
Learning for Dynamic Subsumption

Youssef Hamadi1 Saı̈d Jabbour2

Lakhdar Saı̈s2
1 Microsoft Research

7 J J Thomson Avenue
Cambridge, United Kingdom

youssefh@microsoft.com

2 Université Lille-Nord de France
CRIL - CNRS UMR 8188

Artois, F-62307 Lens
{jabbour,sais}@cril.fr

Abstract

This paper presents an original dynamic subsumption
technique for Boolean CNF formulae. It exploits simple
and sufficient conditions to detect, during conflict analysis,
clauses from the formula that can be reduced by subsump-
tion. During the learnt clause derivation, and at each step of
the associated resolution process, checks for backward sub-
sumption between the current resolvent and clauses from
the original formula are efficiently performed. The result-
ing method allows the dynamic removal of literals from the
original clauses. Experimental results show that the inte-
gration of our dynamic subsumption technique within the
state-of-the-art SAT solvers Minisat and Rsat particularly
benefits to crafted problems.

1. Introduction

The SAT problem, i.e., the problem of checking whether
a set of Boolean clauses is satisfiable or not, is cen-
tral to many domains in computer science and artificial in-
telligence including constraint satisfaction problems (CSP),
planning, non-monotonic reasoning, VLSI correctness
checking, etc. Today, SAT has gained a considerable audi-
ence with the advent of a new generation of SAT solvers
able to solve large instances encoding real-world applica-
tions and the demonstration that these solvers represent im-
portant low-level building blocks for many important fields,
e.g., SMT solving, Theorem proving, Model finding, QBF
solving, etc. These solvers, called modern SAT solvers
[13, 9], are based on classical unit propagation [7] effi-
ciently combined through incremental data structures with:
(i) restart policies [10, 11], (ii) activity-based variable selec-
tion heuristics (VSIDS-like) [13], and (iii) clause learning
[12, 2, 13]. Modern SAT solvers can be seen as an ex-
tended version of the well known DPLL-like procedure
obtained thanks to these different enhancements. It is im-

portant to note that the well known resolution rule still
plays a strong role in the efficiency of modern SAT solvers
which can be understood as a particular form of general res-
olution [3].

Indeed, conflict-based learning, one of the most impor-
tant component of SAT solvers is based on resolution. We
can also mention, that the well known and highly success-
ful (SatElite) preprocessor is based on variable elimi-
nation through the resolution rule [16, 4]. As mentioned in
[16], on industrial instances, resolution leads to the genera-
tion of many tautological resolvents. This can be explained
by the fact that many clauses represent Boolean functions
encoded through a common set of variables. This property
of the encodings might also be at the origin of many re-
dundant or subsumed clauses at different steps of the search
process.

The utility of (SatElite) on industrial problems has
been proved, and therefore one can wonder if the applica-
tion of the resolution rule could be performed not only as
a pre-processing stage but systematically during the search
process. Unfortunately, dynamically maintaining a formula
closed under subsumption might be time consuming. An
attempt has been made recently in this direction by L.
Zhang [17]. In this work, a novel algorithm maintains a
subsumption-free clause database by dynamically detecting
and removing subsumed clauses as they are added. Interest-
ingly, the author mention the following perspective of re-
search: ”How to balance the runtime cost and the quality of
the result for on-the-fly CNF simplification is a very inter-
esting problem worth much further investigation”.

In this paper, our objective is to design an effective dy-
namic simplification algorithm based on resolution. Our
proposed approach aims at eliminating literals from the
CNF formula by dynamically substituting smaller clauses.
More precisely, our approach exploits the intermediate steps
of classical conflict analysis to subsume the clauses of the
formula which are used in the underlying resolution deriva-
tion of the asserting clause. Since original clauses or learnt

clauses can be used during conflict analysis both categories
can be simplified. The effectiveness of our technique lies
in the efficiency of the subsumption test, which is based
on a simple and sufficient condition computable in constant
time. Moreover, since our technique relies on the derivation
of a conflict-clause, it is guided by the conflicts, and sim-
plifies parts of the formula identified as important by the
search strategy (VSIDS guidance). This dynamic process
preserves the satisfiability of the formula, and with some
additional bookkeeping can preserve the equivalence of the
models.

The paper is organized as follows. After some prelimi-
nary definitions and notations, classical implication graph
and learning schemes are presented in section 2. Then our
dynamic subsumption approach is described in section 3.
Finally, before the conclusion, experimental results demon-
strating the performances of our approach are presented.

2. Technical background

2.1. Preliminary definitions and notations

A CNF formulaF is a conjunction ofclauses, where a
clause is a disjunction ofliterals. A literal is a positive (x)
or negated (¬x) propositional variable. The two literalsx
and¬x are calledcomplementary. We note bȳl the com-
plementary literal ofl. For a set of literalsL, L̄ is defined
as{l̄ | l ∈ L}. A unit clause is a clause containing only
one literal (calledunit literal), while a binary clause con-
tains exactly two literals. Anempty clause, noted⊥, is inter-
preted as false (unsatisfiable), whereas anempty CNF for-
mula, noted⊤, is interpreted as true (satisfiable).

The set of variables occurring inF is notedVF . A set
of literals iscompleteif it contains one literal for each vari-
able inVF , andfundamentalif it does not contain comple-
mentary literals. Anassignmentρ of a Boolean formulaF
is function which associates a valueρ(x) ∈ {false, true}
to some of the variablesx ∈ F . ρ is completeif it assigns
a value to everyx ∈ F , andpartial otherwise. An assign-
ment is alternatively represented by a fundamental set of lit-
erals, in the obvious way. Amodelof a formulaF is an as-
signmentρ that makes the formulatrue; notedρ |= Σ.

The following notations will be heavily used throughout
the paper:

• η[x, ci, cj] denotes theresolventbetween a clauseci

containing the literalx andcj a clause containing the
opposite literal¬x. In other wordsη[x, ci, cj] = ci ∪
cj\{x,¬x}. A resolvent is calledtautologicalwhen it
contains opposite literals.

• F|x will denote the formula obtained fromF
by assigning x the truth-value true. Formally
F|x = {c | c ∈ F , {x,¬x} ∩ c = ∅} ∪ {c\{¬x} | c ∈

F ,¬x ∈ c} (that is: the clauses containingx
are removed; and those containing¬x are sim-
plified). This notation is extended to assignments:
given an assignmentρ = {x1, . . . , xn}, we de-
fineF|ρ = (. . . ((F|x1

)|x2
) . . . |xn

).

• F∗ denotes the formulaF closed under unit propaga-
tion, defined recursively as follows: (1)F∗ = F if F
does not contain any unit clause, (2)F∗ =⊥ if F con-
tains two unit-clauses{x} and {¬x}, (3) otherwise,
F∗ = (F|x)∗ wherex is the literal appearing in a unit
clause ofF . A clausec is deduced by unit propaga-
tion fromF , notedF |=∗ c, if (F|c̄)∗ =⊥.

Let c1 andc2 be two clauses of a formulaF . We say thatc1

(respectivelyc2) subsume (respectively is subsumed)c2 (re-
spectively byc1) iff c1 ⊆ c2. If c1 subsumec2, thenc1 |= c2

(the converse is not true). AlsoF andF − c2 are equiva-
lent with respect to satisfiability.

2.2. DPLL search

DPLL [7] is a tree-based backtrack search procedure; at
each node of the search tree, the assigned literals (decision
literal and the propagated ones) are labeled with the same
decision levelstarting from 1 and increased at each decision
(or branching). After backtracking, some variables are unas-
signed, and the current decision level is decreased accord-
ingly. At level i, the current partial assignmentρ can be rep-
resented as a sequence of decision-propagation of the form
〈(xi

k), xi
k1

, xi
k2

, . . . , xi
knk

〉 where the first literalxi
k corre-

sponds to the decision literalxk assigned at leveli and each
xi

kj
for 1 ≤ j ≤ nk represents unit propagated literals at

level i. Let x ∈ ρ, we notel(x) the assignment level ofx.
For a clauseα, l(α) is defined as the maximum level of its
assigned literals.

2.3. Conflict analysis using implication graphs

Implication graphs is a standard representation conve-
niently used to analyze conflicts in modern SAT solvers.
Whenever a literaly is propagated, we keep a reference to
the clause which triggers the propagation ofy, which we
note imp(y). The clauseimp(y), called implication ofy,
is in this case of the form(x1 ∨ · · · ∨ xn ∨ y) where ev-
ery literal xi is false under the current partial assignment
(ρ(xi) = false, ∀i ∈ 1..n), while ρ(y) = true. When a lit-
eraly is not obtained by propagation but comes from a de-
cision,imp(y) is undefined, which we note for convenience
imp(y) =⊥. Whenimp(y) 6=⊥, we denote byexp(y) the
set{x | x ∈ imp(y) \ {y}}, called set ofexplanationsof y.
Whenimp(y) is undefined we defineexp(y) as the empty
set.

Definition 1 (Implication Graph) Let F be a CNF for-
mula,ρ a partial assignment, and letexp denotes the set
of explanations for the deduced (unit propagated) literals
in ρ. The implication graph associated toF , ρ andexp is
Gρ,exp
F = (N , E) where:

• N = ρ, i.e., there is exactly one node for every literal,
decided or implied;

• E = {(x, y) | x ∈ ρ, y ∈ ρ, x ∈ exp(y)}

In the rest of this paper, for simplicity reason,exp is
omitted, and an implication graph is simply noted asGρ

F .
We also notem as the conflict level.

Example 1 Gρ
F , shown in Figure 1 is an implication graph

for the formulaF and the partial assignmentρ given below
: F ⊇ {c1, . . . , c12}

(c1)¬x1 ∨ ¬x11 ∨ x2 (c2)¬x1 ∨ x3

(c3)¬x2 ∨ ¬x12 ∨ x4 (c4)¬x1 ∨ ∨¬x3 ∨ x5

(c5)¬x4 ∨ ¬x5 ∨ ¬x6 ∨ x7 (c6)¬x5 ∨ ¬x6 ∨ x8

(c7)¬x7 ∨ x9 (c8)¬x5 ∨ ¬x8 ∨ ¬x9

(c9)¬x10 ∨ ¬x17 ∨ x1 (c10)¬x13 ∨ ¬x14 ∨ x10

(c11)¬x13 ∨ x17 (c12)¬x15 ∨ ¬x16 ∨ x13

x4

x5

x8

x9

x2
x7

c1

x3

x1

c2

c3

x12(3)

−x9

x11(2)

x10

x14(4)

x13x16

x15(1)

x6(3)

x6(3)

c5

c6

c7

c10

c4c9 c8

c11

c12

x17

Figure 1. Implication Graph Gρ
F = (N , E)

ρ = {〈. . . x1
15 . . .〉〈(x2

11) 〉〈(x3
12) . . . x3

6 . . . 〉
〈(x4

14), . . . 〉〈(x
5
16), x

5
13, . . . 〉}. The conflict level is5 and

ρ(F) = false.

Definition 2 (Asserting clause)A clausec of the form(α∨
x) is called an asserting clause iffρ(c) = false, l(x) = m

and∀y ∈ α, l(y) < l(x). x is called asserting literal.

Conflict analysis is the result of the application of reso-
lution starting from the conflict clause using different impli-
cations implicitly encoded in the implication graph. We call
this process an asserting clause derivation (in short ACD).

Definition 3 (Asserting clause derivation) An asserting
clause derivationπ is a sequence of clauses〈σ1, σ2, . . . σk〉
satisfying the following conditions :

1. σ1 = η[x, imp(x), imp(¬x)], where{x,¬x} is the
conflict.

2. σi, for i ∈ 2..k, is built by selecting a literaly ∈ σi−1

for which imp(y) is defined. We then havey ∈ σi−1

andy ∈ imp(y): the two clauses resolve. The clause
σi is defined asη[y, σi−1, imp(y)];

3. σk is, moreover an asserting clause.

Note that everyσi is a resolvent of the formulaF : by
induction,σ1 is the resolvent between two clauses that di-
rectly belong toF ; for everyi > 1, σi is a resolvent be-
tweenσi−1 (which, by induction hypothesis, is a resolvent)
and a clause ofF . Everyσi is therefore also animplicateof
F , that is:F |= σi. By definition of the implication graph,
we also haveF ′ |=∗ σi whereF ′ ⊂ F is the set of clauses
used to deriveσi. Indeed, we have(F ′|σ̄i

)∗ = ⊥.
Let us consider again the example 1. The traversal of

the graphGρ
F (see Fig. 1) leads to the following asserting

clause derivation:〈σ1, . . . , σ7〉 whereσ1 = η[x9, c7, c8] =
(¬x5

5 ∨¬x7
5∨¬x8

5) andσ7 = (¬x11
2∨¬x12

3 ∨¬x6
3∨

¬x1
5). The clauseσ7 is the first encountered resolvent that

contains only one literal from the current decision level. Let
us note that this resolvent is false under the interpretation
ρ. Consequently, the literal¬x1 is implied at level3. SAT
solvers add such a clause (σ7) to the learnt database, back-
jump to level 3 and assign the asserting literal¬x1 to true.
The nodex1 corresponding to the asserting literal¬x1 is
called the first Unique Implication Point (First UIP). For
more details about CDCL based learning schemes, we re-
fer the reader to [12, 13, 1].

3. Learning for dynamic subsumption

In this section, we show how classical learning can be
adapted for an efficient dynamic subsumption of clauses.
In our approach, we exploit the intermediate steps or re-
solvents generated during the classical conflict analysis to
subsume some of the clauses used in the underlying resolu-
tion derivation of the asserting clause. Obviously, it would
be possible to consider the subsumption test between each
generated resolvent and the whole set of clauses. However,
this could be very costly in practice. Let us, illustrate some
of the main features of our proposed approach.

3.1. Motivating example

Let us reconsider again the example 1 and the implica-
tion graphGρ

F (figure 1). The asserting clause derivation
leading to the asserting clause∆1 is described as follows:
π = 〈σ1, σ2, σ3, . . . , σ7 = ∆1〉

• σ1 = η[x9, c7, c8] = (¬x8
5 ∨ ¬x7

5 ∨ ¬x5
5)

• σ2 = η[x8, σ1, c6] = (¬x6
3 ∨ ¬x7

5 ∨ ¬x5
5)

• σ3 = η[x7, σ2, c5] = (¬x6
3∨¬x5

5∨¬x4
5) ⊂ c5 (sub-

sumption)

• . . .

• ∆1 = σ7 = η[x2, σ6, c1] = (¬x11
2 ∨¬x12

3 ∨¬x6
3 ∨

¬x1
5)

As we can see the asserting clause derivationπ includes
the resolventσ3 = (¬x6

3 ∨¬x5
5 ∨¬x4

5) which subsumes
the clausec5 = (¬x6 ∨¬x5 ∨¬x4 ∨x7). Consequently, the
literalx7 is eliminated from the clausec5. In general, the re-
solventσ3 can subsume other clauses from the implication
graph that include the literals¬x6, ¬x5 and¬x4.

3.2. Dynamic subsumption: a general formulation

Let us now give a formal presentation of our dynamic
subsumption approach.

Definition 4 (F-subsumption modulo UP) Letc ∈ F . c is
F -subsumed modulo Unit Propagation iff∃c′ ⊂ c such that
F|c̄′ |=

∗ ⊥

Given two clausesc1 andc2 from F such thatc1 sub-
sumesc2, thenc2 isF -subsumed modulo UP.

As explained before, subsuming clauses during search
might be time consuming. In our proposed framework,
to reduce the computational cost, we restrict subsumption
checks to the intermediate resolventsσi and the clauses of
the form imp(y) used to derive them (clauses encoded in
the implication graph).

Definition 5 Let F be a formula andπ = 〈σ1 . . . σk〉 an
asserting clause derivation. For eachσi ∈ π, we define
Cσi

= {imp(y) ∈ F|∃j ≤ i st. σj = η[y, imp(y), σj−1]}
as the set of clauses ofF used for the derivation ofσi.

Property 1 Let F be a formula and π =
〈σ1, σ2, . . . , σi, . . . , σk〉 an asserting clause deriva-
tion. If σi subsumes a clausec of Cσk

thenc ∈ Cσi
.

Proof : As σi+1 = η[y, imp(y), σi] where¬y ∈ σi, we
haveσi 6⊂ imp(y). The next resolution steps can not in-
volve clauses containing the literal¬y. Otherwise, the lit-
eral y in the implication graph will admit more than one
possible explanation, which is not possible by definition of
the implication graph. Consequently,σi can not subsume
clauses fromCσk

− Cσi
.

Property 2 LetF be a formula andπ an asserting clause
derivation. Ifσi ∈ π subsumes a clausec of Cσi

thenc is
Cσi

-subsumed modulo UP.

Proof : As σi ∈ π is derived fromCσi
by resolution, then

Cσi
|= σi. By definition of an asserting clause derivation

and implication graphs, we also haveCσi
|=∗ σi (see sec-

tion 2.3). Asσi subsumesc (σi ⊆ c), thenCσi
|=∗ c.

The Property 2 shows that if a clausec encoded in the im-
plication graph is subsumed byσi, such subsumption can
be captured by subsumption modulo UP, while the Prop-
erty 1 mention that subsumption checks ofσi can be re-
stricted to clauses fromCσi

. Consequently, a possible gen-
eral dynamic subsumption approach can be stated as fol-
lows: Letπ = 〈σ1, . . . , σi, . . . , σk〉 be an asserting resolu-
tion derivation. For each resolventσi ∈ π, we apply sub-
sumption checks betweenσi and all the clauses inCσi

.
In the following, we show that we can reduce further the

number of clauses to be checked for subsumption by con-
sidering only a subset ofCσi

. Obviously, asσi is a resolvent
of an asserting clause derivationπ, then there exists two
paths from the conflict nodesx and¬x respectively, to one
or more nodes of the implication graph associated to the lit-
erals ofσi assigned at the conflict level. Consequently, we
derive the following property:

Property 3 Letπ be an asserting clause derivation,σi ∈ π

andc ∈ Cσi
. If σi subsumesc, then there exists two paths

from the conflict nodesx and ¬x respectively, to one or
more nodes of the implication graph associated to the lit-
erals ofc assigned at the conflict level.

The proof of the property is immediate sinceσi ⊂ c.
As this property is true forσi which is derived by resolu-
tion from the two clauses involvingx and¬x. Then it is
also, true for its supersets (c).

For a givenσi, the Property 3 leads us to another re-
striction of the set of clauses to be checked for sub-
sumption. Indeed, we only need to consider the set of
clausesPσi

, linked (by paths) to the two conflicting liter-
alsx and¬x.

We illustrate this characterization using the ex-
ample 1 (see. also Figure 1). Letπ = 〈σ1, . . . , σ7〉
where σ7 = (¬x11 ∨ ¬x12 ∨ ¬x6 ∨ ¬x1).
We have Cσ7

= {c1, c2, c3, c4, c5, c6, c7, c8} and
Pσ7

= {c1, c2, c4, c5, c6, c8}. Indeed, from the nodes
associated to the clausec3 we only have one path to
the nodex9. Consequently, the clausec3 might be dis-
carded from the set of clauses to be checked for subsump-
tion. Similarly, the clausec7 is only linked to the nodex9.
Thenc7 is not considered for subsumption tests.

Property 4 Given an asserting clause derivation
π = 〈σ1, . . . , σk〉. The time complexity of our gen-
eral dynamic subsumption approach is inO(|Cσk

|2).

Proof : From the definition ofCσi
, we have|Cσi

| = i + 1.
In the worst case, we need to consideri + 1 subsumption

checks. Then for allσi with 1 ≤ i ≤ k, we have to check∑
1≤i≤k(i + 1) = k×(k+3)

2 . As k = |Cσk
|, then the worst

case complexity is inO(|Cσk
|2).

The worst case complexity is quadratic even if we con-
siderPσk

⊂ Cσk
.

3.3. Dynamic subsumption on the fly

In section 3.2, we have presented the general approach
for dynamic subsumption. Its complexity is quadratic in
the number of clauses used in the derivation of an assert-
ing clause. As stated, in the introduction, to design an ef-
ficient dynamic simplification technique, one need to bal-
ance the run time cost and the quality of the simplification.
In this section, we propose a restriction of the general dy-
namic subsumption scheme, called dynamic susbumption
on the fly, which applies subsumption only between the
current resolventσi and the last clause from the implica-
tion graph used for its derivation. More precisely, suppose
σi = η[y, c, σi−1], we only check subsumption betweenσi

andc.
The following property gives a sufficient condition un-

der whichy can be removed formc

Property 5 Letπ be an asserting clause derivation,σi ∈ π

such thatσi = η[y, c, σi−1]. If σi−1 − {y} ⊆ c, thenc is
subsumed byσi.

Proof : Let c = (¬y ∨ α) andσi−1 = (y ∨ β). Then
σi = (α ∨ β). As σi−1 − {y} ⊆ c, thenβ ⊆ α. So,σi = α

which subsumes(¬y ∨ α) = c.
Considering modern SAT solvers that include conflict

analysis, the integration of this new dynamic subsumption
approach can be done with negligible additional cost. In-
deed, by using a simple counter during the conflict analysis
procedure, we can verify the sufficient condition given in
the Property 5 with a constant complexity. Indeed, at each
step of the asserting clause derivation, we generate the next
resolventσi from a clausec and a resolventσi−1. In the
classical implementation of conflict analysis, one can check
in constant time if a given literal is present in the current re-
solvent. Consequently, during the visit of the clausec, we
additionally compute the numbern of literals ofc that be-
long to σi−1. If n ≥ |σi−1| − 1 then c is subsumed by
σi = η[y, c, σi−1].

4. Experiments

The experiments were done on a large panel of crafted
and industrial problems coming from the last competitions.
All the instances were simplified by theSatElite pre-
processor [8]. We implemented our dynamic subsumption
approach in Minisat [9] and Rsat [15] and made a compari-
son between the original solvers and the ones enhanced with

dynamic subsumption. All the tests were made on a Xeon
3.2GHz (2 GB RAM) cluster. Results are reported in sec-
onds.

4.1. Crafted problems

During these experiments, the CPU time limit was fixed
to 3 hours. These problems are hand made and many of
them are designed to beat all the existing DPLL solvers.
They contain for example Quasi-group instances, forced
random SAT instances, counting, ordering and pebbling in-
stances, social golfer problems, etc.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e-04 0.001 0.01 0.1 1 10 100 1000 10000 100000

M
in

is
at

+
D

S

Minisat

 0

 2000

 4000

 6000

 8000

 10000

 12000

 400 450 500 550 600 650

tim
e

(s
ec

on
ds

)

instances

Minisat
Minisat+DS

Figure 2. Crafted problems: Minisat vs
Minisat+DS

The log-scaled scatter plot (in log scale) given in the
left part of Figure 2 details the results forMinisat and
Minisat+DS on each crafted instance. The x-axis (resp.
y-axis) corresponds to the CPU timetx (resp.ty) obtained
byMinisat (resp.Minisat+DS). Each dot with(tx, ty)
coordinates, corresponds to a SAT instance. Dots below

(resp. above) the diagonal indicate instances where the sub-
sumption is more efficient i.e.ty < tx. This figure clearly
shows the computational gain obtained thanks to our ef-
ficient dynamic subsumption approach. By automatically
counting the points we found that 365 instances are solved
more efficiently through dynamic subsumption. In some
cases the gain is up to 1 order of magnitude. Of course,
there exists instances where subsumption decreases the per-
formances ofMinisat (178 instances).

The right part of the Figure 2 shows the same results
with a different representation which gives for each tech-
nique the number of solved instances (# instances) in less
thant seconds. This Figure confirms the efficiency of our
dynamic subsumption approach on these problems. On sev-
eral classes the number of removed literals is very important
e.g.,x *, QG *, php *, parity *. On thegenurq *,
mod *, andurquhart * the problem is simplified dur-
ing each conflict analysis.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000

R
sa

t+
D

S

Rsat

 0

 2000

 4000

 6000

 8000

 10000

 12000

 250 300 350 400 450

tim
e

(s
ec

on
ds

)

instances

Rsat
Rsat+DS

Figure 3. Crafted problems: Rsat vs Rsat+DS

Figure 3 shows results forRsat andRsat+DS. Over-

all we can see that the addition of our dynamic subsumption
process toRsat improves the performance. The fine analy-
sis of the left part of Figure 3 showed thatRsat+DS solves
327 instances more efficiently thanRsat, which solves 219
problems more efficiently than its opponent.

Interestingly we can remark that the performances of
Rsat andRsat+DS is worse than the ones ofMinisat
andMinisat+DS. This comes from the rapid restart strat-
egy used by this algorithm which does not pay off on crafted
problems.

4.2. Industrial problems

With these problems, the time limit was set to 3 hours.
Table 1 provides detailed results on the SAT indus-
trial problems from the Sat-competition 2007 and Sat-Race
2008. The first column represents the instances fami-
lies. The second column (#inst.) indicates the total number
of instances in each family. Following columns present re-
sults for respectivelyRsat, Rsat+DS, Minisat, and
Minisat+DS. In each of these columns the first num-
ber represents the number of instances solved, and the num-
ber in parenthesis represents the number of instances solved
more quickly than the opponent. The last row of the ta-
ble gives the total of each column. We can see that
Rsat+DS and Minisat+DS are in general faster and
solves more problems thanRsat andMinisat respec-
tively.

families # inst. Rsat Rsat Minisat Minisat
+ +
DS DS

aloul * 1 – – – 1(1)
IBM * 53 15(7) 17(10) 15(10) 15(7)
APro * 16 12(7) 12(5) 14(6) 13(8)
mizh * 10 10(7) 10(3) 10(5) 10(5)
partial * 20 6(2) 7(5) 1(0) 2(2)
total * 20 13(6) 13(8) 10(5) 9(6)
dated* 20 15(6) 16(10) 14(10) 13(4)
braun* 7 4(1) 4(3) 5(2) 5(3)
velev * 10 2 (0) 2(2) 2(2) 1(0)
sort * 5 2(2) 2(0) 2(0) 2(2)
manol * 10 8(3) 8(5) 8(5) 9(4)
vmpc * 10 9(1) 9(8) 6(2) 7(5)
clause* 5 3(2) 3(1) 3(0) 3(3)
cube* 4 4(2) 4(2) 4(1) 4(3)
gold * 4 2 (2) 2 (0) 2(0) 2(2)
safe* 4 2(0) 2(2) 1(0) 1(1)
simon* 5 5 (4) 5 (1) 5(3) 5(2)
block * 2 2(2) 2(0) 2(0) 2(2)
dspam* 10 10(5) 10(5) 10(5) 10(5)
schup* 3 3(2) 3(1) 3(2) 3(1)
post * 10 8(3) 8(5) 5(3) 6(3)
ibm * 20 20(6) 20(14) 19(6) 19(13)

Total 249 155(70) 159(90) 141(67) 142(82)

Table 1. Industrial problems

Table 2, focuses on some industrial families. In these
families, the speed-ups are relatively important. For in-

instance Rsat Rsat Minisat Minisat
+ +
DS DS

vmpc 24 43 8 82 210
vmpc 25 39 1 830 318
vmpc 26 182 69 1239 1235
vmpc 27 593 327 1159 637
vmpc 28 173 488 3859 5478
vmpc 29 2598 1302 – 1252
vmpc 30 366 105 3111 2039
vmpc 33 5540 1562 – –
vmpc 31 – – – –
vmpc 34 3366 944 – –
partial-5-11-s 931 176 – 2498
partial-5-13-s 503 71 3248.38 669
partial-5-15-s 737.064 825 – –
partial-5-19-s 1134 498 – –
partial-5-17-s 7437.82 10610 – –
partial-10-11-s 1242 875 – –
partial-10-13-s – 3237 – –
ibm-02-04r-k80 90 33 113 152
ibm-02-11r1-k45 67 29 102 65
ibm-02-18r-k90 265 157 1044 769
ibm-02-20r-k75 36 185 2112 668
ibm-02-22r-k60 738 691 5480 3434
ibm-02-22r-k75 363 349 1109 688
ibm-02-22r-k80 285 298 894 642
ibm-02-23r-k90 1477 965 7127 2670
ibm-02-24r3-k100 273 256 133 249
ibm-02-25r-k10 3104 3118 2877 3172
ibm-02-29r-k75 353 248 272 1107
ibm-02-30r-k85 3853 592 – –
ibm-02-311r3-k30 1203 652 1150 998
ibm-04-01-k90 114 30 251 726
ibm-04-1 11-k80 394 222 559 329
ibm-04-23-k100 326 687 3444 2743
ibm-04-23-k80 465 563 2060 1584
ibm-04-29-k25 290 210 1061 1017
ibm-04-29-k55 533 16 558 124
ibm-04-3 02 3-k95 1 2 1 2

Table 2. Zoom on industrial families

stance, if we consider the vmpc family, we can see that
our dynamic simplification allows a one order of mag-
nitude improvement withRsat+DS (instances 24, and
25). On the same family, on the 9 solved instances by
Rsat+DS andRsat, Rsat+DS is better on 8 instances.
While Minisat+DS is better thanMinisat on 5 in-
stances among the 7 solved instances.

families avg #subsumed clauses avg. # conflicts

genurq* 89669 131089
marg * 279524 1.2e+06
bevhcube3* 43855 159525
urqh * 1.70612e+06 7.7e+06
hcb3* 706560 2855021
icosahedron* 257070 1.1e+06
mod * 3.97111e+06 2.2e+07
pebbling 6994 88106
SGI * 8418 1.4e+06
counting 89246 7.3e+06
QG * 4861 1.1e+06
ezfact* 7573 4e+06
clus * 2040 417749

Table 3. Statistics on crafted families

In table 3 and 4, usingMinisat+DS we give some

families avg. #subsumed clauses avg. #conflicts

aloul * 2863024 20242749
IBM * 4038 1015876
AProVE * 4388 1.8e+06
mizh * 11473 851772
partial * 423.5 302606
total * 266 173394
dated* 504 389092
braun* 15482 4.8e+06
velev * 230 126327
sortnet* 5006 914436
manol * 23857 1.7e+06
vmpc * 2288 733818
clause* 271 45112
cube* 795 278352
gold * 5336.5 4820315
safe* 4650 229703
simon* 3131 728076
blocks* 226 23453
dspam* 3990 767798
schup* 584 286181
post * 3706 952420
ibm * 3114 605552

Table 4. Statistics on industrial families

statistics on the application of our learning for subsump-
tion approach on crafted and industrial SAT families respec-
tively. On each family, the average number of subsumed
clauses (avg. #subsumed clauses) and the average number
of conflicts are given (avg. #conflicts). Clearly, these statis-
tics show that the average number of subsumed clauses
is more important on crafted instances than on industrial
ones. This is consistent with the experimental results pre-
sented previously. Even if the average number of subsumed
clauses is less significant on industrial families (except on
aloul *), we still observe interesting improvements in term
of cpu time. Note that similar statistics are observed using
Rsat+DS.

Overall, our experiments allow us to demonstrate two
things. First our technique does not degrade and often im-
proves the performance of DPLLs on industrial problems.
Second, it enhances the applicability of these algorithms on
classes of problems which are made to be challenging for
them. Since the implementing of our algorithm is rather
simple, we think that overall, it represents an interesting
contribution for the robustness of modern DPLLs.

5. Related Works

In Darras et al. [6], the authors proposed a preprocess-
ing based on unit propagation for sub-clauses deduction.
Considering the implication graph generated by the con-
straint propagation process as a resolution tree, the pro-
posed approach deduces sub-clauses from the original for-
mula. However, their proposed dynamic version is clearly
time consuming. The experimental evaluation is only given
in term of number of nodes.

In [17], an algorithm for maintaining a subsumption-free

CNF clause database is presented. It efficiently detects and
removes subsumption when a learnt clause is added. Ad-
ditionally, the algorithm compacts the database greedily by
recursively applying resolutions in order to decrement the
size of the database.

Conflict-clause shrinking was introduced in Jerusat [14].
It is also implemented in PicoSAT [5]. It removes literals
from learnt clauses by resolving recursively with clauses of
the implication graph. Remark that in the previous exper-
iments, our base solversMinisat andRsat implement
this technique.

6. Conclusion

This paper presents a new subsumption technique for
Boolean CNF formulae. It makes an original use of learn-
ing to reduce original or learnt clauses. At each conflict, and
during the asserting clause derivation process, subsumption
between the generated resolvents and some clauses encoded
in the implication graph is checked using an efficient suffi-
cient condition. Interestingly, since our subsumption tech-
nique relies on the clauses used in the derivation of an as-
serting clause, it tends to simplify parts of the formula iden-
tified as important by the activity-based search strategy.

Experimental results show that the integration of our
method within two state-of-the-art SAT solversMinisat
and Rsat particularly benefits to crafted problems and
achieves interesting improvements on several indus-
trial families.

As a future work, we plan to investigate how to effi-
ciently extend our approach to achieve exhaustive clauses
subsumption. Another interesting path of research would be
to exploit our subsumption framework to fine tune the activ-
ity based strategy. Indeed, each time a literal is eliminated,
this mean that a new conflict clause is derived and all the
resolvents used in such derivation are useless and can be
dropped from the implication graph.

References

[1] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and
L. Sais. Generalized framework for conflict analysis. InPro-
ceedings of the eleventh International Conference on The-
ory and Applications of Satisfiability Testing (SAT’08), pages
21–27, 2008.

[2] Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP
look-back techniques to solve real-world SAT instances. In
Proceedings of the Fourteenth National Conference on Arti-
ficial Intelligence (AAAI’97), pages 203–208, 1997.

[3] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Under-
standing the power of clause learning. InProceedings of the
Eighteenth International Joint Conference on Artificial Intel-
ligence (IJCAI’03), pages 1194–1201, 2003.

[4] A Biere and N. En. Effective preprocessing in sat through
variable and clause elimination. InProceedings of the Eighth
International Conference on Theory and Applications of Sat-
isfiability Testing (SAT’05), pages 61–75, 2005.

[5] Armin Biere. Picosat essentials.Journal on Satisfiability,
Boolean Modeling and Computation (JSAT’08), 4(1):75–97,
2008.

[6] S. Darras, G. Dequen, L. Devendeville, B. Mazure, R. Os-
trowski, and L. Saı̈s. Using Boolean constraint propagation
for sub-clauses deduction. InProceedings of the Eleventh In-
ternational Conference on Principles and Practice of Con-
straint Programming(CP’05), pages 757–761, 2005.

[7] M. Davis, G. Logemann, and D. W. Loveland. A machine
program for theorem-proving.Communications of the ACM,
5(7):394–397, 1962.

[8] N. En and A. Biere. Effective preprocessing in SAT through
variable and clause elimination. InProceedings of the Eighth
International Conference on Theory and Applications of Sat-
isfiability Testing (SAT’05), pages 61–75, 2005.

[9] Niklas En and Niklas Srensson. An extensible sat-solver. In
Proceedings of the Sixth International Conference on The-
ory and Applications of Satisfiability Testing (SAT’03), pages
502–518, 2002.

[10] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting
combinatorial search through randomization. InProceed-
ings of the Fifteenth National Conference on Artificial Intel-
ligence (AAAI’97), pages 431–437, 1998.

[11] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman.
Dynamic restart policies. InProceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI’02),
pages 674–682, 2002.

[12] Joao P. Marques-Silva and Karem A. Sakallah. GRASP -
A New Search Algorithm for Satisfiability. InProceedings
of IEEE/ACM International Conference on Computer-Aided
Design, pages 220–227, 1996.

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 530–535, 2001.

[14] Alexander Nadel. Backtrack search algorithms for proposi-
tional logic satisfiability : Review and innovations. Master’s
thesis, Master Thesis, the Hebrew University, 2002.

[15] Knot Pipatsrisawat and Adnan Darwiche. A lightweight
component caching scheme for satisfiability solvers. InPro-
ceedings of the Tenth International Conference on Theory
and Applications of Satisfiability Testing (SAT’07), pages
294–299, 2007.

[16] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER:
Non-increasing variable elimination resolution for prepro-
cessing SAT instances. InProceedings of the Seventh In-
ternational Conference on Theory and Applications of Satis-
fiability Testing (SAT’04), pages 276–291, 2004.

[17] Lintao Zhang. On subsumption removal and on-the-fly cnf
simplification. InProceedings of the Eighth International
Conference on Theory and Applications of Satisfiability Test-
ing (SAT’05), pages 482–489, 2005.

