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Abstract

In this paper, a new complete technique to com-
pute Maximal Satisfiable Subsets (MSS) and Min-
imally Unsatisfiable Subformulas (MUS) of sets of
Boolean clauses is introduced. The approach im-
proves the currently most efficient complete tech-
nigue in several ways. It makes use of the pow-
erful concept of critical clause and of a compu-
tationally inexpensive local search oracle to boost
an exhaustive algorithm proposed by Liffiton and
Sakallah. These features can allow exponential ef-
ficiency gains to be obtained. Accordingly, experi-
mental studies show that this new approach outper-
forms the best current existing exhaustive ones.

Introduction

[Eiter and Gottlob, 1992 Fortunately, the number of MUS
remains often tractable in real-life applications. Forrapée,

in model-based diagnodiBlamscheet al,, 1993, it is often
assumed that single faults occur most often, which canlentai
small numbers of MUS.

A dual concept is the notion dflaximal Satisfiable Sub-
set(MSS) of a SAT instance, and the complement of a MSS
in a SAT instance is called a CoMSS. The complete sets of
MUS and MSS are an implicit encoding of the otlikiffi-
ton and Sakallah, 2005 Specifically, a CoMSS is a hitting
set of the set of MUS and represent minimal sets of clauses
that should be dropped in order to restore consistencyisn th
paper, we are interested in exhaustive approaches to cemput
these correlated concepts in the Boolean clausal framework

Recently, several approaches have been proposed to ap-
proximate or compute MUS and MSS, both in the Boolean
framework and for other types of constraints. Some of them
concern specific classes of clauses or remain tractable for

This last decade, the SAT problem, namely the issue of checkmall instances, only. Among them, let us mention the ap-
ing whether a set of Boolean clauses is satisfiable or not, hasroach in[Bruni, 2005, where it is shown how a MUS can
received much attention from the Al research community. Ine extracted in polynomial time through linear programming
deed, SAT appears to be a cornerstone in many domains, likechniques for clauses exhibiting a so-called integrappro
e.g. nonmonotonic reasoning, automated reasoning, modedrty. However, only restrictive classes of clauses obel suc

based diagnosis, planning and knowledge bases verificati

Qbroperty (mainly Horn, renamable Horn, extended Horn, bal-

and validation. However, only knowing that a SAT instanceanced and matched ones). Let us also merfidming, 2000;
is unsatisfiable is often not satisfactory since we mightgsre Davydovet al, 1998; Fleischneet al, 2004, which are other

knowing what goesvrong with the instance when this latter important studies in the complexity and the algorithmic as-
one is expected to be satisfiable.

In this respect, the MUSinimally Unsatisfiable Subfor-

pects of extracting MUS for specific classes of clauses. In
[Bruni, 2003, an approach is proposed that approximates

mula) concept can be crucial since a MUS can be seen as anUS by means of an adaptative search guided by clauses
irreducible cause for infeasibility. Indeed, a MUS is an un-hardness. IrfZhang and Malik, 200Ba technique is de-
satisfiable set of clauses that is such that any of its subsetgribed, that extracts MUS by learning nogoods involved in

is satisfiable. It thus provides one explanation for ungatis

the derivation of the empty clause by resolution.[llgnce

bility that cannot be made shorter in terms of the number otnd Marques-Silva, 2004a complete and exhaustive tech-

involved clauses. Restoring the satisfiability of an instan nique to extract smallest MUS is introduced. [Bh et al,,
cannot be done without fixing all its MUS.

2004, a DPLL-oriented approach has been presented that is

Unfortunately, a same instance can exhibit several MUSbased on a marked clauses concept to allow one to approxi-

Actually, the number of these MUS can be exponential sincenate MUS. In[Grégoireet al., 20064, a heuristic-based in-

an-clauses SAT instance can exhiﬁif/2 MUS in the worst

complete approach to compute MUS has been introduced,

case. Moreover, computing MUS is intractable in the genWhich outperforms competing ones from a computational
eral case. Indeed, checking whether a set of clauses is Rpint of view.

MUS or not is DP-completePapadimitriou and Wolfe, 1988

Interestingly, in[Grégoireet al., 20061 the same authors

and checking whether a formula belongs to the set (clutterhave introduced a concept of inconsistent cover to circum-
of MUS of an unsatisfiable SAT instance or not, is3j

vent the possible intractable number of MUS, and presented



a technique to compute such covers. Roughly, an inconsif Boolean variables, noted, b, ¢, etc. Thea, Vv, - and
tent cover of an unsatisfiable SAT instance represents a set symbols represent the standard conjunctive, disjunctive,
of MUS that covers enough independent causes of inconsistegation and material implication connectives, respebtiv
tency that would allow the instance to regain consistency if Formulas and clauses will be noted using upper-case let-
they were repaired. Although an inconsistent cover does ndkrs such ag’. Sets of formulas will be represented using
provide us with the set of all MUS that may be present in aGreek letters likd" or 3. An interpretation is a truth assign-
formula, it does however provide us with a series of minimalment function that assigns values froftrue, false} to ev-
explanations of inconsistency that are sufficientto exydaid  ery Boolean variable. A formula is satisfiable when there is
potentially “fix” enough causes of inconsistency in ordar fo at least one interpretation (called model) that satisfieiseit
the whole instance to regain consistency. that makes it becom&ue. An interpretation will be noted

These latter techniques are incomplete ones in the sendy upper-case letters likkand will be represented by the set
that they do not necessarily deliver all MUS. However, inof literals that it satisfies. Actually, any formula fhcan be
some application domains, it can be necessary to find theepresented (while preserving satisfiability) using aisee(-
set ofall MUS, because diagnosing infeasibility is hard, if preted as a conjunction) of clauses, where a clause is a finite
not impossible, without a complete view of its caufeifi- disjunction of literals, where a literal is a Boolean valéab
ton and Sakallah, 20050bviously enough, such techniques that is possibly negated. SAT is the NP-complete problem
can only remain tractable provided that the number of MUShat consists in checking whether a set of Boolean clauses is
remains itself tractable. Likewise, the number of MSS andsatisfiable or not, i.e. whether there exists an interpoetat
CoMSS can be exponential in the worst case. It should b¢hat satisfies all clauses in the set or not.
noted that many domains in Artificial Intelligence like leli When a SAT instance is unsatisfiable, it exhibits at least
revision (e.g.[Bessantt al., 2001) involve conceptual ap- oneMinimally Unsatisfiable Subformulén short oneMUS,
proaches to handle unsatisfiability that can require the-CoMpefinition 1. AMUS T of a SAT instancg is a set of clauses
plete sets of MUS, MSS, and CoMSS to be computed in thg ¢ 1 53 T js unsatisfiable anA c T, A is satisfiable.
worst case, even when additional epistemological ingredie o
like stratification are introduced in the logical framework ~ Example 1. LetY = {a, —¢, bV =a, b, =b V c}. ¥ exhibits

In this paper, the focus is on complete techniques. We infwo MUS, namelya, b, =b vV —a} and{-c, b, =b V c}.
troduce a new complete technique to compute all MUS, MSS A dual concept is the notion dflaximal Satisfiable Subset
and CoMSS of a SAT instance, provided obvious tractabil{MSS) of a SAT instance.

ity limitations. It improves the currently most efficientroe _— . .
; e gy, Definition 2. AMSST of a SAT instancg is a set of clauses
plete technique, namely Liffiton and Sakallah’djéffiton stT C ¥, T is satisfiable ant/A C (3 \ T) s.t. A £, T U

and Sakallah, 2045in short L&S), which in turn was shown : S

more competitive than previous approaches by Bailey an@ is unsatisfiable.

Stuckey[Bailey and Stuckey, 2005and by de la Banda, The set-theoretical complement of a MSS w.r.t. a SAT in-

Stuckey and Waznjde la Bandeet al,, 2003, which were  stance is called 8oMSS

introduced in somewhat different contexts. Definition 3. The CoMSS of a MSSof a SAT instanc® is
Our approach exhibits two main features. First, it is a hy-giyen py» \T.

bridization of the L&S complete approach with a local search ) )

pretreatment. A local search technique is indeed used as &@mple 2. Let us consider the formuld from the previous

oracle to find potential COMSS of the SAT instance, which€xampleX exhibits five CoMSb}, { ¢, a}, {~c, ~bV-a},

are themselves hitting sets of MUS. We show that such a hyl ™0V ¢, bV —a} and{=b V ¢, a}.

bridization can yield exponential efficiency gains. Second As shown by several authditsiffiton and Sakallah, 2005

the efficiency of the approach relies on the crucial concépt othese concepts are correlated. Mainly, a CoOMSS contains at

critical clause, which appears to be a powerful ingrediént oleast one clause from each MUS. Actually, a CoMSS is an

our technique to locate MUS. irreducible hitting set of the set of MUS. In a dual way, ev-
The rest of the paper is organized as follows. First, theery MUS of a SAT instance is an irreducible hitting set of

reader is provided with the necessary background about SAThe CoMSS. Accordingly, as emphasized lyffiton and

MUS and the dual concepts of MSS and CoMSS. Then, Lif-Sakallah, 200b althoughM NI MAL- HI TTI NG- SET is a

fiton and Sakallah’s exhaustive approach is briefly presente NP-hard problem, irreducibility is a less strict requirethe

In Section 4, we show how this technique can be valuably hythan minimal cardinality. Actually, a MUS can be generated

bridized with a local search pretreatment, making use of thén polynomial time from the set of CoMSS.

critical clause concept. It is shown how this pretreatment c

be theoretically valuable from a computational point ofvie 3 [ iffiton and Sakallah’s Exhaustive
In Section 5, we compare this new approach with L&S. Approach

Liffiton and Sakallah’s approacfLiffiton and Sakallah,
2 Background 2009 to compute all MUS (in short L&S) is based on the
In this section, we provide the reader with the basic backstrong duality between MUS and MSS. To the best of our
ground about SAT, MUS, MSS and CoMSS. knowledge, it is currently the most efficient one. First it
Let £ be the Boolean logical language built on a finite setcomputes all MSS before it extracts the corresponding set of



MUS. Here, the focus is on L&S first step since we shall im-"Algorithm 1: Local Search approximation

prove it and adopt the second step as such.
L&S is integrated with a modern SAT solver and takes ad-,
vantage of it. Roughly, everith clauseC; =z, V ... V z,, 2
of the SAT instance is augmented with a negated clause ser
lector variabley; to yield C’Zf =21 V...Vx, V-oy. Whie 4
solving these new clauses, assigningo falsehas the effect 5
of disabling or removing’; from the instance. Accordingly,
a MSS can be obtained by finding a satisfying assignment
with a minimal number ofy; variables assignefdlse The
algorithm makes use of a sliding objective approach allow;
ing for an incremental search. A bound on the number o}l
y; that may be assigned falseis set. For each value of i,
the bound, starting at 0 and incrementing by 1, an exhaustivlg
search is performed for all satisfiable assignments to the au
mented formulaC;, which will find all COMSS having their
size equal to the bound. Whenever one solution is found, it i&
recorded, and a corresponding clause forcing out thatisalut 16

14

Input: a CNF formula>
begin
candidates «—— (0 ; #fail —0;
I «— generate_random_interpretation() ;
while (# fail < PRESERFAILURESAUTHORIZED do
newcandidates «<—— FALSE ;
for j = 1 to #FLIPSdo
Let A be the set of falsified clauses by,
if VC € A, C'is critical
and A is not implied incandidates then
removeAllSetimplied\,candidates) ;
\; candidates «—— A U candidates
flip(1) ;

newcandidates «—— TRUE;
| if not(newcandidates) then # fail «— # fail +1;

return candidates

Output: Set of candidate CoMSS

end

(and any supersets of it) is inserted. This blocking classe i

Algorithm 2: The HYCAM algorithm

disjunction of they; variables for the clauses in that CoMSS.

Before beginning the search with the next bound, the al-
gorithm checks that the new instance augmented with all the
blocking clauses is still satisfiable without any bound oa th 3
y; variables. If this formula is unsatisfiable, the entire det o 4
CoMSS has been found and the algorithm terminates. 5

The second part of the algorithm computes the complete st
of MUS from the set of COMSS in a direct way. The approach’
that we shall introduce will include this second step as such 2

10

4 Local Search and Critical Clauses "

Input: a CNF formula>
begin
cand «— LS_approximationg) ;
3, «— addSelectorClausesy ;
while SATE,) do
removeAllSetimplied{>\C|C € M SS},cand) ;
3, «— addBlockingClausesOfSizegand) ;
MSS «— MSS U{X\C|C € cand and|C| = k} ;
MSS «—— MSS U SAT_with_bound¢,%,) ;
k—Fk+1;

return MSS';

Output: All MSS of &

k+«——0;
MSS — 0;

end

In this section, itis shown how the aforementioned exhaesti

search algorithm can be improved in a dramatic manner bygssiple, based on the intuitive heuristics that localcteaf-

hybridizing it with an initial local search step, which pides

ten converges towards local minima, which could translate

valuable oracles for the subsequent exhaustive searce§8:0c ossibly good approximations of MSS. A straightforward ap-
We shall call the new approach HYCAM (HYbridization for proach would consist in recording for each visited interpre

Computing All Mus). . o tation the set of unsatisfied clauses. Obviously enough, we
First, let us motivate our approach in an intuitive mannerqo not need to record supersets of already recorded caadidat
Clearly, a (fast) initial local search run for satisfialyiliin the  coMSS since they cannot be actual CoMSS as they are not
initial instance might encounter some actual MSS. Wheneveginimal with respect to set-theoretic inclusion. More gen-
this phenomenon happens, it can prove valuable to recorgra|ly, we have adapted the technique proposed by Zhang in
the corresponding CoMSS in order to avoid computing thenjzhang, 2005 to sets of clauses in order to record the cur-
during the subsequent exhaustive search. Moreover, rathegntly smaller candidate CoOMSS among the already encoun-
than checking whether we are faced with an actual MSS ofered series of sets of unsatisfied clauses. Now, crucial in-
not, it can prove useful to record the corresponding candiyredients in our approach are the concepts of once-satisfied
date CoMSS that will be checked later during the exhaustiveng critical clauses. The latter concept has already proved
search. Obviously enough, we must study which interpretagajyable for locating MUS and inconsistent covers using an

tions encountered during the local search process yield cafycomplete technique based on local sed@regoireet al.,
didate MSS and criteria must be defined in order to recor@ooga: 2006h

a limited number of potentially candidate CoMSS only. In

this respect, a concept of critical clause will prove ex X . . . i

valuablep in the senseghat it allows us to statepnecess:d?-rgon tion I iff exactly one literal ofC is satisfied byl. A clause

tions for being a CoMSS that can be checked quickly. Wherp that is fals_|f|ed by the interpretatioh is critical w.r.t. 1

all the remaining candidate CoMSS are recorded, the increlff the opposite of each literal af” belongs to at least one

mental approach by Liffiton and Sakallah allows us to exploitoNce-satisfied clause Hy

this information in a very valuable and efficient way. Let us Intuitively, a critical clause is thus a falsified clausettiea

describe this in a more detailed manner. quires at least another one to be falsified in order to become
A local search algorithm is thus run on the initial SAT in- satisfied, performing a flip. Property 1 shows how this con-

stance. The goal is to record as many candidate CoMSS a&ept allows us to eliminate wrong candidate CoMSS.

Definition 4. A clauseC is once-satisfied by an interpreta-



augmented by they; negated clause selector variables. As-
sume also that the local search performed by HYCAM pro-
vides 4 candidate CoMSSCs}, {Cs,Cs2}, {Co, C1,Ca}
Cro:(—a VbV =d) and{Cs, Cg,C1o}.

) If the branching variables are chosen based on the lexical
Ciz:(aV —bV ~d) order, thera andb are assigned torue and Cs is falsified.
Co:(d) Thus, L&S tries to prove that this clause forms a CoMSS,

which requires a NP-complete test (because it has to find a
Cui(=b V —e) model of X\ {—a Vv —b} U {a, b}). On the contrary, when HY-
CAM is run, the blocking clausgs is added before the first

Cs:(aV —c)
Cli(b\/c)
011:(a VvV =b vV C)
Co:(—a VbV —c)

Coi(aVe) iteration of the complete algorithm is performed, sincelthe
Cri(—a V —e) cal search has already delivered this CoMSS. In consequence
\ Cs:(bVe) J whena andb are assignedrue, the DPLL-algorithm back-

tracks immediately as thigjs, —y5 } unsatisfiable set has been
obtained, without requiring any further NP-complete test.
Figure 1: MUS of Example 3 Similarly, the introduction of additional clause selector
. ) variables by HYCAM can reduce the number of CoNP-
Property 1. Let. be a SAT instance and Ig¢tbe an inter-  complete tests. For example, let us assumedtigthe first
pretation. Letl" be a non-empty subset¥fs.t. all clauses of  pranching variable, thatis assignedfalse and that the next
I are all falsified byl. When at least one clause Bfis not  yariaples are selected according to the lexical order. When
critical w.r.t. 7, thenl is not a CoMSS of.. a andb are assignedrue, L&S tries to prove tha{Cs} is a
Proof. By definition, when a claus€’y of T' is not critical ~ CoMSS. Since-e is tautological consequence Bf\ {—a V
w.r.t. I, there exists at least one literake C'y whose truth-  —b} U {a, b}, no model exists foE\{—a vV —b} U {a, b, =e}.
value can be inversed (i.e. flipped) without falsifying any Clearly, such a test is in CoNP. Thanks to the previously de-
other clause o®. Accordingly,I" is not minimal and can- livered candidate CoMSS, HYCAM avoids this part of the
not be a CoMSS of. O search space to be explored. Indeed, since we knov gt
In practice, testing whether all falsified clauses areaaiti  isa CoMSS, when andb are assignettue, no further CoNP

or not can be performed quickly and prevents many sets dfsts are performed with respect to this partial assignment
clauses to be recorded as candidate CoMSS. Using these feadn fact, from a computational point of vue, the preliminary
tures, the local search run on the initial SAT instance weld non-expensive local search eliminates nodes in the search
series of candidate CoMSS. This information proves vakiabl tree, avoiding both NP and CoNP tests.

and allows us to boost L&S complete search.

. L&S i_sincremental inthe.sense tha; it computes CoMSS of Experimental Evaluation

increasing sizes, progressively. Afteliterations have been

performed, all COMSS of cardinality lower or equal than HYCAM has been implemented and compared to L&S from
have been obtained. Accordingly, if we have recorded candia practical point of view. For both algorithms, the com-
date CoMSS containing + 1 clauses, and if they are not su- plete search step is based on the use of Min[&&n and
persets of already obtained CoMSS, we are sure that they afgrensson, 20Q4which is currently one of the best modern
actual CoMSS. In this respect, we do not need to search ther®AT solvers. As a case study, we used WalKgatutz and
and their corresponding blocking clauses can be inserted dSelman, 2000for the local search pretreatment. The number
rectly. Moreover, we do not need to perform the SAT test a®of flips and tries of Walksat is related to the number of candi-

the end of then-th iteration, since we are then aware of the date CoMSS already found. For each try, a small number of
existence of larger CoMSS. flips is performed. If no new candidate is found during a try

It is also easy to show that the insertion of these blockihen a counter is incremented. When this counter exceeds a
ing clauses can allow both NP-complete and CoNP-completthreshold (experimentally set 89), we consider that no new
tests to be avoided. Let us illustrate this on an example. ~ candidate could be found by the local search. This way to end
the local search pretreatment offers a good trade-off batwe
the number of candidates found and the time spent. Besides,
for all experiments, the time consumed by the local search
step was less thasts of the global time. All our experimen-

Example 3. Let X be the following unsatisfiable SAT in-

stance and let2" be the corresponding augmented SAT in-
stance using L&S clauses selector variahjes

Co :(d) C1 :(bVe) Ca:(a Vb) tal studies have been conducted on Intel Xeon 3GHz under
Cs :(aV —c) Cy :(mbV —e)  Cs:(-aV=b) Linux CentOS 4.1. (kernel 2.6.9) with a RAM memory size
Y =4¢GCs :(aVe) C7 ((maV—e) Cs:(bVe) of 2Go. In the following, a time-out limit has been set to 3
Cg 2("(1 VbV _|C) C’w:(—'a VbV _|d) CPU hours.
Cu:(aVv-bVe) Cizi(aV-bV—d) First, in Table 1a, we report experimental results about the
¥ is an unsatisfiable SAT instance made 8fclauses and computation of MSS on pigeon-hole and xor-chains bench-
making use ob variables. It exhibit8 MUS, which are il-  marks, which are globally unsatisfiable in the sense that re-

lustrated in Figure 1, and admit® MSS. Assume that both moving any one of their clauses makes the instance become
L&S and HYCAM are run on this instance. Its clauses aresatisfiable. Obviously enough, such instances exhibit anum



@) (b)
#CoMSS | L&S | HYCAM #CoMSS | L&S |HYCAM
Inst (#vfc) [#MSS cand. act.|(sec.) (sec.) Instance (#vfic) | #MSS cand. act.|(sec.) (sec.)
hole6 | (42,133)| 133 [ 133 133 0.040{ 0.051 rand.net40-25-10 (2000,5921)| 5123 {4318 2729 893 197
hole7 | (56,204)| 204 |204 204 0.75 0.33 rand net40-25-5 | (2000,5921)| 4841|6950 598 650 174
hole8 | (72,297)| 297 | 293 293 33 1.60 rand.net40-30-1Q (2400,7121)| 5831 | 3458 24085 1748 386
hole9 | (90,415)| 415 |415 415 866 30 rand net40-30-1 | (2400,7121)| 7291|4380 662 1590 1325
hole10| (110,561) 561 | 559 559 7159 255 rand.net40-30-5 | (2400,7121)| 5673 | 2611 2507 2145 402
x1.16 | (46,122)| 122 |122  122/0.042] 0.041 ca032 (558,1606) | 1173|1159 1159 4 1
x1.24 | (70,186)| 186 | 186 186| 7.7 0.82 ca064 (1132,3264)| 2412|2324 2263 59 3
x1.32 | (94,250)| 250 {241 241} 195 28 cal28 (2282,6586)| 4899 | 2878 2422 691 18
x1.40 |(118,314) 314 |314 314 2722 486 ca256 (4584,13236) 9882 | 9553 9064 t.o. 277
2pipe (892,6695) | 3571 (2094 1849 130 36
e Inst., Instance benchmark name 2pipe.1.000 (834,7026) | 3679|1822 1587 52 30
e (#v,#c) numbers of variables and clauses 2pipe.2_000 (925,8213) | 5073 | 2286 1825 148 61
e #MSS number of MSS of the SAT instance 3pipe.1.000 (2223,26561) 17359| 7327 3481 5153| 2487
e #COMSS cand., act.numbers of candidate and actualam5.5 (1076,3677)| 1959|3250 65/ 68 57
CoMSS exhibited by HYCAM local ¢432 (389,1115) | 1023|1019 1019 4 1
search pretreatment respectively ~ c880 (957,2590) | 2408 | 2141 1866 28 3
e L&S: time in seconds for Liffiton and Sakallah’s algorithmbf0432-007 (1040,3668)| 10958| 3332 213§ 233 98
e HYCAM : time in seconds for HYCAM velev-sss-1.0-cl | (1453,12531) 4398 | 2987 2154 1205| 513

Table 1: L&S vs. HYCAM on globally unsatisfiable instancepdad on various difficult SAT instances (b)

ber of COMSS equals to their number of clauses, and the size For instance, L&S was unable to compute all MSS of the
of any of their COMSS is one. A significant time gap canphp- 012- 011 instance within 3 hours CPU time, and could
be observed in favor of HYCAM. The efficiency gain ratio is thus not discover its single MUS. HYCAM extracted it in
even more significant when the size of the instance increase@597 seconds. On all instances exhibiting unique or a non-
For these instances, the local search run often succeeds éxponential number of MUS, HYCAM was clearly more effi-
finding all CoMSS, and the complete step often reduces teient than L&S. For example, on tlié x2_aa instance, L&S

an unsatisfiability test. On the contrary, L&S explores manyand HYCAM discovered the 32 MUS within 3.12 and 0.94
more nodes in the search space to deliver the CoMSS. seconds, respectively. Let us note that the additional time
spent to compute all MUS from the set of MSS is often very

In Table 1b, experimental results on more difficult benCh'small unless of course the number of MUS is exponential.

marks from the annual SAT competitipBATLIB, 200d are
described. Their number of MSS is often exponential, and )
computing them often remains intractable. Accordingly, we6 Conclusions and Future Research

have limited the search to CoMSS of restricted sizes, namel&omputing all MSS, CoMSS and MUS are highly intractable
we have set a size limit to 5 clauses. As our experimental reig o< in the worst case. However. it can make sense to at-
sults illustrate, HY CAM outperforms L&S. For example, let tempt to compute them for some r,eal-life applications. In

us consider and_net 40- 30- 10. This instance contains ; .
. . ; : this paper, we have improved the currently most efficient ex-
5831 MSS (with the size of their corresponding COMSS IeS§1austive technique, namely Liffiton and Sakallah’s method,

than 5). L&S and HYCAM deliver this result in 1748 and . ; : .

. ; in several ways. Our experimental results show dramatic effi

ﬁ86 se::onf[jsa gegggﬁ'g‘?- ITor %25%'“4”?8' HJCAM | gSjency gains for MSS, CoMSS and MUS extracting. One in-
as extracte In1ess than > Minutes whereas resting feature of the approach lies in its anytime chiarac

did not manage to produce_ this result within 3 hours. Let USor computing MSS. MSS of increasing sizes are computed
note that HYCAM also delivers COMSS made of 5 clauses g, ja|ly. Accordingly, we can put a bound on the maximum
after Its computation Is ended since we know that all sets Ogize of the CoMSS to be extracted, limiting the computing
5 falsified clauses recorded .by the local search run and th Lsources needed to extract them. To some extent, both L&S
are not supersets of the obtained smaller COMSS are actual hd HYCAM prove more adapted to extract complete sets of
also CoMSS. MSS and CoMSS than complete sets of MUS. Indeed, the
In Table 2, experimental results on hard instances to comprocedure involves computing MSS (and thus CoMSS) first.
pute the complete set of MSS and MUS are reported. Agn this respect, we agree with Liffiton and Sakallah that an
explained above, both L&S and HYCAM approaches requirgnteresting path for future research concerns the studpwf h
all MSS to be obtained before MUS are computed. By allow-MUS could be computed progressively from the growing set
ing complete sets of MSS to be delivered in a shorter timepf extracted MSS.
HYCAM allows the complete set of MUS to be computed Many artificial intelligence research areas have studied va
for more instances and in a faster manner than L&S doesous problems involving the manipulation of MUS, MSS and
Obviously enough, when the number of MSS or MUS areCoMSS, like model-based diagnosis, belief revision, incon
exponential, computing and enumerating all of them remairsistency handling in knowledge and belief bases, etc. These
intractable. studies are often conducted from a conceptual point of view,



#CoMSS L&S HYCAM #MUS | MSS—MUS
Instance (#v#c) | #MSS cand. act.| (sec.) (sec.) (sec.)
mod2-3cage-unsat-9-8 (87,232) | 232 [232 2320 3745 969 1 0.006
mod2-rand3bip-unsat-105t3(105, 280)| 280 |280 280 2113 454 1 0.008
2pipe (892, 6695) 10221| 3142 1925 298 226 > 211000 time out
php-012-011 (132,738)| 738 |734 734 timeout| 2597 1 0.024
hcb3 (45, 288) | 288 |288 288 10645 6059 1 0.006
1dix.c.mc_ex bp.f (776, 3725) 1763|946 665 10.4 6.8 > 350 000 time out
hwb-n20-02 (134, 630)| 622 |588 583 951 462 1 0.01
hwb-n22-02 (144,688)| 680 |627 626/ 2183 811 1 0.025
ssa2670-141 (986, 2315) 1413|1374 1341 2.83 1.08 16 0.15
clgcolor-08-05-06 (116, 1114) 1114|1114 1114 107 62 1 0.007
dix2_aa (490, 2804) 1124|1020 970 3.12 0.94 32 0.023
addsub.boehm (492, 1065) 1324 (20256 3471 35 29 > 657 000 time out

Table 2: L&S vs. HYCAM on computing all MUS

or from a worst-case complexity point of view, only. We be- [Eén and Sorensson, 2COH!. Eén and
lieve that the practical computational progresses as ssch a N.  Sodrensson. MiniSat home  page:
the ones obtained in this paper can prove valuable in han- http://www.cs.chalmers.se/Cs/Research/FormalMefMidiSat.
dling these problems practically. In this respect, futwge r [Fleischneet al, 2003 H. Fleischner, O. Kullman, and
search could concentrate on deriving specific algorithms fo™ ‘g "szejder. Polynomial-time recognition of minimal un-
these Al issues, exploiting results like the ones described  gayisfiaple formulas with fixed clause-variable difference

this paper. Theoretical Computer Scienc289(1):503-516, 2002.
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