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Abstract. Many reasoning task and combinatorial problems exhibit symmetries. Exploiting
symmetries has been proved very important in reducing search efforts. This important task is
widely investigated in constraint satisfaction problems and satisfiability of boolean formulas.
In this paper, we show how symmetries can be naturally extended to Quantified Boolean
Formulas (QBFs). A symmetries detection algorithm is given, extending the CNF approach
proposed by Aloul et al. A new hybrid solver that handle QBFs and Symmetry Breaking
predicates is then proposed. Experiments, conducted on instances from the last competition
on QBFs, show that many of them contains symmetries. Breaking such symmetries lead to
interesting improvements of QBFs solver on certain class of instances.

1 Introduction

Solving Quantified Boolean Formulas (QBF) has become an attractive and important research area
over the last years. Such increasing interest, might be related to different factors, including the
fact that many important artificial intelligence (AI) problems (planning, non monotonic reasoning,
formal verification, etc.) can be reduced to QBFs which is considered as the canonical problem
of the PSPACE complexity class. Another important reason comes from the recent impressive
progress reached in the practical resolution of the satisfiability problem. Many solvers for QBFs
has been proposed recently (e.g. [7, 12, 9]), most of them are obtained by extending satisfiability
results. This is not surprising, since QBFs is a natural extension of SAT (satisfiability problem of
boolean formula).

Some class of QBFs encoding real-world application and/or AI problems contains many sym-
metries, exploiting such structures might lead to a great reduction of the search space. Exploiting
symmetries is widely investigated and considered as an important task to deal with the intractabil-
ity of many combinatorial problems such as constraint satisfaction problems (CSP) and satisfiability
of boolean formula.

In this paper, we show how symmetries can be naturally extended to Quantified Boolean For-
mulas. A symmetries detection algorithm is given, extending the SAT-based approach proposed by
Aloul et al. to QBFs [1, 2]. As expected, experiments on many instances proposed in the last com-
petition on QBFs [8], show that certain classes of instances encoding real-word problems contains
many symmetries. Consequently, a first approach exploiting symmetries during search is proposed.

The paper is organised as follows. After some preliminary definitions on quantified boolean
formulas, symmetries framework in QBFs is presented. It is then shown how symmetries detection
method by Aloul et al. can be naturally extended to handle QBFs. Preliminary approach on
exploiting such symmetries is then described. Experiments of our detection method on the instances
of the last QBFs competition show that our approach detect many symmetries. Exploiting such
symmetries in QBF solver leads to interesting improvements with respect to some classes of QBF03
evaluation instances. Finally, promising paths for future research are discussed in the conclusion.

2 Definitions and Preliminaries

Let P be a finite set of propositional variables. Then, LP is the language of quantified Boolean
formulas built over P using ordinary boolean formulas (including propositional constants > and
⊥) plus the additional quantification (∃ and ∀) over propositional variables.
We consider quantified boolean formula in the prenex form: Φ = QkXk, . . . , Q1X1Ψ (in short
QXΨ , QX is called a prefix and Ψ a matrix) where Qi ∈ {∃, ∀}, Xk, . . . , X1 are disjoint sets of



variables and Ψ a boolean formula. Consecutive variables with the same quantifier are grouped. A
QBF Φ is said to be in clausal form if Φ is in prenex form and Ψ is in Conjunctive Normal Form
(CNF). We define V ar(Φ) =

⋃

i∈{1,...,k} Xi the set of variables of Φ. A literal is the occurrence of

propositional variable in either positive (l) or negative form (¬l). Lit(Φ) =
⋃

i∈{1,...,k} Lit(Xi) the

set of complete literals of Φ, where Lit(Xi) = {xi,¬xi|xi ∈ Xi}.
In the sequel, we introduce some necessary notations. Let S be the set of assignments over the

set of variables V . The Up-projection (resp. Down-projection) of a set of assignments S on a set
of variables X ⊂ V , denoted S ↑ X (resp. S ↓ X), is obtained by restricting each assignment to
literals in X (resp. in V \X). The set of all possible assignments over X is denoted by 2X . An
assignment over X is denoted by a set of literals −→x . In the same way, Up-projection and Down-
projection also apply on a set of literals −→x . If −→y is an assignment over Y s.t. Y ∩ X = ∅, then
−→y .S denote the set of interpretations obtained by concatenating −→y with each interpretation of S.
Finally, Ψ(−→x ) denote the boolean formula Ψ simplified with the partial assignment −→x .
A QBF is valid (is true) if there exists a solution (called a total policy) defined as follows. It is a
simplified version of the definition appeared in [10]

Definition 1. Let Φ = QkXk, . . . , Q1X1Ψ be a quantified boolean formula and π = {m1, . . . , mn}
a set models of the boolean formula Ψ . π is a total policy of the quantified boolean formula Φ iff π
recursively verifies the following conditions:

1. k = 0, and Ψ = >
2. if Qk = ∀, then π ↑ Xk = 2Xk , and ∀−→x k ∈ 2Xk , π ↓ −→x k is a total policy of Qk−1Xk−1, . . . , Q1X1Ψ(−→x k)

3. if Qk = ∃, then π ↑
−→
Xk = {−→x k} and π ↓ −→x k is a total policy of Qk−1Xk−1, . . . , Q1X1Ψ(−→x k)

Remark 1. Let π be a total policy of Φ = QkXk, . . . , Q1X1Ψ . If Qk = ∀ then we can rewrite π
as

⋃
−→x k∈2X

k
{−→x k.(π ↓ −→x k)} and if Qk = ∃, then π ↑ Xk = {−→x k} and π can be rewritten as

{−→x k.(π ↓ −→x k)}

3 Symmetries of Quantified Boolean Formulas

Let Φ = QkXk, . . . , Q1X1Ψ be a quantified boolean formula. Let σ a permutation over the literals
of Φ defined as follows σ : Lit(Φ) 7→ Lit(Φ). We can extends the definition of the permutation σ to
Φ in the following way : σ(Φ) = Qkσ(Xk), . . . , Q1σ(X1)σ(Ψ). For example, if Ψ is in clausal form
then σ(Ψ) = {σ(c)/c ∈ Ψ} and σ(c) = {σ(l)/l ∈ c}.

Definition 2. Let Φ = QkXk, . . . , Q1X1Ψ be a quantified boolean formula. Let σ be a permutation

over the literals of Φ. σ is a symmetry of Φ iff

– σ(¬x) = ¬σ(x) for all literals x ∈ Lit(Φ)
– σ(Φ) = Φ i.e σ(Ψ) = Ψ and ∀i ∈ {1, . . . , k}σ(Xi) = Xi.

Let us note that each symmetry σ of a QBF Φ is also a symmetry of the boolean formula Ψ .
The converse is not true. So the set of symmetries of Φ is a subset of the set of symmetries of Ψ .

Definition 3. Let Φ = QkXk, . . . , Q1X1Ψ be a quantified boolean formula, σ a symmetry of Φ and

π = {m1, . . . , mn} a total policy of Φ, we define σ(π) = {σ(mi)/mi ∈ π} and σ(mi) = {σ(l)/l ∈
mi}.

Proposition 1. Let σ be a symmetry of a boolean formula Φ = QkXk, . . . , Q1X1Ψ , π is set of

assignments over V ar(Φ). π is a policy of Φ, iff σ(π) is a policy of Φ.

Proof. By induction on k, we show that if π is a total policy then σ(π) is also a total policy of Φ.
For k = 1, we consider only the case where Q1 = ∃ (the first quantifier can not be universal one;
otherwise Φ is not valid and π is empty). In such a case all variables of Φ are existentially quantified,
then it might be considered as a boolean formula, so σ(π) is also a set of models (propositional
case of symmetry). Now suppose that the proposition holds for k − 1, let us show that it holds for
k. We have π a total policy of Φ = QkXk, . . . , Q1X1Ψ , we consider the two following case,



1. Qk = ∀ : by definition of total policy ∀−→x k ∈ 2Xk (π ↓ −→x k) is a total policy of Qk−1Xk−1, . . . , Q1X1Ψ(−→x k).
By hypothesis, σ(π ↓ −→x k) is a total policy of Qk−1Xk−1, . . . , Q1X1Ψ(−→x k). ∀−→x k ∈ 2Xk , we
also have σ(−→x k) ∈ 2Xk . Consequently

⋃
−→x k

{σ(−→x k).σ(π ↓ −→x k)} = σ(π) is a total policy of Φ.

2. Qk = ∃ : (π ↑ Xk) = {−→x k} and π ↓ −→x k is a total policy of Qk−1Xk−1, . . . , Q1X1Ψ(−→x k). Using
induction hypothesis σ(π ↓ −→x k) is also a total policy. Then σ(π) = σ(−→x k).σ(π ↓ −→x k) is a total
policy of Φ.

The converse can be proved in the same way using σ−1.

Example 1. Let Φ = ∀x1x2∃x3x4 Ψ be a QBF, where
Ψ = (¬x1 ∨ ¬x2 ∨ x3)

︸ ︷︷ ︸

c1

∧ (¬x1 ∨ ¬x2 ∨ x4)
︸ ︷︷ ︸

c2

∧ (x1 ∨ ¬x3 ∨ ¬x4)
︸ ︷︷ ︸

c3

∧ (x2 ∨ ¬x3 ∨ ¬x4)
︸ ︷︷ ︸

c4

. The permutation

σ1 = (x1, x2)(x3)(x4) and σ2 = (x1)(x2)(x3, x4) are symmetries of Ψ . In the sequel, self-permuted
literals are omitted (like x3 and x4 in σ1). The formula Φ is valid i.e. π = {(¬x1,¬x2,¬x3,¬x4), (¬x1,
x2,¬x3, x4), (x1,¬x2, x3,¬x4), (x1, x2, x3, x4)} is a total policy of Φ. One can verify that σ1(π) =
{(¬x2,¬x1,¬x3,¬x4), (¬x2, x1,¬x3, x4), (x2,¬x1, x3,¬x4), (x2, x1, x3, x4)} and σ2(π) = {(¬x1,¬x2,
¬x4,¬x3), (¬x1, x2,¬x4, x3), (x1,¬x2, x4,¬x3), (x1, x2, x4, x3)} are also total policies of Φ.

In the context of boolean formulas, symmetries can be considered as an equivalence relation
on the set of interpretations of the boolean formula that induce equivalence classes, which either
contains only models or contains no models. Symmetries on QBF extend such an equivalence
relation to superset of interpretations, each equivalence class either contains total policies, or no
such policies.

4 Detection

Different techniques for detecting symmetries in boolean formulas have been proposed. Some of
them are designed to deal directly with the boolean formula [3]. Other techniques commonly used
consists in reducing the problem of symmetry detection into graph isomorphism problem [4, 5] (i.e.
problem of finding a one to one mapping between two graphs G and H). The complexity of the
graph isomorphism problem is a hard open problem (it is believed to lie between P and NP [4]). In
our context, we deal with graph automorphism problem (i.e. finding a one to one mapping between
G and G) which is a particular case of graph isomorphism. Many algorithms have been proposed
to compute graph automorphism. Let us mention Nauty [11], one of the most efficient in practice.

Recently, Aloul et al. [1] proposed an interesting technique that transform CNF formula Ψ into
a graph GΨ where vertices are labeled with colours. Such coloured vertices are considered when
searching for automorphism on the graph (i.e. vertices with different colours can not be mapped
each others). The CNF formula is translated into a graph in the following way (showed in example
2):

– Each variable is represented by two vertices, one for the positive literal, the other for the
negative one. A dark gray colour is associated to such vertices.

– An edge is created between two opposite literals.
– Each non binary clause is represented by a light gray colour vertex linked by edges to its

associated literals.
– Each binary clause l1 ∨ l2 is represented by a double edge between the vertices l1 and l2. This

avoid additional vertex to be created.

Example 2. Let Ψ be the CNF formula given in example 1. Figure 1.a gives the associated graph
GΨ = (V, E). Where V , contains 2× |V ar(Ψ)| = 8 vertices (dark gray colour) associated to Lit(Ψ)
and 4 vertices (light gray colour) corresponding to the clauses of Ψ . The set of edges E, links
literals to their opposites (e.g. (x1,¬x1) and clauses to its involved literals (i.e. (c1,¬x1), (c1,¬x2)
and (c1, x3)).
Using Nauty [11], three automorphism that leave GΨ invariant are computed : a1 = (x1, x2)(x3)(x4)
[(c1)(c2)(c3, c4)], a2 = (x1)(x2)(x3, x4)[(c1, c2)(c3)(c4)], and a3 = (x1, x3)(x2, x4)[(c1, c3)(c2, c4)].
The corresponding symmetries σ1, σ2 and σ3 are obtained respectively from a1, a2 and a3 by
projection on literals of Ψ .



It is not difficult to extend the above transformation to QBF. Indeed, we need to consider the
prefix of the QBF (see the second condition of the definition 2), because distinct literals can not
be symmetric if they does not belong to the same quantifier group. To this end, we only need to
introduce additional colours to make a distinction between literals vertices whose variables belong
to different quantifier groups. For a QBF with k quantifier groups, we introduce k different colours.
Then, QBF symmetries are detected using Nauty on the resulting graph. In the following example,
we illustrate such extended transformation from QBF to graph and the detected symmetries.

a. from CNF to Graph b. from QBF to Graph

Fig. 1. Graph reduction

Example 3. Let Φ = ∀x1, x2∃x3x4Ψ be the QBF of example 1. The figure 1.b gives the associated
graph GΦ. Here, there are 3 colours, one for the non binary clauses (light gray), one for the first
universal group (white), and the last for the existential group (dark gray). This QBF Φ has two
non trivial symmetry (x1, x2) and (x3, x4). The symmetry (x1, x3)(x2, x4) of Ψ (see example 2) is
not a symmetry of Φ, since x1 and x3 are not in the same quantifier group.

5 Exploiting symmetry in QBFs solvers

Symmetry breaking has been extensively investigated in the context of constraint satisfaction and
satisfiability problems. The different approach proposed to break symmetries can be conveniently
classified as dynamic and static schemes. Dynamic breaking, generaly search and break symme-
tries during search with or without using breaking predicates [3, 6]. Such approach have additional
potential, in the way that it detect and exploit local symmetries (i.e. that might appears during
search). Static breaking schemes refer to the techniques that detect symmetries in a preprocessing
step, symmetries are generally broken by generating additional constraints, called symmetry break-
ing predicates(SBP) [4, 1]. Such SBP predicates eliminate from each equivalence class of symmetric
models all models except one. However, in the general case, the set of symmetry predicates might
be of exponential size. Recently, Aloul et al [1, 2] extend the approach by Crawford[4] using group
theory and the concept of non redundant generator, reducing considerably the SBP size.

Contrary to the boolean case, in the context of QBFs, symmetry breaking predicates (clauses)
can not conjunctively added to the QBF. More precisely, as variables are quantified, one can obtain
clauses with all of its variables universally quantified, and consequently the QBF become not valid.
To avoid such drawback, we propose (as shown in the Figure 2) to consider the SBP boolean
formula generated according to Aloul et al proposed technique [1] as independent from the QBF
one. An hybrid solver is then designed to deal simultaneously with the QBF and SBP formulas. At
each step of QBFs backtracking-based solver (OpenQBF solver), we invoke a Satisfiability Solver
(limited to Boolean constraint propagation process) on the SBP boolean formula to achieve unit
propagation of the current assigned variable. If x is the current variable assigned by the QBF
solver, such assignment is then propagated by the SAT solver on the SBP formula. If y is a literal
deducted from the SBP formula, then two situations might be encountered and communicated to
QBF Solver:

– If y is universally quantified in the QBF formula then the branch corresponding to ¬y is
assumed to be true and the QBF solver propagate y to confirm this assertion (i.e. if a model is



found on y then we have also a model with ¬y, otherwise a conflict occurs since y is universally
quantified).

– If y is existentially quantified in the QBF then the branch corresponding to ¬y is assumed to
be f alse, in the same way, y is propagated by the QBF solver.

The Figure 2 summarises our proposed approach. The QBF solver with symmetry takes a
quantified boolean formula in clausal form as input, then a preprocessing (Shatter for QBF) step
on the original QBF, deliver a boolean formula made of Symmetry Breaking Predicates (SBP). An
hybrid solver, combining a QBF solver with a SAT propagation solver, operates on the original
QBF and the SBP formula. Grayed parts of the figure 2 correspond to our main contributions.

Fig. 2. QBF Solver with symmetry

6 Experiments overview of detected symmetries

We present first experiments done on a Pentium IV 3 GHz with 1GB of RAM, using a a modified
version of Shatter [2] to detect symmetries on QBF formulas.

In tables 1.a and 1.b, results of symmetry detection method (as shown in section 4) on QBF03
evaluation benchmarks [8] are presented. These The QBF03 Evaluation was made of 1350 bench-
marks classified according to their hardness with respect to QBF solvers presented at the compe-
tition (Easy, Medium, Hard (non solved)). At least, 729 of them are generated randomly.

Table 1.a present the number of symmetric benchmarks (the column #P gives the number of
instances, #S the number of symmetric instances and % the percentage of symmetrical instances)
with respect to the complete benchmarks collection. A large number of them contains symmetries
(i.e. 38.5% of instances exhibit symmetries). As we can see, the easy problems are highly symmetric
(80% of instances), whereas the medium category contains less symmetries (29.9%). Let us note
that medium category is composed of a large fraction of random generated instances that rarely
contains symmetries (see table 1.b). More interestingly, about half of the hard benchmarks repre-
senting the most difficult QBFs instances (not solved in the last competition) contains symmetries
(47.9%). Breaking such symmetries might help QBF solvers to handle such hard instances. Table

Category #P #S %
(#S/#P)

Easy 178 144 80.9
Medium 1030 308 29.9

Hard 142 68 47.9
Total 1350 520 38.5

a. QBF03 instances: from easy to hard

Category #P #S %
Random 729 86 11.8

Non Random 621 434 69.9
b. QBF03 instances: Random vs Non Random

Table 1. Results on QBF03 Evaluation problems

2 summarise the first experimental comparison between our hybrid solver Figure2 that detect and
exploit symmetries and the OpenQBF solver i.e. extended version of the Davis and Putnam pro-
cedure. For each problem instance (from the QBF’03 evaluation), a comparison is given in term
of cpu times (seconds) and the number of visited nodes with and without exploiting symmetries.
In addition, the number of computed symmetries and the time (seconds) needed to find them are



given. As we can see, symmetries are computed efficiently (less than one seconds). BLOCKS3ii.4.3

planning instances contains a lot of symmetries, however such symmetries are not very relevant in
the sense that they always permute variables appearing in the last quantifier group. Consequently,
the branch’s pruned by symmetry are located on the bottom of the search tree. Very interesting
results are obtained on the two last instances (TOILET6.1.iv.12 and CHAIN17v18), where symme-
tries are detected between variables appearing in all quantifier groups. Breaking such symmetries
achieve significant reductions in the search space.

symmetry results OpenQBF + Symmetry OpenQBF
problem Valid Time nb symmetries Time Nodes Times Nodes

BLOCKS3ii.4.3 No 0.02 5.7e9 78 130 521 77.6 130 521
TOILET6.1.iv.12 Yes 0.02 20 160 0.2 14 119 366 467

CHAIN17v18 Yes 0.58 3.43e11 69 65 794 227 131 105

Table 2. OpenQBF with and without symmetries

7 Conclusion and future works

Clearly, we have shown that symmetries can be naturally extended to handle Quantified Boolean
Formula (QBFs). A symmetry detection algorithm is given, extending the CNF approach proposed
in [4, 2] to QBFs. We have shown how such symmetries can be exploited thanks to an hybrid
solver that handle both the QBF and the Symmetry Breaking Predicates formula. Preliminary
experiments show the interest of our approach with respect to the discovered symmetries and the
obtained gain on some class of instances. Since symmetries of the boolean formula is a superset
of the QBF symmetries, an interesting path of research concerns the exploitation of such lost
symmetries.
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