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Abstract. In this paper, a new form of explanation and recovery technique for the
unsatisfiability of discrete CSPs is introduced. Whereas most approaches amount
to providing users with a minimal number of constraints that should be dropped in
order to recover satisfiability, a finer-grained alternative technique is introduced.
It allows the user to reason both at the constraints and tuples levels by exhibiting
both problematic constraints and tuples of values that would allow satisfiability
to be recovered if they were not forbidden. To this end, the Minimal Set of Un-
satisfiable Tuples (MUST) concept is introduced. Its formal relationships with
Minimal Unsatisfiable Cores (MUCs) are investigated. Interestingly, a concept
of shared forbidden tuples is derived. Allowing any such tuple makes the cor-
responding MUC become satisfiable. From a practical point of view, a two-step
approach to the explanation and recovery of unsatisfiable CSPs is proposed. First,
arecent approach proposed by Hemery et al.’s is used to locate a MUC. Second, a
specific SAT encoding of a MUC allows MUSTS to be computed by taking advan-
tage of the best current technique to locate Minimally Unsatisfiable Sub-formulas
(MUSes) of Boolean formulas. Interestingly enough, shared tuples coincide with
protected clauses, which are one of the keys to the efficiency of this SAT-related
technique. Finally, the feasibility of the approach is illustrated through extensive
experimental results.
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1 Introduction

In this paper, we are concerned with unsatisfiable finite CSPs, namely finite Constraint
Satisfaction Problems for which no solution exists. Recent approaches to explain such a
form of unsatisfiability have been defined at the constraints level. For example, Hemery
et al. [1] have proposed an approach called DC (wcore) to detect Minimally Unsat-
isfiable Cores (MUCs) of CSPs, i.e. unsatisfiable subsets of constraints of the initial
CSP that are such that dropping any one the constraints allows the resulting subset to
become satisfiable. In this paper, a finer-grained alternative technique is introduced.
Indeed, dropping constraints can be too much destructive. Finer-grained information



could be provided to the user, allowing him (her) not only to pinpoint the causes of
unsatisfiability at the constraints level, but also detect the tuples of values that are for-
bidden by the constraints and that would lead to satisfiability if they were allowed by
those constraints.

In this respect, the contribution of this paper is twofold. On the one hand, a Mini-
mally Unsatisfiable Set of Tuples (MUST) concept is introduced: it is aimed at encom-
passing the aforementioned notion of tuples that can allow satisfiability to be regained.
The formal relationships between MUSTs and MUCs are investigated. Interestingly,
a concept of shared forbidden tuples is derived. Allowing any shared tuple makes the
corresponding MUC become satisfiable. On the other hand, a two-step approach to the
explanation and recovery of unsatisfiable CSPs is proposed. A specific SAT encoding
of a MUC allows MUSTS to be computed by taking advantage of the best current tech-
nique to locate Minimally Unsatisfiable Sub-formulas (MUSes) of Boolean formulas.
Interestingly enough, shared tuples coincide with protected clauses [2], which are one
of the keys to the efficiency of this SAT-related technique.

Accordingly, the paper is organized as follows. First, some basic definitions about
CSPs and MUC:s are provided. In section 3, MUSTs are introduced and linked to MUCs
in section 4. Next, an original two-step approach to explain and recover from unsatis-
fiable CSPs is described. In section 5, a SAT-related approach to compute MUSTSs and
shared forbidden tuples of a MUC is introduced. The feasibility of the approach is il-
lustrated through extensive experimental results in section 6. Section 7 compares the
contribution presented in this paper with the current existing works. In the conclusion,
some interesting paths for future research are described.

2 Background: CSPs and MUCs

In this section, the reader is provided with basic concepts about CSPs and MUC:s.

Definition 1. A finite Constraint Satisfaction Problem (in short, CSP) is a pair P =
(V,C) where

1. V is a finite set of n variables {v1,...,v,} s.t. each variable v; € V has an as-
sociated finite instantiation domain, denoted dom(v;), which contains the set of
possible values for v;,

2. C'is afinite set of m constraints {c1, ..., cp} s.t. each constraint c; € C involves a
subset of variables of 'V, called scope and denoted V ar(c;), and has an associated
relation R(c;), which contains the set of tuples allowed for the variables of its
scope.

Definition 2. Solving a CSP P = (V,C') consists in checking whether P admits at least
one solution, i.e. an assignment of values for all variables of V s.t. all constraints of
C are satisfied. If P admits at least one solution then P is called satisfiable else P is
called unsatisfiable.

In this paper, it will prove useful to adopt an alternative but equivalent definition for
CSPs, expressed in terms of forbidden tuples of values.
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Fig. 1: Graph-representations of Example 1

Definition 3. Let (V,C) be a CSP and let c € C s.t. Var(c) = {v},...,v.}. A forbid-
den tuple of values is a member of dom(v}) x --- x dom(vl) s.t. R(c) is not satisfied.
The set of forbidden tuples of values for a constraint c is denoted T'(c).

Accordingly, CSPs can be redefined as follows.
Definition 4. A finite CSP is a pair P = (V,C') where

1. V is a finite set of n variables {v1,...,v,} s.t. each variable v; € V has an as-
sociated finite instantiation domain, denoted dom(v;), which contains the set of
possible values for v;,

2. C'is afinite set of m constraints {c1, . .., cp} s.t. each constraint c; € C involves a
subset of variables of V, called scope and denoted V ar(c;), and is given a relation
T(c;), which contains the set of tuples forbidden for the variables of its scope.

Accordingly, P will also be denoted (V, {(Var(c1),T (1)), (Var(ce),T(c2)),...,
(Var(cn), T'(cn))})-

Definition 5. A constraint ¢ € C of the CSP P = ({vy,...,v,}, C) is falsified by an
assignment A € dom(vy) X - - - X dom(vy, ) iff the projection of A on Var(c) is included
inT(c).

In the following, (forbidden) tuple will be a shorthand for forbidden tuple of values,
and binary CSPs will be considered only, namely CSPs where constraints involve two
variables. Using binary CSPs do not restrict the impact of our works, since it is well-
known that every discrete CSP can be reduced into a binary one, in polynomial time.

Example 1. Let V be {i,5,k,l,m} where each variable has the same domain {1,2,3}.
Let C be a set of 7 constraints. In Figure 1a, the CSP P = (V, C) is represented by



a so-called constraint network, namely a non-oriented graph, where each variable is a
node and each constraint is an edge, labelled with its corresponding relation. It is also
useful to represent a CSP by its micro-structure, which is a graph where the values
of each variable are listed, and edges between values represent forbidden tuples. The
micro-structure of this example is depicted in Figure 1b.

When a CSP is infeasible, it exhibits at least one Minimally Unsatisfiable Core, or
MUC. A MUC is a subpart of a CSP that is unsatisfiable and that does not contain any
proper subpart that is also unsatisfiable.

Definition 6. Let P = (V,C) and P’ = (V',C") be two CSPs. P' is an unsatisfiable
core, in short a core, of P iff

1. P’ is unsatisfiable
2. VICVandC' CC

P’ is a Minimal Unsatisfiable Core (MUC) of P iff

1. P'isa core of P
2. there does not exist any proper core of P’

Example 2. In the previous example, P is unsatisfiable. Indeed, P contains the MUC
P = (V,{i < j,j < k,k < i}): no assignment of values for 4, j and k can be
found such that these three constraints are satisfied, and dropping any constraint leads
to satisfiability.

Computing one MUC for an unsatisfiable CSP is an NP-hard problem. More pre-
cisely, checking whether a constraint belongs to a MUC or not is in X% [3]. More-
over, the number of MUCs inside a CSP can be exponential in the worst-case; it is in
O(C’n"zl/ 2), where m is the number of constraints in the CSP. It should be noted that
MUC:s can share non-empty intersections. Several techniques have been proposed in
the literature to compute MUCs, the DC (wcore) approach introduced recently by
Hemery et al. [1] is claimed by its authors to be the most efficient one, most often.

3 MUSTs

Restoring the satisfiability of a CSP can be achieved through restoring the satisfiability
of each of its MUCs. A natural way to break the unsatisfiability of a MUC is to drop
any of its constraints. However, dropping some constraints as a whole can appear too
much destructive. On the contrary, we might prefer to weaken one or several constraints,
instead of removing them. One way to do that is to provide the user with some forbidden
tuples that should be allowed in order to recover satisfiability.

Let us introduce the following MUST concept and study to which extent it can be
a first good step in that direction. A MUST (Minimally Unsatisfiable Set of Tuples) of
an unsatisfiable CSP P is an unsatisfiable CSP P’ that is such that the sets of forbidden
tuples of its constraints are subsets of the corresponding sets w.r.t. P and such that
allowing any of the tuples of P’ will render P’ satisfiable.
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Fig. 2: Graphical representations of Example 3

Definition 7. Let P = (V,{(Var(c1),T(c1)),..., Var(cm), T(cm))}) be an unsat-
isfiable CSP. The CSP P’ = (V.{(Var(c1),T'(c1)),..., Var(cm),T'(cm))}}) is a
MUST (Minimally Unsatisfiable Set of Tuples) of P if and only if :

1. P’ is unsatisfiable

2. Vist.1<i<m,T'(¢)CT(c)

3 Vist.1<i<m,VT"(¢c;) CT'(cy),
Vi {(Var(e1), T'(e1))y ooy Var(c;), T"(¢;)), .., Var(em), T (em))}) is satisfi-
able

Hence, a MUST can be interpreted as a tentative way to explain infeasibility at a
lower level of abstraction than the constraints one does. At this point, it is important to
note that this definition for a MUST of a CSP P does not require that allowing one of
the forbidden tuples of the MUST will make P become satisfiable. Indeed, it is easy
to prove that an unsatisfiable CSP can exhibit an exponential number of MUSTSs in the
worst case and that their set-theoretic intersection can be empty. Thus, the removal of
one forbidden tuple might not be enough to regain satisfiability. Furthermore, as the
following example shows, tuples contained in a MUST might even not take part into
the actual cause of the infeasibility of the CSP.

Example 3.

Let P=(V,C) s.t. V = {vy, v, v3}, withdom(vy) = dom(vs) = {A}, dom(ve) =
{A,B},and C = {e1 = ({o1,02}, {(A, B)}),c2 = ({va, v} {(4, A), (B, A)})}. In
Figure 2, both the graph and the micro-structure of this CSP are given. Clearly, P is
unsatisfiable and exhibits only one MUC, made of the ¢ constraint, since this one pre-
vents any assignment from being valid between v, and vs. On the contrary, considering
a lower level of abstraction, we see that P exhibits two MUSTSs, namely:

= Py, = (V.{({v1,02},{(4, B)}), {({v2, vs}, {(4, A)})}})
= P, = (V. {({v2, 03}, {(A, 4), (B, A)1)})

Py, is a MUST that contains tuples from both constraints. It does not correspond to
any MUC of P. Py, is a MUST that is also a MUC of P. Moreover, Py, contains the



only forbidden tuple linking v; and v», which does not participate to the unsatisfiability
of P.

Although these results might sound negative, in the next section it is shown that
MUSTs form an adequate concept to explain unsatisfiability at the tuples level, provided
that MUSTS are considered within MUCs.

4 MUSTSs within MUCs

It is well-known that any unsatisfiable CSP exhibits at least one MUC (which can be
the CSP itself). Unsurprisingly, any unsatisfiable CSP also exhibits at least one MUST.
Indeed, MUCs are unsatisfiable CSPs, which ensures that at least one MUST can be
extracted from any MUC of a CSP.

Proposition 1. At least one MUST can be extracted from any unsatisfiable CSP.

Proof. Let P = (V,C) be an unsatisfiable CSP. Assume that P does not contain any
MUST. Thus, P itself is not a MUST: hence there exists a forbidden tuple of P s.t.
allowing it gives rise to another unsatisfiable CSP containing no MUST, namely Jc €
C,3t € T(c) such that P = (V,(C\c) U (Var(c), T(c)\t)) is also unsatistiable, and
does not exhibit any MUST. Iterating this reasoning, it is easily proved by induction
that this would lead to the existence of a CSP P’ = (V/,{)) that should be unsatisfiable,
whereas such a CSP is clearly satisfiable. (I

Moreover, stronger relations link MUCs and MUSTSs, as shown by the following
proposition.

Proposition 2. Let P be a MUC that contains m constraints. There exists at least m
tuples s.t. allowing any one of them makes P regain satisfiability. These tuples belong
to all MUSTs of P.

Proof. Since P = (V,C) is a MUC, whenever any of its m constraints c; is dropped,
the resulting CSP is satisfiable. Let A be an assignment that satisfies P’ = (V, C\¢;).
c; Is violated by A: indeed, in the opposite case, P would be satisfiable and would
not be a MUC. The projection of A on Var(c;) is included in T'(c;), according to
definition 5. Thus, removing this forbidden tuple is sufficient to make P feasible. The
same argument can be used for any of the m constraints of P. Thus, there exists at least
m tuples such that omitting one of them makes the MUC regain feasibility. Clearly,
these tuples necessarily belong to all the sources of unsatisfiability, and consequently
to every MUST of the MUC. Hence, the set-theoretic intersection of all MUSTs of P
contains at least m tuples. ([

In this respect, some tuples allow the unsatisfiability of the MUC to be “broken”,
simply by allowing any of them. These tuples necessarily belong to all sources of un-
satisfiability of the MUC, and consequently to every MUST of the MUC. Accordingly,
it is thus not possible to discover two MUSTs of a MUC with an empty set-theoretic
intersection. Tuples belonging to every MUST of a MUC P will be called shared tuples
of P.



Fig. 3: Micro-structure of Example 4

Definition 8. Let P be a MUC. The shared tuples of P are the forbidden tuples belong-
ing to all MUSTs of P.

Allowing any shared tuple allows the corresponding MUC to be broken. Moreover,
computing a MUST of a MUC P delivers a super-set of the set of shared tuples.

Example 4. Let a CSP P = ({v1,v9,v3}, {c1,c2,c3}) s.t.

1. Vi € {1,2,3},dom(v;) = {A, B}
2.0 = ({01702}3{(1473)7 (BvA)})
3. o= ({U27U3}7 {(AvB>v (BvA)7 (BvB)})
4. c3 = ({v1,v3},{(4,4),(B,B)})

The micro-structure of P is given in Figure 3. Let us note that P is a MUC since P is
unsatisfiable and dropping any of its constraints yields a satisfiable CSP. P exhibits two
MUSTs; their micro-structures are given in Figure 4. By considering the set-theoretic
intersection of those MUSTS, one can obtain the shared tuples of P. The shared tuples
are represented using boldface edges in Figure 5, while the other tuples are represented
using dotted lines. Clearly, allowing one shared tuple allows us to restore the satisfi-
ability of both MUSTs and their corresponding MUC. However, allowing any other
forbidden tuple of these MUSTSs does not guarantee the satisfiability of the initial MUC
to be restored. This example also shows us that the CSP formed with the shared tuples
of a MUC is not necessarily unsatisfiable.

These last results plead for a two-step policy for the explanation of unsatisfiability
in terms of MUCs, MUSTs and shared tuples. Indeed, looking for MUSTs in the general
case does not seem the most promising approach since MUSTSs can coincide with no
MUC at all. On the contrary, an interesting approach would require to search for MUCs
as a first step. MUCs provide explanations of unsatisfiability that are expressed in terms
of a minimal number of constraints. The user can drop one such constraint to break
the unsatisfiability of the MUC. Alternatively, he (she) could rather search for MUST's
corresponding to the discovered MUC. More precisely, if he (she) manages to discover
shared tuples, the user would be provided with a set of forbidden tuples that is such that
allowing just one such tuple is enough to break the unsatisfiability of the MUC. In such
a way, the user would be given the ability to weaken problematic constraints instead
of dropping one whole constraint. Such a policy is to be iterated until all (remaining)
MUC:s of the resulting CSP have been addressed.



Fig. 5: Shared tuples of Example 4

Several algorithms have been proposed to compute one MUC. Thus, the next issue
that is to be addressed is how both MUSTs and shared tuples could be computed within
a MUC. In the following, it is shown that, modulo a specific SAT encoding, shared
tuples exactly coincide with so-called protected clauses [2], which play a central role
in the efficiency of the currently most efficient technique to compute MUCs in the
Boolean case, namely MUSes (Minimally Unsatisfiable Sub-formulas). In this respect,
a Boolean translation of MUCs that allows us to benefit from the efficiency of this
powerful computational technique will be provided.

5 Using OMUS to compute MUSTSs and shared tuples

Computing a MUST could be performed through several traditional techniques from
the CSP and the operational research domains, such as the destructive, additive or
dichotomic minimization procedures [4]. However, those approaches would deliver
MUSTs, only. The computation of shared tuples would require either a linear num-
ber of additional step-by-step tests of satisfiability, or to consider all solutions of each
relaxation obtained by removing one constraint from the computed MUC. On the con-
trary, an approach allowing both a MUST and shared tuples to be computed at the same
time is introduced in this section.



When one MUC has been obtained trough e.g. Hemery et al.’s DC (wcore) tech-
nique [1], it is translated inside the Boolean framework in such a way that the compu-
tation of MUSTs and shared tuples of the MUC is achieved through the computation
of MUSes, namely minimally unsatisfiable sets of clauses of a CNF formula. The se-
lected translation schema is a form of direct encoding [5] that consists in encoding each
domain value of each variable by a different Boolean variable C,,. Accordingly, the
number of variables in the Boolean framework is given by the sum of the sizes of the
domains of the variables of the MUC. Let P = (V, C') be a MUC, the following clauses
are then created.

1. at-Least-one clauses ensure that at least one possible value for each variable v; is
selected in a solution
Cyp, VCyy V..V C,, Yo €V with dom(v) = {v1,v2, ..., Um }

2. at-Most-one clauses ensure that at most one value is selected for each variable
=Cy, V =Cy, Yv € V V(vq,vp) € dom(v) X dom(v)

3. Conflict clauses encode forbidden tuples
—Cy, V —Cy, Ve € CVY(v;,v5) € T(c)

This form of encoding has been adopted because it allows a forbidden tuple to
be translated into a unique clause. Moreover, the “at-Most-one clauses” are actually
not added to the generated formula. Indeed, those clauses have been proved optional
[6]; moreover, omitting them enables us to ensure that minimality is preserved in both
frameworks. Thus, each MUS of the generated Boolean formula corresponds to a MUST
of the infeasible CSP. Computing one MUST amounts to computing one MUS in this
Boolean framework, provided that every at-Least-one clauses belong to the MUS.

More precisely, we make use of the OMUS technique by Grégoire et al. [2], which
is currently one of the most efficient complete techniques to discover one MUS inside
an unsatisfiable SAT instance. One key to the efficiency of this approach is the concept
of protected clauses. Interestingly enough, protected clauses appear to encode shared
tuples.

The OMUS technique is based on the so-called critical clause concept, which is a
clause that is falsified under a given assignment of values and that is such that satisfying
it by a minimal change of the assignment will always conduct at least another clause
to be falsified in its turn. Roughly, the OMUS technique is a two-step approach. First, a
superset of a MUS is computed by iterating the computation of the number of times each
clause is critical during local search runs and by dropping clauses with the lowest scores.
Second, a fine-tune process allows an exact MUS to be delivered. Interestingly, each
time there is just one clause that is not satisfied w.r.t. some variables assignment during
the local search run, it is marked and never be dropped from the formula. These clauses
are called protected, and belong to all MUSes of the Boolean formula. According to this
encoding, protected clauses coincide with shared tuples of the translated MUC. These
tuples are thus delivered together with the MUST, without any computing overhead.
Furthermore, the first step of this local-search-based algorithm sometimes delivers an
unsatisfiable set of protected clauses, which forms a MUS, and the second step of the
algorithm is avoided.



Algorithm 1: direct_encode
Input: a CSP: (V, C)
Output: a set of clauses X viewed as a C N F' formula
1 begin
2 X —10;
3 foreach v; € V do

Y—XY U { V wy}; /* “At-least-one” clauses */
4 Vj€dom(v;)

5 foreach c € C do

6 foreach ¢ € T'(c) do
=2 U { V —wij};
V(v;€Var(c)and jedom(v;))
7 s.t. 7 is the forbidden value of v; in ¢
8 return Y ;
9 end

Algorithm 2: mus2must

Input: a MUS: X and a MUC: (V, {(Var(c1),T(c1)), ..., (Var(em), T(cm))})
Output: a MUST: (V,{(Var(c1),T (c1)), ..., (Var(cm), T (cm)) })

1 begin
2 foreach c € C's.t. C = {(Var(c1),T(c1)), ..., Var(em), T(cm))} do
3 T'(c) «—0;
4 foreach ¢ € T'(c) do
if (( V —x55) € X) then

5 V.(v?.EVar(c) and jledom(v?))

s.t. 7 is the forbidden value of v; in ¢
6 L T'(c) «— T'(c) U{t};
7 return (V, {(Var(c1),T'(c1)), ..., (Var(cm), T (cm))}) ;
8 end

6 Experimental studies

In order to assess the practical value of these techniques, an algorithm called MUSTER
(MUST-ExtRaction) has been implemented and run on various benchmarks from the
last CSP competition [7]. This software makes thus use of (a C variant of) Hemery
et al.’s DC (wcore) technique to extract a MUC from the considered CSP. Then, the
MUC is converted into a Boolean clausal formula according to the aforementioned
direct-encoding described in Algorithm 1. A MUS is then computed thanks to Grégoire
et al.’s OMUS procedure [2]. As described above, there is a one-to-one correspondence
between this MUS and a MUST from the CSP; this latter one is delivered, together with
detected shared tuples, using a simple translation procedure described in Algorithm 2.
The MUSTER method is summarized in Algorithm 3.

All experiments have been conducted on a Pentium IV, 3Ghz under Linux Fedora
Core 5. A significant sample of results are given on Table 1, which contains 3 main
columns, namely Instance, Extracted MUC and Extracted MUST. The first column
provides information about the considered unsatisfiable CSP: namely, the benchmark



Algorithm 3: MUSTER

Input: a CSP: (V, C)

Output: a MUST: (V,{(Var(c}),T"(c})), ..., (Var(cm), T" (cm))})
1 begin

2 (V,C") «— DC (wcore) ((V,C)) ; /* (V,C") is a MUC s.t. ' CC «/
/ % and C" ={(Var(cy),T(c1)), .., Var(cn),T(cm))}*/
3 Yenr «— direct_encode((V, C")) ;
Ymus «— OMUS (XonNF) ; /% Yyus C© Xonrk +/
5 (V,{(Var(c), T"(c1)), ..., Var(cp), T" (cm))}) «— mus2must(Xarvs , (V,C"));
/ * V 1<i<m T"(¢) CT(c) */
6 return (V. {(Var(cy),T"(c})), ..., Var(cy), T"(c.))}) ;
7 end

name, the number of involved constraints and the number of forbidden tuples that the
constraints represent. In the second one, the main information about the MUC computed
by DC (wcore) is given: namely, the number of constraints of the MUC, the number of
tuples that they represent, and the computing time in seconds that was spent. Finally, the
third main column provides the main information about the computed MUST: namely,
its number of tuples, the number of discovered shared tuples, and the computing time
in seconds that was spent. A time-out was set to 3 hours of CPU time.

First, let us note that a MUST was extracted within a reasonable amount of time for
most benchmarks, which represent hard to solve problems. For instance, a MUC made
of 13 constraints is discovered for the composed-75-1-2-1 CSP, which contains
624 contraints. This MUC forbids 845 tuples. Actually, this set can be reduced to just
344 tuples, which form one MUST of the benchmark. Moreover, the user is provided
with a set of 104 tuples such that if one of these latter tuples is allowed, then the unsat-
isfiable part of the CSP represented by the MUC is fixed. Similar results were obtained
fore.g. scenll_£10, which is an instance of the famous Radio Link Frequency As-
signment Problem (RLFAP). This latter benchmark involves almost 800,000 forbidden
tuples. However, only some of these them really participate to the unsatisfiability of
the CSP. Indeed, a MUC that contains less than 5,000 tuples is exhibited, and this one
has been reduced into a MUST made of 3,077 tuples. In this MUST, allowing one tu-
ple among the 2,728 discovered shared ones is enough to allow the MUC to regain
feasibility.

Obviously enough, due to the high-level computational complexity of the addressed
problem, we cannot expect our approach to solve all problems within a reasonable
amount of time. For example, although a MUST was extracted for the Queen-Knight
problem gk_8_8_5_add, MUSTER was not able to deliver any of its shared tuples,
although we know that these latter tuples are contained in the 10149 tuples that form the
computed MUST. Let us also note that the same MUC and MUST have been discovered
for both gk_8_8_5_add and gk_8_8_5_mul problems. This is easily explained:
those problems result from various combinations between the 8 queens problem and 5
knights one. Since the 5 knights problem is not feasible, a same explanation of unsatis-
fiability can be delivered for all combinations of this problem with other CSPs.



Instance Extracted MUC Extracted MUST

name « #con #tuples | #con | #tuples " time (s) #tuples o #ist' 1 time (s)
composed-25-1-2-0 | 224 | 4440 | 14 : 910 | 1072 | 354 | 119 '@ 13.08
composed-25-1-2-1 | 224 1 4440 | 15 @ 975 1 9.09 339 159 1 17.47
composed-25-1-25-8 1 247 . 4,555 9 + 585 . 8.85 259 ¢ 116 1 625
composed-75-1-2-1 | 624 ! 10,440 | 13 ! 845 | 6642 | 344 ! 104 ! 10.85
composed-75-1-2-2 1 624 1 10,440 | 14 @ 910 6674 | 376 1 48  14.44
composed-75-1-25-8 1 647 1 10,555 | 16 | 1,040 i 59.09 | 461 51 i 23.69
composed-75-1-80-6 1 702 ! 10,830 | 11 | 715 | 6148 | 278 : 55 ! 8.17
composed-75-1-80-7 | 702 | 10,830 | 16 | 1,040 ! 379.85 | 420 @ 75 ! 17.23
composed-75-1-80-9 + 702 : 10,830 | 12 : 780 : 86.16 | 306 : 89 : 9.0l

qk_10_10_5_add | 55 | 48,640 | 5 47,120 ! 19.68 | 24855 0 : 308l.1
gk_10_105_mul | 105 ! 49,140 | 5 47,120 129 24855 0 281299
gk_8_8_5_add P38 119624 | 5 118,800 3.33 |10,149: 0 ! 5447
qk_8_8_5_mul P78 119,944 | 5 118,800 1 0.66 | 10,149 0  531.24
graph2_f25 12,2451 145205 | 43 | 4,498 | 42736 | 2470 ! 1,516 426.05
qa_3 L4010 800 15 1 583 @ 032 203 ! 152 @ 8.32
dual_ehi-85-297-14 4,111 1 102,234 | 40 @ 1,145 : 3.35 311 ¢ 142 1 4026
dual_ehi-85-297-15 4,133 1 102,433 | 35 | 1,083 | 4.03 310 1 172 1 2585
dual_chi-85-297-16 ! 4,105 ! 102,156 | 36 ' 1,032 | 4.68 301 ! 159 1 29.05
dual_chi-85-297-17 14,102 1 102,112 | 43 ' 1239 | 483 348 1 172 1 4221
dual_ehi-85-297-18 14,1201 102,324 | 33 | 972 | 3.48 271 1 141 1 304
dual_ehi-90-315-21 14,388 : 108,890 | 37 | 1,120 | 3.16 354 1 129 1 35

dual_ehi-90-315-22 ' 4,368 ' 108,633 | 41 ' 1218 | 4.57 410 @ 187 | 43.69
dual_ehi-90-315-23 1 4,375 1 108,766 | 29 : 835 | 286 251 1 131 1 1223
dual_ehi-90-315-24 | 4,378 1 108,793 | 31 | 974 | 4.57 315 1 167 | 2542
dual_ehi-90-315-25 ! 4,398 ! 108,974 | 38 ! 1,106 ! 3.89 375 1179 1 3041
scen6_w2 1648 1513,100 | 7 ! 8,020 ! 5378 | 4,872 12953 ! 1107.39
scen6_w1_f2 ©319 1274860 | 21 21,146 1 488.64 - - itimeout
scenl1_f10 14,103 1738719 | 16 | 4,588 | 16427 | 3,077 12728 | 438.26
scenl1_f12 14,103 1 707,375 | 16 | 4,588 | 122.12 | 3,053 !2,728 } 419.83

Table 1: Extracting a MUST

Finally, let us comment on the number of shared tuples. Proposition 2 ensures that a
MUC made of m constraints contains at least m shared tuples. However, the number of
shared tuples is often larger in practice. For example, a MUC made of 43 constraints is
extracted from graph2_£25: so, at least 43 shared tuples could have been expected.
Actually, 1,516 such tuples were delivered, enabling the user to just select one con-
straint among 43 ones, and then just select and allow one tuple among an average of 35
candidate ones, to regain feasibility.

7 Related works

The approach introduced in this paper can be interpreted as a refinement of explanation
techniques that provide users with MUCs in case of unsatisfiability. There have been

! #st: #shared tuples




only a few research results about extracting MUCs from CSPs, or MUSes in the Boolean
case. In this respect, the approach in this paper takes advantage of one of the most often
efficient technique to compute MUCs [1] and of the currently most efficient technique
compute MUSes [2], in order to deliver MUSTSs and shared tuples.

In the CSP framework, there have been several other works about the identification
of (minimal) conflict sets of constraints (e.g. [8]) that are recorded during the search
in order to perform various forms of intelligent backtracking, like dynamic backtrack-
ing [9] [10] or conflict-based backjumping [11]. In [12] a non-intrusive method was
proposed to detect them. However, there have been few research works about the prob-
lem of extracting MUCs themselves. A method to find all MUCs from a given set of
constraints has been presented in [13] and in [14], which corresponds to an exhaus-
tive exploration of a so-called CS-tree but is limited by the combinatorial blow-up in
the number of subsets of constraints. Other approaches are given in [15] and in [16],
where an explanation that is based on the user’s preferences is extracted. Also, the PaLM
framework [17], implemented in the constraint programming system Choco [18], is an
explanation tool that can answer for instance the question: why is there no solution that
contains the value v; for some variable A? Moreover, in case of unsatisfiability, PaLM
is able to provide a core, but this one is not guaranteed to be minimal. The DC (wcore)
approach that is used in this paper appears to improve a previous method introduced in
[19] to extract a MUC, that was proposed in the specific context of model-based diag-
nosis. It also proves more competitive than the use of the QuickXPlain [12] method
to compute MUCs.

In the Boolean framework, the problem of extracting a MUS from an unsatisfiable
CNF formula has also received much attention. In [20], Bruni has proposed an ap-
proach that approximates MUSes by means of an adaptative search guided by clauses
hardness. Zhang and Malik have described in [21] a way to extract MUSes by learning
nogoods involved in the derivation of the empty clause by resolution. In [22], Lynce
and Marques-Silva have proposed a complete and exhaustive technique to extract one
smallest MUS of a SAT instance. Together with Mneimneh, Andraus and Sakallah [23],
the same authors have also proposed an algorithm that makes use of iterative max-
SAT solutions to compute such smallest unsatisfiable subsets of clauses. Oh and her
co-authors have presented in [24] a Davis, Putnam, Logemann and Loveland DPLL-
oriented approach that is based on a marked clause concept to allow one to approximate
MUSes. Let us also mention a complete approach by Liffiton and Sakallah [25], re-
cently improved by a non-standard use of local search [26], that attempts to compute
the exhaustive set of MUSes of a propositional formula.

Finally, let us note that the problem of finding an Irreductible Infeasible Subsys-
tem has also been the subject of specific research efforts in mathematical programming
[411271.

8 Conclusions and perspectives

These results open many interesting research perspectives.
An unsatisfiable CSP can exhibit several MUCs that can share non-empty set-
theoretic intersections. Regaining feasibility through permitting shared tuples thus re-



quires the MUSTER process to be iterated until all remaining MUCs in the resulting
CSP have been addressed. Clearly, the order according to which MUCs are addressed
influences the tuples that are delivered to the users. In this respect, it could be fruitful
to develop order-independent techniques that directly deliver sets of tuples that would
make the CSP feasible if these latter tuples were allowed. In this respect, recent results
by Grégoire et al. [28] that allows covers of MUSes to be computed, i.e. sets of MUSes
that cover all basic infeasibility causes, could be exploited in that direction. The con-
cept of shared tuples would have to be revised accordingly, and specific computational
techniques would have to be devised in order to compute that.

Although it appears to be highly competitive in practice, our technique to compute
shared tuples remains uncomplete since it does not guarantee that all shared tuples will
be delivered. Another interesting path for future research would consist in developping
complete techniques that guarantee, modulo a possible exponential blow-up, the com-
putation of all shared tuples.

In this paper, basic formal results about MUSTSs have been provided. Clearly, much
more can be done in this respect. Variant definitions coud be provided, in particular
variants that would not rely on the MUC concept to address infeasibility.

Also, several MUSTs can be inter-dependent within a CSP: studying the formal
properties of their relationships is also a promising path for future research.
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