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Abstract

In the last decade, several approaches have been pro-
posed for merging multiple and potentially conflicting
pieces of information. Egalitarist fusion modes privi-
lege solutions that minimize the (local) dissatisfaction
of each agent (source, expert) who is involved in the fu-
sion process. This paper proposes useful strategies for
an egalitarist fusion of incommensurable ranked belief
bases under constraints. We show that the fusion pro-
cess can equivalently be characterized either by means
of the notion of compatible ranked bases, or by means
of a Pareto-like ordering on a set of possible solutions.
Lastly, rational postulates for our merging operator are
studied.

Introduction

In many situations, relevant informations are provided
by different sources. Taking advantage of the different
sources of information usually requires to perform some
combination operation on the pieces of information, and
leads to a data fusion problem.

Recently, several approaches have been proposed for
merging possibly contradictory belief bases (Konieczny
& Pino Pérez 2002; 1998; Lin 1995; Liberatore &
Schaerf 1995; Revesz 1993; 1997). Belief bases can be ei-
ther flat (no priority relation is provided between differ-
ent formulas of belief bases) or ranked. A ranked belief
base (or a stratified belief base, a weighted belief base)
is a set of well founded formulas, each associated with a
rank (assumed here to be an integer). The higher is the
rank associated with a formula, the more important is
the formula. In fact, ranked belief bases are convenient
representations of what is usually known as epistemic
states e.g., (Darwiche & Pearl 1997). Namely, each
ranked belief base induces a ranking on set of possible
interpretations (or solutions). Interpretations assigned
to lower ranks are considered to be more plausible than
interpretations assigned to higher ranks. In particular,
interpretations with the rank ’0’ are the most preferred
ones and represent agent’s current beliefs.

In this paper, the term beliefs is used since pieces
of information provided by sources are uncertain. We
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will reserve the term constraints to completely sure and
consistent pieces of information. Constraints should be
present in the result of the fusion process, while beliefs
can be accepted, weakened or if necessary ignored in
the fusion process.

Among existing merging approaches, we can distin-
guish two important ones: utilitarist approaches (or
majority approaches) and egalitarist approaches. Ex-
amples of majority approaches are those based on the
”sum” operator, and examples of egalitarist approaches
are those based on the maximum operator (and its ex-
tension Gmax), see (Konieczny & Pino Pérez 2002).
Given a set of n consistent belief bases (or preferences
sets), provided by n sources (or agents, or experts), a
majority approach tries to minimize a global dissat-
isfaction. In particular, if a given belief base is sup-
ported by a large number of agents or sources involved
in the fusion, then this belief base will be in the re-
sult of the fusion. Majority fusion operators make
sense if all sources are considered to be independent.
Egalitarist fusion modes behave differently since they
try to minimize agent’s individual dissatisfaction. In
egalitarist approaches, which are for instance majority-
independent merging operators, a repetition of a same
piece of information has no impact on the result of fu-
sion.

Both utilitarist and egalitarist approaches, when ap-
plied to merging ranked belief bases, are based on the
assumption that belief bases to merge are commensu-
rable. Namely all sources share a same common scale
to order their pieces of information. This commensura-
bility assumption may make sense in some applications,
but can appear to be too strong for other applications.

This paper deals with egalitarist-based fusion modes,
which are majority independent, of incommensurable
ranked bases. We use the maximum-based merging op-
erator as an example of egalitarist-based information
fusion.

One way to deal with incommensurability problem is
to use a variant of Pareto ordering (Moulin 1988). Inter-
pretations (or solutions) are compared with respect to
their compatibility with each individual bases. Namely,
given a multi-set of consistent ranked bases E, a solu-
tion s is strictly preferred to another solution s′, if i) s′



is not a model of each base in E, and ii) for each base
Bi ∈ E, either s is strictly preferred in s′ with respect to
Bi , or s and s′ are both models of Bi .

Another natural way to define merging operator is to
consider all compatible (or ”uniform”) scales. A com-
patible scale is simply a re-assignment of ranks associ-
ated with beliefs in bases, such that the original relative
ordering between beliefs is preserved. Then a solution
s is said to be strictly preferred to another solution s′,
if s is preferred to s′ in each compatible scale using
maximum-based merging operator.

This paper shows the surprising result, that using all
compatible scales is equivalent to considering a Pareto-
like ordering. It also shows that the merging operation
obtained by dropping the commensurability assumption
is still compatible with most of rational postulates pro-
posed for merging operations.

The rest of this paper is organized as follows.
First we present the concept of ranked belief bases,
and maximum-based merging of commensurable bases.
Then we present the two ways to deal with incommensu-
rability assumption (compatible scales and Pareto-like
ordering) and show their equivalence. Lastly, we discuss
the rational postulate for our merging operator.

Background on ranked bases and

Maximum-based fusion

Let L be a f inite propositional language. We denote by
Ω the set of interpretations of L and by ω an element
of Ω. Greek letters φ, ψ denote propositional formu-
las. Mod(φ) represents the set of models of φ, namely
Mod(φ) = {ω ∈ Ω : ω |= φ}.

Ranked bases

Ranked belief bases are convenient frameworks for rep-
resenting uncertain (or prioritized) pieces of informa-
tion. Ranked belief bases are used in different frame-
works, such as possibility theory (Dubois, Lang, &
Prade 1994; Guilin, Liu, & Bell 2006) or ordinal con-
ditional functions (OCF) (Williams 1995; Meyer 2001;
Spohn 1988).

In this paper, ranked belief bases are simply multi-
sets of ranked propositional formulas. Namely:

Definition 1 (Ranked bases) A ranked base Bi is a
multi-set of ranked propositional formulas,

Bi = {(φi j ,RBi (φi j )), j ∈ {1, ...,mi}},

where φi j is a propositional formula, and RBi (φi j ) ∈ N∗.

Intuitively, (φi j ,RBi (φi j )) asserts that φi j has a pri-
ority rank of at least RBi (φi j ) (where a higher rank is
better). Only strictly positive ranks are represented.
Moreover, we reserve the infinity symbol +∞ for in-
tegrity constraints.

From a ranked belief base B, we can define B∗, which
is the set of propositional formulas simply obtained by
ignoring weights in B. More formally,

B∗ = {φi j : (φi j ,RBi (φi j )) ∈ B}.

There exist different ways to induce an ordering on
possible interpretations from a given ranked belief base.
In this paper, we use the so-called best out ordering,
which is defined as: an interpretation ω is preferred
to another interpretation ω′, if and only if the highest
belief falsified by ω is less important than the highest
belief falsified by ω′. Hence, each interpretation is as-
sociated with the ranks of highest formula that it falsi-
fies. Interpretations which are models of B∗

i have a rank
equal to 0 and are the preferred ones. More precisely:

Definition 2 (Ranking functions) A ranking func-
tion kBi associated with a ranked belief base Bi is a func-
tion that maps each interpretation ω ∈ Ω to an integer
κBi (ω) such that:

κBi (ω) =

{

0 if ∀(φi j , RBi (φi j )) ∈ Bi , ω |= φi j
max{RBi(φi j ) : ω 2 φi j , (φi j ,RBi (φi j )) ∈ Bi}

otherwise.

The degree κBi (ω) will be called degree of surprise
(or consistency degree) following Spohn’s terminology
(Spohn 1988).

Best-out ordering is the basis of possibilistic logic se-
mantics (Dubois, Lang, & Prade 1994) and adjustment
revision (Williams 1995).

Example 3 Consider a ranked belief base B = {(¬a∨
b,8),(a∨ b,5),(a,2)}. The following table gives the
ranking function κB associated with B.

ωi ∈ Ω a b κB(ωi)
ω0 0 0 5
ω1 0 1 2
ω2 1 0 8
ω3 1 1 0

Table 1: An example of ranking function

Egalitarist-based fusion
Let E = {B1, ...,Bn} be a multi-set of n ranked bases
issued from n sources, and let µ be a propositional for-
mula representing integrity constraints to be satisfied.
We suppose in this section that all the source share the
same meaning of ranks assigned to formulas. We also
suppose that each ranked belief base is consistent (but
of course, their union can be inconsistent).

The aim of merging is, given n commensurable ranked
bases, to compute ∆(E), a propositional formula repre-
senting the result of the fusion of these bases. In the
literature, different methods for merging E have been
proposed.

This paper focuses on an egalitarist fusion, and uses
the maximum operator to illustrate the fusion process.

But first, we need to introduce the notion of pro f ile
associated with an interpretation ω, denoted by νE(ω),
and defined by

νE(ω) =< κB1(ω), ...,κBn(ω) > .

It represents the degree of surprise (dissatisfaction) of
an interpretation ω with respect to the multi-set of
ranked bases.



The computation of the result of merging ∆(E) is
done in two step: first combine the surprise degrees
κBi (ω)’s with a merging operator (here the maximum
operator), and then select interpretations with lowest
ranks. This leads to define a strict order, denoted by
⊳Max, between interpretations as follows: an interpre-
tation ω is preferred to another interpretation ω′ if the
maximum element of the profile of ω is smaller than the
maximum element of the profile of ω′. More formally:

Definition 4 (definition of ⊳Max) Let E be a multi-
set of ranked bases. Let ω and ω′ be two interpretations
and νE(ω), νE(ω′) be their associated profiles. Then:

ω⊳
E
Maxω′ iff Max(νE(ω)) < Max(νE(ω′)).

where

Max(νE(ω)) = Max{κBi (ω) : i ∈ {1, ...,n}}

The result of the merging ∆max
µ (E) is a propositional

formula whose models are interpretations which are
models of µ and which are minimal with respect to ⊳Max.
More formally:

Definition 5 (Maximum-based merging operator)
Let E = {B1, ...,Bn} be a multi-set of ranked belief bases
and µ be an integrity constraint. The result of merging
is a propositional formula, denoted by ∆max

µ (E), defined
by:

Mod(∆max
µ (E)) = {ω ∈ Mod(µ) : ∄ω′ ∈ Mod(µ),ω′

⊳Maxω}

Let us illustrate these definitions with the following
example.

Example 6 Let E = {B1, B2} be such that B1 =
{(a,8),(¬b,4)} and B2 = {(b,2),(¬a,1)}. The profile of
each interpretation is given in Table 2

a b κB1(ω) κB2(ω) νE(ω) Max
ω0 0 0 8 2 <8,2> 8
ω1 0 1 8 0 <8,0> 8
ω2 1 0 0 2 <0,2> 2
ω3 1 1 4 1 <4,1> 4

Table 2: Profiles associated with interpretations

The result of the Max-merging, considering µ≡ a is
such that:

Mod(∆max
a (E)) = {ω2}

Fusion-based on compatible scalings

The merging operation defined above assume that the
sources, who provide Bi ’s, are commensurable. In ex-
ample 6, it is assumed that the weight associated with
¬b in B1 (namely 4) can be compared to the weight as-
sociated with ¬a (namely 1) in B2. Such assumption
is not always true. In the following, we drop this com-
mensurability assumption.

We present in this section a strategy for an egalitarist
fusion of incommensurable ranked belief bases. A nat-
ural way to make them commensurable is to apply a

compatible scaling on existing ranks. A scaling is said
to be compatible if it preserves original relative orders
between beliefs of each ranked bases.

A scaling S assigns new ranks to beliefs of each ranked
bases from the multi-set E. Namely:

Definition 7 (compatible scaling) Let E =
{B1, ...,Bn} where Bi = {(φi j ,RBi (φi j ))}. Then a
scaling S is defined by:
S : B1 ⊔ ...⊔Bn → N

(φi j ,RBi (φi j )) 7→ S (φi j )
Where ⊔ represents union of multi-sets.
A scaling S is said to be compatible with RB1 , ...,RBn

if and only if:

∀Bi ∈ E, ∀(φ,RBi (φ)), (φ′,RBi (φ′)) ∈ Bi ,

RBi (φ) ≤ RBi (φ′) iff S (φ) ≤ S (φ′).

Clearly, a compatible scaling is not unique, as it is
illustrated by the following example.

Example 8 (continued) Let us consider again B1 =
{(a,8),(¬b,4)} and B2 = {(b,2),(¬a,1). Table 3 gives 2
scalings: S1 and S2.

φi j RBi (φi j ) S1(φi j ) S2(φi j )
B1 a 8 5 4

¬b 4 2 7
B2 b 2 7 3

¬a 1 1 2

Table 3: examples of scaling

The scaling S1 is a compatible one, because it pre-
serves the order inside each ranked base. However, the
scaling S2 is not a compatible one: it inverses the pri-
orities inside B1.

The set of compatible scalings with E is denoted by
SE. Note that SE is never empty. A straightforward
compatible scaling is the one simply obtained by letting
S (φi j ) = RBi (φi j ). It is compatible because it obviously
preserves the relative ordering between beliefs of each
base.

Given a compatible scaling S , we denote by BSi the
ranked base obtained from Bi by replacing each pair
(φi j ,Ri(φi j )) by (φi j ,S (φi j )). Similarly, we denote by ES

the multi-set obtained from E by replacing each Bi in E
by BSi .

A natural question now is, given the set of all com-
patible scalings SE, how to define the result of merging.
Different options exist, either we use some uncertainty
measure to select one compatible scaling from SE, or
we consider all compatible scalings. In this paper, we
adopt for a skeptical option and consider all compat-
ible scalings, in order to avoid arbitrary choices. An
interpretation ω is then said to be preferred to ω′, if
for each compatible scaling S , ω is preferred to ω′ using

Definition 4 (namely, ω⊳ES
Maxω′). More precisely,



Definition 9 (Ordering between interpretations)
Let E be a multi-set of ranked belief bases, SE be the
set of all compatible scalings associated with E. Let ω,
ω′ be two interpretations. Then:

ω <
E
∀ ω′ iff ∀S ∈ SE, ω⊳

ES
Maxω′

where ⊳ES
Max is the result of applying Definition 4 on

ES .

Models of ∆∀
µ(E) are those which are models of µ and

minimal for <
S

∀ , namely:

Mod(∆∀
µ(E)) = {ω ∈ Mod(µ) : ∄ω′ ∈ Mod(µ), ω′

<∀ ω}

Note that <E
∀ is only a partial order.

The following proposition shows that an interpreta-
tion ω is a model of ∆∀

µ(E) if and only if there exists a
compatible scaling where this interpretation belongs to

the result fusion, namely is a model of ∆ES
Max(E). More

formally:

Proposition 10 Let E be a multi-set of ranked belief
bases. Then ω ∈ Mod(∆∀

µ(E)), if and only if there exists

a compatible scaling S such that ω ∈ Mod(∆max
µ (ES )).

Let us illustrate the fusion based on all compatible
scalings with the following example.

Example 11 (continued) Assume that µ ≡ ⊤. Let
us consider again B1 = {(a,8),(¬b,4)} and B2 =
{(b,2),(¬a,1)}. Let us consider again S1 where

BS11 = {(a,8),(¬b,4)} and BS12 = {(b,2),(¬a,1)} and

a scaling S2, where BS21 = {(a,5),(¬b,4)} and BS22 =
{(b,3),(¬a,2)}. Both of them are compatible. Table 4
presents the profile of each interpretation for each scal-
ing.

a b νES1 (ω) Max νES2 (ω) Max
ω0 0 0 < 8,2 > 8 < 5,3 > 5
ω1 0 1 < 8,0 > 8 < 5,0 > 5
ω2 1 0 < 0,2 > 2 < 0,3 > 3
ω3 1 1 < 4,1 > 4 < 4,2 > 4

Table 4: Two equivalent compatible scalings

Note that in both compatible scalings S1 and S2, ω2 is
the preferred one. Table 5 shows six additional compat-
ible scalings, Table 6 gives their associated profiles.

φi j RBi S3 S4 S5 S6 S7 S8
B1 a 8 4 3 2 2 2 2

¬b 4 3 2 1 1 1 1
B2 b 2 2 2 2 3 3 4

¬a 1 1 1 1 1 2 3

Table 5: Representative compatible scalings

νES3 (ω) νES4 (ω) νES5 (ω) νES6 (ω) νES7 (ω) νES8 (ω)
ω0 < 4,2 > <3,2> <2,2> <2,3> <2,3> <2,4>

ω1 < 4,0 > <3,0> <2,0> <2,0> <2,0> <2,0>

ω2 < 0,2 > <0,2> <0,2> <0,3> <0,3> <0,4>

ω3 < 3,1 > <2,1> <1,1> <1,1> <1,2> <1,3>

Table 6: Profiles of compatible scalings

In fact, it can be shown that these six compatible scal-
ings given in Table 5 are enough to characterize the re-
sult of fusion. Namely, for each compatible scaling S ,
there exists a scaling S i ∈ {3, ...,8} given in Table 5, such

that ω⊳
S

Maxω′ iff ω⊳
S i
Maxω′, for all ω and ω′.

Bold elements in Table 6 represent models of ∆max
µ

for a given scaling. For instance, the interpretations
ω1 and ω3 are models of ∆max

µ for the compatible scaling
S5 from Tables 5.

Finally, the strict partial order between interpreta-
tions is only defined by ω3 <E

∀ ω1.

Hence, models of ∆∀
µ(E) are {ω1, ω2, ω3}, and

∆∀
µ(E) ≡ a∨b.

As a skeptical approach, conclusions obtained using
all compatible scalings are safe.

Moreover, considering all possible compatible scales
does not means that the approach is too cautious and
for instance, only tautologies can be derived from the
result of merging. In particular, if the union of bases
is consistent, then the result of merging is simply the
conjunct of the bases. More formally:

Proposition 12 Let E = {B1, ...,Bn}. Then if
V

Bi∈E(B∗
i )∧µ is consistent, then

∆∀
µ(E) ≡

^

Bi∈E

(B∗
i )

Proof 13 The proof is immediate. Let ω be a model
of

V

Bi∈E(B∗
i ). For each compatible scaling S , it can be

checked that its associated profile is νES (ω) =< 0, ...,0 >,
namely Max(νES (ω)) = 0. Hence, ω is minimal. Now let
ω′ be such that it falsifies at least one belief of some base
in E, then for each compatible scaling Max(νES (ω)) > 0.
Therefore, for each compatible scale, ω is minimal iff ω
is a model of

V

Bi∈E(B∗
i ).

Of course in extreme situations, where sources
are strongly conflicting, only tautologies can be de-
rived. For instance, let B1 = {(a,1),(b,4)} and B2 =
{(¬a,2),(¬b,3)}. This example represents an extreme
situation, where the two sources strongly disagree. It is
then hard to make decisions. Since, our motivation is
that if there is no additional information, we prefer to
avoid infering arbitrary conclusions.

A characterization of compatible-based

fusion with Pareto-like ordering

This section describes how identifying preferred inter-
pretations from Ω (or from Mod(µ)) for merging E with-
out computing SE, using a strict Pareto-like ordering.



Intuitively, an interpretation ω is strictly preferred to
ω′ if:

i) ω′ is not a model of each base B∗
i , and

ii) for each B j , either ω and ω′ are models of B∗
j , or

κB j (ω) < κB j (ω′) (namely, ω is preferred to ω′ with

respect to B j).

More formally:

Definition 14 (Pareto-like ordering) Let
E = {B1, ...,Bn}. ω is pareto-preferred to ω′, de-
noted by ω⊳Paretoω′, iff the two following conditions are
satisfied:

• ∃i ∈ {1, ...,n}, κBi (ω′) 6= 0,
• ∀i ∈ {1, ..,n}, κBi (ω) = κBi (ω′) = 0, or κBi (ω) <

κBi (ω′).

Let us illustrate this definition by the following ex-
ample.

Example 15 (continued) Let us consider again B1 =
{(a,8),(¬b,4)} and B2 = {(b,2),(¬a,1)}. Table 7
presents the profile of each interpretation of Ω.

a b κB1(ω) κB2(ω) νE(ω)
ω0 0 0 8 2 <8,2>

ω1 0 1 8 0 <8,0>

ω2 1 0 0 2 <0,2>

ω3 1 1 4 1 <4,1>

Table 7: Profiles associated with interpretations

From Table 7 we have ω3 strictly preferred to ω0 using
⊳Pareto, since for each belief base, the rank associated
with ω3 is strictly lower than the rank associated with
ω0.

The following proposition contains one of main re-
sults of the paper and shows the equivalence between
Pareto-like ordering and compatible scaling ordering:

Proposition 16 (Equivalence between <∀ and ⊳Pareto)
Let E be a multi-set of ranked belief bases, <E

∀ and
⊳Pareto be the two partial orders defined respectively by
Definition 9 and Definition 14. Then:

∀ω, ω′ ∈ Ω, ω <
E
∀ ω′ iff ω⊳Paretoω′

Thus, this Pareto-like ordering allow us to merge in-
commensurable ranked bases, without computing all
compatible scalings.

Mod(∆Pareto
µ (E)) = {ω∈Mod(µ) : ∄ω′ ∈Mod(µ), ω′

⊳Paretoω}

Example 17 (continued) Let us consider again B1 =
{(a,8),(¬b,4)} and B2 = {(b,2),(¬a,1)}. From Table 7,
ω1, ω2 and ω3 are models of ∆Pareto

µ because they are
minimal with respect to ⊳Pareto ordering defined in Def-
inition 14.

Hence, ∆Pareto
µ (E) = a∨b for µ = ⊤. This is exactly

the same result as the one given in Example 11.

Logical properties

We provides in this section some logical properties to
our merging operator.

Rational postulates

Rational postulates have been proposed for charac-
terizing fusion operators (Konieczny & Pino Pérez
1998) under integrity constraints. These postulates
are defined when the belief base Bi is represented by a
propositional formula.

(IC0) ∆µ(E) |= µ;
(IC1) If µ is consistent, then ∆µ(E) is consistent;
(IC2) If

V

B∈E B is consistent with µ, then ∆µ(E) ≡
V

B∈E B∧µ;
(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then ∆µ1(E1) ≡ ∆µ2(E2);
(IC4) If B1 |= µ and B2 |= µ, then ∆µ({B1,B2})∧B1 is
consistent iff ∆µ({B1,B2})∧B2 is consistent;
(IC5) ∆µ(E1)∧∆µ(E2) |= ∆µ(E1

F

E2);
(IC6) If ∆µ(E1) ∧ ∆µ(E2) is consistent, then
∆µ(E1

F

E2) |= ∆µ(E1)∧∆µ(E2);
(IC7) ∆µ1(E)∧µ2 |= ∆µ1∧µ2(E);
(IC8) If ∆µ1(E) ∧ µ2 is consistent, then ∆µ1∧µ2(E) |=
∆µ1(E)∧µ2.

A complete description of these postulates can be
found in (Konieczny & Pino Pérez 2002). In our frame-
work, (IC2), (IC3) and (IC4) need to be adapted. For
instance, B1 |= µ should be replaced by B∗

1 |= µ. More-
over (IC3) needs to be adapted by defining the equiva-
lence between two multi-set of ranked knowledge base,
denoted by ≡r . Two multisets of ranked belief bases
E1 and E2 are equivalent if for each ranked base of E1,
there exists a ranked base in E2 inducing the same rank-
ing function κ, given by Definition 2. More formally
E1 ≡r E2 if and only ∀B∈ E1 (resp. E2), ∃B′ ∈ E2 (resp.
E1) such that κB = κB′

We finally rewrite (IC2), (IC3) and (IC4) as
follows:

(IC2’) If
V

B∈E B∗ is consistent with µ, then ∆µ(E) ≡
V

B∈E B∗∧µ;
(IC3’) If E1 ≡R E2 and µ1 ≡ µ2, then ∆µ1({E1}) ≡
∆µ2({E2});
(IC4’) If B∗

1 |= µ and B∗
2 |= µ, then ∆µ({B1,B2})∧B∗

1 is
consistent iff ∆µ({B1,B2})∧B∗

2 is consistent.

The following proposition shows that even if we drop
the commensurability assumption, our merging opera-
tor is very compatible with most natural postulates for
merging operators.

Proposition 18 Let E = {B1, . . . ,Bn} be a multi-set
of ranked belief bases. If all B∗

i are coherent then
∆Pareto

µ (E) satisfies (IC0), (IC1), (IC2’), (IC3’),
(IC4’), (IC5), (IC7) and (IC8).

However, ∆Pareto
µ (E) falsifies (IC6). For the counter

example, consider µ = ⊤, E1 = {B1 = {(a,1)},B2 =



{(¬a,1)}} and E2 = {B3 = {(a,1)}}. We have ∆µ(E1) ≡
⊤ and ∆µ(E2)≡a. Furthermore, we have ∆µ(E1,E2)≡⊤,
but ∆µ(E1)∧∆µ(E2) ≡ a.

It is very important to note that this is not due
to the incommensurability assumption. Indeed, the
maximum-based merging operator defined for merging
commensurable belief bases falsifies (IC6)

The following postulate has also been proposed in
(Konieczny & Pino Pérez 2002) for characterizing the
notion of majority independence.
(MI) ∀n∆µ(E1 ⊔En

2 ) ≡ ∆µ(E1 ⊔E2).
This property states that the result of merging is fully

independent of the repetition of the beliefs: it only takes
into account each different view.

Proposition 19 ∆Pareto
µ (E) satisfies MI.

At corollary (also pointed in (Konieczny & Pino Pérez
2002)) of this proposition, we do not need to consider
multi-sets of ranked belief bases, but only sets.

Related works

There have some approaches that merge stratified be-
liefs bases without commensurability assumptions. For
instance, the approach proposed in (Benferhat, Dubois,
& Prade 1999) in possibility theory framework, indeed
drops the commensurability but assumes the existence
of an ordering between stratified bases to merge. Our
approach does not require such assumption.

Recently, (Guilin, Liu, & Bell 2006) have proposed
an approach to merge stratified belief bases. Basically,
their approach can be described as follows: each strati-
fied belief base, on the basis of same ordering strategy,
induces a ranking between interpretations. Namely,
possible interpretations are associated with vectors of
priority levels in all the original belief bases. The re-
sult of merging are obtained by only considering inter-
pretations whose associated vectors are minimal with
respect to lexicographical ordering. The main problem
with such approach is that priorities issued from differ-
ent sources are considered to be comparable. Hence,
commensurability assumption is not satisfied. In the
sense that if some source assigns a rank i to some for-
mula φ, and another source assigns a rank j to another
formula ψ, if both sources use the same ordering strat-
egy, then φ and ψ can be compared. In our approach,
φ and ψ are not assumed to be comparable.

Conclusion

This paper has addressed an issue which is not widely
considered in belief fusion. It concerns the problem
of merging incommensurable ordered belief bases. We
have proposed a natural definition based on the idea of
compatible rankings.

We have also proposed a characterization of inference
based on the family of compatible rankings. More pre-
cisely, it is possible to define equivalently the result of
merging by ordering interpretations with respect to a
variant of Pareto criteria.

This paper has also studied rational postulate for our
merging operator, and we showed that it satisfies most
of rational postulates proposed for merging operators,
even if commensurability is not assumed.
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