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Abstract. The Interval Algebra (IA) and a fragment of the Region Con-
nection Calculus (RCC), namely, RCC-8, are the dominant Artificial In-
telligence approaches for representing and reasoning about qualitative
temporal and topological relations respectively. In this framework, one
of the main tasks is to compute the path consistency of a given Qual-
itative Constraint Network (QCN). We concentrate on the partial path
consistency checking problem problem of a QCN, i.e., the path consis-
tency enforced on an underlying chordal constraint graph of the QCN,
and propose an algorithm for maintaining or enforcing partial path con-
sistency for growing constraint networks, i.e., networks that grow with
new temporal or spatial entities over time. We evaluate our algorithm
experimentally with QCNs of IA and RCC-8 and obtain impressive results.
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1 Introduction

Spatial and temporal reasoning is a major field of study in Artificial Intelligence;
particularly in Knowledge Representation. This field is essential for a plethora
of areas and domains that include, but are not limited to, ambient intelligence,
dynamic GIS, cognitive robotics, and spatiotemporal design [7]. The Interval
Algebra (IA) [1] and a fragment of the Region Connection Calculus [16], namely,
RCC-8, are the dominant Artificial Intelligence approaches for representing and
reasoning about qualitative temporal and topological relations respectively.

The state-of-the-art techniques to enforce partial path consistency [8] on a
set of IA or RCC-8 relations consider a fixed size constraint network to represent
and reason with the relations. However, it may be the case that temporal in-
tervals (the case for IA) or regions (the case for RCC-8) are not known a priori,
but arrive continuously within different fragments of time. This is a real prob-
lem and has not been addressed before in literature. The term “incremental”
has been used to describe the problem of maintaining or enforcing partial path
consistency for a fixed size network when new constraints among existing nodes
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are added or existing constraints are tightened. This approach is well described
in the work of Gerevini [10] for qualitative temporal reasoning (where complete
underlying constraint graphs are considered and, thus, partial path consistency
is identical to path consistency [8, chapt. 6]) and the work of Planken et al. for
the Simple Temporal Problem (STP) [15], and differs from our approach in that
we consider extensions of a given network with new temporal or spatial entities.
In a recent theoretical work, Huang showed that IA and RCC-8 have canonical
solutions [13], i.e., path consistent IA or RCC-8 networks with relations from
some maximal tractable subset of their signatures can be extended arbitrarily
with the addition of new temporal or spatial entities respectively. In a more
practical view, until recently state-of-the-art techniques made use of a matrix to
represent a constraint network [20]. Growing a constraint network represented
by an adjacency matrix requires O(|V |2) for every variable addition.

In this paper, we concentrate on the problem of maintaining or enforcing
partial path consistency for growing constraint networks and make the following
contributions: (i) we present an algorithm that maintains or enforces partial path
consistency for an initial partially path consistent constraint network augmented
by a new set of temporal or spatial entities and their accompanying constraints,
(ii) we implement our algorithm making use of chordal graphs and a hash table
based adjacency list to represent and reason with the QCNs as described in [20],
(iii) we evaluate our algorithm experimentally with random and real QCNs of
IA and RCC-8 and obtain quite interesting results.

The paper is organized as follows. Section 2 introduces the theoretical back-
ground of our work. In Section 3 we present our algorithm that maintains or
enforces partial path consistency for an initial partially path consistent QCN
augmented by a new set of temporal or spatial entities and their accompanying
constraints. In Section 4 we use large QCNs of IA and RCC-8 to experimentally
compare our algorithm with the state-of-the-art, one-shot partial path consis-
tency algorithm that considers the whole network size all at once, and, finally,
in Section 5 we conclude and give directions for future work.

2 Preliminaries

In this section we formally introduce the IA and RCC-8 constraint languages and
partial path consistency, and chordal graphs along with triangulation.

The IA and RCC-8 constraint languages. A (binary) qualitative temporal
or spatial constraint language [18] is based on a finite set B of jointly exhaustive
and pairwise disjoint (JEPD) relations defined on a domain D, called the set of
base relations. The set of base relations B of a particular qualitative constraint
language can be used to represent definite knowledge between any two entities
with respect to the given level of granularity. B contains the identity relation
Id, and is closed under the converse operation (−1). Indefinite knowledge can
be specified by unions of possible base relations, and is represented by the set
containing them. Hence, 2B will represent the set of relations. 2B is equipped



Y

precedes

meets

overlaps

starts

during

finishes

equals

p

m

o

s

d

f

eq

pi

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y

X

(a) The base relations of IA

X Y

X DC Y

X Y

X EC Y

Y

X

X TPP Y

Y

X

X NTPP Y

X Y

X PO Y

X

Y

X EQ Y X TPPi Y

Y

X

X NTPPi Y

Y
X

(b) The base relations of RCC-8

Fig. 1: IA and RCC-8 constraint languages

with the usual set-theoretic operations (union and intersection), the converse
operation, and the weak composition operation. The converse of a relation is
the union of the converses of its base relations. The weak composition � of two
relations s and t for a set of base relations B is defined as the strongest relation
r ∈ 2B which contains s ◦ t, or formally, s � t = {b ∈ B | b ∩(s ◦ t) 6= ∅}, where
s ◦ t = {(x, y) | ∃z : (x, z) ∈ s ∧ (z, y) ∈ t} is the relational composition.

The set of base relations of IA [1] is the set {eq, p, pi, m, mi, o, oi, s, si, d,
di, f , fi}. These thirteen relations represent the possible relations between time
intervals, as depicted in Figure 1a. The set of base relations of RCC-8 [16] is the
set {dc, ec, po, tpp, ntpp, tppi, ntppi, eq}. These eight relations represent the
binary topological relations between regions that are non-empty regular subsets
of some topological space, as depicted in Figure 1b (for the 2D case). IA and
RCC-8 networks are qualitative constraint networks (QCNs), with relation eq
being the identity relation in both cases.

Definition 1. A RCC-8, or IA, network is a pair N = (V,C) where V is a
non empty finite set of variables and C is a mapping that associates a relation
C(v, v′) ∈ 2B to each pair (v, v′) of V × V . C is such that C(v, v) ⊆ {eq} and
C(v, v′) = (C(v′, v))−1.

Note that we always regard a QCN as a complete network. The underlying
(constraint) graph of a QCNN = (V,C) is a graph G = (V,E), for which we have
that (v, v′) ∈ E iff C(v, v′) 6= B. Given two QCNs N = (V,C) and N ′ = (V ′, C ′),
and their respective underlying graphs G = (V,E) and G′ = (V ′, E′) where
∀(v, u) ∈ E′ we have that v ∈ V ′\V or u ∈ V ′\V ,N]N ′ denotes the QCNN ′′ =
(V ′′, C ′′), where V ′′ = V ∪ V ′, C ′′(v, v′) = B for all (v, v′) ∈ (V \ V ′)× (V ′ \ V ),
C ′′(v, v′) = C(v, v′) for all (v, v′) ∈ (V × V ), and C ′′(v, v′) = C ′(v, v′) for all
(v, v′) ∈ (V ′ \ V ) × V ′. The underlying graph of N ] N ′ is graph G ∪ G′ =
(V ∪V ′, E∪E′). In what follows, C(vi, vj) will be also denoted by Cij . Checking
the consistency of a QCN of IA or RCC-8 is NP-complete in general [14, 19].
However, there exist large maximal tractable subclasses of IA and RCC-8 for
which consistency checking can be done in polynomial time, O(n3) in particular,
with a path consistency algorithm. These maximal tractable subclasses are the
classes Ĥ8, C8, and Q8 for RCC-8 [17] and HIA for IA [14]. When path consistency
is enforced on the underlying constraint graph of an input QCN, we refer to it
as partial path consistency. In our case, and throughout this paper, we enforce



path consistency on the underlying chordal constraint graph of a given QCN,
thus, whenever we use the term partial path consistency we implicitly consider
underlying chordal constraint graphs. Partial path consistency was originally
introduced for finite domain CSPs in [8] and it was most recently used in the
case of IA and RCC-8 networks in [9] and [21] respectively.

Chordal graphs and Triangulation. We begin by introducing the definition
of a chordal graph. More results regarding chordal graphs, and graph theory in
general, can be found in [11].

Definition 2 ([11]). Let G = (V,E) be an undirected graph. G is chordal or
triangulated if every cycle of length greater than 3 has a chord, which is an edge
connecting two non-adjacent nodes of the cycle.

Chordality checking can be done in (linear) O(|V | + |E|) time for a given
graph G = (V,E) with the maximum cardinality search algorithm which also
constructs an elimination ordering α as a byproduct [4]. If a graph is not chordal,
it can be made so by the addition of a set of new edges, called fill edges. This
process is usually called triangulation of a given graph G = (V,E) and can run as
fast as in O(|V |+(|E⋃

F (α)|)) time, where F (α) is the set of fill edges that result
by following the elimination ordering α, eliminating the nodes one by one, and
connecting all nodes in the neighborhood of each eliminated node, thus, making
it simplicial in the elimination graph. If the graph is already chordal, following
the elimination ordering α means that no fill edges are added, i.e., α is actually
a perfect elimination ordering [11]. In a QCN fill edges correspond to universal
relations, i.e., non-restrictive relations that contain all base relations (hence, the
universal relation is equivalent to B). Chordal graphs become relevant in the
context of qualitative reasoning due to the following result obtained in [2, 21]
that states that partial path consistency is equivalent to path consistency in
terms of consistency checking of tractable QCNs:

Proposition 1 ([2, 21]). For a given RCC-8, or IA, network N = (V,C) with
relations from the maximal tractable subclasses Ĥ8, C8, and Q8, or HIA, respec-
tively, and for G = (V,E) its underlying chordal graph, if ∀(i, j), (i, k), (j, k) ∈ E
we have that Cij ⊆ Cik � Ckj, then N is consistent.

In general, partial path consistency can be significantly faster than path
consistency as the latter considers much more triangles of relations for a given
QCN [9,21]. (A chordal graph has less edges than a complete graph in general.)

3 The iPPC+ algorithm

In this section we present a new algorithm, viz., iPPC+, that enforces partial path
consistency incrementally, together with an auxiliary algorithm, viz., GiPPC, that
uses iPPC+ to simulate the construction of a QCN of n entities. Symbol + is only
used to differentiate iPPC+ from the iPPC algorithm for the STP of Planken et



al. [15], as we do not consider subsequent edge tightenings within a fixed size
QCN, but rather extensions of a given QCN with new temporal or spatial entities
accompanied by new sets of constraints. iPPC+ is structurally close to the one-
shot partial path consistency algorithm presented in [9] and in [21] for IA and
RCC-8 respectively. In what follows, we will refer to the one-shot partial path
consistency algorithm simply as PPC.

Function iPPC+(N ]N ′, G, G′)

in : A QCN N ]N ′ = (V ′′, C′′), and two chordal graphs G = (V,E) and
G′ = (V ′, E′).

output : False if network N ]N ′ results in a trivial inconsistency (contains the
empty relation), True if the modified network N ]N ′ is partially path
consistent.

1 begin
2 Q ← {(i, j) | (i, j) ∈ E′};
3 while Q 6= ∅ do
4 (i, j) ← Q.pop();
5 foreach k such that (i, k), (k, j) ∈ E ∪ E′ do
6 t ← C′′ik ∩ (C′′ij � C′′jk);
7 if t 6= C′′ik then
8 if t = ∅ then return False;
9 C′′ik ← t; C′′ki ← t−1;

10 Q ← Q ∪ {(i, k)};
11 t ← C′′kj ∩ (C′′ki � C′′ij);
12 if t 6= C′′kj then
13 if t = ∅ then return False;
14 C′′kj ← t; C′′jk ← t−1;
15 Q ← Q ∪ {(k, j)};

16 return True;

iPPC+ receives as input a QCN N ]N ′ = (V ′′, C ′′), where N = (V,C) is the
initial partially path consistent QCN augmented by a new QCN N ′ = (V ′, C ′),
and G = (V,E) and G′ = (V ′, E′) are their respective underlying chordal graphs
where ∀(v, u) ∈ E′ we have that v ∈ V ′ \ V or u ∈ V ′ \ V . The output of algo-
rithm iPPC+ is False if network N]N ′ results in a trivial inconsistency (contains
the empty relation), and True if the modified network N ]N ′ is partially path
consistent and not trivially inconsistent. The queue data structure is instatiated
by the set of edges E′ (line 2), i.e., the set of edges corresponding to the under-
lying graph of the new QCN N ′. Path consistency is then realised by iteratively
performing the following operation until a fixed point C ′′ is reached: ∀i, j, k do
C ′′ij ← C ′′ij ∩ (C ′′ik �C ′′kj), where edges (i, k), (k, j) ∈ E ∪E′ (line 5). Within
the set of edges E′ we implicitly consider a small number of edges that maintain
chordality of the underlying constraint graph G∪G′ of QCN N ]N ′ (as it is pos-
sible that E′ introduces cycles). These edges can be found before each appliance
of the iPPC+ algorithm in time at most linear in the number of vertices [5]. In
this paper, we always first construct the graph consisting of all temporal or spa-



tial entities and constraint edges that will be added and triangulate it once, as it
is also done in [15, chap. 5], thus reserving incrementally maintaining chordality
for future work. The aforementioned path consistency operation will result in a
partially path consistent network N ′, and a (possibly) modified partially path
consistent network N after constraint tightenings that might occur. Since G∪G′
is a chordal graph, it follows that QCN N ]N ′ is partially path consistent with
respect to its underlying chordal graph G ∪G′, and, thus, due to Proposition 1
we can assert the following theorem:

Theorem 1. For a given RCC-8, or IA, network N ]N ′ = (V ′′, C ′′) with rela-
tions from classes Ĥ8, C8, and Q8, or HIA, respectively, where N = (V,C) is the
initial partially path consistent QCN augmented by a new QCN N ′ = (V ′, C ′),
and G = (V,E) and G′ = (V ′, E′) are their respective underlying chordal graphs
where ∀(v, u) ∈ E′ we have that v ∈ V ′ \ V or u ∈ V ′ \ V , function iPPC+
decides the consistency of QCN N ]N ′ with respect to chordal graph G ∪G′.

Regarding data structures, the QCNs are represented by a hash table based
adjacency list as described in [20]. This recent technical advancement in qualita-
tive reasoning allows us to extend a QCN with new temporal or spatial entities
in constant time.

Function GiPPC(N , G)

in : A QCN N = (V,C), and a chordal graph G = (V,E).
output : False if network N results in a trivial inconsistency, True if the

modified network N is partially path consistent.
1 begin
2 N1 ]N2 ] . . . ]Ni ← N ; N ′ ← N1;
3 foreach k ← 2 to i do
4 if ! iPPC+(N ′ ]Nk, G

′, Gk) then return False;
5 N ′ ← N ′ ]Nk;

6 N ← N ′;
7 return True;

GiPPC receives as input a QCN N together with its underlying chordal graph
G, and applies iPPC+ iteratively (line 4) on a decomposition of N (line 2). This
decomposition can be any partition of the set of variables. If we start with a
single-entity QCN N1 and extend it with a new QCN Ni of one new entity at a
time applying iPPC+ in total n−1 times (thus, 2 ≤ i ≤ n), it follows that we will
perform O(δ2·|E2| + . . . + δn·|En|) intersection and composition operations for
constructing a QCN of n temporal or spatial entities, where δi is the maximum
degree of a vertex of chordal graph ((G1∪G2)∪. . .)∪Gi and O(|Ei|) is the number
of constraints that the new QCN Ni contributes to QCN ((N1 ]N2) ] . . .) ]Ni.
As δ2 ≤ . . . ≤ δn and E2 ∪ . . . ∪ En = E (i.e., the no. of edges in the n entities
constraint network after the nth entity is added), it follows that the complexity
of iPPC+ is asymptotically upper bounded by O(δn·|E|), which is the complexity
of PPC. Thus, we increase on average the performance of applying partial path
consistency, as we will also find out in the experimentation to follow, and retain
the same worst-case complexity.
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Fig. 2: QCNs with respect to their constraint graphs

3.1 Running Example

Before moving on to our running example, it is important to explain the notions
of processed edges and consistency checks. An edge is processed whenever it is
popped out of the queue (line 4), and a consistency check takes place whenever
we apply the intersection operator (∩) between two constraints (lines 6 and 11).
In our running example we will demonstrate how iPPC+ is able to perform better
than the one-shot partial path consistency algorithm (PPC) originally presented
in [9] for the case of IA and in [21] for the case of RCC-8. In what follows,
we always give the chordal graph G ∪ G′ of QCN N ] N ′ as input to iPPC+
to facilitate description, as the initial network N , along with graph G, and its
augmentation N ′, along with graph G′, are easily identifiable at each step.

Consistent case. Let us consider the consistent RCC-8 network in Figure 2a. We
will first build a partial path consistent version of this network incrementally,
beginning with node 0 and adding nodes 1, 2, and, 3, one at each step. We always
pop edges from the left of the queue and push to the right (FIFO), and whenever
needed we use the converse relation corresponding to an edge. First, ({0}, ∅) is
given as input to iPPC+ with no edges whatsoever, the queue is initialized by
an empty set, no edges are processed, and, thus, no consistency checks occur.
Then, ({0, 1}, {(0, 1)}) is given as input to iPPC+, the queue is initialized with
the set of edges {(0, 1)}, a single edge is processed, and no consistency checks
occur as there are no triangles in the network. Then, ({0, 1, 2}, {(0, 1), (0, 2),
(1, 2)}) is given as input to iPPC+, the queue is initialized with the set of edges
{(1, 2)}, viz., the constraint edges that accompany the newly inserted spatial
entity (region) 2. Edge (0, 2) is not included in the queue as it corresponds to
the universal relation ∗ and we do not consider it at all during initialization
(this detail is not provided in algorithm iPPC+). (The intersection of ∗ with
any other relation leaves the latter relation intact.) Edge (1, 2) is popped out
of the queue. Two consistency checks take place among edges (0, 1), (0, 2), and
(1, 2), leading to the pruning of the universal relation ∗ for edge (0, 2) into the
relation DC ∨EC, and, edge (0, 2) is inserted in the queue which now holds the
set of edges {(0, 2)}. Edge (0, 2) is popped out of the queue. Two consistency
checks take place among edges (0, 1), (0, 2), and (1, 2), leading to no pruning
of relations for edges (0, 1) and (1, 2). Finally, ({0, 1, 2, 3}, {(0, 1), (0, 2), (0, 3),



(1, 2), (2, 3)}) is given as input to iPPC+, the queue is initialized with the set of
edges {(0, 3), (2, 3)}. Both edges are popped out of the queue, each one leading
to two consistency checks, with no further pruning of relations. In total we have
processed 5 edges and performed 8 consistency checks.

We now proceed with PPC which is fairly easier to describe. First, ({0, 1, 2, 3},
{(0, 1), (0, 2), (0, 3), (1, 2), (2, 3)}) is given as input to PPC. The queue is ini-
tialized with the set of edges {(0, 1), (0, 3), (1, 2), (2, 3)}. Edge (0, 1) is popped
out of the queue. Two consistency checks take place among edges (0, 1),(0, 2),
and (1, 2), leading to the pruning of the universal relation ∗ for edge (0, 2) into
the relation DC ∨EC. Edge (0, 2) is inserted in the queue which now holds the
set of edges {(0, 3), (1, 2), (2, 3), (0, 2)}. All edges are popped out of the queue
with no further pruning of relations. Edges (0, 3), (1, 2), and (2, 3) lead to two
consistency checks each, and edge (0, 2) to four, as it is part of two triangles. In
total we have processed 5 edges and performed 12 consistency checks.

PPC proccesses the same number of edges as iPPC+, but performs 4 more
consistency checks. The numbers may vary a bit depending on the order of the
edges in the initialized queue (in our running example we have considered a
sorted initial queue of edges), but the trend is that for consistent QCNs, iPPC+
will perform less consistency checks than PPC, and will process only slightly more
edges than PPC, depending on whether an edge already exists in the queue or
not. (Since PPC works with a large queue, an edge might not have to be popped
and pushed often as it may already exist in queue.)

Inconsistent case. Let us consider now the inconsistent QCN in Figure 2b. Re-
gions 0, 1, 2, and 3 are all equal to each other (they are essentially the one same
region), thus, regions 0 and 3 can not be disconnected. We will not go into detail
as we did with the consistent case, by now the reader should be able to verify
(assuming a sorted initial queue of edges in every case) that iPPC+ processes in
total 4 edges and performes 5 consistency checks, while PPC processes in total 2
edges and performes 3 consistency checks. In fact, Figure 2b describes the worst
case scenario for iPPC+; an inconsistency that occurs when the last temporal or
spatial entity is added in the network. By that point iPPC+ will have already
fully reasoned with all previous entities and their accompanying constraints. On
the other hand, PPC will always do a first iteration of the queue, and might
be able to immediately capture the inconsistency, as with our running example.
Again, the numbers may vary a bit depending on the order of the edges in the
initialized queue, but the trend is that for inconsistent QCNs iPPC+ will perform
more consistency checks than PPC, and will process more edges than PPC.

Concluding our running example, we have observed that iPPC+ should per-
form better than PPC in the case of consistent QCNs and worse than PPC in the
case of inconsistent QCNs. Further, iPPC+ works with a very small queue at each
step. It is natural that a path consistency algorithm will run faster when there
is an inconsistency in the input network, as the inconsistency will not allow the
algorithm to reason exhaustively with the network relations. Thus, we expect
that the overall performance of iPPC+ should be better than that of PPC in the
average case. We are about to experimentally verify this in the next section.
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Fig. 3: Performance comparison of iPPC+ and PPC for RCC-8 networks

4 Experimental evaluation

We considered random datasets consisting of large IA and RCC-8 networks gen-
erated by the BA(n,m) model [3], the use of which is well motivated in [20],
and the standard A(n, d, l) model [19], used extensively in literature. In short,
BA(n,m) creates random scale-free-like networks of size n and a preferential at-
tachment value m, and A(n, d, l) creates random networks of size n, degree d, and
an average number l of IA and RCC-8 relations per edge. For model BA(n,m) the
average number of IA or RCC-8 relations per edge defaults to |B|/2, where B is the
set of base relations of IA or RCC-8 respectively. We also considered real RCC-8
datasets that consist of admingeo [12] and gadm-rdf (http://gadm.geovocab.
org/) comprising 11761/77907 nodes/edges and 276728/590865 nodes/edges re-
spectively. In short, admingeo describes the administrative geography of Great
Britain using RCC-8 relations, and gadm-rdf the world’s administrative areas
likewise. The experiments were carried out on a computer with a CPU fre-
quency of 2.00 GHz, 4 GB RAM, and the Lucid Lynx x86 64 OS (Ubuntu
Linux). The implementations of iPPC+ and PPC were run with the CPython
interpreter (http://www.python.org/), which implements Python 2.6. Only

http://gadm.geovocab.org/
http://gadm.geovocab.org/
http://www.python.org/


one of the CPU cores was used for the experiments. Regarding iPPC+, we be-
gin with a single node and grow the network one node at a time. All tools
and datasets used in this paper can be found online in the following address:
http://www.cril.fr/~sioutis/work.php.

Random datasets. BA(n,m) model: For RCC-8 we considered 30 networks for
each size between 1000 and 10000 nodes with a 1000 step and a preferential
attachment value of m = 2. For this specific value of m and for the network
sizes considered, the networks lie within the phase transition region, where it
is equally possible for networks to be consistent or inconsistent, thus, they are
harder to solve [20]. We assess the performance of iPPC+ and PPC using the
following parameters: average CPU time, median CPU time, average number
of processed edges, and average number of consistency checks. On the average
case, i.e., when all networks are considered, iPPC+ processes around 26.8% more
edges than PPC, as shown in Figure 3a, iPPC+ performs around 15.3% less con-
sistency checks than PPC, as shown in Figure 3b, and, finally, regarding average
CPU time, iPPC+ runs around 18.9% faster than PPC, and 21.3% faster in the
final step where networks of 10000 nodes are considered, as shown in Figure 3c;
for the networks of 10000 nodes iPPC+ runs in an average time of 15.3 sec, and
PPC in 19.4 sec. In Figure 3d we can also see the median CPU time for path
consistent and inconsistent networks. The interesting thing to note is that in the
case of inconsistent networks the median allows us to get rid of some outlying
measurements that influence the average CPU time in Figure 3c. As our dataset
consists of a little more than 50% inconsistent networks for almost all network
sizes, the diagram for the median CPU time for the combined dataset of path
consistent and inconsistent networks was very close to that of the inconsistent
case, as in almost all cases the median would correspond to the CPU processing
time of an inconsistent network. Thus, we did not include this diagram as it was
pretty erratic and did not offer any additional information.

For IA we considered 30 networks for each size between 500 and 5000 nodes
with a 500 step and a preferential attachment value of m = 3. We found that
for this specific value of m and for the network sizes considered, the networks lie
within the phase transition region, as is the case with RCC-8. However, we note
that the phase transition for IA occurs for a different value of m (viz., m = 3)
than the value of m for RCC-8 (viz., m = 2). This is probably because IA is a big-
ger calculus than RCC-8, containing 13 base relations instead of 8 respectively,
which allows for consistent networks to be denser as there are more relations to
be pruned and more relations that can support consistency in the network. On
the average case, iPPC+ runs around 27.4% faster than PPC, and 34.4% faster
in the final step where networks of 5000 nodes are considered; for the networks
of 5000 nodes iPPC+ runs in an average time of 44 sec, and PPC in 67.1 sec.

A(n, d, l) model: Due to space constraints it is not possible to give analytical
figures regarding this model. However, it should suffice to note that experimen-
tation using this model yielded qualitatively similar results with those using the
BA(n,m) model, i.e., we had roughly the same trends and speed-ups for both
RCC-8 and IA calculi. In particular, for 50 RCC-8 networks of 1000 nodes and 50
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IA networks of 500 nodes in the phase transition region there was a speed-up of
around 20% and 30% respectively.

Real datasets. Both admingeo and gadm-rdf are consistent RCC-8 networks com-
prising 11761/77907 nodes/edges and 276728/590865 nodes/edges respectively.
iPPC+ was able to enforce partial path consistency on admingeo in 267.6 sec,
and PPC in 349.08 sec. Hence, regarding admingeo, iPPC+ runs 22.6% faster
than PPC. Regarding gadm-rdf, iPPC+ outruns PPC even more significantly.
In particular, iPPC+ was able to enforce partial path consistency on gadm-rdf

in 6.27 sec, and PPC in 10.88 sec. This translates to iPPC+ running 42.4%
faster than PPC regarding gadm-rdf. We note that our findings concerning real
datasets agree with the findings concerning random datasets. Surprisingly, both
algorithms run the gadm-rdf experiment faster than the admingeo one, but this
is due to more relations being inferred in the latter case as a result of dataset
particularities that affect the reasoning process.

At this point we conclude our experimentation. We have demonstrated that
iPPC+ performs better than PPC on average for random QCNs of IA and RCC-8,
and real QCNs of RCC-8. It should be noted that since iPPC+ works with a small
queue at each incrementation step (as it considers the edges of a subnetwork of
the whole network), as opposed to a full queue utilized by PPC (as it considers
the edges of the whole network), iPPC+ is also much more memory efficient. To
the best of our knowledge, the networks of IA and RCC-8 used in this paper are
the biggest ones to date of all others that exist in literature (which scale up to
a few hundred nodes only).

5 Conclusion and Future work

In this paper we presented an algorithm, viz., iPPC+, for maintaining or en-
forcing partial path consistency for growing constraint networks, i.e., networks
that grow with new temporal or spatial entities over time. Through a complexity
analysis, and thorough experimental evaluation, we showed that iPPC+ is able
to perform better than the state-of-the-art one-shot partial path consistency al-
gorithm (PPC) originally presented in [9] for IA and in [21] for RCC-8, which
is an advancement in the field of qualitative reasoning. The importance of our
results can be roughly compared with those of Bessiére in [6], in that we also
present an improvement of the state-of-the-art path consistency algorithm that
on average increases its performance by avoiding redundant consistency checks,
and, thus, table lookups. However, in our case, our approach is both more time
and memory efficient and appropriate for all network sizes. Thus, state-of-the-
art reasoners can immediately gain a performance boost by opting for iPPC+
as the preprocessing step in their backtracking algorithms for general networks,
but also for solving tractable QCNs.

Future work consists of exploring if we can also have an approach for incre-
mentally building consistent QCNs by using iPPC+ as the consistency checking
step of a backtracking algorithm, i.e., we would like to investigate if in backtrack-
ing there is any benefit in reasoning with a smaller network, as a result of re-



versing the incremental building process. Finally, iPPC+ is tailored for dynamic
spatial and temporal reasoning and, in this regard, it can become completely
online by implementing a mechanism to incrementally maintain chordality [5].
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