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Abstract

In this paper, a new complete technique to com-
pute Maximal Satisfiable Subsets (MSS) and Min-
imally Unsatisfiable Subformulas (MUS) of sets of
Boolean clauses is introduced. The approach im-
proves the currently most efficient complete tech-
nique in several ways. It makes use of the pow-
erful concept of critical clause and of a compu-
tationally inexpensive local search oracle to boost
an exhaustive algorithm proposed by Liffiton and
Sakallah. These features can allow exponential ef-
ficiency gains to be obtained. Accordingly, experi-
mental studies show that this new approach outper-
forms the best current existing exhaustive ones.

1 Introduction
This last decade, the SAT problem, namely the issue of check-
ing whether a set of Boolean clauses is satisfiable or not, has
received much attention from the AI research community. In-
deed, SAT appears to be a cornerstone in many domains, like
e.g. nonmonotonic reasoning, automated reasoning, model-
based diagnosis, planning and knowledge bases verification
and validation. However, only knowing that a SAT instance
is unsatisfiable is often not satisfactory since we might prefer
knowing what goeswrong with the instance when this latter
one is expected to be satisfiable.

In this respect, the MUS (Minimally Unsatisfiable Subfor-
mula) concept can be crucial since a MUS can be seen as an
irreducible cause for infeasibility. Indeed, a MUS is an un-
satisfiable set of clauses that is such that any of its subsets
is satisfiable. It thus provides one explanation for unsatisfia-
bility that cannot be made shorter in terms of the number of
involved clauses. Restoring the satisfiability of an instance
cannot be done without fixing all its MUS.

Unfortunately, a same instance can exhibit several MUS.
Actually, the number of these MUS can be exponential since
an-clauses SAT instance can exhibitC

n/2

n MUS in the worst
case. Moreover, computing MUS is intractable in the gen-
eral case. Indeed, checking whether a set of clauses is a
MUS or not is DP-complete[Papadimitriou and Wolfe, 1988]
and checking whether a formula belongs to the set (clutter)
of MUS of an unsatisfiable SAT instance or not, is inΣp
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[Eiter and Gottlob, 1992]. Fortunately, the number of MUS
remains often tractable in real-life applications. For example,
in model-based diagnosis[Hamscheret al., 1992], it is often
assumed that single faults occur most often, which can entail
small numbers of MUS.

A dual concept is the notion ofMaximal Satisfiable Sub-
set(MSS) of a SAT instance, and the complement of a MSS
in a SAT instance is called a CoMSS. The complete sets of
MUS and MSS are an implicit encoding of the other[Liffi-
ton and Sakallah, 2005]. Specifically, a CoMSS is a hitting
set of the set of MUS and represent minimal sets of clauses
that should be dropped in order to restore consistency. In this
paper, we are interested in exhaustive approaches to compute
these correlated concepts in the Boolean clausal framework.

Recently, several approaches have been proposed to ap-
proximate or compute MUS and MSS, both in the Boolean
framework and for other types of constraints. Some of them
concern specific classes of clauses or remain tractable for
small instances, only. Among them, let us mention the ap-
proach in[Bruni, 2005], where it is shown how a MUS can
be extracted in polynomial time through linear programming
techniques for clauses exhibiting a so-called integral prop-
erty. However, only restrictive classes of clauses obey such a
property (mainly Horn, renamable Horn, extended Horn, bal-
anced and matched ones). Let us also mention[Büning, 2000;
Davydovet al., 1998; Fleischneret al., 2002], which are other
important studies in the complexity and the algorithmic as-
pects of extracting MUS for specific classes of clauses. In
[Bruni, 2003], an approach is proposed that approximates
MUS by means of an adaptative search guided by clauses
hardness. In[Zhang and Malik, 2003] a technique is de-
scribed, that extracts MUS by learning nogoods involved in
the derivation of the empty clause by resolution. In[Lynce
and Marques-Silva, 2004], a complete and exhaustive tech-
nique to extract smallest MUS is introduced. In[Oh et al.,
2004], a DPLL-oriented approach has been presented that is
based on a marked clauses concept to allow one to approxi-
mate MUS. In[Grégoireet al., 2006a], a heuristic-based in-
complete approach to compute MUS has been introduced,
which outperforms competing ones from a computational
point of view.

Interestingly, in[Grégoireet al., 2006b] the same authors
have introduced a concept of inconsistent cover to circum-
vent the possible intractable number of MUS, and presented



a technique to compute such covers. Roughly, an inconsis-
tent cover of an unsatisfiable SAT instance represents a set
of MUS that covers enough independent causes of inconsis-
tency that would allow the instance to regain consistency if
they were repaired. Although an inconsistent cover does not
provide us with the set of all MUS that may be present in a
formula, it does however provide us with a series of minimal
explanations of inconsistency that are sufficient to explain and
potentially “fix” enough causes of inconsistency in order for
the whole instance to regain consistency.

These latter techniques are incomplete ones in the sense
that they do not necessarily deliver all MUS. However, in
some application domains, it can be necessary to find the
set ofall MUS, because diagnosing infeasibility is hard, if
not impossible, without a complete view of its causes[Liffi-
ton and Sakallah, 2005]. Obviously enough, such techniques
can only remain tractable provided that the number of MUS
remains itself tractable. Likewise, the number of MSS and
CoMSS can be exponential in the worst case. It should be
noted that many domains in Artificial Intelligence like belief
revision (e.g.[Bessantet al., 2001]) involve conceptual ap-
proaches to handle unsatisfiability that can require the com-
plete sets of MUS, MSS, and CoMSS to be computed in the
worst case, even when additional epistemological ingredients
like stratification are introduced in the logical framework.

In this paper, the focus is on complete techniques. We in-
troduce a new complete technique to compute all MUS, MSS
and CoMSS of a SAT instance, provided obvious tractabil-
ity limitations. It improves the currently most efficient com-
plete technique, namely Liffiton and Sakallah’one[Liffiton
and Sakallah, 2005] (in short L&S), which in turn was shown
more competitive than previous approaches by Bailey and
Stuckey[Bailey and Stuckey, 2005], and by de la Banda,
Stuckey and Wazny[de la Bandaet al., 2003], which were
introduced in somewhat different contexts.

Our approach exhibits two main features. First, it is a hy-
bridization of the L&S complete approach with a local search
pretreatment. A local search technique is indeed used as an
oracle to find potential CoMSS of the SAT instance, which
are themselves hitting sets of MUS. We show that such a hy-
bridization can yield exponential efficiency gains. Second,
the efficiency of the approach relies on the crucial concept of
critical clause, which appears to be a powerful ingredient of
our technique to locate MUS.

The rest of the paper is organized as follows. First, the
reader is provided with the necessary background about SAT,
MUS and the dual concepts of MSS and CoMSS. Then, Lif-
fiton and Sakallah’s exhaustive approach is briefly presented.
In Section 4, we show how this technique can be valuably hy-
bridized with a local search pretreatment, making use of the
critical clause concept. It is shown how this pretreatment can
be theoretically valuable from a computational point of view.
In Section 5, we compare this new approach with L&S.

2 Background
In this section, we provide the reader with the basic back-
ground about SAT, MUS, MSS and CoMSS.

Let L be the Boolean logical language built on a finite set

of Boolean variables, noteda, b, c, etc. The∧, ∨, ¬ and
⇒ symbols represent the standard conjunctive, disjunctive,
negation and material implication connectives, respectively.

Formulas and clauses will be noted using upper-case let-
ters such asC. Sets of formulas will be represented using
Greek letters likeΓ or Σ. An interpretation is a truth assign-
ment function that assigns values from{true, false} to ev-
ery Boolean variable. A formula is satisfiable when there is
at least one interpretation (called model) that satisfies it, i.e.
that makes it becometrue. An interpretation will be noted
by upper-case letters likeI and will be represented by the set
of literals that it satisfies. Actually, any formula inL can be
represented (while preserving satisfiability) using a set (inter-
preted as a conjunction) of clauses, where a clause is a finite
disjunction of literals, where a literal is a Boolean variable
that is possibly negated. SAT is the NP-complete problem
that consists in checking whether a set of Boolean clauses is
satisfiable or not, i.e. whether there exists an interpretation
that satisfies all clauses in the set or not.

When a SAT instance is unsatisfiable, it exhibits at least
oneMinimally Unsatisfiable Subformula, in short oneMUS.

Definition 1. A MUSΓ of a SAT instanceΣ is a set of clauses
s.t.Γ ⊆ Σ, Γ is unsatisfiable and∀∆ ⊂ Γ, ∆ is satisfiable.

Example 1. LetΣ = {a, ¬c, ¬b ∨ ¬a, b, ¬b ∨ c}. Σ exhibits
two MUS, namely{a, b, ¬b ∨ ¬a} and{¬c, b, ¬b ∨ c}.

A dual concept is the notion ofMaximal Satisfiable Subset
(MSS) of a SAT instance.

Definition 2. A MSSΓ of a SAT instanceΣ is a set of clauses
s.t.Γ ⊆ Σ, Γ is satisfiable and∀∆ ⊆ (Σ \ Γ) s.t.∆ 6= ∅, Γ ∪
∆ is unsatisfiable.

The set-theoretical complement of a MSS w.r.t. a SAT in-
stance is called aCoMSS.

Definition 3. The CoMSS of a MSSΓ of a SAT instanceΣ is
given byΣ \ Γ.

Example 2. Let us consider the formulaΣ from the previous
example.Σ exhibits five CoMSS:{b}, {¬c, a}, {¬c,¬b∨¬a},
{¬b ∨ c,¬b ∨ ¬a} and{¬b ∨ c, a}.

As shown by several authors[Liffiton and Sakallah, 2005],
these concepts are correlated. Mainly, a CoMSS contains at
least one clause from each MUS. Actually, a CoMSS is an
irreducible hitting set of the set of MUS. In a dual way, ev-
ery MUS of a SAT instance is an irreducible hitting set of
the CoMSS. Accordingly, as emphasized by[Liffiton and
Sakallah, 2005] althoughMINIMAL-HITTING-SET is a
NP-hard problem, irreducibility is a less strict requirement
than minimal cardinality. Actually, a MUS can be generated
in polynomial time from the set of CoMSS.

3 Liffiton and Sakallah’s Exhaustive
Approach

Liffiton and Sakallah’s approach[Liffiton and Sakallah,
2005] to compute all MUS (in short L&S) is based on the
strong duality between MUS and MSS. To the best of our
knowledge, it is currently the most efficient one. First it
computes all MSS before it extracts the corresponding set of



MUS. Here, the focus is on L&S first step since we shall im-
prove it and adopt the second step as such.

L&S is integrated with a modern SAT solver and takes ad-
vantage of it. Roughly, everyith clauseCi = x1 ∨ ... ∨ xm

of the SAT instance is augmented with a negated clause se-
lector variableyi to yield C

′

i = x1 ∨ ... ∨ xm ∨ ¬yi. While
solving these new clauses, assigningyi to falsehas the effect
of disabling or removingCi from the instance. Accordingly,
a MSS can be obtained by finding a satisfying assignment
with a minimal number ofyi variables assignedfalse. The
algorithm makes use of a sliding objective approach allow-
ing for an incremental search. A bound on the number of
yi that may be assigned tofalse is set. For each value of
the bound, starting at 0 and incrementing by 1, an exhaustive
search is performed for all satisfiable assignments to the aug-
mented formulaC

′

i , which will find all CoMSS having their
size equal to the bound. Whenever one solution is found, it is
recorded, and a corresponding clause forcing out that solution
(and any supersets of it) is inserted. This blocking clause is a
disjunction of theyi variables for the clauses in that CoMSS.

Before beginning the search with the next bound, the al-
gorithm checks that the new instance augmented with all the
blocking clauses is still satisfiable without any bound on the
yi variables. If this formula is unsatisfiable, the entire set of
CoMSS has been found and the algorithm terminates.

The second part of the algorithm computes the complete set
of MUS from the set of CoMSS in a direct way. The approach
that we shall introduce will include this second step as such.

4 Local Search and Critical Clauses
In this section, it is shown how the aforementioned exhaustive
search algorithm can be improved in a dramatic manner by
hybridizing it with an initial local search step, which provides
valuable oracles for the subsequent exhaustive search process.
We shall call the new approach HYCAM (HYbridization for
Computing All Mus).

First, let us motivate our approach in an intuitive manner.
Clearly, a (fast) initial local search run for satisfiability on the
initial instance might encounter some actual MSS. Whenever
this phenomenon happens, it can prove valuable to record
the corresponding CoMSS in order to avoid computing them
during the subsequent exhaustive search. Moreover, rather
than checking whether we are faced with an actual MSS or
not, it can prove useful to record the corresponding candi-
date CoMSS that will be checked later during the exhaustive
search. Obviously enough, we must study which interpreta-
tions encountered during the local search process yield can-
didate MSS and criteria must be defined in order to record
a limited number of potentially candidate CoMSS only. In
this respect, a concept of critical clause will prove extremely
valuable in the sense that it allows us to state necessary condi-
tions for being a CoMSS that can be checked quickly. When
all the remaining candidate CoMSS are recorded, the incre-
mental approach by Liffiton and Sakallah allows us to exploit
this information in a very valuable and efficient way. Let us
describe this in a more detailed manner.

A local search algorithm is thus run on the initial SAT in-
stance. The goal is to record as many candidate CoMSS as

Algorithm 1 : Local Search approximation
Input : a CNF formulaΣ Output : Set of candidate CoMSS
begin1

candidates←− ∅ ; #fail ←− 0 ;2
I ←− generate random interpretation() ;3
while (#fail < PRESET#FAILURESAUTHORIZED) do4

newcandidates←− FALSE ;5
for j = 1 to #FLIPSdo6

Let ∆ be the set of falsified clauses byI ;7
if ∀C ∈ ∆, C is critical8
and ∆ is not implied incandidates then9

removeAllSetImplied(∆,candidates) ;10
candidates ←− ∆ ∪ candidates ;11
newcandidates←− TRUE ;12

flip(I) ;13

if not(newcandidates) then #fail ←− #fail + 1;14

return candidates ;15

end16

Algorithm 2 : The HYCAM algorithm
Input : a CNF formulaΣ Output : All MSS of Σ
begin1

cand←− LS approximation(Σ) ; k←− 0 ;2
Σy ←− addSelectorClauses(Σ) ; MSS ←− ∅ ;3
while SAT(Σy) do4

removeAllSetImplied({Σ\C|C ∈MSS},cand) ;5
Σy ←− addBlockingClausesOfSize(k,cand) ;6
MSS ←−MSS ∪ {Σ\C|C ∈ cand and|C| = k} ;7
MSS ←−MSS ∪ SAT with bound(k,Σy ) ;8
k←− k + 1 ;9

return MSS ;10

end11

possible, based on the intuitive heuristics that local search of-
ten converges towards local minima, which could translate
possibly good approximations of MSS. A straightforward ap-
proach would consist in recording for each visited interpre-
tation the set of unsatisfied clauses. Obviously enough, we
do not need to record supersets of already recorded candidate
CoMSS since they cannot be actual CoMSS as they are not
minimal with respect to set-theoretic inclusion. More gen-
erally, we have adapted the technique proposed by Zhang in
[Zhang, 2005] to sets of clauses in order to record the cur-
rently smaller candidate CoMSS among the already encoun-
tered series of sets of unsatisfied clauses. Now, crucial in-
gredients in our approach are the concepts of once-satisfied
and critical clauses. The latter concept has already proved
valuable for locating MUS and inconsistent covers using an
incomplete technique based on local search[Grégoireet al.,
2006a; 2006b].

Definition 4. A clauseC is once-satisfied by an interpreta-
tion I iff exactly one literal ofC is satisfied byI. A clause
C that is falsified by the interpretationI is critical w.r.t. I
iff the opposite of each literal ofC belongs to at least one
once-satisfied clause byI.

Intuitively, a critical clause is thus a falsified clause that re-
quires at least another one to be falsified in order to become
satisfied, performing a flip. Property 1 shows how this con-
cept allows us to eliminate wrong candidate CoMSS.



C3:(a ∨ ¬c)

C1:(b ∨ c)

C11:(a ∨ ¬b ∨ c)

C9:(¬a ∨ b ∨ ¬c)
C5:(¬a ∨ ¬b)

C2:(a ∨ b)

C10:(¬a ∨ b ∨ ¬d)

C12:(a ∨ ¬b ∨ ¬d)

C0:(d)

C4:(¬b ∨ ¬e)

C6:(a ∨ e)

C7:(¬a ∨ ¬e)

C8:(b ∨ e)

Figure 1: MUS of Example 3

Property 1. Let Σ be a SAT instance and letI be an inter-
pretation. LetΓ be a non-empty subset ofΣ s.t. all clauses of
Γ are all falsified byI. When at least one clause ofΓ is not
critical w.r.t. I, thenΓ is not a CoMSS ofΣ.
Proof. By definition, when a clauseCf of Γ is not critical
w.r.t. I, there exists at least one literalc ∈ Cf whose truth-
value can be inversed (i.e. flipped) without falsifying any
other clause ofΣ. Accordingly,Γ is not minimal and can-
not be a CoMSS ofΣ.

In practice, testing whether all falsified clauses are critical
or not can be performed quickly and prevents many sets of
clauses to be recorded as candidate CoMSS. Using these fea-
tures, the local search run on the initial SAT instance yields a
series of candidate CoMSS. This information proves valuable
and allows us to boost L&S complete search.

L&S is incremental in the sense that it computes CoMSS of
increasing sizes, progressively. Aftern iterations have been
performed, all CoMSS of cardinality lower or equal thann
have been obtained. Accordingly, if we have recorded candi-
date CoMSS containingn + 1 clauses, and if they are not su-
persets of already obtained CoMSS, we are sure that they are
actual CoMSS. In this respect, we do not need to search them,
and their corresponding blocking clauses can be inserted di-
rectly. Moreover, we do not need to perform the SAT test at
the end of then-th iteration, since we are then aware of the
existence of larger CoMSS.

It is also easy to show that the insertion of these block-
ing clauses can allow both NP-complete and CoNP-complete
tests to be avoided. Let us illustrate this on an example.

Example 3. Let Σ be the following unsatisfiable SAT in-
stance and letΣ

′

be the corresponding augmented SAT in-
stance using L&S clauses selector variablesyi.

Σ =



















C0 :(d) C1 :(b ∨ c) C2 :(a ∨ b)
C3 :(a ∨ ¬c) C4 :(¬b ∨ ¬e) C5 :(¬a ∨ ¬b)
C6 :(a ∨ e) C7 :(¬a ∨ ¬e) C8 :(b ∨ e)
C9 :(¬a ∨ b ∨ ¬c) C10:(¬a ∨ b ∨ ¬d)
C11 :(a ∨ ¬b ∨ c) C12:(a ∨ ¬b ∨ ¬d)

Σ is an unsatisfiable SAT instance made of13 clauses and
making use of5 variables. It exhibits3 MUS, which are il-
lustrated in Figure 1, and admits19 MSS. Assume that both
L&S and HYCAM are run on this instance. Its clauses are

augmented by the¬yi negated clause selector variables. As-
sume also that the local search performed by HYCAM pro-
vides 4 candidate CoMSS:{C5}, {C3, C2}, {C0, C1, C2}
and{C3, C8, C10}.

If the branching variables are chosen based on the lexical
order, thena andb are assigned totrue andC5 is falsified.
Thus, L&S tries to prove that this clause forms a CoMSS,
which requires a NP-complete test (because it has to find a
model ofΣ\{¬a∨¬b}∪ {a, b}). On the contrary, when HY-
CAM is run, the blocking clausey5 is added before the first
iteration of the complete algorithm is performed, since thelo-
cal search has already delivered this CoMSS. In consequence,
whena andb are assignedtrue, the DPLL-algorithm back-
tracks immediately as the{y5,¬y5} unsatisfiable set has been
obtained, without requiring any further NP-complete test.

Similarly, the introduction of additional clause selector
variables by HYCAM can reduce the number of CoNP-
complete tests. For example, let us assume thate is the first
branching variable, thate is assignedfalse and that the next
variables are selected according to the lexical order. When
a andb are assignedtrue, L&S tries to prove that{C5} is a
CoMSS. Since¬e is tautological consequence ofΣ\{¬a ∨
¬b} ∪ {a, b}, no model exists forΣ\{¬a∨ ¬b} ∪ {a, b,¬e}.
Clearly, such a test is in CoNP. Thanks to the previously de-
livered candidate CoMSS, HYCAM avoids this part of the
search space to be explored. Indeed, since we know that{C5}
is a CoMSS, whena andb are assignedtrue, no further CoNP
tests are performed with respect to this partial assignment.

In fact, from a computational point of vue, the preliminary
non-expensive local search eliminates nodes in the search
tree, avoiding both NP and CoNP tests.

5 Experimental Evaluation
HYCAM has been implemented and compared to L&S from
a practical point of view. For both algorithms, the com-
plete search step is based on the use of MiniSat[Eén and
Sörensson, 2004], which is currently one of the best modern
SAT solvers. As a case study, we used Walksat[Kautz and
Selman, 2004] for the local search pretreatment. The number
of flips and tries of Walksat is related to the number of candi-
date CoMSS already found. For each try, a small number of
flips is performed. If no new candidate is found during a try
then a counter is incremented. When this counter exceeds a
threshold (experimentally set to30), we consider that no new
candidate could be found by the local search. This way to end
the local search pretreatment offers a good trade-off between
the number of candidates found and the time spent. Besides,
for all experiments, the time consumed by the local search
step was less than5% of the global time. All our experimen-
tal studies have been conducted on Intel Xeon 3GHz under
Linux CentOS 4.1. (kernel 2.6.9) with a RAM memory size
of 2Go. In the following, a time-out limit has been set to 3
CPU hours.

First, in Table 1a, we report experimental results about the
computation of MSS on pigeon-hole and xor-chains bench-
marks, which are globally unsatisfiable in the sense that re-
moving any one of their clauses makes the instance become
satisfiable. Obviously enough, such instances exhibit a num-



(a)

Inst. (#v,#c) #MSS #CoMSS L&S HYCAM
cand. act. (sec.) (sec.)

hole6 (42,133) 133 133 133 0.040 0.051
hole7 (56,204) 204 204 204 0.75 0.33
hole8 (72,297) 297 293 293 33 1.60
hole9 (90,415) 415 415 415 866 30
hole10 (110,561) 561 559 559 7159 255
x1 16 (46,122) 122 122 122 0.042 0.041
x1 24 (70,186) 186 186 186 7.7 0.82
x1 32 (94,250) 250 241 241 195 28
x1 40 (118,314) 314 314 314 2722 486

• Inst., Instance: benchmark name
• (#v,#c): numbers of variables and clauses
• #MSS: number of MSS of the SAT instance
• #CoMSS cand., act.: numbers of candidate and actual

CoMSS exhibited by HYCAM local
search pretreatment respectively

• L&S : time in seconds for Liffiton and Sakallah’s algorithm
• HYCAM : time in seconds for HYCAM

(b)

Instance (#v,#c) #MSS #CoMSS L&S HYCAM
cand. act. (sec.) (sec.)

rand net40-25-10 (2000,5921) 5123 4318 2729 893 197
rand net40-25-5 (2000,5921) 4841 6950 598 650 174
rand net40-30-10 (2400,7121) 5831 3458 2405 1748 386
rand net40-30-1 (2400,7121) 7291 4380 662 1590 1325
rand net40-30-5 (2400,7121) 5673 2611 2507 2145 402
ca032 (558,1606) 1173 1159 1159 4 1
ca064 (1132,3264) 2412 2324 2263 59 3
ca128 (2282,6586) 4899 2878 2422 691 18
ca256 (4584,13236) 9882 9553 9064 t.o. 277
2pipe (892,6695) 3571 2094 1849 130 36
2pipe 1 ooo (834,7026) 3679 1822 1587 52 30
2pipe 2 ooo (925,8213) 5073 2286 1825 148 61
3pipe 1 ooo (2223,26561) 17359 7327 3481 5153 2487
am 5 5 (1076,3677) 1959 3250 65 68 57
c432 (389,1115) 1023 1019 1019 4 1
c880 (957,2590) 2408 2141 1866 28 3
bf0432-007 (1040,3668) 10958 3332 2136 233 98
velev-sss-1.0-cl (1453,12531) 4398 2987 2154 1205 513

Table 1: L&S vs. HYCAM on globally unsatisfiable instances (a) and on various difficult SAT instances (b)

ber of CoMSS equals to their number of clauses, and the size
of any of their CoMSS is one. A significant time gap can
be observed in favor of HYCAM. The efficiency gain ratio is
even more significant when the size of the instance increased.
For these instances, the local search run often succeeds in
finding all CoMSS, and the complete step often reduces to
an unsatisfiability test. On the contrary, L&S explores many
more nodes in the search space to deliver the CoMSS.

In Table 1b, experimental results on more difficult bench-
marks from the annual SAT competition[SATLIB, 2000] are
described. Their number of MSS is often exponential, and
computing them often remains intractable. Accordingly, we
have limited the search to CoMSS of restricted sizes, namely
we have set a size limit to 5 clauses. As our experimental re-
sults illustrate, HYCAM outperforms L&S. For example, let
us considerrand net40-30-10. This instance contains
5831 MSS (with the size of their corresponding CoMSS less
than 5). L&S and HYCAM deliver this result in 1748 and
386 seconds, respectively. For theca256 instance, HYCAM
has extracted 9882 MSS in less than 5 minutes whereas L&S
did not manage to produce this result within 3 hours. Let us
note that HYCAM also delivers CoMSS made of 5 clauses
after its computation is ended since we know that all sets of
5 falsified clauses recorded by the local search run and that
are not supersets of the obtained smaller CoMSS are actually
also CoMSS.

In Table 2, experimental results on hard instances to com-
pute the complete set of MSS and MUS are reported. As
explained above, both L&S and HYCAM approaches require
all MSS to be obtained before MUS are computed. By allow-
ing complete sets of MSS to be delivered in a shorter time,
HYCAM allows the complete set of MUS to be computed
for more instances and in a faster manner than L&S does.
Obviously enough, when the number of MSS or MUS are
exponential, computing and enumerating all of them remain
intractable.

For instance, L&S was unable to compute all MSS of the
php-012-011 instance within 3 hours CPU time, and could
thus not discover its single MUS. HYCAM extracted it in
2597 seconds. On all instances exhibiting unique or a non-
exponential number of MUS, HYCAM was clearly more effi-
cient than L&S. For example, on thedlx2 aa instance, L&S
and HYCAM discovered the 32 MUS within 3.12 and 0.94
seconds, respectively. Let us note that the additional time
spent to compute all MUS from the set of MSS is often very
small unless of course the number of MUS is exponential.

6 Conclusions and Future Research
Computing all MSS, CoMSS and MUS are highly intractable
issues in the worst case. However, it can make sense to at-
tempt to compute them for some real-life applications. In
this paper, we have improved the currently most efficient ex-
haustive technique, namely Liffiton and Sakallah’s method,
in several ways. Our experimental results show dramatic effi-
ciency gains for MSS, CoMSS and MUS extracting. One in-
teresting feature of the approach lies in its anytime character
for computing MSS. MSS of increasing sizes are computed
gradually. Accordingly, we can put a bound on the maximum
size of the CoMSS to be extracted, limiting the computing
resources needed to extract them. To some extent, both L&S
and HYCAM prove more adapted to extract complete sets of
MSS and CoMSS than complete sets of MUS. Indeed, the
procedure involves computing MSS (and thus CoMSS) first.
In this respect, we agree with Liffiton and Sakallah that an
interesting path for future research concerns the study of how
MUS could be computed progressively from the growing set
of extracted MSS.

Many artificial intelligence research areas have studied var-
ious problems involving the manipulation of MUS, MSS and
CoMSS, like model-based diagnosis, belief revision, incon-
sistency handling in knowledge and belief bases, etc. These
studies are often conducted from a conceptual point of view,



Instance (#v,#c) #MSS #CoMSS L&S HYCAM #MUS MSS→MUS
cand. act. (sec.) (sec.) (sec.)

mod2-3cage-unsat-9-8 (87, 232) 232 232 232 3745 969 1 0.006
mod2-rand3bip-unsat-105-3(105, 280) 280 280 280 2113 454 1 0.008
2pipe (892, 6695) 10221 3142 1925 298 226 > 211 000 time out
php-012-011 (132, 738) 738 734 734 time out 2597 1 0.024
hcb3 (45, 288) 288 288 288 10645 6059 1 0.006
1dlx c mc ex bp f (776, 3725) 1763 946 665 10.4 6.8 > 350 000 time out
hwb-n20-02 (134, 630) 622 588 583 951 462 1 0.01
hwb-n22-02 (144, 688) 680 627 626 2183 811 1 0.025
ssa2670-141 (986, 2315) 1413 1374 1341 2.83 1.08 16 0.15
clqcolor-08-05-06 (116, 1114) 1114 1114 1114 107 62 1 0.007
dlx2 aa (490, 2804) 1124 1020 970 3.12 0.94 32 0.023
addsub.boehm (492, 1065) 1324 20256 347 35 29 > 657 000 time out

Table 2: L&S vs. HYCAM on computing all MUS

or from a worst-case complexity point of view, only. We be-
lieve that the practical computational progresses as such as
the ones obtained in this paper can prove valuable in han-
dling these problems practically. In this respect, future re-
search could concentrate on deriving specific algorithms for
these AI issues, exploiting results like the ones describedin
this paper.
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C. Piette. Extracting MUSes. InProceedings of ECAI’06,
pages 387–391, 2006.
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