Plan du cours

- Programmation logique et Prolog (PL)
 - SWI-Prolog, Sicstus
- Programmation logique par contraintes (PLC)
 - Sicstus
- Problèmes de satisfaction de contraintes (CSP/PC)
 - Choco (Sicstus & Bin Prolog)

Problèmes de satisfaction de contraintes (CSP)

- Cours 1: Introduction
 - Description du domaine d'applications
 - Aperçus des modèles et algorithmes de résolutions
- Cours 2 : Modelisation
 - Concept de bases : variables, domaines, contraintes
 - Exemples
- Cours 3: Résolution
 - Concept de base : recherche et propagation
 - exemples

CSP: domaine et aplications

Problèmes combinatoires

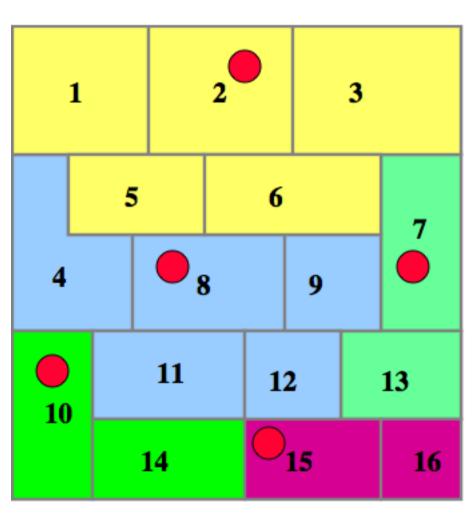
Puzzle Crypto-arithmétique

Remplacer chaque lettre par un chiffre différent tel que :

est correct

D E M N O R S Y \Rightarrow 10⁹ possibilités

Problème des casernes des pompiers

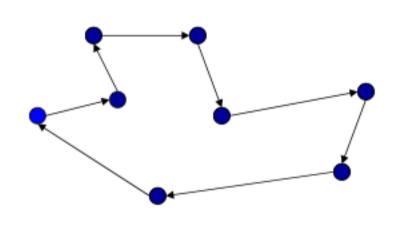


Placer les casernes de Manière à couvrir l'ensemble des régions (districts)

Minimiser le nombre de casernes nécessaires

 $2^{16} = 65536$ placements possible

Problème du voyageur de commerce



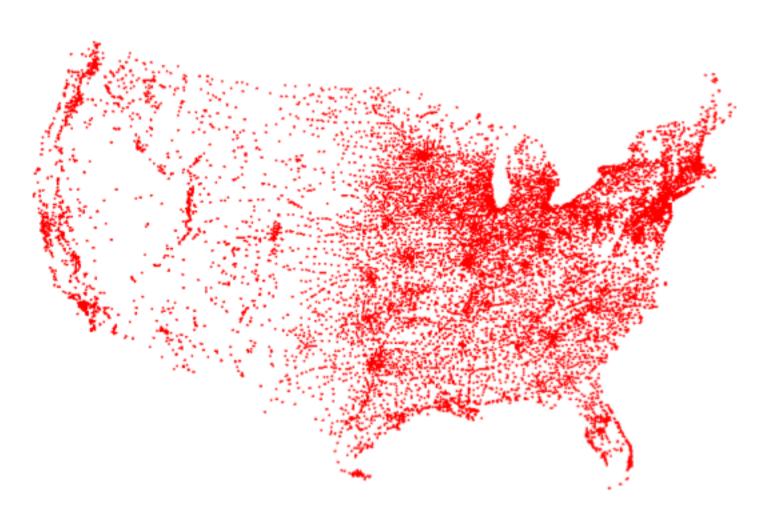
Trouver un tour de longueur minimum passant une et une seule fois par chaque ville

n! tours possible pour n villes (ici 4032)

Aucun algorithme de complexité polynomiale n'est connu. Problème NP-Difficile [Karp 72]

Problème du voyageur de commerce

13509 villes américaines



Problème du voyageur de commerce

13509 villes américaines

[Applegate, Bixty, Chvatal et Cook 1998]

Problème d'investissements

Application du problème du sac à dos

Budget d'investissement : 14 000 \$

investment	1	2	3	4	5	6
cash required	\$5k	\$7k	\$4k	\$3k	\$4k	\$6k
NPV	\$16k	\$22k	\$12 k	\$8k	\$11k	\$19k

$$NPV = $42k$$

Quelle est le meilleur plan d'investissement pour maximiser le NPV (Net Present Value) total ?

Problème d'investissements

Application du problème du sac à dos

Budget d'investissement : 14 000 \$

investment	1	2	3	4	5	6
cash required	\$5k	\$7k	\$4k	\$3k	\$4k	\$6k
NPV	\$16k	\$22k	\$12k	\$8k	\$11k	\$19k

$$cash = $14k$$

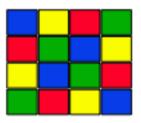
$$NPV = $43k$$

Quelle est le meilleur plan d'investissement pour maximiser le NPV (Net Present Value) total ?

Problème du carré latin (Latin Squares)

Etant donnée n couleurs, un carré latin (ou quasigroup) d'ordre n est un carré n x n colorié tel que :

- Toute cellule est coloriée
- Chaque couleur apparaît exactement une fois sur chaque ligne
- Chaque couleur apparaît exactement une fois sur chaque colonne

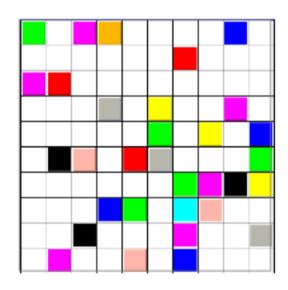


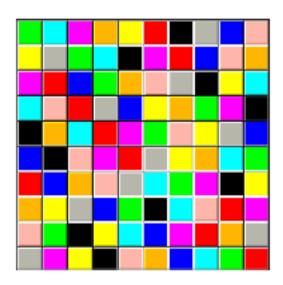
Carré latin d'ordre 4

Complétion d'un carré latin

Etant donnée une affectation partiel de couleurs (10 couleurs), est -ce que le carré latin partiel peut être complété en un carré latin complet ?

Exemple:





10⁶⁸ complétions possibles

Sudoku

Un **sudoku** est une matrice 9 x 9 remplie de chiffres de 1 à 9 tel que :

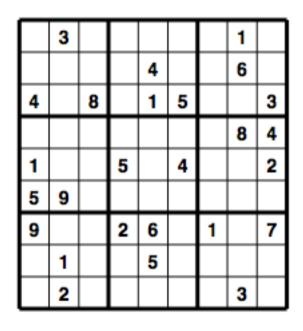
- Chaque cellule reçoit un chiffre
- Chaque chiffre apparaît exactement une fois par ligne
- Chaque chiffre apparaît exactement une fois par colonne

 Chaque chiffre apparaît exactement une fois par block (comme indiqué)

6	3	9	7	8	2	4	1	5
2	5	1	9	4	3	7	6	8
4	7	8	6	1	5	9	2	3
3	6	2	1	7	9	5	8	4
1	8	7	5	3	4	6	9	2
5	9	4	8	2	6	3	7	1
9	4	3	2	6	8	1	5	7
8	1	6	3	5	7	2	4	9
7	2	5	4	9	1	8	3	6

Sudoku

Un **sudoku** partiellement complété avec une solution unique, trouvez la solution?

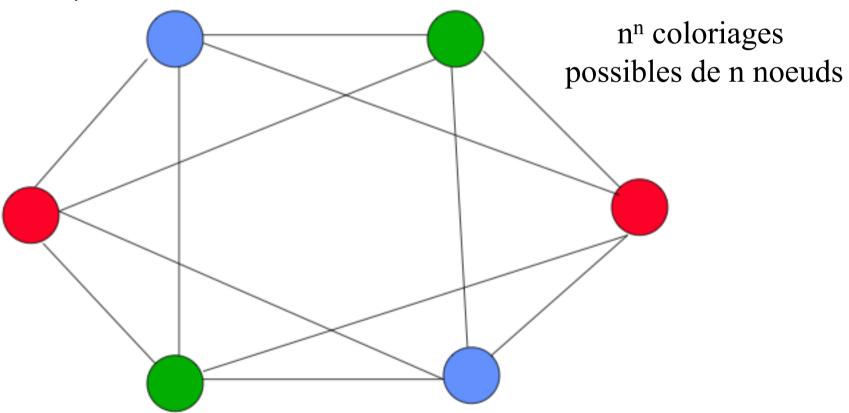


_								
6	3	9	7	8	2	4	1	5
2	5	1	9	4	3	7	6	8
4	7	8	6	1	5	9	2	3
3	6	2	1	7	9	5	8	4
1	8	7	5	3	4	6	9	2
5	9	4	8	2	6	3	7	1
9	4	3	2	6	8	1	5	7
8	1	6	3	5	7	2	4	9
7	2	5	4	9	1	8	3	6

 $9^{55} \sim 3 \times 10^{52}$ complétions possibles

Coloriage de graphes

- Coloriage des nœuds d'un graphe :
- Quel est le nombre minimum de couleur tel que deux nœuds connecté prennent des couleurs différentes?



Emploi du temps

Cas de tournois sportifs : « Round-Robin tournament »

- Equipes = 8
- Weeks = 7
- Periodes = 4
- Contraintes:
 - Chaque équipe joue avec toutes les autres une fois
 - Chaque équipe joue exactement une fois par semaine
 - Chaque équipe joue au plus deux fois par période

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

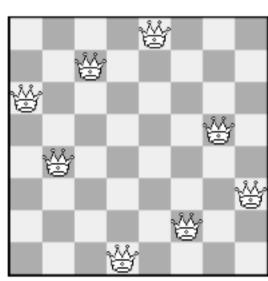
• $28^{28} \sim 3 \times 10^{40}$ tournois possibles

N-Reines

Placer n reines sur un échiquier n x n tel que deux reines ne soient pas en prises

n! placements possibles pour n=8

Existence de construction en temps polynomial [falkowski et Schmitz 1986]



n = 8

Planification: monde des blocs

Objets:

blocs sur une tables

Actions:

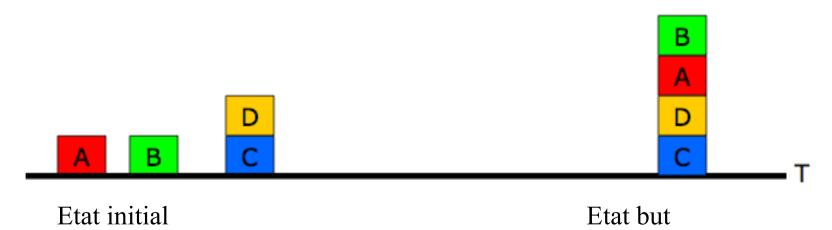
déplacer un bloc libre sur la table ou sur un autre bloc libre

Buts:

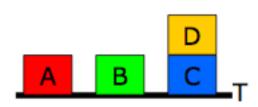
Configurations de blocs

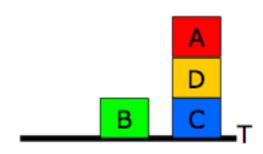
Plan:

Une séquence d'actions pour atteindre les buts



Planification: monde des blocs





Base de connaissance :

On(A,T), On(B,T), On(D,C), Bloc(A), Bloc(B), Bloc(C), Bloc(D), Libre(A), Libre(B), Libre(D)

déplacer(A,T,D)

Base de connaissance :

On(A,D), On(B,T), On(D,C), On(C,T), Bloc(A), Bloc(B), Bloc(C), Bloc(D), Libre(A), Libre(B)

Satisfiabilité propositionnelle (SAT)

SAT: Etant donnée une formule booléenne mise sous forme normale conjonctive, existe t-il une affecation de valeurs (0 ou 1) au variables rendant la formule vraie?

(a OR NOT b OR NOT c) AND (b OR NOT c) AND (a OR c)

a=1, b=0, c=0

(1 OR NOT 0 OR NOT 0) AND (0 OR NOT 0) AND (1 OR 0)

SAT est un problème NP-Complet de référence [Cook 1971]

2ⁿ affectations possibles

En pratique:

Solveurs SAT modèrnes très efficaces pour résoudre des problèmes combinatoires

Modèles et algorithmes de résolutions

Solveurs spécialisés vs Solveurs génériques

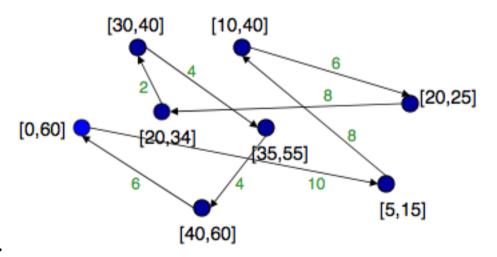
Modèles et algorithmes de résolutions

- De nombreux problèmes peuvent être résolus par des algorithmes spécialisés (en temps polynomial)
 - n Reines
 - carré latin
 - **–** ...
- Pour de nombreux problèmes NP-Complet /NP-Difficile, il existe des algorithmes spécialisés
- Pourquoi utiliser des solveurs génériques?

Modèles et algorithmes de résolutions

Exemple : Problème du voyageur de commerce (TSP)

- Supposons qu'on a un solveur spécialisé pour le résoudre.
- Supposons que nous souhaitons ajouter la restriction suivante : chaque ville ne peut être visité que das une fenêtre de temps!



- Problèmes:
 - Nous ne pouvons pas exprimer cette restrction dans notre algorithme
 - Si on peut, on doit adapter le processus de résolution!

Solveurs génériques

Avec un solveur générique on peut :

- Modéliser et résoudre tout les problèmes précédents
- Maintenir le modèle plus facilement
- Incorporer des techniques spécialisés plus efficacement

Candidats

Considérer les solveurs suivants :

- Solveur de Contraintes (CP, CLP)
- Solveur SAT
- Solveur MIP

Chacun peut être utilisé pour modéliser et résoudre tout problème NP-Complet ou NP-Difficile

Aucun n'est meilleur qu'un autre sur tous les problèmes

Certains problèmes sont plus facilement modélisable par

- Des formules proposionnelles : utiliser SAT
- Des contraintes linéaires : utiliser MIP
- Relations plus complexes : utiliser CP ou CLP