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Executive Summary

The objectives of WP4 are to study query processing and optimization algorithms for the tem-
poral/spatial extensions of RDF and SPARQL, called stRDF and stSPARQL respectively, that
were proposed in WP2, and implement these algorithms on top of MonetDB. This deliverable is
the first of a set of three deliverables that represent the WP4 contribution towards the design and
implementation of a system offering the abilities to represent and query both definite and indefinite
geospatial information. These three deliverables are as follows:

• D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top
of MonetDB - phase I (Prototype/Public, Month 18)

• D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top
of MonetDB - phase II (Prototype/Public, Month 30)

• D4.3 The evaluation of the developed implementation (Report/Public, Month 36)

In this report we present the implementation process followed for the development of the system
Strabon. Strabon is a storage and query evaluation module for stRDF/stSPARQL, which is built
on top of well-known RDF and relational DBMS technology for efficient data storage, indexing,
optimization and query evaluation.

D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - phase I
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1. Introduction

The objectives of WP4 are to study query processing and optimization algorithms for the tempo-
ral/spatial extensions of RDF and SPARQL, called stRDF and stSPARQL respectively, that were
proposed in WP2, and implement these algorithms on top of MonetDB.

In D2.1 we presented a new version of the data model sRDF and the query language sSPARQL
proposed recently by our partner NKUA that extends the W3C standards RDF and SPARQL
for representing and querying spatial data in the Semantic Web. In the new versions of sRDF
and sSPARQL we opted for a more practical solution to the problem of representing geospatial
data and used the OGC standards Well-known Text and GML instead of linear constraints. We
also extended sRDF and sSPARQL to allow the representation and querying of qualitative spatial
relations as they have traditionally been studied by the qualitative spatial reasoning community.
In the proposed extension of sRDF, called sRDF i , we used a new kind of literals to represent
spatial regions about which the known information is incomplete or indefinite.

In D2.3 we extended the theoretical foundations of the data models stRDF and stRDF i and query
language stSPARQL presented in Deliverable D2.1.

In this report we present the implementation process followed for the development of the system
Strabon. Strabon is a storage and query evaluation module for stRDF/stSPARQL, which is built
on top of well-known RDF and relational RDBMS technology for efficient data storage, indexing,
optimization and query evaluation.

We initiated the development of Strabon in the context of FP7 project SemsorGrid4Env [ssg]. In
this report we document the steps followed to port our implementation on top of MonetDB. Our
motivation behind this port is to show how spatial and temporal filtering can also be improved by
taking into account the distinctive characteristics of a column store. We also discuss the process
we followed to enhance our system with additional functionality motivated by the use cases of
TELEIOS. What is more, we present how Strabon can be used in a real world scenario. Finally,
we give a short tutorial on how to compile and run Strabon. This report accompanies the code for
our implementation which is available for download from the TELEIOS Mercurial repository1. In
other words, the complete deliverable D4.1 is this report plus code.

The work presented in this deliverable deals only with definite geospatial information, i.e., geospa-
tial objects for which exact geospatial co-ordinates are known. The model stRDF i that was pre-
sented in D2.3 deals with cases where the existing geospatial information in indefinite, incomplete
or qualitative and what information we have available can be captured by constraints expressed
in an appropriate first-order constraint language. Strabon will eventually be extended to support
stRDF i. This work will be reported in D4.2.

The experimental evaluation of the Strabon system will also start in the following months. The
results will be presented in Deliverable 4.3 “The evaluation of the developed implementation”.

The organization of this report is as follows. In Chapter 2 we present the implementation of
Strabon. In Chapter 3 we present how Strabon can be used in a real world scenario. In Chapter
4 we provide a short description of the Strabon code, and in Chapter 5 we present a brief tutorial
on how to compile and run Strabon. Finally, in Chapter 6 we conclude this deliverable and discuss
future work.

1teleios-repo.acsys.it
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2. The System Strabon3

In this section we present Strabon, a storage and query evaluation module for stRDF/stSPARQL
which is currently under development by our group in the context of project TELEIOS. Strabon
was created by our group in the context of the European FP7 project SemsorGrid4Env [ssg].
We provide a brief description of this initial version of Strabon that used PostGIS as a relational
backend, as well as an extended description of the newest, 3rd version of our system, which has been
ported on top of MonetDB and aims to take advantage of the scalability and performance promised
by column store implementations. We also express in detail the enhancements in functionality that
we performed on Strabon, being motivated from the requirements of the NOA use case. Last but
not least, we describe the process followed in order to enable Strabon to support both PostGIS
and MonetDB as a backend.

2.1 Strabon in SemsorGrid4Env

In the FP7 project SemsorGrid4Env, NKUA designed the data model stRDF that extends RDF
with the ability to represent spatial and temporal data using linear constraints and the query
language stSPARQL that extends SPARQL for querying stRDF data. NKUA also developed the
system Strabon, a storage and query evaluation module for stRDF/stSPARQL. Strabon is built on
top of the well-known RDF store Sesame1 (version 2.2.4) and extends the components of Sesame to
be able to manage thematic, spatial and temporal data that are stored in a PostgreSQL server that
is “spatially enabled” with PostGIS. The Sesame architecture consists of the following layers (some
of which are shown in Figure 2.1 in the context of the Strabon architecture): Access APIs and
Storage and Inference Layer (SAIL) APIs. The most important Access API is the Repository API
that is used for querying and updating data. Storage and Inference Layer (SAIL) is the layer below
the Access APIs. The role of the SAIL API is to offer storage support to the entire application,
while the Repository API mentioned above just provides transparent access to SAIL. SAIL provides
RDF-specific methods to access RDF data that are translated to calls to the underlying database.

Figure 2.1 presents the system architecture of the initial version of Strabon described. Strabon
consists of the following modules:

• Query Engine: This module is used to evaluate stSPARQL queries posed by clients. The
Query Engine receives all the stSPARQL queries, parses them, optimizes them, prepares an
execution plan and returns the appropriate response to the client. We have extended the
Parser and Evaluator of Sesame to handle stSPARQL queries and use its Optimizer and
Transaction Manager as is.

• Storage Manager : This module is responsible for storing data in the underlying PostGIS
database. The Repository, SAIL and RDBMS layers are modules of Sesame that were de-
scribed above. We have extended the RDBMS layer to be able to store spatial literals in
PostGIS.

• PostGIS : Strabon uses PostGIS to store stRDF data and to perform part of the query
evaluation process.

• Constraint Engine: This module is responsible for processing the part of the stSPARQL
queries that deals with geometries and the conversions that take place during data loading.
We created this module because we wanted to allow our implementation to cater for the
case that input spatial objects are expressed in other spatial data models (e.g., using OGC
standards). The Representation Translator component was introduced to translate spatial

1http://www.openrdf.org
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Figure 2.2: Storing a spatial geometry in the initial version of Strabon

objects between the constraint and other equivalent representations. Spatial objects that
represent non-convex geometries are convexified prior to storage to take advantage of efficient
computational geometry algorithms for convex geometries. This is the job of the Convex
Partitioner module. The Normal Form Constructor takes the output of the Representation
Translator or the Convex Partitioner and constructs a geometry in a normal form.

We now provide some additional details on the conversions that would take place during the storage
of stRDF triples. Prior to storing geometries, we process the input geometries provided by the
users so that each geometric object that we consequently store in PostGIS is in a normal form
that satisfies the following requirements:

• Constraints have been transformed to the equivalent vector representation.

• The geometry is expressed as the union of convex components.

• There are neither redundant nor inconsistent geometries.

• The geometries are stored in a specific order to speed-up the conversion between the vector
and constraint representation.

Let us now describe in detail how data are converted in normal form. When a user wants to store a
spatial literal, the RDBMS layer of the Storage Manager initiates the procedure of converting the
input geometry to normal form and storing it to PostGIS. When the input geometry is represented
with constraints, the Storage Manager communicates with the Representation Translator to con-
vert these constraints to disjunctive normal form (DNF) so that each geometry is expressed as a
disjunction of conjunctions of constraints. Since each conjunction of constraints represents a convex

D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - phase I

3



TELEIOS FP7-257662

spatial object, the DNF form is equivalent to a union of convex spatial objects. Subsequently, the
Representation Translator converts the constraint representation of the geometry to the equivalent
vector representation using Fukuda’s cddlib library [Fuk] that is an implementation of the Double
Description Method of Motzkin et al. [MRTT53] for generating all vertices and extreme rays of
a general convex polyhedron in Rd given a system of linear inequalities. Afterwards, the Normal
Form Constuctor of the Constraint Engine expresses the geometry in PostGIS’ Enhanced Well
Known Binary (EWKB) format, a superset of OGC’s WKB format. For optimization purposes we
store the vertices of each spatial object in a predefined order, so that we can later compute the
constraint representation of the geometry with a simple scan over the geometry’s vertices. Finally,
the normalized geometry is stored in PostGIS.

Our implementation also supports geometries expressed in the OGC Well-Known Text (WKT)
specification. In this case, the RDBMS layer of the Storage Manager communicates with the
Constraint Engine, which normalizes the input geometry, but a different procedure is followed.
Specifically, the Convex Partitioner simplifies the user input so that non-simple polygons are con-
verted to a list of simple polygons. Each non-convex simple polygon is partitioned into convex
sub-partitions using CGAL [cga]. The Convex Partitioner uses CGAL’s implementation of the sim-
ple approximation algorithm of Hertel and Mehlhorn [HM83] that requires O(n) time and space
to construct a decomposition of the initial polygon into no more than four times the optimal num-
ber of convex pieces. Finally, the Normal Form Constructor of the Constraint Engine expresses
the geometry in EWKB, just like in the previous case, and the normalized geometry is stored in
PostGIS.

The implementation described above was heavily influenced by the implementation of Dédale
[RSSG03]. For example, we used the same normal form for storing semi-linear sets, and we also
catered for the storage of non-convex geometries imported from data sources that use the vector
model.

2.2 The Architecture of Strabon3

Since the version of Strabon previously described was designed to implement the original version
of the data model stRDF and the query language stSPARQL, we had made the implementation
choice that linear constraints would be a first-class citizen in our system. Therefore, we had placed
our efforts on achieving satisfactory performance primarily for the cases in which geospatial data
were represented using constraints. After receiving feedback from the partners participating in
SemsorGrid4Env and interacting with the EO community, we opted for a more practical solution
to the problem of representing geospatial data and use the OGC standards Well-known Text and
GML instead of linear constraints. Thus, we created a new version of Strabon fully utilizing
widely-used standards for the representation of data. What is more, we decided to alter Strabon
in order to allow it to become transparently integrated with newer versions of Sesame. To be more
specific, the original version of Strabon was hard-coded on top of Sesame 2.2.4. On the contrary,
the current version of Strabon is a Sesame SAIL layer that can be used in conjunction with newer
versions of Sesame as well, thus taking advantage of newer features incorporated into Sesame (e.g.,
full SPARQL 1.1 support, bug fixes, etc.). Finally, Strabon is gradually evolving to fully utilize
MonetDB as a relational backend. This port will enable us to take advantage of the scalability
and performance promised by column store implementations.

This section presents an overview of the architecture of the current version of Strabon (Strabon 3).
In [KKN+11] we discussed how the model RDF and the query language SPARQL were extended to
represent and query spatial information using OGC standards. We implemented these extensions
on top of Sesame, but in a different manner from the initial version of Strabon. Specifically, by
exploiting the layered architecture and extensibility of Sesame, we added a transparent layer on top
of Sesame extending it to handle spatial data, so that our implementation would easily integrate
functionalities from new versions of Sesame, without intervening with the core implementation of

D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - phase I
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Sesame. This feature gave us the opportunity to support additional functionality deriving from
SPARQL 1.1, by the time recent versions of Sesame did so.

Both thematic and spatial data which are handled by this extension of Sesame are stored in a
“spatially enabled” DBMS, i.e., a DBMS that offers storage, functions, and operators for spatial
data. This version of Strabon has integrated two DBMS alternatives:

• PostGIS2. This module adds support for spatial objects and operations in PostgreSQL3 to
be used as a spatial database for geographic information systems (GIS).

• MonetDB. A spatial column-store DBMS which incorporates spatial capabilities through
utilization of the GEOS4 library.

The above backend alternatives are unified under an abstract layer, named GeneralDB, as figure
2.3 shows. We added GeneralDB to our storage stack so that any of the above DBMS could be
used under a common interface (infrastructure) and the higher levels of Strabon could be built
independently. Strabon follows the modular architecture of Sesame and comprises three modules:

Query Engine. The Query Engine of Strabon evaluates the stSPARQL query posed to the
system. After a query is received, it is parsed and optimized. Then an execution plan is created
and executed, and the results are returned to the client. The Evaluator and Optimizer of Sesame
have been extended in order to handle stSPARQL queries. The parser and transaction manager
were not modified, since the current version of stSPARQL is fully compatible with SPARQL 1.1.

Storage Manager. This module handles data storage in the GeneralDB RDBMS layer. We have
extended the components of Sesame in a transparent fashion to be able to store the spatial literals
we defined in Deliverable [KKN+11].

GeneralDB. Common infrastructure used for storing stRDF data and evaluating stSPARQL
queries using either PostGIS or MonetDB.

2http://postgis.refractions.net/
3http://www.postgresql.org/
4http://trac.osgeo.org/geos/
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2.2.1 Data Storage

This section presents the implementation details of the Data Storage module of Strabon. When a
user wants to store stRDF data, she makes them available in the form of an stRDF document. The
document is decomposed into stRDF triples and each triple is stored in the underlying repository.
Once the stRDF document is stored, it is then decomposed in triples and each triple is processed
separately. Sesame adopts the dictionary encoding technique to store data; each RDF statement
is encoded and identified by a unique integer, optimizing query evaluation. Sesame supports the
following schemes for storing RDF data:

• Monolithic. According to this scheme, every triple is stored in a single triple table having
the following schema:

triple(subj_id integer, pred_id integer, obj_id integer)

The attributes subj_id, pred_id, and obj_id are the unique encoding identifiers of the triple’s
subject, predicate, and object respectively.

• Per-predicate. Triples are stored in different tables based on their predicate. One table
per predicate is maintained. For example, let us consider the following stRDF triple:

subject predicate object

The triple described above will be stored in a table with the following schema:

predicate(subj_id integer, obj_id integer)

The attributes subj_id and obj_id are the unique encoding identifiers of triple’s subject and
object respectively.

Under both those schemes, every RDF term is encoded by a unique positive integer to reduce
space.

The mapping between the original RDF term and its encoding is stored in one of the predefined
tables of Sesame. Each one of these tables is dedicated to storing mappings of a specific RDF
resource. For example, a different table exists for the storage of URI values, another for blank
nodes, etc. The combination of these tables forms a mapping dictionary used by Sesame.

Spatial literals are isolated and handled differently. Specifically, all spatial literals are also stored in
an extra spatial table, named geo_values, in a more practical format. Spatial literals are encoded
using the same dictionary encoding techniques as well, and are also stored in the default scheme
too (in the table containing the mappings of literals).

Schema of table geo_values
Attribute Type Comment
id integer The unique encoding for the spa-

tial literal.
strdfgeo geometry The spatial literal ex-

pressed in GeneralDB’s
geometry type
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Each tuple in the geo_values table has an id that is the unique encoding of the spatial literal based
on the dictionary encoding process. The attribute strdfgeo is a spatial column whose data type is
the GeneralDB-defined geometry type and is used to store the geometric object that is described
by the spatial literal.

In Section 2.4.3, we present how we store geometries expressed in different CRS.

Due to its focus on atomic operations, Sesame lacks an efficient mechanism for bulk loading of
large datasets, being inadequate for storing large RDF datasets. Thus, we have also implemented
an stRDF loader which virtualizes a storing scheme identical to the one used by Sesame. This
loader executes the following steps:

1. The loader creates the dictionary (including the mapping of every RDF term) in main mem-
ory.

2. If the monolithic storing scheme is followed, the loader flushes every row of the triple table
to a single CSV file. In the case of the “per-predicate” scheme, a separate CSV file is created
for every predicate and the loader flushes every predicate table to the respective CSV file.

3. The loader flushes the dictionary to CSV files.

4. The CSV files mentioned above are loaded and indexed into a PostGIS or MonetDB database.

2.2.2 Query Engine

The Query Engine of Strabon processes every query posed to the system. It comprises the following:

• Parser. The parser generates a query model that will be optimized later on.

• Optimizer. The Optimizer of Sesame consists of a set of heuristics that rearrange the
order of the query’s triple patterns so that the query will be evaluated more efficiently. We
enhanced this optimizer with the ability to recognize potential spatial joins in the query plan.
Prior to this modification, all joins would be performed based on thematic criteria only, and
could lead to the presence of cartesian products in the final query model. We also extended
the Evaluator of Sesame in order to enable it to receive the optimized model of the query and
create a final query form to be evaluated by it that incorporates the extra features brought
in by stSPARQL.

• Transaction manager. It is used as is currently.

• Query Processor. It executes the backbone of the query evaluation process.

The query evaluation process includes the following steps:

1. The parser generates a parse tree.

2. The parse tree is processed by several modules, building a query tree.

3. A query graph is constructed and traversed, taking into account both thematic and spatial
joins, and creating a query tree with as few Cartesian products as possible.

4. The query’s triple patterns are rearranged to optimize the query’s evaluation, deviating from
the default behavior of Sesame. This approach eliminates the Cartesian products in the final
query plan taking into consideration the spatial operations involved in the query.

D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
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5. All stSPARQL extension functions present in the query are incorporated in the query tree.
By default, Sesame performs the evaluation of extension functions after bindings for the
variables present in the query have been retrieved. We altered this behavior for the following
reasons:

• Evaluating the whole query and then performing a post-processing step to eliminate all
unwanted tuples introduces an overhead.

• We wanted all spatial expressions present in the select clause of the query to be evaluated
using the spatial functions of GeneralDB instead of relying on external libraries that
would add unneeded post-processing cost.

6. The geo_values table is incorporated in the evaluation process. Before any spatial operator is
mapped to SQL, it is declared that its arguments will be retrieved from geo_values. Values
retrieved from this table will be joined thematically with the rest of the query via the id
assigned to each spatial object during the dictionary encoding.

7. The query tree is passed to the Evaluator of Sesame, which has been enhanced to receive
the modified query tree and create a final SQL query. The spatial operators of the original
stSPARQL query are mapped to the equivalent built-in functions and operators of Gener-
alDB. The evaluator executes the produced SQL query in either PostGIS or MonetDB.

8. The results of this query are returned to the evaluator which performs any post-processing
actions needed.

9. The final results are displayed. Strabon offers various available output formats depending on
the user’s needs. By default, spatial literals are returned in the form they were stored into
and results are encoded using the SPARQL Query Results XML5 Format recommendation.
Another possible encoding is KML6, a widely used standard in the mapping industry.

2.3 Migrating from PostgreSQL to MonetDB

MonetDB is a column-store DBMS that provides a modern and scalable solution without calling
for substantial hardware investments. In this section, we present a minimal method for modifying
MonetDB in order to replace PostgreSQL that is used by Strabon as a spatially-enabled relational
backend.

For efficiency purposes, Strabon uses the Well-Known Binary format [OGC10b] to retrieve geome-
tries from the underlying relational backend. MonetDB uses text for any kind of communication
between the server and the clients, and the Well Known Text format is used for retrieving ge-
ometries. This approach caused a significant processing overhead since the geometries stored in
MonetDB were exported in WKT, passed to Strabon using JDBC and then parsed in order to
create geometric objects.

We created two functions that take a geometry as input and return a BLOB that contains the
WKB representation of the geometry and vice versa. The SQL definition of these functions are:

CREATE FUNCTION AsBinary(g Geometry)
RETURNS BLOB external name geom."AsBinary";

CREATE FUNCTION GeomFromWKB(w BLOB)
RETURNS Geometry external name geom."GeomFromWKB";

5http://www.w3.org/TR/rdf-sparql-XMLres/
6http://www.opengeospatial.org/standards/kml
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To perform the migration from PostgreSQL to MonetDB, we took into account the fact that Sesame
defines an abstract layer that takes care of common SAIL tasks. Sesame provides an extension of
this layer for using PostgreSQL as a relation backend. In the past, we modified this layer to make
use of the spatial functions provided by PostGIS. We re-engineered this layer to avoid creating a
separate implementation for each DBMS (PostGIS and MonetDB) and we defined an intermediate
abstract layer, called GeneralDB. As a result, we extended the GeneralDB layer only for the parts
that PostgreSQL and PostGIS differentiate over.

The main differences are related to the spatial part of the final SQL query that is posed to each
DBMS. First, the spatial functions that are used had to change. Both systems have implemented
functions complying to “OpenGIS Implementation Specification for Geographic information - Sim-
ple feature access - Part 2: SQL option” OGC standard [OGC10a]. There are some minor differ-
ences in the naming or given arguments of spatial functions and some functions are not implemented
in MonetDB, i.e., ST_Cover(A:Geometry, B:Geometry): Boolean. We implemented these func-
tions by utilizing the ST_Relate(A:Geometry, B:Geometry, intersectionPatternMatrix:String):
Boolean function that returns true if the geometric object A is “spatially related” to the geometric
object B by testing for intersections between the interior, boundary and exterior of the two ge-
ometric objects as specified by the appropriate DE9-IM [CDFvO93] values in the intersection
Pattern Matrix parameter. In addition, some other minor syntactic changes where needed. For
example, MonetDB lacks of VACUUM and TRUNCATE commands. Thus, we had to deviate the
behavior of Sesame not to call VACUUM. Another needed change came from the fact that the
MonetDB JDBC demands the type of every dynamic variable to be clearly known at statement
preparation. To tackle this issue, we added type casting for each dynamic parameter in order to
be used in the SQL query posed in MonetDB.

We performed some preliminary experiments where we focus on the response time of queries with
varying thematic and spatial selectivity. We generated datasets consisting of 10 and 100 million
triples using the generator presented in [KKK+11]. This is a modified version of the generator
used by the authors of [BNM10] which generates data according to a general version of the schema
of Open Street Map presented in Figure 2.6. According to this schema, every feature is considered
a node that has a spatial extent, e.g., the location of the node, and a number of tags describing the
node. Each tag consists of a key - value pair of strings. By utilizing this schema we were able to
adjust both the thematic and spatial selectivities of the queries used during evaluation. To be more
precise, every generated node was tagged with key 1, every second node with key 2 etc, up to key
1024. As a result, if we selected all nodes tagged with key 1, we would select all available nodes, if
we selected all nodes tagged with key 2, we would select half the nodes, etc. The locations of the
generated nodes were placed uniformly on a 10.24 x 10.24 grid. More details on the methodology
followed can be found in [KKK+11].

We instantiated the query template presented in [KKK+11] using appropriate values for managing
the thematic and spatial selectivities. This resulted to queries like the following:

SELECT *
WHERE { ?tag geordf:key "1" .

?node geordf:hasTag ?tag ;
strdf:hasGeography1 ?geo .
FILTER (strdf:inside(?geo, "18.27 33.23, 18.2814146341463 33.23,

18.2814146341463 33.2383317073171, 18.27 33.2383317073171,
18.27 33.23"^^strdf:geometry))}

In Figures 2.4 and 2.5, we can see that PostgreSQL is very fast when a query selects a few spatial
objects, whereas the performance of MonetDB is stable regardless of the number of spatial objects
located inside the query region. This is due to the fact that MonetDB lacks support for spatial
indexing. Traditional spatial databases evaluate spatial predicates in two steps: a filtering step
and a refinement step. The filtering step selects those spatial objects whose minimum bounding
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Figure 2.4: 10 million, cold caches
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Figure 2.5: 100 million, cold caches

Figure 2.6: Primitive version of LGD schema
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namespace prefix
http://www.earthobservatory.eu/ontologies/noaOntology.owl noa
http://strdf.di.uoa.gr/ontology# strdf
http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf

Table 2.1: Namespaces used and corresponding prefixes

box satisfy the spatial predicate. The result of the filtering step is a superset of the solution. In
the refinement step, this superset is sequentially scanned and the spatial predicate is evaluated
against the precise geometry of each spatial object. This two-step process allows the detection
of spatial objects that will not satisfy the spatial predicate at a very low cost. PostGIS utilizes
an R-tree-over-GiST spatial index for the filtering step, while it relies on the GEOS library for the
refinement step. MonetDB relies entirely on the GEOS library for evaluating spatial predicates.
This means that a full scan is performed on the geo_values table that contains all geometric
objects and the spatial predicate is applied to all geometries. As a result, Strabon over MonetDB
ran CPU-bound in all queries examined during this experiment.

Current work focuses on query processing and optimization for stRDF/stSPARQL on top of Mon-
etDB. We are experimenting with the storage scheme that will be used for storing stRDF data in
MonetDB. We are taking into account the distinctive column store architecture of MonetDB and
experiment with storing multiple approximations of a geometry in separate columns since it does
not incur additional load in the query evaluation process. We are also considering how to utilize
techniques developed recently by CWI that continuously adapt the physical organization of the
database as part of the query evaluation process in order to have a self-organizing implementation.

2.4 Enhancing Strabon Functionality

In this section we describe the process that we followed for enhancing Strabon with new func-
tionality. This new functionality comprises support for updating RDF data, applying aggregation
functions in spatial objects and storing spatial literals using various coordinate systems.

By examining in more detail the requirements set by the NOA Use Case and especially the re-
quirements by TELEIOS UC2 SERVICEPROVIDER2 and SERVICEPROVIDER3 of [KPMm],
the need to extend stSPARQL arose. Our aim was to express in stSPARQL logical rules that
are used by NOA for refining the hotspot and burnt area products in a graceful way. This new
functionality consists of support for updating RDF data, applying aggregation functions in spatial
objects and storing spatial literals using various coordinate systems.

2.4.1 Updating stRDF Graphs

In this section we present some application examples that describe the motivation of adding this
new update functionality. Afterwards, we present this new functionality and some implementation
details about it.

Motivation

The necessity of adding update functionality to stSPARQL and subsequently Strabon is demon-
strated hereafter with some examples. The prefixes and stRDF triples that are used in the following
examples are shown in Table 2.1 and Example 1 respectively.
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Example 1. stRDF triples created using the NOA ontology

noa:BA1 rdf:type noa:BurntArea ;
noa:hasConfirmation noa:unknown;
strdf:hasGeometry "POLYGON((20 20, 20 22, 22 22, 22 20, 20 20))"^^strdf:WKT .

noa:BA2 rdf:type noa:BurntArea ;
noa:hasConfirmation noa:unknown;
strdf:hasGeometry "POLYGON((23 23, 23 25, 25 25, 25 23, 23 23))"^^strdf:WKT .

noa:BA3 rdf:type noa:BurntArea .
noa:hasConfirmation noa:unknown;
strdf:hasGeometry "POLYGON((15 15, 15 17, 17 17, 17 15, 15 15))"^^strdf:WKT .

noa:H1 rdf:type noa:Hotspot;
strdf:hasGeometry "POLYGON((19.5 19.5, 20 19.5, 20 20,

19.5 20, 19.5 19.5))"^^strdf:WKT.
noa:H2 rdf:type noa:Hotspot;

strdf:hasGeometry "POLYGON((15 15, 15.5 15, 15.5 15.5,
15 15.5, 15 15))"^^strdf:WKT.

noa:UA1 rdf:type noa:UrbanArea;
strdf:hasGeometry "POLYGON((21.5 18.5, 23.5 18.5, 23.5 21,

21.5 21, 21.5 18.5))"^^strdf:WKT.
noa:UA2 rdf:type noa:UrbanArea;

strdf:hasGeometry "POLYGON((19 19, 21 19, 21 21, 19 21, 19 19))"^^strdf:WKT.

The above triples have been created using the ontology created for the NOA use case. They define
three burnt areas, two hotspots and two urban areas. Each one corresponds to a specific area. Burnt
areas additionally have a confirmation flag.

The NOA Use Case requirements included the need to update the data of an RDF graph. Prior
to enhancing its functionality, Strabon offered only the following atomic update operations via an
API:

1. Insert a statement.

2. Remove all statements that match a single triple pattern.

Let us now consider the stRDF graph in Example 1. This graph defines hotspots, burnt areas and
urban areas where every hotspot and burnt or urban area is related to a geometry. Each burnt
area also has a confirmation flag. A possible update query posed by NOA is “Update the confir-
mation flag of a burnt area to confirmed if its geometry contains a hotspot” . Without
update functionality, the user would first pose a query (Example 2) to retrieve the identifiers of
the burnt areas that need to be refined, and afterwards would delete the flags of the burnt areas
retrieved in the previous step and insert the new ones by invoking the Strabon API mentioned
above (Example 3).

Example 2. Retrieve the URIs of the burnt areas that are not confirmed and have a geometry
that contains the geometry of a hotspot.

SELECT ?burntArea
WHERE {
?hotspot rdf:type noa:Hotspot ;

D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
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strdf:hasGeometry ?hGeo ;
?burntArea rdf:type noa:BurntArea ;

strdf:hasGeometry ?bGeo ;
noa:hasConfirmation ?bConfirmationFlag .

FILTER ( strdf:contains(?bGeo, ?hGeo )) .
FILTER ( ?bConfirmationFlag != noa:confirmed ) . }

This query retrieves the URIs of burnt areas that need to be refined. The refinement is demonstrated
in Example 3.

Example 3. Update confirmation flag of burnt areas retrieved from Example 2.

for each burntArea
Strabon.delete(BurntArea, noa:isConfirmed, null); //nulls can be seen as variables

for each burntArea
Strabon.insert(burntArea, noa:isConfirmed, noa:confirmed);

This pseudocode deletes every triple whose subject is a given burnt area URI. A new triple, associ-
ating the previous URI with the property noa:isConfirmed and the object noa:confirmed is then
inserted. Note that null values in the delete function are handled as variables.

Obviously, such a solution is not very flexible. Thus, we identified the need for Strabon to support a
declarative update language for modifying RDF graphs. To do this, we relied on existing proposals
for adding updates to SPARQL (SPARQL Update 1.1, currently a working draft of W3C) [GPP].

After adding support for SPARQL Update 1.1 to Strabon, the above update operation can be
performed in a single step by posing the query in Example 4.

Example 4. Update confirmation flag of every burnt area that is not confirmed and its geometry
contains a hotspot.

DELETE { ?burntArea noa:isConfirmed ?bConfirmationFlag }
INSERT { ?burntArea noa:isConfirmed noa:confirmed }
WHERE {

?hotspot rdf:type noa:Hotspot ;
strdf:hasGeometry ?hGeo .

?burntArea rdf:type noa:BurntArea ;
strdf:hasGeometry ?bGeo ;
noa:confirmationFlag ?bConfirmationFlag .

FILTER ( strdf:Contains(?bGeo, ?hGeo) ) .
FILTER ( ?bConfirmationFlag!= noa:confirmed) . }

This query makes use of the update extensions that took place in stSPARQL and conducts the
refinement operation that is described above.

Updates in stSPARQL

The W3C SPARQL Working Group has started a discussion about updating RDF graphs, using
SPARQL, since 2009. This discussion has led to the latest W3C Working Draft SPARQL 1.1
Update [GPP] that describes SPARQL-Update. SPARQL-Update is an update language for RDF
graphs that uses a syntax derived from SPARQL. Sesame has supported SPARQL-Update since
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version 2.5, while Strabon is currently based on Sesame 2.6.3. Since Sesame already supports RDF
updates, we only had to extend this functionality to handle geometry values in a special way.

The main facilities that are provided by SPARQL Update are :

1. Insertion of new triples into an RDF graph.

2. Deletion of triples from an RDF graph.

3. Performing a group of update operations as a single action.

4. Creation of a new RDF graph in a Graph Store.

5. Deletion of an RDF graph from a Graph Store.

In this document we focus only on performing a group of update operations as a single action,
which is the most important and complicated. This is conducted with the MODIFY operation of
SPARQL Update. According to [GPP] the syntax of this operation is the following:

# UPDATE outline syntax : general form:
MODIFY [ <uri> ]*
DELETE { template }
INSERT { template }
[ WHERE { pattern } ]

The intuitive semantics of this operation are the following:

1. Evaluate the WHERE clause once.

2. Use results of WHERE clause to instantiate the DELETE template.

3. Delete resulting triples.

4. Use results of WHERE clause to instantiate the INSERT template.

5. Insert resulting triples.

In Strabon, the WHERE clause is evaluated with the same mechanism as a simple stSPARQL
query, using the Query Engine, and an iterator of bindings is returned. Afterwards, for each
binding the respective triples are derived according to the delete and insert templates. First,
triples derived from the delete template are deleted by the Storage Manager. The Storage Manager
slightly distinguishes its behavior in the case of spatial literals by executing specific SQL scripts
for this case. Finally, triples derived from the insert template are inserted using exactly the same
mechanism as in storing triples.

If the “monolithic” scheme is used, the respective tuple is deleted from the table triples. Other-
wise, the Storage Manager locates the table that stores the triples containing the current triple’s
predicate and deletes the respective tuple. As far as dictionary encoding is concerned, the table
hash_values keeps a hash of every stored resource or literal. When some triples are deleted the
table hash_values is not edited but the number of deleted triples is stored in a counter. Each
time the number of deleted triples gets greater than the size of hash_values then all tables that
comprise the dictionary are scanned and values that are not still present in KB are deleted.

D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - phase I

14



TELEIOS FP7-257662

2.4.2 Aggregation in stRDF Graphs

In this section we present some application examples that describe the motivation of extending
stSPARQL and Strabon with aggregate functionality. Afterwards, we present this new functionality
and some implementation details about it.

Motivation

Another extension of stSPARQL that needed to be carried out to provide support for the operations
that arose in the NOA use case is the addition of spatial aggregate functions. Based on the W3C
SPARQL 1.1 recommendation, stSPARQL was extended with this type of functionality. The
examples below defend the usefulness of such functions.

A refinement rule used by NOA that requires an aggregate function is “Update burnt area
products by keeping the part of their polygon that does not lie in urban areas” .

In the previous version of Strabon, that did not support spatial aggregate functions, the user had
to pose an stSPARQL query to discover the hotspots that overlap with an urban area and then
perform an additional processing step to remove all the parts of the geometry of each burnt area
that lie in an urban area. Then, the graph had to be updated as we showed in the previous
examples.

The main functionality that is required by this rule is the ability to compute the union of a set of
geometries. Note that this functionality already exists in spatially extended relational databases,
such as PostGIS. While conforming to the SPARQL 1.1 proposal, which defines aggregate functions
for simple datatypes (e.g., integers, strings), we extended stSPARQL to support aggregations on
spatial objects. After these enhancements, the refinement described above can be performed in a
single step by posing the query in Example 5.

Example 5. Update the geometry of every burnt area so that only areas that do not lie in urban
areas are kept.

DELETE {?burntArea strdf:hasGeometry ?bGeo}
INSERT {?burntArea strdf:hasGeometry ?cleanBurntArea}
WHERE {
SELECT ?burntArea ?bGeo strdf:Difference(?bGeo, strdf:Union(?uGeo)) as ?cleanBurntArea
WHERE {
?burntArea rdf:type noa:BurntArea ;

strdf:hasGeometry ?bGeo .
?urbanArea rdf:type noa:UrbanArea ;

strdf:hasGeometry ?uGeo .
FILTER ( strdf:anyInteract(?uGeo,?bGeo)) }

GROUP BY ?burntArea ?bGeo }

Spatial Aggregates in stSPARQL

Strabon is constantly extended with additional functionality. The priority that is assigned to each
potential extension is directly connected to the requirements set by the two use cases of TELEIOS.
In this case, a number of the queries that NOA intends to use for the refinement of their hotspot
products require applying a spatial operator over a group of solutions. Thus, incorporating spatial
aggregates in stSPARQL was a task of high priority.

D4.1 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - phase I

15



TELEIOS FP7-257662

The approach we followed in order to enhance stSPARQL, and subsequently Strabon, with spatial
capabilities is fully compliant with the approach followed by the current working draft on SPARQL
1.1 regarding aggregates7. Therefore, the current version of stSPARQL supports both GROUP BY
and HAVING expressions. If the GROUP BY clause is specified, the output is divided into groups that
match on one or more values. If the HAVING clause is present, it eliminates groups that do not
satisfy the given condition.

The traditional aggregate functions such as AVG do not utilize the spatial dimension of the stRDF
literals, and can’t be applied to geometric objects. Therefore, we defined the following spatial
aggregate functions:

• strdf:Union(A:Geometry):Geometry, returns a geometric object that is the union of the set
of input geometries.

• strdf:Extent(A:Geometry):Geometry, returns a geometric object that is the minimum bound-
ing box of the set of input geometries.

These functions can be used in the GROUP BY and HAVING clauses of an stSPARQL query. What is
more, similarly to the functions defined in [KKN+11], and according to the SPARQL 1.1 working
draft, they can be used in the SELECT clause of the query.

The spatial aggregation capabilities of stSPARQL is demonstrated with a series of examples. Table
2.1 shows the prefixes used for the namespaces that are utilized in the stRDF triples of the following
examples.

Example 6. stRDF triples created using the NOA ontology.

noa:BA1 rdf:type noa:BurntArea ;
strdf:hasGeometry "POLYGON((20 20, 20 22,

22 22, 22 20, 20 20))"^^strdf:WKT .
noa:BA2 rdf:type noa:BurntArea ;

strdf:hasGeometry "POLYGON((23 18, 24 19,
23 19, 23 18))"^^strdf:WKT .

noa:BA3 rdf:type noa:BurntArea ;
strdf:hasGeometry "POLYGON((20 15, 21 15,

21 16, 20 15))"^^strdf:WKT .

noa:UA1 rdf:type noa:UrbanArea;
strdf:hasGeometry "POLYGON((21.5 18.5, 23.5 18.5,

23.5 21, 21.5 21, 21.5 18.5))"^^strdf:WKT.
noa:UA2 rdf:type noa:UrbanArea;

strdf:hasGeometry "POLYGON((19 19, 21 19,
21 21, 19 21, 19 19))"^^strdf:WKT.

The above triples have been created using the ontology created for the NOA use case. They define
three burnt area products and two urban areas. They also include an approximation of each area’s
geometry. Please note that according to our approach, if no URI is present to denote the coordinate
reference system a geometry is encoded in, then by default it is assumed that the coordinates of
said geometry are given in the World Geodetic System 1984 (WGS84). A visualization of these
geometric objects is provided in Figure 2.7.

Example 7. Retrieve the burnt areas that intersect with more than one urban area.
7http://www.w3.org/TR/sparql11-query/#aggregates
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Figure 2.7: Burnt and Urban areas modeled according to the NOA ontology

SELECT ?burntArea
WHERE { ?burntArea rdf:type noa:BurntArea;

strdf:hasGeometry ?baGeo.
?urbanArea rdf:type noa:UrbanArea;

strdf:hasGeometry ?uaGeo.
FILTER(strdf:anyInteract(?baGeo,?uaGeo)) }
GROUP BY ?burntArea
HAVING (COUNT(?uaGeo) > 1 )

The result of the query is displayed below:

?burntArea
noa:BA1

The query above tests whether a burnt area intersects with an urban one. If this is the case,
groupings are made depending on the burnt area, and any burnt area that does not intersect multiple
urban areas is filtered out. As we can see, in this query only one of the three burnt areas available
in the dataset is returned. The other two have been filtered out since they either intersect only one
urban area, or are disjoint with each urban area.

Example 8. Retrieve the parts of fire mapping products that do not lie in urban areas.

SELECT ?burntArea
(strdf:difference(?baGeo, strdf:union(?uaGeo)) AS ?ruralPiece)
WHERE
{ ?burntArea rdf:type noa:BurntArea;

strdf:hasGeometry ?baGeo.
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Figure 2.8: Result of query from Example 8

?urbanArea rdf:type noa:UrbanArea;
strdf:hasGeometry ?uaGeo.

FILTER(strdf:anyInteract(?baGeo,?uaGeo))
}
GROUP BY ?burntArea

The result of the query is displayed below:

?burntArea ?ruralPiece
noa:BA1 POLYGON ((20 21, 20 22, 22 22, 22 21, 21.5 21, 21.5 20,

21 20, 21 21, 20 21))
noa:BA2 MULTIPOLYGON (((23.5 18.5, 23 18, 23 18.5, 23.5 18.5)),

((23.5 19, 24 19, 23.5 18.5, 23.5 19)))

Queries similar to the one above provided the main motivation for this functionality extension
in stSPARQL. The query above tests whether a burnt area intersects with an urban one. If this
is the case, groupings are made depending on said burnt area. The geometries of the urban areas
corresponding to each burnt product are unified, and their difference from the original burnt product
is calculated and returned to the user. A visualization of these geometric objects that were computed
on the fly can be seen in Figure 2.8.

Example 9. Retrieve the fire mapping products that intersect with urban areas that are spread
among an area that is over 8 square degrees.

SELECT ?burntArea
WHERE { ?burntArea rdf:type noa:BurntArea;
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strdf:hasGeometry ?baGeo.
?urbanArea rdf:type noa:UrbanArea;

strdf:hasGeometry ?uaGeo;
FILTER(strdf:anyInteract(?baGeo,?uaGeo)). }

GROUP BY ?burntArea
HAVING (strdf:area(strdf:extent(?uaGeo)) > 8)

The result of the query is displayed below:

?burntArea
noa:BA1

The strdf:Extent function is not as computationally expensive as strdf:Union, and is therefore
used in cases where exact precision in results is not of major importance. The query above tests
whether a burnt area intersects with an urban one. If this is the case, groupings are made depending
on said burnt area. The burnt areas that have not affected “major” urban areas are filtered out of
the final result.

2.4.3 Coordinate Reference Systems in stRDF Graphs

In this section we present our motivation towards enhancing Strabon with the ability to handle ge-
ometric objects expressed in a variety of coordinate reference systems. We also provide information
regarding the implementation choices we made to implement this feature in Strabon.

Motivation

Different organizations tend to expose the geospatial data they produce in a variety of coordinate
reference systems. For example, NOA publish their hotspot products using the Greek Geodetic
Reference System. The Greek Geodetic Reference System (GGRS87) is a projection system com-
monly used in Greece. We wanted Strabon to permit the evaluation of queries involving spatial
objects expressed in different coordinate reference systems. Such an example deriving from the
NOA use case is the combination of the NOA hotspot products with road information obtained
from LinkedGeoData, which is published using the World Geodetic System (WGS84). By incorpo-
rating this functionality, our system is compliant with the guidelines of the Linked Data initiative,
since datasets that have been made available by different organizations can now be linked based
on their spatial relationships.

Coordinate Reference Systems in Strabon

Strabon currently supports storing spatial literals using various coordinate systems by transforming
them to a single CRS (e.g., WGS84) that is defined by the user during the configuration phase.
Any geometric object to be stored is transformed to a CRS that is uniformly used. The identifier
of the CRS in which the geometry was originally encoded in during data loading is stored as well.

Storing geometric objects using a single CRS has the advantage that any operation that involves
geometries encoded in different CRS, can be performed in a single step. Otherwise, the geometries
should be converted to a common CRS prior to the operation execution. This approach incurs
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an overhead during data loading and requires the geometries which are bound to variables that
appear in the select clause of a query to be transformed to the original CRS before returning them
to the user.

An alternative storing scheme would be to store in different tables the spatial literals that are
encoded in different CRS. The schema of such tables is geo_values_crs(id integer, value geometry)
where crs is a unique identifier for the CRS. This scheme can be seen as a “per-CRS” storing scheme
for spatial literals. Storing spatial literals according to this scheme is faster since the geometries do
not need to be transformed prior to storage, has less storage overhead since we do not have to store
explicitly the srid for each geometric object and results in the creation of multiple small tables
storing the spatial literals, instead of a single table that contains all spatial literals. According to
this scheme, a spatial selection query that defines a rectangle expressed in WGS84 and requests
all geometries contained by this rectangle, is evaluated directly in the geo_values_wgs84 table,
while the geometries of every other table should be converted in WGS84 prior to the evaluation
of the spatial filter. The final result of this query consists of the union of the intermediate results
produced by the evaluation of the spatial filter in each table storing spatial literals. Spatial joins
are more complex since their evaluation would require evaluating the spatial predicate between all
pairs of tables storing spatial literals.

We performed an experiment where we focus on the two aforementioned storing schemes for spatial
literals. We generated a dataset that consists of 10 million triples using the generator presented in
[KKK+11]. We modified the dataset so that the geometries are encoded in 2,3,4 or 5 different CRS
and we stored them using the two storing schemes. We instantiated the query template presented
in [KKK+11] using the value "1" for PARAMETER_A and appropriate values for PARAMETER_B so that
10, 102, 103, etc. spatial nodes are selected. As a result, queries like the following were used:

SELECT *
WHERE { ?tag geordf:key "1" .

?node geordf:hasTag ?tag ;
strdf:hasGeography1 ?geo .
FILTER (strdf:inside(?geo, "18.27 33.23, 18.2814146341463 33.23,

18.2814146341463 33.2383317073171, 18.27 33.2383317073171,
18.27 33.23"^^strdf:geometry))}

We measured the response times for the case of cold and warm caches, but we present only the
case of cold caches since they exhibit similar behavior. The response time for each dataset and
storing scheme is presented in Figure 2.9.

We notice that the response time for the scheme that uses a single table for storing the spatial
literals is slightly modified depending on the number of CRS present in the dataset. This behavior
is unaffected by the spatial selectivity of the query. This observation reveals that the time required
for transforming the geometric objects back to their original CRS, is not significant compared to
the total query run time. On the contrary, the response time for the alternate storing scheme is
significantly influenced by the number of CRS present in the dataset. We notice that as we increase
the number of CRS present in the dataset, the system’s performance deteriorates consistently.
This occurs because the time required for merging the filtered spatial geometries of each table
substantially influences the response time, compared to the query run time. For these reasons, we
chose to store geometric objects using a single CRS.

For functions that take as arguments spatial literals encoded in different CRS, we follow the
guidelines provided by GeoSPARQL and perform all calculations in the spatial reference system
of the first argument.
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Figure 2.9: Response time for different storing schemes

2.5 Summary

In this chapter we presented the latest version of the system Strabon. First, we described the ar-
chitecture of Strabon focusing on how data are stored in the backend RDBMS and how stSPARQL
queries are processed to produce relevant SQL queries. Afterwards, we discussed about migrating
from PostgreSQL/PostGIS to MonetDB and finally, we described some new functionality that were
added in Strabon, namely, update operation, aggregate functions on spatial objects and support
of various Coordinate Reference Systems.
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3. Using Strabon in a real world scenario

In this chapter we present how Strabon can be used in a real world scenario. We demonstrate
how to use Strabon to build a semantics-based EO Web portal inspired by the NOA use case of
TELEIOS [KPMm]. Thus, it is oriented towards fire monitoring applications.

In this chapter, we briefly describe the ontologies that we developed for representing data that
are being used or produced by the processing chain of NOA and the content of the produced
products. We also provide example queries that can be used for data discovery. Afterwards, we
present datasets exposed as Linked Open Data that are being used in a mockup fire monitoring
application.

In this chapter, we use the namespaces defined in Table 3.1.

3.1 Creating and Populating Ontologies for the NOA Use
Case

In the context of TELEIOS, we have developed three ontologies for annotating raw data that are
being used in the NOA processing chain and the produced hotspot products. These ontologies are
the following:

• Image Annotation Ontology: A domain ontology that models EO data collections with
respect to use cases.

• NOA Ontology: An ontology that models raw data and products that are being consumed
or produced by NOA.

• Corine Ontology: An ontology that models the CORINE Land Cover nomenclature.

The purpose of these ontologies is to model collections of data that are being used or produced by
NOA. Data are separated in two main categories: raw data and products. Raw data include files
with satellite measurements before any processing has taken place, while products are the result
of processing on raw data.

In this section we present the aforementioned ontologies and give examples on how these ontologies
are populated. First we present the NOA ontology that is used for modeling raw data and products
that are being consumed or produced by NOA. Then, we present the ImageAnnotation Ontology
that models EO data collections and finally, we present the Corine Land Cover Ontology that
models the CORINE Land Cover nomenclature.

3.1.1 NOA Ontology

The NOA Ontology covers useful properties of the data collections that are being used or pro-
duced by the NOA processing chain. In the NOA Ontology, data are distinguished in three major
categories:
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namespace prefix
http://strdf.di.uoa.gr/ontology# strdf
http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf
http://linkedgeodata.org/triplify/ lgd
http://linkedgeodata.org/ontology/ lgdo
http://www.w3.org/2000/01/rdf-schema# rdfs
http://linkedgeodata.org/property/ lgdp
http://linkedgeodata.org/triplify/way10973689/ lgdw_-

way10973689
http://www.georss.org/georss/ georss
http://www.openlinksw.com/schemas/virtrdf# virtrdf
http://www.w3.org/2003/01/geo/wgs84_pos# geo
http://www.geonames.org/ontology# gn
http://teleios.di.uoa.gr/ontologies/noaOntology.owl# noa
http://www.w3.org/2002/07/owl# owl
http://dbpedia.org/resource/ dbpedia
http://teleios.di.uoa.gr/ontologies/imageAnnotationOntology.owl# imAn
http://sweet.jpl.nasa.gov/2.0/data.owl# data

Table 3.1: Namespaces used and corresponding prefixes

• Raw Data: Instances of this class describe files with raw data.

• Hotspot: Instances of this class describe hotspots that were detected by processing in raw
data.

• Shape File: An ESRI shapefile is created from all hotspots detected by a specific acquisition.
Instances of this class describe these ESRI shapefiles.

Other classes that are defined in the NOA Ontology are:

• Coastline: Instances of this class describe areas that define the coastline of Greece.

• Confirmation Value: This class contains only three instances noa:confirmed, noa:false_-
alarm and noa:unknown. These instances are assigned to hotspots and indicate that the
hotspot has been confirmed to be a fire or a false alarm or that no confirmation has yet taken
place.

• Organization: This class contains instances that represent EO Organizations (e.g., NOA,
FIRMS, EFFIS).

We now give some examples of stRDF triples that describe EO products.

Example 10. stRDF triples that represent a raw file with name
H-000-MSG1-MSG1_RSS-IR_039-000007-201008211900-C_.

noa:example_HMSG1_RSS_IR_039_s7_100821_1900_rd rdf:type noa:RawData;
noa:belongToCollection imAn:MSG1.METEOSAT8.RAWDATA;
noa:isDerivedFromSatellite "METEOSAT8"^^xsd:string;
noa:isDerivedFromSensor "MSG1_RSS"^^xsd:string;
noa:hasSegment "7"^^xsd:integer;
noa:hasAqcuisitionTime "2010-08-21T19:00:00"^^xsd:dateTime;
noa:isFromChannel "IR_039"^^xsd:string;
noa:hasFilename "H-000-MSG1-MSG1_RSS-IR_039-000007-201008211900-C_"^^xsd:string.
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Each raw file is annotated with metadata that are extracted from its filename. In the NOA use case,
three raw datasets are used: MSG/SEVIRI archives, GMES ERCS FMM-1 archives and GMES
ERCS FMM-2 archives. Here we show how to annotate a raw data file of MSG/SEVIRI archives.
The filename of a raw data file of this dataset has the following format:

H-000-<sensor>-<sensor>-<channel>-<segment>-<datetime>-C_

The file with name H-000-MSG1-MSG1_RSS-IR_039-000007-201008211900-C_ is produced by a
measurement taken from MSG1_RSS sensor, which is attached in METEOSAT8 satellite. The
sensor channel that was used is IR_039 and acquired data cover the geographical segment 7. Fi-
nally, the sensing date is “2010-08-24” and the time is “19:00”.

Example 11. stRDF triples that represent an ESRI shapefile with name HMSG1_RSS_IR_039_s7_100821_1900.shp.

noa:example_HMSG1_RSS_IR_039_s7_100821_1900_shp a noa:ShpFile ;
noa:isProducedBy noa:Noa ;
noa:belongToCollection imAn:MSG1Collection ;
noa:hasAqcuisitionTime "2010-08-21T19:00:00"^^xsd:dateTime ;
noa:isDerivedFromSensor "MSG1_RSS"^^xsd:string ;
noa:isDerivedFromSatellite "METEOSAT8"^^xsd:string ;
noa:producedFromProcessingChain "Cloud-Mask-v1"^^xsd:string ;
noa:hasFilename "HMSG1_RSS_IR_039_s7_100821_1900.shp"^^xsd:string.

The ESRI shapefiles that depict a group of hotspots are named according to the format below:

H<sensor>_<channel>_<segment_<date>_<time>.shp

Consequently, the shapefile that is produced by the raw data presented in Example 10, is named
HMSG1_RSS_IR_039_s7_100821_1900.shp.

Example 12. stRDF triples that represent a hotspot of the shapefile of Example 11.

noa:example_HMSG1_RSS_IR_039_s7_100821_1900_0 a noa:Hotspot;
noa:hasConfirmation noa:unknown;
isProducedBy noa:noa;
hasGeometry "POLYGON((24.42 38.06,24.47 38.06,24.47 38.02,

24.42 38.02,24.42 38.06))"^^strdf:WKT;
isDerivedFromSatellite "METEOSAT8"^^xsd:string;
isDerivedFromSensor "MSG1_RSS"^^xsd:string;
producedFromProcessingChain "Cloud-Mask-v1";
hasConfidence "1.0"^^xsd:double;
hasAqcuisitionTime "2010-08-21T19:00:00"^^xsd:dateTime.

Each hotspot that is contained in a shapefile should be annotated separately. For each hotspot, we
represent its distinct geometry and confidence. In addition, we provide information such as the
acquisition time that is derived from the corresponding shapefile.
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3.1.2 Corine Land Cover Ontology

This ontology aims to model the CORINE Land Cover (CLC) nomenclature1. It has two main
classes clc:Area and clc:LandUse. The class clc:LandUse is the top class of CLC taxonomy
and contains classes that model the full hierarchy of land uses. The class clc:Area represents
every area with a specific land use. The main properties of an instance of class clc:Area are the
following.

• strdf:hasGeometry

• clc:hasLandUse

Property noa:hasGeometry indicates where an area lies, while clc:hasLandUse indicates the land
use of an area connecting it with an instance of clc:LandUse. The stRDF description of an area
that lies in a coniferous forest is included in Example 13.

Example 13. stRDF triples that represent an area covered by coniferous forest.

clc:Area_45 a clc:Area;
noa:hasGeometry "POLYGON((22.07 40.62, ..., 22.07 40.62))"^^strdf:WKT;
clc:hasLandUse clc:coniferousForest.

The above triples have been created using the NOA and CLC ontologies. They define an area
covered by coniferous vegetation. Please note that clc:coniferousForest is an instance of class
clc:ConiferousForest which takes part in the taxonomy of LandUse.

3.1.3 ImageAnnotation Ontology

The Image Annotation Ontology is an extension of the Earth Observation Lightweight Ontology
(EOLO), described in [Pod]. EOLO aims at connecting the world of EO observation scientists with
the world of data management technicians. It defines use cases with respect to observed objects
of interest and their physical properties. Data collections are also defined in the same manner.
Therefore, there is a matching between an application and data collections that are needed for
this application. In this section, we describe how the NOA use case and respective datasets can
be described using an extension of the EOLO ImageAnnotation Ontology. The main classes of the
EOLO ontology are:

• Phenomenon: Natural or anthropogenic phenomena that can be studied.

• ApplicationDomain: Axioms that include several restrictions on the Collection properties.

• Collection: Data with similar characteristics.

• ObservedObject: Objects that can be observed (e.g., atmosphere, land surface).

• PhysicalProperty: Physical properties that can be measured (e.g., temperature, pressure).

• measureRelation: Pairs of observed object and a physical property. This class is used
to represent the n-ary relation of property measures between the classes data:Collection,
data:ObservedObject and PhysicalProperty. To increase readability of the ontology we
created an equivalent class named imAn:PropertyOfObject.

1http://www.eea.europa.eu/publications/COR0-landcover
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Figure 3.1: ImageAnnotation Ontology

To shed more light on the modeling EOLO follows, we present how the NOA use case can be
modeled in EOLO. The class imAn:NOA-UC is added as a subclass of eolo:ApplicationDomain
and represents the NOA Use Case. Since NOA is interested in observing wild fires, the class
imAn:WildFire is added as a subclass of class eolo:Phenomenon and is set to be equivalent to
imAn:NOA-UC, to restrict NOA Use Case only in wild fire phenomena. To observe wild fires, one
needs data about land temperature. The property eolo:measures connects an eolo:Collection
instance with an imAn:PropertyOfObject instance so that it models the collection of data being
measured. If we set the class imAn:WildFire to be equal to the axiom “eolo:measures some
eoloTemperatureOfLand“ then every data collection like imAn:MSG1Collection will be an instance
of class imAn:WildFire. The Image Ontology is shown in Figure 3.1 and a data collection described
in Example 14.

Example 14. stRDF triples that represent a data collection.

iman:MSG1Collection rdf:type eolo:OpticalCollection;
eolo:hasGeoExtents eolo:Regional ;
eolo:hasProcessingLevel eolo:L1 ;
eolo:hasResolution eolo:LowResolution ;
eolo:hasTemporalExtents eolo:Instant ;
rdfs:label "MSG1Collection" ;
eolo:measures eolo:temperatureOfLand_ind .

The EOLO ontology defines properties that can be used for the qualitative characterization of data.
In the example above, the collection MSG1Collection contains current measurements with a re-
gional spatial extent. It provides data with low resolution that are produced by processing level 1,
which means that they are the product of some basic processing.

3.2 Linked Oped Data for Fire Monitoring

In the Fire Monitoring application we are interested in a technological solution that integrates
multiple, heterogeneous data sources in order to produce complete thematic maps. In order to
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increase the value of the final map product we interconnect EO data with Linked Open Data
which is a new, rapidly developing research area of Semantic Web that studies how one can make
RDF data available on the Web and interconnect them with other data with the aim of increasing its
value for everybody [BHBL09]. The resulting “Web of data” has recently started being populated
with geospatial data. Two representative examples of such efforts are LinkedGeoData2 (LGD)
and GeoNames3 that are used in TELEIOS to enhance products related to fire monitoring. In
the following sections, the datasets utilized in TELEIOS in the context of the fire monitoring
application are described.

3.2.1 LinkedGeoData

LinkedGeoData is an effort aiming at enriching available geographic information published as
Linked Data. LinkedGeoData is primarily focused on publishing OpenStreetMap (OSM)4 data as
Linked Data.

The data model of OpenStreetMap consists of three main categories:

Nodes: Point locations with latitude/longitude values.

Ways: Ordered sequences of nodes.

Relations: Groupings of nodes and ways.

The respective ontology, LinkedGeoData, is derived mainly from OSM tags, i.e., attribute-value
annotations of nodes, ways, and relations, counting up to 500 classes, 50 object properties and
about 15,000 datatype properties. Points are used by OSM to represent places, cities, etc. and
are defined by a longitude/latitude pair expressed in the WGS84 coordinate reference system.
Furthermore, an effort was made to match DBpedia resources with LinkedGeoData, taking into
account the common classes between the two ontologies, for which the owl:sameAs link was used
to connect them. Currently, the knowledge base of LGD comprises approximately 2 billion triples.

For the mockup fire monitoring application, we isolated data concerning Greece which led to
approximately 840,000 triples. In this section we present some sample data derived from the LGD
dataset.

Example 15. RDF representation of the Parthenon according to LinkedGeoData.

lgd:way10973689 rdf:type lgdo:Tourism, lgdo:Building, lgdo:HistoricRuins ;
lgdp:int_name "Parthenon" .
lgdo:hasNodes lgdw_way10973689:nodes .
georss:polygon "37.9715909 23.7262015 37.9712993 23.7262856 37.9714414

23.7270791 37.971733 23.7269951 37.9715909 23.7262015" .

lgdw_way10973689:nodes rdf:type rdf:Seq .
lgdw_way10973689:nodes rdf:_1 lgd:node97810425 ;

rdf:_2 lgd:node97810428 ;
rdf:_3 lgd:node97810431 ;
rdf:_4 lgd:node97810434 ;
rdf:_5 lgd:node97810425 .

lgd:node97810434 geo:geometry "POINT(23.727 37.9717)"^^virtrdf:Geometry .
2http://linkedgeodata.org/
3http://www.geonames.org/
4http://www.openstreetmap.org/
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lgd:node97810425 geo:geometry "POINT(23.7262 37.9716)"^^virtrdf:Geometry .
lgd:node97810428 geo:geometry "POINT(23.7263 37.9713)"^^virtrdf:Geometry .
lgd:node97810431 geo:geometry "POINT(23.7271 37.9714)"^^virtrdf:Geometry .
ns2:node97810425 geo:geometry "POINT(23.7262 37.9716)"^^virtrdf:Geometry .

The triples above describe Parthenon according to the LGD dataset, that is derived from OSM
data. Note that the geometry of Parthenon is defined both using a sequence of constituent nodes
and their geometry along with the object value of property georss:polygon that is a string with
all lat/long pairs of constituent nodes.

Example 16. stRDF triples that represent the Parthenon according to LinkedGeoData.

lgd:way10973689 rdf:type lgdo:Tourism, lgdo:Building, lgdo:HistoricRuins;
lgdo:hasNodes lgdw_way10973689:nodes ;
lgdp:int_name "Parthenon" ;
georss:polygon "POLYGON(( 23.7262015 37.9715909, 23.7262856 37.9712993,

23.7270791 37.9714414, 23.7269951 37.971733, 23.7262015
37.9715909))"^^<http://strdf.di.uoa.gr/ontology#WKT> ;

In order to utilize LGD data in a fire monitoring application using Strabon, we omitted constituent
nodes for each way and defined its geometry according to the stRDF data model [KKN+11].

3.2.2 GeoNames

GeoNames5 is a gazetteer which collects both spatial and thematic information for various place-
names around world. Data of GeoNames is available through various Web services, but are also
published as Linked Data. The database of GeoNames contains over 10 million geographical names
corresponding to over 7.5 million unique features. We used data related with Greece that comprise
approximately 575,000 triples describing around 41,000 features.

GoeNames provides a point approximation for the geometry of each feature and is expressed
as a longitude/latitude pair expressed in WGS84. The following example shows how Athens is
represented according to the GeoNames ontology.

Example 17. RDF representation of Athens according to GeoNames.

<http://sws.geonames.org/264371/> a gn:Feature ;
wgs84_pos:lat "37.97945" ;
wgs84_pos:long "23.71622" ;
gn:alternateName "Athens"@en ;
gn:countryCode "GR" ;
gn:featureClass gn:P ;
gn:featureCode gn:P.PPLC ;
gn:locationMap <http://www.geonames.org/264371/athens.html> ;
gn:name "Athens" ;
gn:nearbyFeatures <http://sws.geonames.org/264371/nearby.rdf> ;
gn:parentADM1 <http://sws.geonames.org/6692632/> ;
gn:parentADM2 <http://sws.geonames.org/264353/> ;
gn:parentCountry <http://sws.geonames.org/390903/> ;
gn:parentFeature <http://sws.geonames.org/264353/> ;
gn:population "729137" ;

5http://www.geonames.org/
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gn:wikipediaArticle <http://af.wikipedia.org/wiki/Athene> ;
rdfs:isDefinedBy "http://sws.geonames.org/264371/about.rdf" ;
owl:sameAs dbpedia:Athens ;
wgs84_pos:alt "70" .

The triples above describe Athens according to the GeoNames ontology. In order to use the spatial
extent of this description in Strabon we replaced the triples representing the location of Athens with
the following triple
<http://sws.geonames.org/264371/> noa:hasGeography "POINT(23.71622 37.97945)"^^strdf:WKT.

3.2.3 Greek administrative geography

Recently, governments publish open data about administrative divisions, statistical information,
etc. in their portals [GDH08]. We have taken advantage of this data openness for Greece6 and since
these haven’t been published as Linked Data in the past, we chose to publish them and focused on
the Greek administrative division and the geometry of lowest divisions (municipalities).

3.3 Building a Fire Monitoring Application Using Strabon

In this section we show how Semantic Web technologies and Linked Open Data can enhance Earth
Observation applications like fire monitoring. Specifically, we demonstrate how to use the afore-
mentioned datasets to build a Fire Monitoring Application for the NOA use case. We demonstrate
how to discover raw data, shapefiles using stSPARQL queries and show how one can use stSPARQL
to generate on the fly maps for the fire monitoring domain.

3.3.1 Discovering Earth Observation Data

In this section we demonstrate how to discover Earth Observation data, such as files containing
raw data, by using stSPARQL to express such queries.

Example 18. Retrieve shapefiles that contains acquisitions performed by sensor MSG1_RSS that
were taken between 20:00 and 20:30 of August 21, 2010.

SELECT ?filename
WHERE { ?file rdf:type noa:ShpFile .

?file noa:hasFilename ?filename .
?file noa:hasAcquisitionTime ?sensingTime .
FILTER( str(?sensingTime) > "2010-08-21T20:00:00" ) .
FILTER( str(?sensingTime) < "2010-08-21T20:30:00" ) .
?file noa:isDerivedFromSensor ?sensor .
FILTER( str(?sensor) = "MSG1_RSS" ) . }

The result of the query is displayed below: The above query searches for shapefiles (instances of
class noa:ShpFile). Since each shapefile contains information from a specific acquisition, the
above query searches for acquisitions of the sensor MSG1_RSS taken between 20:00 and 20:30 of
August 21, 2010. For every instance found the respective filename is returned. The user can utilize
this information to download the respective file.

6http://geodata.gov.gr/geodata/
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?filename
MSG1_RSS_10-08-21_20:05_cloud-masked.shp
MSG1_RSS_10-08-21_20:05_plain.shp
MSG1_RSS_10-08-21_20:10_cloud-masked.shp
MSG1_RSS_10-08-21_20:10_plain.shp
MSG1_RSS_10-08-21_20:15_cloud-masked.shp
MSG1_RSS_10-08-21_20:15_plain.shp
MSG1_RSS_10-08-21_20:20_cloud-masked.shp
MSG1_RSS_10-08-21_20:20_plain.shp
MSG1_RSS_10-08-21_20:25_cloud-masked.shp
MSG1_RSS_10-08-21_20:25_plain.shp

Example 19. Discover all files related to the NOA use case.

SELECT ?filename {
?collection rdf:type iman:NOA-UC .
?file noa:belongToCollection ?collection .
?file noa:hasFilename ?filename . }

Some of the results of the query are displayed below:

?filename
H-000-MSG1__-MSG1_RSS____-IR_039___-000007___-201008211900-C_
H-000-MSG1__-MSG1_RSS____-IR_039___-000007___-201008211905-C_
H-000-MSG1__-MSG1_RSS____-IR_039___-000007___-201008211910-C_
....
MSG1_RSS_10-08-21_19:00_cloud-masked.shp
MSG1_RSS_10-08-21_19:00_plain.shp
MSG1_RSS_10-08-21_19:05_cloud-masked.shp
MSG1_RSS_10-08-21_19:05_plain.shp
MSG1_RSS_10-08-21_19:10_cloud-masked.shp
MSG1_RSS_10-08-21_19:10_plain.shp
MSG1_RSS_10-08-20_08:10_plain.shp
....

The above query make use of the ImageAnnotation ontology so that users who are not aware of
the available data and are interested in products related to fire monitoring, can discover relative
filenames. According to the extension of EOLO described in Section 3.1.3, only files that measure
land temperature (or derive from such measurements) will be returned. As long as there is not
some additional, restriction the results will be both files with raw data and produced shapefiles.

Example 20. Discover the shapefiles that related to the NOA use case.

SELECT ?filename {
?collection rdf:type iman:NOA-UC .
?file noa:belongToCollection ?collection .
?file noa:hasFilename ?filename .
?collection eolo:hasProcessingLevel eolo:L1 . }

A part of the result of the query is displayed below: The difference between this query and the
previous one is that it imposes some more restrictions. It specifically asks only for files belonging
to collections with processing level 1, i.e., results of processing on raw data. Thus, it will only
retrieve filenames of shapefiles.
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?filename
MSG1_RSS_10-08-21_19:00_cloud-masked.shp
MSG1_RSS_10-08-21_19:00_plain.shp
MSG1_RSS_10-08-21_19:05_cloud-masked.shp
MSG1_RSS_10-08-21_19:05_plain.shp
MSG1_RSS_10-08-21_19:10_cloud-masked.shp
MSG1_RSS_10-08-21_19:10_plain.shp
MSG1_RSS_10-08-20_08:10_plain.shp
....

3.3.2 Fire Monitoring

As far as automatic map generation is concerned, Semantic Web technologies provide tools for
handling heterogeneous data in a homogeneous way, while Linked Open Data Cloud supplies an
abundance of data in addition to internal EO data. Thus, a user has in her hands datasets covering
a large variety of geospatial information from minor, but interesting, entities like fire stations or
hospitals, to large entities like countries and their administrative divisions. So, instead of manually
combining heterogeneous data, a user can pose an stSPARQL query for each layer that she wants
to depict in a map and overlay the retrieved data. In order to depict the query results in a map,
there should be exactly one geospatial variable in the select clause of each query. Results of such
queries can be encoded in KML format or exported as shape files.

By posing the queries presented in this section and overlaying their results, one can create a map
that depicts the fires of August of 2007 along with auxiliary information (Figure 3.2).

Example 21. Retrieve all hotspots in Peloponnese that were detected from the 23rd to 26th of
August 2007.

SELECT ?hotspot ?hGeo ?hAcqTime ?hConfidence ?hProvider ?hConfirmation ?hSensor
WHERE {
?hotspot a noa:Hotspot ;

noa:hasGeometry ?hGeo ;
noa:hasAcquisitionTime ?hAcqTime ;
noa:hasConfidence ?hConfidence ;
noa:isProducedBy ?hProvider ;
noa:hasConfirmation ?hConfirmation ;
noa:isDerivedFromSensor ?hSensor ;
FILTER( "2007-08-23T00:00:00" <= str(?hAcqTime) ) .
FILTER( str(?hAcqTime) <= "2007-08-26T23:59:59" ) .
FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77

36.05, 21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?hGeo) ) .}

This query retrieves all hotspots that where detected between 23rd-26th of August 2007. Along
with the URIs, additional information about the hotspots is retrieved, e.g., time of acquisition
(?hAcqTime), provider (?hProvider) and geometry (?hGeo).

Example 22. Retrieve all areas in Peloponnese that are characterized as water bodies, artificial
surfaces, wet lands, agricultural areas or forests and semi natural areas.

SELECT ?area ?aGeo ?aLandUseType
WHERE {

?area a clc:Area ;
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clc:hasLandUse ?aLandUse ;
noa:hasGeometry ?aGeo .

?aLandUse a ?aLandUseType .
FILTER( ?aLandUseType = clc:Water_Bodies || ?aLandUseType = clc:ArtificialSurfaces

|| ?aLandUseType = clc:Wetlands || ?aLandUseType = clc:AgriculturalAreas
|| ?aLandUseType = clc:ForestsAndSemiNaturalAreas ) .

FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05,
21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?aGeo) ) . }

This query retrieves all areas with the desired land use according the Corine nomenclature and
their respective first level categorization.

Example 23. Get all primary roads in Peloponnese.

SELECT ?road ?rGeo
WHERE {

?road a ?rType ;
noa:hasGeometry ?rGeo .
FILTER( ?rType = lgdo:Primary ) .
FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05,

21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?rGeo) ) .}

This query utilizes information from the LinkedGeoData dataset and retrieves all primary roads of
Peloponnese.

Example 24. Get all seats of a first-order administrative division in Peloponnese.

SELECT ?feature ?fName ?fGeo
WHERE {

?feature a gn:Feature ;
noa:hasGeography ?fGeo ;
gn:name ?fName ;
gn:featureCode ?fCode .
FILTER( ?fCode = gn:P.PPLA || ?fCode = gn:P.PPLA2 ) .
FILTER( strdf:contains("POLYGON((21.51 36.41, 22.83 36.41,

22.83 37.69, 21.51 37.69, 21.51 36.41))"^^strdf:WKT, ?fGeo)). }

This query asks for every feature in GeoNames that is located at Peloponnese and its gn:featureCode
is gn:P.PPLA that is the code for seats of first-order administrative divisions. Apart from infor-
mation about every node (variables ?n and ?nGeo), the geometry (?nGeo) of the feature is also
returned so it can be depicted in a map.

Example 25. Get all Municipality boundaries in Peloponnese.

SELECT ?municipality ?mYpesCode ?mContainer ?mLabel ( strdf:boundary(?mGeo) as ?mBoundary )
WHERE {

?municipality a gag:Dhmos ;
noa:hasYpesCode ?mYpesCode ;
gag:isPartOf ?mContainer ;
rdfs:label ?mLabel ;
strdf:hasGeometry ?mGeo .
FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05,

21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?gGeo) ) . }
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This query makes use of information related to the Greek Administrative Geography. Especially,
it retrieves all lowest administrative divisions (municipalities) along with some information about
them (?gYpesCode, ?gContainer and ?gLabel) along with their boundaries.

By posing the queries presented above and overlaying the results on a map, one can create a map
that depicts the fires of August of 2007 along with auxiliary information (Figure 3.2).

Figure 3.2: A map created by overlaying data retrieved by queries on EO and Linked Geospatial
Data

3.4 Summary

In this chapter we presented a real world scenario where Strabon was used to build a fire monitor-
ing application. We described the ontologies that were developed in the context of TELEIOS that
model data used in fire monitoring by NOA. We also presented auxiliary datasets from the Linked
Open Data Cloud that were used to enhance fire monitoring products. Finally we presented exam-
ple queries that demonstrate how Strabon can be utilized both for data discovery and for creating
mapping products with added value for fire monitoring by utilizing Semantic Web Technologies.
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4. Source code

In this chapter we describe the directory structure of the Strabon prototype. We also briefly
mention any external dependencies this implementation has. We then present the application
programming interfaces that can be used in order to store stRDF files and evaluate stSPARQL
queries in Strabon.

In this section, we describe the necessary source code details for Strabon.

4.1 Directory structure

The source code of Strabon is available for download from a Mercurial repository1 hosted by ACS.
What we have made available for download is a transparent addon for Sesame 2.6.3. Following its
download, the inner directories of the downloaded folder will have the following structure:

• evaluation/: Contains classes implementing the external geospatial functions we have added
to Sesame’s functionality. Also contains classes overriding Sesame’s default functionality in
the case of aggregate functions.

• generaldb/: Contains the abstract extension of Sesame’s rdbms layer in order to allow the
storage of stRDF triples and querying using stSPARQL.

• monetdb/: Specialization of generaldb that allows using MonetDB as a backend for Sesame.

• postgis/: Specialization of generaldb that allows using PostGIS as a backend for Sesame.

• resultio/: Contains classes enabling the output of triples containing spatial literals.

• jars/: After compiling Strabon, this folder contains all necessary jars for running Strabon.

• runtime/: Contains the classes exposing Strabon’s functionality to the user.

• pom.xml: XML file that contains information about the project and configuration details
used by Maven to build Strabon.

4.2 External Dependencies

Strabon has dependencies on the following Java libraries, which are referenced in its POM file:

• PostgreSQL JDBC

• PostGIS

• MonetDB JDBC

• Maven (along with many Maven plugins, e.g., surefire)

• GeoAPI

• GeoTools

• JUnit

• Apache Commons

• SLF4J: Simple Logging Facade for Java
1ssh://opteleios@teleios-repo.acsys.it//home/opteleios/TELEIOS/system
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4.3 Application Programming Interface

The class that is used to display Strabon’s functionality is Strabon, contained in the runtime
package. The implementation of the class slightly differs depending on the relational backend
(PostGIS / MonetDB). The functions used to access Strabon are the following:

• eu.earthobservatory.runtime.postgis.Strabon: The constructor of our system in the
case of a PostGIS backend. This class creates a repository and establishes a connection with
it.

• eu.earthobservatory.runtime.monetdb.Strabon: The constructor of our system in the
case of a MonetDB backend. This class creates a repository and establishes a connection
with it.

• store: This function stores in the underlying repository the triples contained in the file or
URL specified by the user. The first argument of this function is either a URL or a File. As
for the formats that are supported for input stRDF files, they include N3 format (triples),
NTRIPLES format and RDF/XML format. If the path provided is wrong, an exception is
thrown. Otherwise, the stRDF file is stored in the underlying RDBMS.

• query: This function can be used in order to pose queries on previously stored data. In addi-
tion to the query’s string representation, the user can specify the format in which he wants his
results displayed. Supported formats include RDF/XML, KML and HTML representation.

• update: This function can be used in order to pose update queries on previously stored data
or on an empty graph. If update query is posed on an empty graph it is expected to be a
data insertion

4.4 Summary

In this chapter we provided a brief description of the source code of our implementation. We
described the directory structure, listed the external dependencies, and enumerated the methods
of the API.
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5. Installation and Execution

In this chapter, we provide Strabon installation guidelines, using either MonetDB or PostGIS
backend, and present how we can store and query stRDF datasets using Strabon.

For the convenience of the reader, we give specific instructions for executing each step in a computer
running Ubuntu 11.10 64-bit.

5.1 Prerequisites

Before downloading and compiling Strabon, the following steps should be executed:

• Install maven. More information can be found at http://maven.apache.org/.

$> sudo apt-get install maven2

• Install java 6. More information can be found at http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

$> sudo add-apt-repository ppa:ferramroberto/java
$> sudo apt-get update
$> sudo apt-get install sun-java6-jdk sun-java6-plugin

• Install Mercurial. More information can be found at http://mercurial.selenic.com/.

$> sudo apt-get install mercurial

5.2 Installing the underlying RDBMS

Let us now proceed with the installation of the RDBMS that will be used as a backend for Strabon.
The following sections provide installation instructions for MonetDB and PostGIS respectively.

Installing MonetDB

In this section we provide some basic information on how to build MonetDB from sources. More in-
formation can be found in [ZKI+12] and http://www.monetdb.org/Developers/SourceCompile.

• Extract the source code of MonetDB from the accompanying code package of Deliverable
D5.1 (MonetDB-11.7.8-NOA_20120228a_SQL_C_Strabon.tar.bz2).

• Compile and install MonetDB.
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5.2.1 Installing PostgreSQL and PostGIS

• Install PostgreSQL 9.0 or higher. More information can be found at http://www.postgresql.
org/download/.

$> sudo apt-get install postgresql-9.1

• Install PostGIS 1.5 or higher. More information can be found at http://postgis.refractions.
net/download/.

$> sudo apt-get install postgresql-9.1-postgis

• Provide a password for default user (postgres)

$> sudo -u postgres psql -c "ALTER USER postgres WITH PASSWORD ’postgres’;"

5.2.2 Creating a spatially enabled database

Spatially-enabled databases permit the use of spatial function calls. MonetDB creates spatially-
enabled databases by default if you have enabled the geom module. More information on how to
create a spatially-enabled database in PostGIS can be found at http://postgis.refractions.
net/docs/.

• Set postgis-1.5 path.

$> POSTGIS_SQL_PATH=‘pg_config --sharedir‘/contrib/postgis-1.5

• Create the spatial database that will be used as a template.

$> createdb -E UTF8 -T template0 template_postgis

• Add PLPGSQL language support.

$> createlang -d template_postgis plpgsql

• Load the PostGIS SQL routines.

$> psql -d template_postgis -f $POSTGIS_SQL_PATH/postgis.sql
$> psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql

• Allow users to alter spatial tables.

$> psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;"
$> psql -d template_postgis -c "GRANT ALL ON geography_columns TO PUBLIC;"
$> psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"

• Perform garbage collection.
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$> psql -d template_postgis -c "VACUUM FULL;"
$> psql -d template_postgis -c "VACUUM FREEZE;"

• Allows non-superusers the ability to create from this template.

$> psql -d postgres -c "UPDATE pg_database SET datistemplate=’true’
WHERE datname=’template_postgis’;"

$> psql -d postgres -c "UPDATE pg_database SET datallowconn=’false’
WHERE datname=’template_postgis’;"

• Create a spatially-enabled database named endpoint.

$> createdb endpoint -T template_postgis

5.3 Compiling and Running Strabon

The following sections describe how we can download, install and use Strabon.

5.3.1 Download and Compile Strabon

In order to download and compile Strabon, the steps below should be followed:

• Clone the source code of the TELEIOS system from the TELEIOS mercurial repository
hosted by ACS.

$> hg clone ssh://opteleios@teleios-repo.acsys.it//home/opteleios/TELEIOS/system

• Change to the directory that Strabon source code resides in.

$> cd system/components/Strabon

• Build Strabon.

$> mvn clean package

5.3.2 Store

If the installation of Strabon has been completed successfully, the user can proceed to store an
stRDF dataset. If PostGIS is used as the relational backend, the user has to execute the StoreOp
class of the package eu.earthobservatory.runtime.postgis of module strabon-runtime.

This class requires the following arguments:

• HOST: The name of the database host (e.g., localhost)

• PORT: The port which your connection listens to.
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• DATABASE: The name of the spatially-enabled database you created previously.

• USERNAME: The username used to connect to the database.

• PASSWORD: The password used to connect to the database.

• FILE: The stRDF document to be stored.

• FORMAT: The format of the triples.

Incremental storing using MonetDB as relational backend is currently work in progress, and will
be completed in subsequent releases of Strabon. As far as bulk storage of triples is concerned, the
user can store triples in either MonetDB or Postgres using the loader we created. This program
performs bulk loading in both MonetDB and PostGIS, and is provided in the accompanying code
package with instructions on how to setup and run it. The only argument that the Loader requires
is the name of the file containing all the stRDF triples to be stored. An example demonstrating
the usage of Loader is the script createDBmonet.sh, located in the accompanying code package
of this deliverable. The script invokes an instance of the Loader, using the dataset utilized in the
NOA use case as input. The loader produces numerous csv files that are subsequently stored in
MonetDB tables that can be used as the relational backend of Strabon.

We present an example on how to run Strabon from a console, connect to PostgreSQL and store
an RDF file. Let us assume that the file shown in Figure 5.1 resides in /tmp/triples.nt (encoded
according to the N3 format) and a spatially-enabled database named endpoint has been created:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

Figure 5.1: Example triples in N3 format

After executing the following command the file will be stored in the endpoint database.

$> cd jars/target && java -cp $(for file in ‘ls -1 *.jar‘; do myVar=$myVar./$file":";
done;echo $myVar;) eu.earthobservatory.runtime.postgis.StoreOp localhost 5432 endpoint
postgres postgres /tmp/triples.nt N3

5.3.3 Query

If storing has completed successfully, evaluation of stSPARQL queries can be performed using Stra-
bon. The user has to use the corresponding QueryOp class of the package eu.earthobservatory.
runtime.postgis or eu.earthobservatory.runtime.monetdb of module strabon-runtime. This
class requires the following arguments:

• HOST: The name of the database host (e.g., localhost)

• PORT: The port which your connection listens to.

• DATABASE: The name of the spatially-enabled database you created previously.
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• USERNAME: The username used to connect to the database.

• PASSWORD: The password used to connect to the database.

• QUERY: The stSPARQL query to evaluate.

• FORMAT: The format of the results.

Further to our previous example we present how one can run Strabon from a console, connect to
PostgreSQL and evaluate an stSPARQL query. Suppose that the user wants to retrieve titles of
books above a specific value (e.g., 30 dollars). Then, she should run the following command:

$> cd jars/target && java -cp $(for file in ‘ls -1 *.jar‘; do myVar=$myVar./$file":";
done;echo $myVar;) eu.earthobservatory.runtime.postgis.QueryOp localhost 5432 endpoint
postgres postgres "PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX ns:
<http://example.org/ns#> SELECT ?title WHERE {?book dc:title ?title. ?book ns:price
?price. FILTER(?price > 30)}";

The results that will be returned are:

?title
“SPARQL Tutorial”

5.3.4 Update

In addition, one can perform stSPARQL updates in Strabon by using the UpdateOp class of the
package eu.earthobservatory.runtime.postgis of module strabon-runtime. This class re-
quires the following arguments:

• HOST: The name of the database host (e.g., localhost)

• PORT: The port which your connection listens to.

• DATABASE: The name of the spatially-enabled database you created previously.

• USERNAME: The username used to connect to the database.

• PASSWORD: The password used to connect to the database.

• UPDATE: The stSPARQL update query to evaluate.

Update functionality using MonetDB as a relational backend is currently work in progress, and
will be fully implemented in subsequent releases of Strabon.

In the following example, the command given replaces the price of book “The Semantic Web” with
a higher one.

$> cd jars/target && java -cp $(for file in ‘ls -1 *.jar‘; do myVar=$myVar./$file":";
done; echo $myVar;) eu.earthobservatory.runtime.postgis.UpdateOp localhost 5432 endpoint
postgres postgres "PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX ns:
<http://example.org/ns#> DELETE {?book ns:price ?price} INSERT {?book ns:price 32} WHERE
{?book dc:title \"The Semantic Web\". ?book ns:price ?price.}";

After executing this command the results of the previous query will be:
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?title
“SPARQL Tutorial”
“The Semantic Web”

5.4 Summary

In this chapter, we provided instructions on how to install Strabon. The user can pick between
having MonetDB or PostGIS as a relational backend. We also presented how one can store and
query stRDF datasets using Strabon, providing an example of how to run the Strabon PostGIS
store and query methods from an Ubuntu 11.10 command line.
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6. Conclusions

In this report we presented the implementation process followed for the development of the system
Strabon. We documented the steps followed to port our implementation on top of MonetDB.
We also discussed the process we followed to enhance our system with additional functionality
motivated by the use cases of TELEIOS. What is more, we presented how Strabon can be used
in a real world scenario. Finally, we gave a short tutorial on how to compile and run Strabon.
This report accompanies the code for our implementation which is available for download from the
TELEIOS Mercurial repository1.

In the forthcoming deliverable named “An implementation of a temporal and spatial extension
of RDF and SPARQL on top of MonetDB - Phase II” we will report on our work on extending
Strabon in order to support stRDF i.

1teleios-repo.acsys.it
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