
A Symbolic Search Based Approach for Quantified
Boolean Formulas

Gilles Audemard and Lakhdar Saïs
�

CRIL CNRS – Université d’Artois
rue Jean Souvraz SP-18

F-62307 Lens Cedex France
{audemard,sais}@cril.univ-artois.fr

Abstract. Solving Quantified Boolean Formulas (QBF) has become an impor-
tant and attractive research area, since several problem classes might be formu-
lated efficiently as QBF instances (e.g. planning, non monotonic reasoning, two-
player games, model checking, etc). Many QBF solvers has been proposed, most
of them perform decision tree search using the DPLL-like techniques. To set free
the variable ordering heuristics that are traditionally constrained by the static or-
der of the QBF quantifiers, a new symbolic search based approach (QBDD(SAT))
is proposed. It makes an original use of binary decision diagram to represent the
set of models (or prime implicants) of the boolean formula found using search-
based satisfiability solver. Our approach is enhanced with two interesting exten-
sions. First, powerful reduction operators are introduced in order to dynamically
reduce the BDD size and to answer the validity of the QBF. Second, useful cuts
are achieved on the search tree thanks to the nogoods generated from the BDD
representation. Using DPLL-likes (resp. local search) techniques, our approach
gives rise to a complete QBDD(DPLL) (resp. incomplete QBDD(LS)) solver.
Our preliminary experimental results show that on some classes of instances from
the QBF evaluation, QBDD(DPLL) and QBDD(LS) are competitive with state-
of-the-art QBF solvers.

Keywords: Quantified boolean formula, Binary decision diagram, Satisfiability.

1 Introduction

Solving quantified boolean formulas has become an attractive and important research
area over the last years. Such increasing interest might be related to different reasons
including the fact that many important artificial intelligence problems (planning, non
monotonic reasoning, formal verification, etc.) can be reduced to QBFs which is con-
sidered as the canonical problem of the PSPACE complexity class. Another important
reason comes from the recent impressive progress in the practical resolution of the sat-
isfiability problem.

Many solvers for QBFs have been proposed recently (e.g. [11, 18, 12, 10]), most of
them are obtained by extending satisfiability results. This is not surprising since QBFs

�

This work has been supported in part by the IUT de Lens, the CNRS and the Region Nord/Pas-
de-Calais under the TAC Programme

is a natural extension of SAT where the boolean variables are universally or existentially
quantified. Most of these solvers take a formula in the prenex clausal form as input and
are variant of Davis Logemann and Loveland procedures (DPLL) [7]. However, one
of the main drawback of such proposed approaches is that variables are instantiated
according to their occurrences in the quantifier prefix (i.e. from the outer to the inner
quantifier group). Such preset static ordering limits the efficiency of the search-based
QBF solvers. Indeed, in some cases, invalidity of a given QBF might be related to its
subparts with variables from the most inner quantifier groups. Consequently, following
the order of the prefix might lead to a late and repetitive discovery of the invalidity of
the QBF.

The main goal of this paper is to set free the solver from the preset ordering of
the QBF and to facilitate the extension of the satisfiability solvers. To this end, binary
decision diagrams are used to represent in a compact form the set of models of the
boolean formula found by a given satisfiability solver. It give rise to a new QBF solver
QBDD(SAT) combining satisfiability search based techniques with binary decision dia-
gram. For completeness and efficiency reasons, our approach is enhanced with two key
features. On the one hand, reduction operators are proposed to dynamically reduce at
least to some extent the size of the binary decision diagram and to answer the validity
of the QBF. On the other hand, for each model found by the satisfiability search pro-
cedure, its prime implicant is represented in the BDD and a nogood is returned from
the reduced BDD representation and added to the formula. The approach we present
in this paper significantly extends our preliminary results [2]. We give a more general
framework with additional features such as prime implicants encoding, cuts generation.
Two satisfiability search techniques (DPLL and local search techniques) are extended
to QBF using our proposed approach.
The paper is organized as follows. After some preliminaries and technical background
on quantified boolean formulas and binary decision diagram, it is shown how binary de-
cision diagram can be naturally combined with satisfiability search based techniques to
handle QBFs. Using systematic search (respectively stochastic local search) techniques,
preliminary experiments on instances of the last QBFs evaluation are presented and
show that QBDD(SAT) is competitive and can somtimes achieve significant speedups
over state-of-the-art QBF solvers.

2 Preliminaries and technical background

Before introducing our approach, we briefly review some necessary definitions and no-
tations about quantified boolean formulas and binary decision diagram.

2.1 Quantified boolean formulas

Let
�

be a finite set of propositional variables. Then, ��� is the language of quantified
boolean formulas built over

�
using ordinary boolean formulas (including propositional

constants � and �) plus the additional quantification (� and �) over propositional vari-
ables.

We consider quantified boolean formula in the prenex form: ���������	��

���
��
����������
(in short ����� , ��� is called the prefix of � and � the matrix of �) where ������
��
 � � , �	�!
����
��
"�#� are disjoint sets of variables and � a boolean formula. Consecu-

tive variables with the same quantifier are grouped. The rank of a variable $%�&� �
is equal to ' (noted (�)�*,+�-.$0/). Variables in the same quantifier group have the same
rank value. We define a prefix ordering of QBF formula ���1� � � �
��
���2
3� � � � � as
the partial ordering obtained according to the decreasing rank of the variables, noted
� �54 � �76��84:9�9�9;4 � � . A QBF formula � is said to be in clausal form if � is in
prenex form and � is in Conjunctive Normal Form (CNF). Note that we can consider
QBFs with inner quantifier ��� as existential. Indeed, if �<� is a universal quantifier
then suppressing �<���#� from the prefix and all occurrences of $��=�>� from the matrix
lead to an equivalent QBF. We define ?@)�(!-A�>/��CB �ED�F���GIHIHIHIG ��J �	� the set of variables
of � . A literal is the occurrence of propositional variable in either positive (K) or nega-
tive form (LMK). N>'PO2-A�>/Q�1B �ED�F���GIHIHIH G ��J N>'PO2-E�R�S/ the set of complete literals of � , where
N>'PO2-.�	�A/T� � $0�U
VLW$0��X $0�Y�Z�	�[� . We note \�)�(!-EKS/ the variable associated to a literal K . A
literal K]�Z� is a unit literal iff K is existentially quantified and �!^Q� � KU
"K �7

������
"K_�[�����
s.t. ��Ka`b

c�d5e	df' , \g)�(!-AKa`h/ is universally quantified and (h)�*,+�-AK `7/ 4 (�)�*,+�-EKS/ . A mono-
tone literal is defined in the usual way as in the pure boolean case (i.e. K is monotone in
� iff it appears either positively or negatively).

To define the semantic of quantified boolean formulas, let us introduce some nec-
essary notations. Let i be the set of assignments over the set of variables ? . The
Up-projection (resp. Down-projection) of a set of assignments i on a set of variables
�kjl? , denoted i&mn� (resp. ipon�), is obtained by restricting each assignment
to literals in � (resp. in ?�qh�). The set of all possible assignments over � is denoted
by rts . An assignment over � is denoted by a vector of literals uv $. In the same way,
Up-projection and Down-projection also apply on vector of literals uv $. If uv w is an as-
signment over x s.t. xzy8�{�}| , then uv w �Ii denotes the set of interpretations obtained
by concatenating uv w with each interpretation of i . Finally, �@- uv $�/ denotes the boolean
formula � simplified with the partial assignment uv $. An assignment uv $ is an implicant
or a model (resp. nogood) of � ; noted uv ${~f� (resp. uv $&�p�) iff �@-Uuv $�/�� � (resp.
�@-Uuv $�/T� �). An implicant (resp. nogood) uv $ is called prime implicant (resp. minimal
nogood) of � iff � uv w j uv $ s.t. uv w ~#� (resp. uv w ���).
A QBF formula is valid (is true) if there exists a solution (called a total policy) defined
as follows. It is a simplified version of the definition by Sylvie Coste-Marquis et al.
[13].

Definition 1. Let �������7�#�g
��
���2
���������� a quantified boolean formula and ���� uv $R�h
��
���2
 uv $@��� a set of models of the boolean formula � . � is a total policy of the
quantified boolean formula � iff � recursively verifies the following conditions:

1. +R�z� , and �C� �
2. if � � � � , then �CmZ� � �:r s]� , and �Muv $ � ��r s]� , ��o�uv $ � is a total policy of

�@�76����#�76��h
��
���

V�����#���@-Uuv $��b/
3. if ����� � , then ��m��#�@� � uv $���� and �=o#uv $�� is a total policy of ���76��2�#�76���
��
����

���������@-Uuv $��b/

Remark 1. Let � be a total policy of � � �<�7�#�g
��
����
����V����� . If ����� � then we can
rewrite � as B 6� � � D���� �

� uv $��g� -E�no uv $��b/�� and if ���#� � , then �nm �#�#� � uv $���� and �
can be rewritten as

� uv $ � � -.�=oRuv $ � /��
Example 1. Let � � �g$��
$
	 ��$
��$�� �g$��2$

�� be a QBF formula, where �C� -.$���� $
�h/��
-.$�����$�

/���-ALW$����Z$�

/���-.$�����$�	7/ . � is a valid QBF, since the set of models �z�� -ALW$��t
"$
	t
[$
��
[$
��
�LW$��b
[$�

/ , -ALW$
��
"$
	b
"$
��
VLW$
��
�LW$��b
[$

7/ , -ALW$
��
[$�	t
�LW$
��
VLW$
��
"$��h
�LW$

h/ ,-ALW$ �
[$ 	
�LW$ �
[$ �
[$ �
"$
 /�� is a total policy of � (Figure 1). The different projection op-
erations are illustrated as follow :
� m � $
�b
"$
	t�Q� � -ALW$
��
[$�	
/��
���_�Q� o � $ �
"$ 	 �
� � -.$ �
"$ �
VLW$ �
[$
 /2

-.$ �
VLW$ �
VLW$ �
"$
 /�

-SLW$ �
VLW$ �
"$ �
VLW$
 /�
7-ALW$ �
"$ �
[$ �
[$
 /��

���!m � $
�b
"$����h� � -SLW$
��
VLW$
�7/�
7-ALW$���
"$���/�
7-.$
��
VLW$
�h/2

-E$
��
[$��h/�� ��r F ��� G ��� J

���
� ���

� � �
�"! �"!
�$# � �$#

� � � � � � �

�$# �$#
� �"!

� �$% �$%

� �&!

Fig. 1. Policy decision tree representation (example 1)

Motivated by the impressive results obtained in practical solving of the satisfiability
problem, several QBF solvers have been developed recently. Most of them are exten-
sions of the well known DPLL procedure including many effective SAT results such as
learning, heuristics and constraint propagation (QUBE [11], QUAFFLE [18], EVALUATE

[6], DECIDE[16]). For examples, QUBE [11] and QUAFFLE [18] extend backjumping
and learning techniques, EVAUATE[6] and DECIDE [16] extend some SAT pruning tech-
niques such as unit propagation.

Algorithm 1 gives a general scheme of a basic DPLL procedure for checking the
validity of QBFs. It takes as input variables of the QBF prefix 4 �>��

�����

[���(' associ-
ated to quantifiers � �
��
����
�� � and a matrix � in clausal form. It returns true if the QBF
formula ��� � � � �

���
��
V� � � � � is valid and false otherwise. The algorithm starts
by simplifying the formula using unit propagation and monotone literal rules. Then, if
the current simplified matrix contains the empty clause then the current QBF is invalid
(value false is returned); otherwise, if the current matrix is empty then the QBF formula
is valid (value true is returned). The next step consists in choosing the next variable
to instantiate (splitting rule) in the most external non empty set of variables �8� . This
differ from the DPLL satisfiability version, since variables are instantiated according to
their prefix ordering. Depending on the quantifier ��� of the chosen variable, left and/or

right branchs are generated. If ����� � (resp. ���=� �) the right branch is generated
only if the value returned in left branch is true (resp. false). The search tree developped
by the QBF DPLL procedure can be seen as an and/or tree search.

Algorithm 1: QDPLL for QBF

Data : � : matrix of the QBF; �������	�
�	�	���
��� : prefix of the QBF �
Result : true if the QBF � s valid, false otherwise
begin

Simplify(�);
if ����� then return false;
if ����� then return true;
if ������� then return QDPLL(���
������� � �
�	�	�	���
���);
choose (by heuristic) a literal ��� �!� ;
if (("#�$�&%(' and QDPLL(�*),+��.-/�0������12+3�4-/�0�
�	�0��� �5�)=false) then

return false;
if ((" � �768' and QDPLL(�*),+��.-/�0��� � 12+3�4-/�0�
�	�0��� � �)=true) then

return true;
return QDPLL(�*)�+�9:�.-/�0�&�!��1;+��.-/�0�	�	�
��� �5�);

end

One of the major drawback of the extension of the DPLL procedure to QBF con-
cerns the imposed prefix ordering. Such restrictive ordering might lead to performance
degradation of the QBF solver. Since, good ordering might be lost. Furthermore, such
limitation makes difficult the extension of certain interesting results obtained on the
satisfiability problem (see for example [8] for random problem or [14] for structured
problems). One can cite, stochastic local search another search paradigm widely used
in SAT (e.g. [17]) that received little attention in QBF. A first integration of local search
in QBF solver (WalkQSAT) has been investigated in [10]. WalkQSAT is an implemen-
tation of conflict and solution directed backjumping in QBF. It uses a local search solver
to guide its search.

2.2 Binary decision diagram

A Binary Decision Diagram (BDD) [1, 5] is a rooted directed acyclic graph with two
terminal nodes that are referred to as the 0-terminal and the 1-terminal. Every non-
terminal node is associated with a primary input variable such that it has two outgoing
edges called the 0-edge corresponding to assigning the variable a false truth value, and
the 1-edge corresponding to assigning the variable a true truth value. An Ordered Binary
Decision Diagram (OBDD) is a BDD such that the input variables appear in a fixed
order on all the paths of the graph, and no variable appears more than once in the
path. A Reduced Ordered BDD (ROBDD) is an OBDD that results from the repeated
application of the following two rules:

1. Share all equivalent sub-graphs (Figure 2.a).
2. Eliminate all redundant nodes whose outgoing edges point to the same node (Figure

2.b).

x x

y

z

y

z

x

y

x

y

a. Sharing sub-formulas b. Redundant node

Fig. 2. Reduction Rules

A (RO)BDD representing a boolean formula � is noted -�����/�������-.� / .
Figure 3 illustrates the ROBDD representation of the policy � (�	�	������-E�,/) shown

in example 1 where the solid edges denote the 1-edges and the dashed edges denote the
0-edges. The ROBDD order is the same as the prefix ordering of variables (

� $ �
[$ 	 � 4� $ �
[$ � � 4 � $ �
[$
 �) of the QBF � .

1 0

���

��%
���

�"! � !
��#

�$�

�&!

�$#

Fig. 3. BDD representation of a policy (example 1)

ROBDDs have some interesting properties. They provide compact and unique rep-
resentation of boolean functions, and there are efficient algorithms performing all kinds
of logical operations on ROBBDs. For example, it is possible to check in constant time
whether an ROBDD is true or false. Let us recall that for boolean formula, such problem
is NP-complete. Despite the exponential size of the ROBDD in the worst case, ROBDD
is one of the most used data structure in practice.

In the rest of this paper, only reduced ordered BDDs are considered and for short we
denote them as BDDs. For aquantified boolean formula, the order used in the ROBDD
follows the prefix ordering of the QBF.

3 QBDD(SAT): a symbolic search based approach

In this section, to make the QBF solver freed from the preset ordering of the variables
(i.e. fixed by the QBF prefix), we propose an original combination of classical SAT
solver with binary decision diagrams. In figure 4, we give a general scheme of our sym-
bolic search based approach QBDD(SAT). More precisely, to check the validity of a
QBF � ������� , our approach makes use of a satisfiability technique to search for
models (SAT enumerator) of the boolean formula � . For each found model � , a prime
implicant � ' is extracted (Compute PI) and disjunctively added to the BDD (bdd =
or(bdd, pi)) using the prefix ordering of the variables. If the current set of prime im-
plicants represent a total policy then its BDD representation is reduced to 1-terminal
node (see section 3.1) and the QBDD(SAT) answer the validity of � . As was mentioned
earlier, QBDD(SAT) can be instantiated with any satisfiability search technique. For
example, QBDD(DPLL) (resp. QBDD(LS)) refer to a QBF solver obtained by instan-
tiating SAT enumerator with DPLL-like (resp. local search) techniques. At the end of
the satisfiability search process, if the BDD is not reduced to a 1-terminal node (i.e. a
total policy is not found) then depending on the completeness of the SAT used enumer-
ator QBDD(SAT) return either invalid or unknown. Consequently, the QBDD(SAT) is
complete iff the satisfiability used solver is also complete.

Fig. 4. QBDD(SAT): general scheme

For space complexity reason, only prime implicants of the boolean formula are
encoded in the BDD, nogoods found during the satisfiability search process are not
considered. Paths to 0-terminal node in the generated BDD do not represent the nogoods
of the boolean formula. Consequently, the 0-terminal node and its incoming edges can
be omitted. However, to reduce the search space, for each model (or prime implicant)
encoded in the BDD a new nogood is generated and added to the boolean formula (see
section 3.2).

3.1 Quantifier reductions operators

To reduce the BDD size and to answer the validity of the QBF, additional reduction
operator is given in Figure 5. If a node $ is existentially quantified and one of its child
nodes is the 1-terminal node then any reference to the node $ is simply replaced by a

reference to its 1-terminal node. We call such reduction operation existential reduction.
Interestingly enough, when $ is universally quantified and its two child nodes are 1-
terminal, such node is eliminated using the classical BDD node reduction (Figure 2.b).

1

1

�

�

��

Fig. 5. Existential Reduction

During the BDD construction process, in addition to classical reduction operations
2, existential reduction is applied. If the set of models represents a total policy of the
QBF formula then the BDD built from such models is reduced to a 1-terminal node as
stated by the following property :

Property 1. Let � �%� � � �
��
���2
�� � � � � be a QBF formula and �f� � uv $ �

uv $ �
��
����

uv $ � � a set of models of � . If � is a total policy of � then the BDD(�) is reduced to the
1-terminal node.

Proof. The proof is obtained by induction on + . For +�� � , the BDD representing
the constant � is a 1-terminal node (by definition of a total policy). Suppose that the
property holds for + u c , let us prove that it holds for + . By definition of a total policy
two case are considered :

1. if � � � � , then �CmZ� � �:rbs]� , and �Muv $ � �zrts]� , ��o�uv $ � is a total policy of
the QBF formula � �76�� � �76��
��
����
�� � � � �@-Uuv $ � / . By induction hypothesis, we can
deduce that BDD(�=o uv $ �) is reduced to 1-terminal node. Consequently all the leaf
of the BDD(rts]�) are 1-terminal nodes. Then by repeatedly applying the Redundant
node rule on such a BDD, we obtain a BDD reduced to a 1-terminal node.

2. if � � � � , then �8m u
v
� � � � uv $ � � and �8oRuv $ � is a total policy of the QBF formula

� �76�� � �76��
��
���

�� � � � �@- uv $ � / . By induction hypothesis BDD(� o uv $ �) is a 1-
terminal node. Consequently, the BDD(

� uv $ � �) can be seen as a branch ended on a
1-terminal node. Repeatedly applying the existential reduction rule, the BDD(�) is
reduced to a 1-terminal node.

Remark 2. Dually, universal reduction can also be defined. As 0-terminal node of the
BDD represents undefined state, then universal reduction operator can not be used in
our approach.

The following example shows the dynamic reduction of the BDD associated with
the set of models representing the total policy of the QBF given in the example 1.

Example 2. Let � be the QBF formula of the example 1 and � its associated policy.
The figure 6 represents the reduction phase of the BDD(�) representation:

– The figure 6.a is a BDD representation of the policy � (only paths with final 1-
terminal node are represented).

– The existential reduction rule allows the $
 elimination (figure 6.b) and the $ �
elimination (figure 6.c).

– The redundant node reduction rule allows the $ � elimination (figure 6.d) and the $ �
elimination (figure 6.e).

– Finally the existential reduction rule suppresses $ � and $
	 and the bdd of the policy
is restricted to the 1-terminal node representing the true formula (figure 6.f) and
proving that � is a total policy.

1

���
���

���
���

���
�	�

�
�
�
�

�	�

�
�

�
��

�
�

�
�

1

�	�
�	�

�	�
�	�

��� ���
���

�
�

�
�

�
�

�

1

�	�
���

�	�
�	�

�
�
�

�

a. All models of
 b. ��� elimination c. � � elimination
(existential reduction) (existential reduction)

1

�	�
���

�	�

�
�

�

1

�	�
���

�
�

1

d. ��� elimination e. ��� elimination f. ��� , ��� elimination
(redundant node reduction) (redundant node reduction) (existential reduction)

Fig. 6. BDD reduction of a QBF total policy

3.2 Generating cuts from BDD

In order to avoid search of models belonging to different total policies, we introduce in
the following different possible cuts (nogoods) that can be generated from the model,
prime implicant or from the BDD under construction.

Definition 2. Let � � ���7�#�g

������
V� ��� �t
V��������� a QBF s.t. � � � � , ��� � � and
uv $ is a model of � . We define, *������������<- uv $�/R��� � LMK"X K�� uv $ oZ���h� as the nogood

obtained from uv $. In the same way we define *������������ � - u
v

� '�/ as the nogood extracted

from a prime implicant uv� ' .
Obviously, if uv� ' is a prime implicant obtained from a model uv $ then *���������� � �"- uv� '�/�~
*���������� �<- uv $�/ .
Using the example 1, we show in figure 7, that for a model uv $ � � LW$ �
"$ 	
VLW$ �
[$ �
"$ �
[$
 �
the *���������� � -Uuv $�/>� -.$ � �8LW$ 	 � $ � �8LW$ � / ovoid useless search for models of differ-
ent policies. Considering uv� '�� � $ 	
[$ �
"$
 � a prime implicant of uv $, we can generate
a strong cut *������������ � - u

v
� '7/ � LW$. Interestingly enough, thanks to reductions defined

above, the BDD encoding such a prime implicant is reduced to a 1-terminal node and
the validity of the QBF is answered.

space
Unneeded Search

���
� ���

�	�
� ��

���
��

Fig. 7. cuts generation

Let us recall, that when a prime implicant is disjunctively added to the BDD un-
der construction, the reduction operators eliminate the variables of the inner existential
quantifier group �]� . In addition, universally quantified variables in ��� can be elimi-
nated, when there two outgoing edges point to 1-terminal node. Such a reduction pro-
cess is iterated recursively. Consequently, to generate strong cuts, in practice each time
a prime implicant is added to the BDD, a nogood is extracted from the new reduced
BDD and added to the boolean formula.

3.3 QBDD(DPLL) approach

The algorithm 2 represents the QBF solver obtained by a combination of DPLL pro-
cedure with BDD. As we can see, the algorithm search for all models until the BDD
representation (characterized by the global variable

� � � initialized to the 0-terminal
node) is reduced to a 1-terminal node, in that case the algorithm terminates and an-
swers the validity of the QBF formula. If the algorithm backtrack to level 0, then the
QBF formula is invalid. In other case search continues (back is returned). The func-
tion iM' � � KE'�� w -S/ enforces the well known unit propagation process. While the function
^ �h*���K.' ^�O�� *�)�K w�� ' � -A/ implements learning scheme used by the most efficient satisfia-
bility solvers. Function � (h' ����� � �0K.' ^2)�*�O � -A/ extracts a prime implicant from a model
� of the boolean formula � . Computing a prime implicant from a given model can be

done in linear time. Indeed, for each literal K of the given model � , we verify if the
��q � K � is also a model of �

� ' , in such a case the literal K is deleted from � . Finally,
^�� O ��� �7* �7(�)�O ' �h*>-S/ generates from the current bdd a new nogood and add it to the cnf
� (see section 3.2). Example 3 gives a possible trace of QBDD(DPLL) algorithm.

Algorithm 2: Combining BDD and DPLL : QBDD(DPLL)

Data : � : set of clauses; X= +3� � �0�	�	�
��� � - the prefix set of the QBF;�
a partial interpretation ; � level in the search tree, initially set to 0

Result : �	� ��
�� if the QBF is valid,
�
��	����
�� otherwise;� ����� is returned to continue the search for other models.
begin

Simplify(�);
if ����� then

conflictAnalysis();
return

� ����� ;
if ����� then�
�� � ���
���� � � � ��
�� ��
"!$#&% � � ��' ;� �	� := or(

� �	� , �
);
if equal(bdd,1-terminal) then return �	����
�� ;
cutsGeneration(�
 ,bdd);
return

� ����� ;
Let ��� �(' (
 � +):�0�	�*�8- ' be the chosen branching variable;
if (QBDD(DPLL) (�)�+��4- ��� 1;+��.-/� �),+��.-/�*�,+-))= �	����
��) or QBDD(DPLL)
(�),+�9 �4-/��� 1;+��4- � �) + 9 �4-/�*�,+-))= �	����
��) then

return �	����
�� ;
if (� �/.) then

return
�
"�	����
�� ;
return

� ����� ;
end

Example 3. Let us consider the formula � of example 1. Suppose that the algorithm
QBDD(SAT) starts the search by assigning $,� and $
� . At this step, the clause -SLW$
� �;$

h/
is satisfied. If we assign a truth value to the literal LW$ � then a first model

� $ �b
VLW$
��
"$��h�
is found and is added to the bdd. This variable is reduced to a single path to the 1-
terminal node : 4 $��t
VLW$
� ' (variable $�� is deleted by existential reduction). The
clause -ALW$ � ��$ � / is added to the formula � . A backtrack is done to search for other
models and the assignment of the literal $ � implies $
 using unit propagation. A second
model

� $ �
"$ �
[$ �
[$
 � is added to the bdd which becomes reduced to the 1-terminal
node using existential and redundant reduction operators. So, search ends and returns
the validity of the formula � .

3.4 QBDD(LS) approach

One of the important features of our QBDD(SAT) is that any satisfiability search based
technique can be used without any major adaptation. Particularly, local search tech-

niques can be integrated in a simple way. Using the state-of-the-art local search Walk-
Sat, we obtain a new incomplete solver QBDD(LS). It answers that the QBF formula is
valid, when the set of found models represents a total policy (see property 1); otherwise
the solver returns unkown. Our QBDD(LS) solver differs from WalkQSat [10] in the
sence that our approach uses local search as a model generator instead of using it to
guide the DPLL search procedure.

4 Empirical Evaluation

The experimental results reported in this section are obtained on a Pentium IV 3 GHz
with 1GB RAM, and performed on a large panel (644 instances) of the QBF’03 evalu-
ation instances [3]. Theses instances are divided into different families (log, impl,
toilet, k_*...). For each instance cpu time (in seconds) limit is set to 600 sec-
onds. The QBDD(DPLL) solver is based on chaff like solver called minisat [9], and
the QBDD(LS) solver is based on walksat.

4.1 Behaviour of QBDD(DPLL) solver

Figure 8 presents a pictorial view on the behaviour of different versions of the QBDD(DPLL)
solver :

– QBDD(DPLL) is the basic version without computing prime implicants and with-
out generating cuts from the BDD

– QBDD(DPLL) +CUTS is augmented with the generation of cuts from BDD
– QBDD(DPLL) +PI computes prime implicants from a given sat model
– QBDD(DPLL) +PI+CUTS contains these two key features.

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250

tim
e

(lo
g

sc
al

e)

nb problems

"QBDD(DPLL)"
"QBDD(DPLL)+CUTS"

"QBDD(DPLL)+PI"
"QBDD(DPLL)+PI+CUTS"

Fig. 8. Number of instances solved vs CPU time

The plot in figure 8 is obtained as follows: the x-axis represents the number of
benchmarks solved and the y-axis (in log scale) the time needed to solve this number
of problems. This figure exhibits clearly that the basic version is the less effective one.

Adding only prime implicants does not significantly improve the basic version. How-
ever, generating cuts from BDD produces a real improvements, the number of solved
problems in less than 600 seconds increases from 130 to 220. Finally, the best version of
the QBDD(DPLL) solver is otained by ading cuts and by encoding prime implicants in-
stead of models. Table 1 gives some explanations about these results, it shows the num-
ber of models needed to answer the validity of different instances. Since only necessary
models are computed with the generation of cuts, the number of models is smaller than
without computing cuts. The generation of prime implicants produces some improve-
ments because each prime implicants includes a large potential part of the qbf policies.

problem valid QBDD(DPLL) QBDD(DPLL) +PI QBDD(DPLL) +CUTS QBDD(DPLL) +PI+CUTS

impl06 Y 6112 6012 2142 550
k_poly_n-1 Y >45000 >45000 1850 862

toilet_a_10_01.5 N 41412 41412 22486 20 917

Table 1. number of models

Table 2 exhibits the number of instances solved with respect to the size of the quan-
tifier prefix. The method seems to be very efficient with 2QBF formulas and seems to be
be quite ineficcient with large prefix (for example only 11.6% of problems with prefix
greater than 8 are solved). However, QBDD(DPLL) is not restricted to 2QBF instances
since it solves half of 5-QBF instances. This result agree with those obtained in [15] on
2-QBF using an original combination of two satisfiability solver.

prefix size 2 3 4 5 6 7 � 8

nb problems 57 339 8 34 7 22 154
nb solved 51 148 1 19 1 11 18

percent 89.5 43.6 12.5 55.8 14.2 50 11.6
Table 2. solved instances wrt prefix size

4.2 Comparison with state of the art solvers

We compare our solvers QBDD(SAT) to state of the art QBF solvers QUBE [11] and
QUANTOR [4]. Here, QBDD(DPLL) solver exploits cuts and prime implicants. Table
3 gives the cpu time comparison between these three solvers on different QBF fami-
lies instances. #N represents the number of problems in the family, #S the number of
problem solved by a given solver and TT the total cpu time needed for a solver to solve
all instances of the family. If a method fails to solve an instance then 600 seconds are
added to the total cpu time.

Worst results of QBDD(DPLL) are obtained on toilet families since only 106
instances are solved in less than 600 seconds, whereas QUBE and QUANTOR solve
all quite easily. It’s the same for the k_* family. Best results are obtained on the
robot family. Since QBDD(DPLL) solves more and fastly instances than the two
other solvers. Furthermore, QBDD(DPLL) solves hard instances of the QBF’03 evalu-
ation for the first time. On a lot of families (z4, flipflop, log) results of all solvers
are comparable.

Qube Quantor QBFBDD
family #N #S TT #S TT #S TT

robots 48 36 7 214 35 7 970 42 4 270
k_* 171 98 44 813 99 43 786 32 83 658
flipflop 7 7 0.36 7 1.2 7 3.2
toilet 260 260 40 260 256 106 93 860
impl 8 8 0.01 8 0.02 6 1211
tree-exa10 6 6 0.07 6 0.01 6 1.7
chain 8 8 497 8 0.3 2 4183
tree-exa2 6 6 0.01 6 0.01 1 3000.1
carry 2 2 0.23 2 0.69 2 0.71
z4 13 13 0.06 13 0.08 13 0.1
blocks 3 3 0.2 3 0.47 3 3.2
log 2 2 18.4 2 42 2 31

Table 3. CPU time comparison beetwen Qube, Quantor and QBDD(DPLL)

4.3 Comparison with QBDD(LS)

Since QBDD(LS) is an incomplete solver which can not prove the invalidiy of qbf
instances, it is quite difficult to make a fair comparison with other qbf solvers. We
present its preliminary behaviour on some valid instances and make short comparison
with QBDD(DPLL), Quantor and Qube. Table 4 gives the time to solve an instance
and the number of models computed during search (if available). For QBDD(LS), each
instance is solved 20 times and the median is reported.

QBDD(LS) QBDD(DPLL) Quantor Qube
problem model time model time model time model time

impl10 3440 8 2673 2 - 0.01 - 0.01
toilet_c_04_10.2 2850 14 ? >600 - 0.01 - 0.01
robots_1_5_2_3.3 58 6 79 0.28 - 453 - 0.7
comp.blif_0.10_1.00_0_1_out_exact 3205 308 4647 1.8 - 0.03 - >600
tree_exa10-20 ? >600 1095 0.2 - 0.01 - 0.1

Table 4. comparison on valid instances

These preliminary experiments shows that QBDD(LS) is quite promising. It solves
76 of the 150 valid instances. It is competitive on some QBF instances and obtain better
results than other solvers on some other instances.

5 Conclusion

In this paper, a new symbolic search based approach for QBF is presented. It makes
an original combination of model search satisfiability techniques with a binary decision
diagrams. BDD are used to encode prime implicants of the boolean formula. Reduction
operators that prevent to some extent the blowup of the BDD size and answer the va-
lidity of the QBF are presented. Interestingly enough, nogoods are generated from the

reduced BDD allowing strong cuts in the SAT search space. The main advantage of our
approach is that it is freed from any ordering of the variables. This facilitates the exten-
sion of satisfiability solver to deal with quantified boolean formulas. Two satisfiability
search paradigms (systematic and local search) have been investigated giving rise to
two QBF solvers (QBDD(DPLL) and QBDD(LS)). Experimental results on instances
from the QBFs evaluation show the effectiveness of our approach. More interestingly,
some open hard QBF instances are solved for the first time.

References

1. S. Akers. Binary decision diagrams. IEEE Transactions on Computers, 27:509–516, 1978.
2. Gilles Audemard and Lakhdar Sais. Sat based bdd solver for quantified boolean formulas. In

proceedings of the 16th IEEE international conference on Tools with Artificial Intelligence,
pages 82–89, 2004.

3. Daniel Le Berre, Laurent Simon, and Armando Tachella. Challenges in the qbf arena: the
sat’03 evaluation of qbf solvers. In Proceedings of the Sixth International Conference on
Theory and Applications of Satisfiability Testing (SAT2003), LNAI, pages 452–467, 2003.

4. Armin Biere. Resolve and expand. In Proceedings of the Seventh International Conference
on Theory and Applications of Satisfiability Testing (SAT), 2004.

5. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, 8:677–692, C-35.

6. Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evaluate quanti-
fied boolean formulae. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI’98), pages 262–267, Madison (Wisconsin - USA), 1998.

7. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, July 1962.

8. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving of
hard 3–sat formulae. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI–01), August 4–10 2001.

9. Niklas Eén and Niklas Sörensson. An extensible sat solver. In Proceedings of the Interna-
tional Conference on Theory and Applications of Satisfiability Testing, p. 502–508, 2003.

10. Ian P. Gent, Holger H. Hoos, Andrew G. D. Rowley, and Kevin Smyth. Using stochastic
local search to solve quantified boolean formulae. In Proceedings of the 9th international
conference of principles and practice of constraint programming, pages 348–362, 2003.

11. Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. QuBE : A system for
deciding Quantified Boolean Formulas Satisfiability. In Proceedings of the International
Joint Conference on Automated Reasoning (IJCAR’01), Siena, Italy, June 2001.

12. Reinhold Letz. Lemma and model caching in decision procedures for quantified boolean
formulas. In Proceedings of Tableaux 2002, pages 160–175, Copenhagen, Denmark, 2002.

13. Sylvie Coste Marquis, Helene Fargier, Jerome Lang, Daniel Le Berre, and Pierre Marquis.
Function problems for quantified boolean formulas. Technical report, CRIL - France, 2003.

14. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff : Engineering an efficient sat solver. In Proceedings of 38th Design Automation Con-
ference (DAC01), 2001.

15. Darsh Ranjan, Daijue Tang and Sharad Malik Niklas. A Comparative Study of 2QBF Al-
gorithms. In Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing, 2004.

16. Jussi Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for Quantified
Boolean Formulae. In Proceedings of the First International Conference on Quantified
Boolean Formulae (QBF’01), pages 84–93, 2001.

17. Bart Selman, Hector Levesque, and D. Mitchell. A new method for solving hard satisfia-
bility problems. In Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI’92), pages 459–465, 1992.

18. Lintao Zhang and Sharad Malik Towards a symetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In Proceedings of the Eighth International Con-
ference on Principles and Practice of Constraint Programming, pages 200–215, 2002.

