulated graph
of the graph of constraints of N , and a subclass A for
which �-consistency is complete. The aim of this function
is to characterize a consistent subQCN of N ′, that we denote
by Nres, whose consistent scenarios are optimal consistent
scenarios of N ′ for N with respect to α. In other terms,

[[N ′]] ⊆ [N ′]<αN and [[N ′]] 6= ∅. Moreover, the constraints of
this sub-QCN N ′′ are defined by relations of the subclass
A. In the case where [N ′]<αN is an empty set, function
MaxQCNAux will return the trivially inconsistent QCN ⊥V .
The general structure of MaxQCNAux is very close to that of
the functions proposed in [7], [10] for solving the consistency
checking problem of a QCN and to that of the function
proposed in [6] for solving the minimal labeling problem (the
problem consisting of determining the feasible base relations
of a QCN). Function MaxQCNAux consists of a branch-and-
bound method exploring the QCN N ′ to characterize one of
its sub-QCNs having the required properties. The search stops
when the whole search tree is explored. Graph G, given as pa-
rameter, is used to narrow the set of constraints to be handled
and processed during search. In a first step, MaxQCNAux uses
the closure under �G-consistency as a filtering method (line 1)
to prune some non-feasible relations of the QCN N ′ and
possibly to detect an inconsistency of the initial QCN N ′. In
the case where an inconsistency is characterized (line 3) we
know that no optimal consistent scenario exists and the QCN
⊥V is returned (line 4). In the contrary case, a second test
is realized at line 5 to check that the number of constraints
of N already unsatisfied by taking into account N ′ is less
than the maximal permitted number of unsatisfied constraints,
i.e., α. In the case where the number of non-overlapping
constraints of N and N ′ is greater than α, we can assert
that there is no optimal scenario of N ′ for N with respect to
α. Again, in this case the QCN ⊥V is returned (line 6). In
the next step, a pair of variables (v, v′) corresponding to an
edge of G not already handled is selected. The corresponding
constraint C ′(v, v′) must have the following characteristics:
it must not be defined by a relation of the subclass A, or
some base relations of C ′(v, v′) must not belong to C(v, v′)
and some base relations of C ′(v, v′) must belong to C(v, v′).
In the case where such a pair does not exist, we will see
in the sequel that the closure of N ′ with respect to the
subclass A is a consistent QCN whose consistent scenarios
are optimal consistent scenarios of the initial QCN N ′ (given
as parameter) forN with respect to α. This closure is returned
at line 9. In the contrary case, at lines 11 and 12, the relation
defining C ′(v, v′) is split into non-empty subrelations of A.
This splitting is made in two steps: at line 11 the relation
C ′(v, v′) \ C(v, v′) is split, then at line 12 the relation
C ′(v, v′)∩C(v, v′) is split. Hence, each obtained subrelation
belongs to A, and does not contain both a base relation of
C ′(v, v′)\C(v, v′) and a base relation of C ′(v, v′)∩C(v, v′).
Then, the constraint C ′(v, v′) is iteratively instantiated with
each of these subrelations. Due to the previous splitting, note
that each future constraint C ′(v, v′) will be defined by a
relation of A which is either part of C(v, v′) or distinct
from C(v, v′). The search continues through recursive calls
of MaxQCNAux. After each call, in the case where a QCN
containing better optimal consistent scenarios for N is found,
the result is updated (line 16) along with the number of
unsatisfied constraints of N . We have the following result:

Proposition 9: Let N = (V,C) and N ′ = (V,C ′) be



Function MaxQCN(N ,A)
in : A QCN N = (V,C), a subclass A.
output : A consistent scenario solution of the MAX-QCN

problem for N .
1 begin
2 G = (V,E)← Triangulation(G(N ));
3 α← 1

2
.|V |.(|V | − 1) + |V |;

4 N ′ ← MaxQCNAux(N , >V ,α,G,A) ;
5 return ExtractConsScen(N ′);

Function MaxQCNAux(N ,N ′,α,G,A)
in : A QCN N = (V,C), a QCN N ′ = (V,C′), an

integer α, a graph G = (V,E), a subclass A.
output : A QCN.

1 begin
2 N ′ ← �

G(N ′);
3 if N ′ is trivially inconsistent then
4 return ⊥V ;

5 if #disjC(N ,N ′) ≥ α then
6 return ⊥V ;

7 Select (v, v′) ∈ E such that (v, v′) has not already been
selected and (C′(v, v′) 6∈ A or ((C′(v, v′) \C(v, v′) 6= ∅)
and (C′(v, v′) ∩ C(v, v′) 6= ∅))) ;

8 if such a pair does not exist then
9 return A(N ′);

10 Nres ← ⊥V ;
11 R← splitA(C

′(v, v′) \ C(v, v′));
12 R′ ← splitA(C(v, v′) ∩ C′(v, v′));
13 foreach r ∈ R ∪R′ do
14 N ′′ ← MaxQCNAux(N , N ′[v,v′]/r ,α,G,A);
15 if N ′′ 6= ⊥V then
16 Nres ← N ′′;
17 α← #disjC(N ,N ′′);

18 return Nres;

two QCNs, A ⊆ 2B a subclass for which �G-consistency is
complete, G = (V,E) a triangulated graph such that G(N ) ⊆
G, and α an integer such that α > 0. Let Nres be the QCN
returned by MaxQCNAux with parameters N , N ′, α, G, A.
We have: if Nres = ⊥V then [N ′]<αN = ∅, else Nres is a
consistent sub-QCN of N ′ defined on A such that [[Nres]] ⊆
[N ′]<αN .

Proof: (Sketch) Let n be defined by n = |{(v, v′) ∈
E : (v, v′) not already selected, and (C ′(v, v′) 6∈ A, or
((C ′(v, v′)\C(v, v′) 6= ∅) and (C ′(v, v′)∩C(v, v′) 6= ∅)))}|.
We can make a proof by induction on n. Here we will prove
the property uniquely for the base case where n = 0.
- Case n = 0. Let M = �G(N ′). Consider in an exhaustive
manner the two possible following cases:
•M is trivially inconsistent or #disjC(N ,M) ≥ α. Function
MaxQCNAux returns ⊥V (line 4 or line 6). We have that
[[M]] = ∅ or #disjC(N ,M) ≥ α. Hence, [M]<αN = ∅. As
M and N ′ are equivalent, we have that [N ′]<αN = ∅.
• M is not trivially inconsistent and #disjC(N ,N ′) < α.
Denote by M′ the QCN A(M) (the closure of M w.r.t.
the subclass A). M′ is returned by MaxQCNAux at line 9.
As M is not trivially inconsistent and �G-consistent, we can

Function ExtractConsScen(N )
in : A consistent QCN N = (V,C).
output : A consistent scenario of N .

1 begin
2 Select (v, v′) ∈ (V × V ) such that |C(v, v′)| > 1;
3 if such a pair does not exist then
4 return N ;

5 Select a base relation b ∈ C(v, v′) such that
|C(v, v′)| > 1;

6 for b ∈ C(v, v′) do
7 N ′ ← �(N[v,v′]/{b});
8 if N ′ 6= ⊥V then
9 break;

10 return ExtractConsScen(N ′);

show that M′ = A(M) is also not trivially inconsistent and
�
G-consistent. Since M′ is defined on A, G is a triangulation
of G(M′), and �G-consistency is complete for A, we can
assert that M′ is a consistent QCN. Now, consider the
QCN M′′ defined as follows: for all (v, v′) ∈ V × V , if
(v, v′) 6∈ E or (v, v′) is a constraint not already handled
then M′′[v, v′] =M[v, v′], otherwise M′′[v, v′] = r where
r is the subrelation of A used to instantiate the constraint
between v and v′ at line 14 of function MaxQCNAux. By
construction of M′′, we can show that the constraints of
M′′ are defined by relations belonging to A, and M ⊆
M′ ⊆ M′′ ⊆ N ′. Hence, M′ ⊆ N ′. Moreover, again
by construction of M′′, we can show that ∀v, v′ ∈ V we
have that M′′[v, v′] ⊆ N [v, v′] or M′′[v, v′] ∩ N [v, v′] = ∅.
Consequently, as M′ ⊆ M′′, for all v, v′ ∈ V we have
that M′[v, v′] ⊆ N [v, v′] or M′[v, v′] ∩ N [v, v′] = ∅.
From this and the fact that M ⊆ M′, we can deduce that
#disjC(N ,M′) = #disjC(N ,M) < α. From Proposition 5,
we have that [[M′]] = [M′]<αN . As M⊆M′ ⊆ N ′ and M
is an equivalent QCN to N ′, we can assert that M′ and N ′
are equivalent. Consequently, from Proposition 3, we have
that [M′]<αN = [N ′]<αN . Hence, [[M′]] = [N ′]<αN . From all
this, we can conclude thatM′ is a consistent subQCN of N ′
defined on A such that [[M′]] ⊆ [N ′]<αN . Moreover, note that
[N ′]<αN 6= ∅ since [[M′]] 6= ∅.
- Case n > 0. We can prove the property by using the differ-
ent propositions established in Section IV, more particularly
by using Proposition 7 and Proposition 8.

One can note that, whatever the parameters given to function
MaxQCNAux, this function eventually terminates since for
each recursive call there is a new constraint which is handled.
Roughly, we can have at most 1

2 .|V |.(|V | − 1).|B| recursive
calls, where V is the set of variables of the input QCNs.

Now, consider function ExtractConsScen. This function
takes as parameter a QCN N = (V,C) intended to be a QCN
defined on a subclass A for which �-consistency is complete.
This function returns a consistent scenario of the QCN N
given as parameter. For this purpose, at each step it considers
a constraint defined by a non-singleton relation (line 5) and
selects a base relation for which we are ensured to have a
consistent scenario satisfying it. This choice is realized by



use of the �-consistency method (line 7). The base relation
selected is used to define the constraint selected. The process
continues through a recursive call of ExtractConsScen. The
function stops after at most 1

2 .|V |.(|V |−1).|B| recursive calls.
Each call realizes at most |B| computations of closures under
�-consistency.

Proposition 10: Let N be a consistent QCN defined on a
subclass A for which �-consistency is complete. We have that
ExtractConsScen with N as parameter returns a consistent
scenario of A.

Function ExtractConsScen is a generic function running
for subclasses for which �-consistency is complete. Note that
for some subclasses we can have other more specific functions
that can perform better for obtaining a similar result.

Function MaxQCN is the main function of the proposed
algorithm. It takes two parameters: a QCN N for which
we want to solve the MAX-QCN problem and a subclass A
for which �G-consistency is complete. A triangulation of the
constraint graph of N is computed at line 2. Along with
the triangulated graph G of N , >V , α = 1

2 .|V |.(|V | −
1) + |V | + 1, and the subclass A are used as parame-
ters of a call to MaxQCNAux at line 4. We know that
[>V ]<

1
2 .|V |.(|V |−1)+|V |+1

N corresponds exactly to the set of
solutions of the MAX-QCN problem for N , in particular, it
corresponds to a non-empty set of consistent scenarios over
V , hence, we are ensured from Proposition 9 that the call of
MaxQCNAux returns a QCN N ′ which is a consistent QCN
defined on A such that [[N ′]] ⊆ [>V ]<

1
2 .|V |.(|V |−1)+|V |+1

N .
Using function ExtractConsScen, a consistent scenario of this
QCN is extracted and returned at line 5. We have:

Theorem 2: Let N be a QCN and A ⊆ 2B a subclass for
which �-consistency is complete. Function MaxQCN, with
N and A as parameters, returns a solution of the MAX-QCN
problem for N .

A naive variant of the algorithm presented in this section,
that we will use in the experimental evaluation to follow
to stress the efficiency of our approach, is obtained by
considering the set of singleton relations as a splitset and
the complete graph as a chordal graph in all cases.

VI. EXPERIMENTAL EVALUATION

In this section, we make a preliminary evaluation of the
algorithms that we discussed in Section V, namely, the
naive algorithm that operates on a complete constraint graph
trying to instatiate a base relation to every constraint, and
the state-of-the-art algorithm that makes use of a chordal
constraint graph and a tractable subclass of relations. Both of
these algorithms are implemented under the hood of a novel
reasoner called Medusa. In particular, Medusa differentiates
its functionality based on particular invocation flag options,
and is thus able to simulate both considered algorithms. In
what follows, Medusa will denote the naive algorithm, and
Medusa(G,A) the state-of-the-art algorithm where G is a
chordal graph and A some tractable subclass of relations.

Technical Specifications: The experiments were carried
out on a computer with an Intel Core i7-2820QM processor

with a CPU frequency of 2.30 GHz per core, 8 GB of RAM,
and the Trusty Tahr x86 64 OS (Ubuntu Linux). Medusa was
implemented in Python and run with PyPy 2.2.1 (http://pypy.
org/), which fully implements Python 2.7. Only one of the
CPU cores was used.

Dataset and Measures: We considered random datasets
consisting of RCC-8 networks generated by the BA(n,m)
model [11], the use of which is well motivated in [12],
[13], and RCC-8 and IA networks generated by the standard
A(n, d, l) model [14], used extensively in literature. In short,
BA(n,m) creates random scale-free-like networks of size n
and a preferential attachment value m, and A(n, d, l) creates
random networks of size n, degree d, and an average number
l of base relations per edge. For model BA(n,m) the average
number of base relations per edge defaults to |B|/2, where B
is the set of base relations of a qualitative constraint language
as a reminder.

Regarding model BA(n,m), we considered 100 unsatisfi-
able RCC-8 networks for each size n between 10 and 150
nodes with a 10-node step and a preferential attachment
value of m = 2. For this specific value of m and for the
network sizes considered, the networks of model BA(n,m) lie
within the phase transition region, where it is equally possible
for networks to be satisfiable or unsatisfiable, thus, they are
harder to solve [13]. Unsatisfiable network instances were
randomly filtered out of a large number of 10 000 instances
that were created in the phase transition region. Regarding
model A(n, d, l), we considered 100 unsatisfiable networks
for each average node degree d between 4 and 14 with a 2-
degree step and for each of the calculi of RCC-8 and IA. For
RCC-8 we set a node size of n = 30 and an average number
of base relations per edge of l = 4.0, and for IA we set values
of n = 20 and l = 6.5 respectively. For this specific range of
node degrees d, the networks of model A(n, d, l) lie within the
phase transition region, similarly to the case of the scale-free
networks described earlier. Again, we only used unsatisfiable
network instances that were randomly filtered out of a large
number of 10 000 instances that were created in the phase
transition region.

Our experimentation involves two measures which we de-
scribe as follows. The first measure considers the performance
of Medusa and Medusa(G,A) based on the percentage (%) of
network instances that they are able to solve within a 60-sec
timeout per instance. We found this timeout to be adequate
for separating network instances that were able to be solved
within a reasonable amount of time, and network instances
that were impossible to be dealt with even after several
minutes of CPU-intensive reasoning. The second measure
concerns the average splitting ratio ρ = s/s′ for the reasoner
considered, where s′ denotes the number of base relations of
an initial constraint in the network N ′ that is given as input
to function MaxQCNAux and s denotes the number of splits
that are generated from s′ with respect to some splitset, such
as a tractable subclass of relations A. The lesser the value of
ρ, the better performance we have. Clearly, if we use the set
of singleton relations as a splitset, as is the case with Medusa,
we have that ρ = 1.0.
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Fig. 3: Performance comparisons for RCC-8 and IA networks.

Results: In what follows, and with respect to
Medusa(G,A), we note that we used the class of Horn
relations as a maximal tractable subclass of relations A both
for RCC-8 and IA respectively (denoted for example by Ĥ8

for RCC-8 [14]), and a triangulation procedure to obtain a
chordal constraint graph G based on the maximum cardinality
search algorithm [15], as described in [13].

Regarding model BA(n,m), the experimental results are
shown in Figure 3a. Medusa(G,A) is able to solve 100% of
the smaller RCC-8 network instances and around 40% of the
bigger ones in the given 60-sec timeout per instance. On the
other hand, Medusa is only able to solve around 50% of the
smaller RCC-8 network instances and none of the bigger ones
in the given timeout. For Medusa(G,A), the average splitting
ratio ρ fluctuated around ∼ 0.36 for all network sizes.

Regarding model A(n, d, l), the experimental results for
RCC-8 and IA are shown in Figure 3b and Figure 3c re-
spectively. Medusa(G,A) is able to solve around 90% of
the sparser RCC-8 network instances and around 10% of the
denser ones in the given 60-sec timeout per instance. On the
other hand, Medusa is only able to solve around 4% of the
sparser RCC-8 network instances and none of the denser ones
in the given timeout. In fact, Medusa becomes completely
impractical for networks of an average degree d > 4. For
Medusa(G,A), the average splitting ratio ρ ranged from a
value of ∼ 0.36 for the sparser RCC-8 networks to a value of
∼ 0.46 for the denser ones. The results for IA are qualitatively
similar, although it should be noted that the performance of
both Medusa and Medusa(G,A) deteriorates at a faster pace
than the one obtained for RCC-8. This is merely explained by
the fact that IA is a bigger and hence harder calculus to deal
with than RCC-8. For Medusa(G,A), the average splitting
ratio ρ ranged from a value of ∼ 0.41 for the sparser IA
networks to a value of ∼ 0.59 for the denser ones.

VII. CONCLUSION

In this paper we introduced and studied the MAX-QCN
problem, which is the problem of obtaining a consistent
scenario maximizing the number of constraints satisfied in
a given QCN. To solve this problem we proposed a generic
algorithm taking advantage of a class of relations for which

�
G-consistency is complete for the consistency checking prob-
lem. The experimentation that we have conducted on qualita-
tive constraint networks of IA and RCC8 shows the interest of
our approach. Future work consists of using other methods,
in particular methods of local search, and comparing the
behavior of our algorithm with these different methods. Other
research perspectives consist of studying encodings of the
MAX-QCN problem into the partial MAX-SAT problem and,
using our approach to propose algorithm to solve merging
problems such as the one handled in [16].
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