
Extracting MUSes
Éric GRÉGOIRE and Bertrand MAZURE and Cédric PIETTE 1

Abstract. Minimally unsatisfiable subformulas (in short, MUSes)
represent the smallest explanations for the inconsistency of SAT
instances in terms of the number of involved clauses. Extracting
MUSes can thus prove valuable because it circumscribes the sources
of contradiction in an instance. In this paper, a new heuristic-based
approach to approximate or compute MUSes is presented. It is shown
that it often outperforms current competing ones.

1 INTRODUCTION

SAT is the NP-complete decision problem that consists in checking
whether a set of Boolean clauses admits at least one truth assignment
that satisfies all clauses. These last years, many researchers have fo-
cused on the more difficult task of extracting minimally unsatisfiable
subformulas (in short, MUSes) of unsatisfiable SAT instances. Al-
though this problem exhibits a high worst case complexity since e.g.
checking whether a formula belongs to the set of MUSes of an incon-
sistent instance or not is in Σp

2 [9], extracting MUSes can prove valu-
able because it circumscribes what is wrong with an instance. Indeed,
many application domains like model-based diagnosis, knowledge-
base validation or VLSI correctness checking, require such expla-
nations to be delivered. When e.g. a knowledge-base is checked for
consistency, we often prefer to know which clauses are actually con-
tradicting one another, rather than just being told that the whole base
is inconsistent.

Recently, several approaches have been proposed to approximate
or compute MUSes. Unfortunately, they concern specific classes of
clauses or they remain tractable for small instances only. Among
them, let us mention Bruni’s work [4], who has shown how a MUS
can be extracted in polynomial time through linear programming
techniques for clauses exhibiting a so-called integral point prop-
erty. However, only restrictive classes of clauses obey such a prop-
erty (mainly Horn, renamable Horn, extended Horn, balanced and
matched ones). Let us also mention [5, 7, 10] as they are other im-
portant studies in the complexity and the algorithmic aspects of ex-
tracting MUSes for specific classes of clauses. In [3], Bruni has also
proposed an approach that approximates MUSes by means of an
adaptative search guided by clauses hardness. Zhang and Malik have
described in [23] a way to extract MUSes by learning nogoods in-
volved in the derivation of the empty clause by resolution. In [17],
Lynce and Marques-Silva have proposed a complete and exhaustive
technique to extract smallest MUSes. Oh and his co-authors have
presented in [20] a Davis, Putnam, Logemann and Loveland DPLL-
oriented approach that is based on a marked clause concept to allow
one to approximate MUSes. Liffiton and Sakallah have shown how

1 CRIL-CNRS & IRCICA, coucou
Université d’Artois, rue Jean Souvraz SP18, F-62307 Lens Cedex France
E-mail: {gregoire,mazure,piette}@cril.univ-artois.fr

MUSes can be computed through the dual concept of maximally sat-
isfiable subsets [16].

In [19], a heuristic was also proposed to approximate MUSes,
based on the experimental finding that clauses that are most often
falsified during a failed local search often belong to MUSes. It has
also been used to improve the performance of DPLL-like complete
algorithms [6]. In this paper, a new variant and original extensions of
this heuristic are studied. During the local search run, relevant parts
of the neighborhood of the current truth assignment are explored in
order to decide whether an unsatisfied clause during this local search
should be actually counted or not. It is then extended in order to com-
pute sets of MUSes. This new approach is shown to often outperform
the current competing ones from an experimental point of view.

The paper is organized as follows. In the next section, the concept
of MUS is presented formally. In section 3, a crucial notion of criti-
cal clause is introduced and analyzed. In section 4, the new approach
to approximate or compute one MUS is presented. Extensive experi-
mental results are given in section 5. Before we conclude, section 6
shows how the approach can be extended to compute sets of MUSes.

2 MINIMALLY UNSATISFIABLE
SUBFORMULA (MUS)

Let L be a standard Boolean logical language built on a finite set of
Boolean variables, denoted a, b, etc. Formulas will be denoted using
upper-case letters such as C. Sets of formulas will be represented us-
ing Greek letters like Γ or Σ. An interpretation is a truth assignment
function that assigns values from {true, false} to every Boolean
variable. A formula is consistent or satisfiable when there is at least
one interpretation that satisfies it, i.e. that makes it become true. An
interpretation will be denoted by upper-case letters like I and will be
represented by the set of literals that it satisfies. Actually, any for-
mula in L can be represented (while preserving satisfiability) using
a set (interpreted as a conjunction) of clauses, where a clause is a
finite disjunction of literals, where a literal is a Boolean variable that
can be negated. SAT is the well-known NP-complete problem that
consists in checking whether a set of Boolean clauses is satisfiable or
not, i.e. whether there exists an interpretation that satisfies all clauses
in the set or not.

When a SAT instance is unsatisfiable, it exhibits at least one min-
imally unsatisfiable subformula, in short one MUS.

Definition 1 A MUS Γ of a SAT instance Σ is a set of clauses s.t.
1. Γ ⊆ Σ
2. Γ is unsatisfiable
3. Every proper subset of Γ is satisfiable

Computing MUSes is a heavy computational task in the worst
case. Indeed, checking whether a set of clauses is a MUS is DP-
complete [21], and checking whether a formula belongs to the set of



MUSes of an inconsistent instance or not, is in Σp
2 [9]. Let us note

that although the set of MUSes of an n-clauses instance is Cn/2
n in

the worst case, this number is often tractable in real-life situations.
For example, in model-based diagnosis [13], based on experimental
studies, it is often assumed that single faults occur most often, which
is translated by a limited number of MUSes.

3 A NEW HEURISTIC TO DETECT MUSes

In [19], it is shown how local search can be helpful for approximat-
ing MUSes. The basic idea is that clauses that are often falsified dur-
ing a failed local search for satisfiability belong most probably to
MUSes, when the instance is actually unsatisfiable. When the score
of a clause is the number of times it has been falsified during a failed
local search (in short, failed LS), discriminating the clauses with a
high score can deliver a good approximation of the set of MUSes.
Such a heuristic has been studied in an extensive manner in [18, 19].
It has also been extended in several ways to address decision and op-
timisation problems that belong to higher levels of the polynomial
hierarchy [11, 2, 12, 1].

In the following, we assume that the SAT instance is unsatisfi-
able. The above heuristic can require us to increment the score of
clauses even when they do not actually belong to any MUS. Unless
we solve the problem of finding MUSes itself, we can only rely on
some heuristic indications about the extent to which a currently fal-
sified clause could or could not belong to a MUS. In this respect,
we claim that some relevant parts of the neighborhood of the current
interpretation can be checked and provide more information about
whether a currently falsified clause C should be counted or not. The
idea is to take the structure of C into account and to increment the
score of C only when it cannot be satisfied without conducting other
clauses to be falsified in their turn. We shall see that this technique
implements definitions that approximate a property that is intrinsic
to clauses belonging to MUSes.

To illustrate this concept, let us use the following example. Let
∆ = {a∨b∨c,¬a∨b,¬b∨c,¬c∨a,¬a∨¬b∨¬c}. ∆ is unsatisfiable
and is its own MUS. Let I = {a, b, c} be an interpretation. Under
this interpretation, only the clause ¬a ∨ ¬b ∨ ¬c is falsified. In the
following, the once-satisfied clause concept will prove useful.

Definition 2 A clause C is once-satisfied by an interpretation I iff
only one literal of C is satisfied by I .

In the above example, the clauses ¬a ∨ b, ¬b ∨ c and ¬c ∨ a are
once-satisfied by I = {a, b, c}.

Definition 3 A clause C falsified by the interpretation I is critical
w.r.t. I iff the opposite of every literal of C belongs to a clause that
is once-satisfied by I . These once-satisfied clauses that are not tau-
tological ones are called linked to C.

In the example, ¬a ∨ ¬b ∨ ¬c is falsified by I and is critical w.r.t.
I . Its related linked clauses are the once-satisfied ones ¬a∨ b, ¬b∨ c
and ¬c ∨ a.

The role of these definitions is easily understood thanks to the fol-
lowing property.

Property 1 Let C be a critical clause w.r.t. the interpretation I , then
any flip from I to I ′ that is such that C is satisfied under I ′ will
conduct I ′ to falsify at least one clause that was satisfied by I .

In order to discriminate clauses belonging to MUSes, the idea is
to increment the scores of critical clauses during the search, together
with their linked (satisfied) clauses, rather than increment the scores
of all falsified clauses. Indeed, this strategy exploits a property that
is obeyed by clauses belonging to MUSes.

Property 2 Let I be an interpretation giving an optimal result for
max-SAT on an inconsistent instance Σ. Then, any clause C of Σ
falsified by I belongs to at least one MUS of Σ and is critical w.r.t.
I . Moreover, at least one clause linked to C that is once-falsified by
I also belongs to a MUS of Σ.

In this respect, a direct implementation of this technique would
thus yield an approximation one in the sense that clauses and their
linked ones are considered during the whole search, and not only at
the best step of a max-SAT procedure. Such a technique can be easily
grafted to a LS algorithm.

However, being a critical clause is neither a necessary nor a suffi-
cient condition to belong to a MUS. As the following example illus-
trates, a critical clause w.r.t. an interpretation that is not an optimal
one w.r.t. max-SAT for an unsatisfiable formula might not belong to
a MUS. Let ∆ = {a ∨ d,¬a ∨ ¬b,¬d ∨ e, f,¬e ∨ ¬f}. Clearly,
∆ is consistent. ¬e ∨ ¬f is falsified by I = {a, b, d, e, f} and is
critical w.r.t. I . Moreover, a clause from a MUS that is falsified by a
given interpretation I is not necessary critical w.r.t. I , as the follow-
ing example shows. Let ∆ = {a∨d, b,¬a∨¬b,¬d∨e, f,¬e∨¬f}.
Clearly, ∆ is a minimal inconsistent set of clauses.¬a∨¬b is falsified
by I = {a, b, d, e, f}. However, it is not critical w.r.t. I . Fortunately,
the following property ensures that all clauses from a MUS can be
scored by the heuristic.

Property 3 Let Γ be a MUS of Σ. For all clause C ∈ Γ, there exists
an interpretation I s.t. C is critical w.r.t. I .

This property ensures that any clause that takes part in a MUS
can be critical w.r.t. at least one interpretation. As such, this prop-
erty does not guarantee that our scoring heuristic will allow us to
exhibit all clauses belonging to MUSes. Indeed, it does not indicate
that a LS run will necessary increment the score of all such clauses at
least once since LS does not necessary visit all interpretations. How-
ever, the following property and its corollary provide us with a good
indication that LS will probably visit interpretations where clauses
belonging to MUSes are critical. Indeed, it is well-known that LS
is in general attracted by local minima. Property 4 ensures that all
falsified clauses are critical in local or global minima.

Definition 4 A local minimum is an interpretation s.t. no flip can
increase the number of satisfied clauses. A global minimum (or max-
SAT solution) is an interpretation delivering the maximal number of
satisfied clauses.

Property 4 In (local or global) minima, all falsified clauses are crit-
ical.

A corollary even ensures that at least one clause per MUS is criti-
cal in such minima.

Corollary 1 In (local or global) minima, at least one clause per
MUS is critical.



4 APPROXIMATING AND COMPUTING ONE
MUS

In the following, it is shown that a meta-heuristic based on scoring
critical clauses can be the cornerstone of a novel complete method
to approximate or compute MUSes. Actually, due to implementation
efficiency constraints, we update the scores of critical clauses only.
Updating the scores of their linked clauses does not lead to dramatic
performance improvements, at least w.r.t. our selected LS algorithm
and tested benchmarks.

The main idea is as follows. Let Σ be an UNSAT instance. While
LS fails to find a model of Σ (each time within a preset amount of
computing resources), Σ is recorded on a stack and clauses that ex-
hibit the lowest scores are removed from Σ. Then, the inconsistency
of the last version of Σ for which LS has failed to find a model is
checked using a complete search algorithm. If it is indeed inconsis-
tent, then it is an upper-approximation of a MUS of the initial in-
stance. Else, this inconsistency test is repeated on the next version of
Σ from the stack until unsatisfiability is proved. Roughly, this algo-
rithm is described in the following AOMUS procedure.

Procedure AOMUS(Σ) // Approximate One MUS

begin

stack := ∅ ;
while (LS+Score(Σ) fails to find a model)
do

push(Σ) ;
Σ:=Σ \ LowestScore(Σ) ;

done

repeat

Σ:=pop() ;
until (Σ is UNSAT)

end

Then an exact MUS can be obtained by a step-by-step mini-
mization of the upper-approximation until the remaining clauses are
proved to form a MUS (see [14] for an alternative method). This pro-
cess is called fine-tune. The order of tested clauses can be guided
by the score of each clause.

Procedure fine-tune(Σ)
begin

foreach clauses c ∈ Σ // sorted by scores

If (Σ \ c is inconsistent) then Σ := Σ \ c ;
done

end

The efficiency of this procedure directly depends on the quality
of the upper-approximation. In the next section, experimental re-
sults show that the approximation delivered by AOMUS is often of
a good quality, because a very small set of clauses is removed by the
fine-tune step and in consequence a very small number of incon-
sistency tests are performed (when a clause belongs to the MUS, the
test amounts to a consistency check).

Actually, we have refined this basic procedure in the following
manner. Whenever a unique clause remains falsified during any of
the LS runs, then we are sure that this clause belongs to all MUSes.
We mark it as protected and it cannot be removed from Σ thereafter.
When the remaining falsified clauses contain protected clauses only,
they form one MUS: indeed, removing any one of these clauses will
restore consistency. Moreover, when all clauses are protected and Σ
is unsatisfiable, we are sure that Σ is a MUS and the fine-tune step

can be omitted. It appears that this refinement proves valuable for
many instances, and allows a dramatic gain in the efficiency of the
procedure. The OMUS algorithm includes the AOMUS procedure to-
gether with the fine-tune one with this refinement.

The parameters for these methods that were selected are as fol-
lows. Wsat [15] with the Rnovelty+ option was chosen as the LS
procedure. The following parameters were fine-tuned based on exten-
sive tests on various benchmarks. After each flip of the LS, the score
of critical clauses is increased by the number of their linked clauses.
This technique allows us to take the length of critical clauses into
account, since the number of linked clauses depends on the length
of the critical clause in terms of the number of involved literals.
Now, clauses whose score is lower than (min-score + #Flips

#Clauses
)

are dropped, where min-score is the lowest score for a clause of Σ;
#Flips and #Clauses are the number of performed flips and the
number of clauses in Σ, respectively.

This procedure was tested extensively on various UNSAT in-
stances from several difficult benchmarks from DIMACS [8] and
from the annual SAT competitions [22], and compared with other
published approaches to compute MUSes, as described in the next
section.

5 EXPERIMENTAL RESULTS

All experiments have been conducted on Pentium IV, 3Ghz under
linux Fedora Core 4. As our results show, this approximation de-
livers an exact result most of the time. Moreover, the fine-tune
procedure ensures that a MUS is actually obtained. As most cur-
rent approaches do not guarantee that the delivered inconsistent
sets of clauses are actually MUSes, we provide both the results
of applying our algorithm with and without the fine-tune rou-
tine. Without the fine-tune routine, the approach delivers upper-
approximations of MUSes, and is called AOMUS (Approximate One
MUS). However, on many instances, these approximations are actual
MUSes. Moreover, it appeared very often that the last subformula
for which LS failed to find a model was in fact unsatisfiable. Thus,
in practice the last loop of the AOMUS algorithm often reduces to a
a unique inconsistency test. Let us stress that our approach is com-
plete in the sense that it always delivers an approximate MUS for any
UNSAT instance and a MUS when the fine-tune routine is run.

We compared our approach with an adaptation of AOMUS where
Scoring is the basic heuristic of [19], which simply counts the num-
ber of times a clause is falsified. We also compared our approach with
zCore, the core extractor of zChaff [23]. zChaff is currently one
of the most efficient SAT solvers. We also ran Lynce and Marques-
Silva’s procedure [17], and took Bruni’s [3] experimental results into
account. For Bruni’s technique, we only mention the experimental
results obtained by the author, since this system is not available.
Although a comparison with Bruni’s technique is thus difficult to
achieve from an experimental side, it appears that Bruni’s technique
has been experimented on small instances only. zCore proved com-
petitive for single-MUS instances but failed to deliver good results
when several MUSes are present. Indeed, zCore does not concen-
trate on finding one MUS, but on finding proofs of inconsistency.
Not surprisingly, our approach proved more efficient than the similar
one where Scoring is based on the heuristic from [19]. Most often,
it proved to be more competitive than all the other considered tech-
niques when very large and difficult multi-MUSes instances were
considered. Noticeably, it was also the only technique to perform in
a competitive way on all benchmarks. Let us stress that the Lynce-
Silva’s procedure computes the smallest MUS, that Zcore delivers



Table 1. Experimental results: Approximate One MUS (AOMUS) and find One MUS (OMUS)

Instance #var #cla Lynce&Silva [17] Bruni [4] Zcore [23] Scoring like [19] AOMUS OMUS
#cla Time #cla #cla Time #cla Time #cla Time #cla Time

fpga10 11 220 1122 Time out - 561 28.51 561 18.26 561 13.06 561 13.75
fpga10 12 240 1344 Time out - 672 71.27 561 30.11 561 16.9 561 17.03
fpga10 13 260 1586 Time out - 793 166.99 561 51.67 561 25.95 561 31.89
fpga10 15 300 2130 Time out - 1065 570.3 561 128.05 561 44.18 561 68.17
fpga11 12 264 1476 Time out - 738 112.53 738 66.8 738 65.49 738 66.3
fpga11 13 286 1742 Time out - 871 504.97 738 180.66 738 56.71 738 84.74
fpga11 14 308 2030 Time out - 1015 1565.6 738 415.32 738 69.55 738 304.4
fpga11 15 330 2340 Time out - Time out 738 568.79 738 52.14 738 85.2
aim100-1 6-no-2 100 160 53 224 54 54 0.05 53 0.268 53 0.38 53 0.38
aim100-2 0-no-1 100 200 Time out 19 19 0.09 19 0.216 19 0.19 19 0.23
aim200-1 6-no-3 200 320 Time out 86 83 0.07 83 0.37 83 0.44 83 0.83
aim200-2 0-no-3 200 400 Time out 37 37 0.23 37 0.39 37 0.49 37 0.54
aim50-1 6-no-4 50 80 20 1.18 20 20 0.04 20 0.163 20 0.16 20 0.17
aim50-2 0-no-4 50 100 21 3.49 21 21 0.14 21 0.208 21 0.22 21 0.27
2bitadd 10 590 1422 Time out - 815 343.48 1212 42.752 806 189.47 716 268.5
barrel2 50 159 Time out - 77 0.04 100 0.35 77 0.36 77 0.44
jnh10 100 850 Time out 161 68 0.88 128 9.35 79 42.25 79 42.9
jnh20 100 850 Time out 120 102 0.23 104 21.68 87 48.93 87 75.76
jnh5 100 850 Time out 125 86 0.39 140 12.653 88 46.2 86 46.87
jnh8 100 850 Time out 91 90 0.22 162 28.964 69 90.53 67 99.07
homer06 180 830 Time out - 415 15.96 415 10.97 415 9.04 415 9.3
homer07 198 1012 Time out - 506 21.6 415 12.59 415 10.67 415 19.19
homer08 216 1212 Time out - 606 44.46 554 23.43 415 19.79 415 24.65
homer09 270 1920 Time out - 960 141.48 415 93.19 504 60.9 415 81.23
homer10 360 3460 Time out - 940 624.11 1614 148.27 503 466.94 415 513.11
homer11 220 1122 Time out - 561 23.44 561 41.68 561 15.6 561 16.32
homer12 240 1344 Time out - 672 76.19 708 25.92 564 41.03 561 62.34
homer13 260 1586 Time out - 793 152.13 579 67.38 561 76.66 561 78.51
homer14 300 2130 Time out - 1065 714.03 561 347.19 561 28.03 561 30.64
homer15 400 3840 Time out - Time out 677 247.84 561 1048.28 561 1104.13

More extensive results can be downloaded from http://www.cril.univ-artois.fr/˜piette/extractingMUS comparison.pdf

an approximation of a MUS, whereas our OMUS and AOMUS pro-
cedures deliver one exact and one approximate MUS, respectively.
Moreover, it should be emphasized that MUSes that are discovered
by the various approaches are not necessary the same ones.

In Table 1, some typical experimental results are given. Except for
Bruni’s results which are just size results that we have extracted from
[3], we provide both the experimental size of the discovered smallest
inconsistent subsets, together with the CPU time in seconds to get
them. Time-out indicates that no result has been obtained within 1
hour CPU time. For example, for the homer14 instance, AOMUS
delivered an approximate MUS made of 561 clauses within 28.03 s.
Actually, this was an exact MUS, as it was found by OMUS in 30.64 s.
Note that an AOMUS version based on [19] delivered the same result
in 347.19 s. zCore delivered an approximate MUS made of 1065
clauses within 714 s. Actually, this approximate MUS was a superset
of the MUS discovered by both AOMUS and OMUS. Also, it can be
seen e.g. on the fpga benchmarks that AOMUS (i.e. our approach
without the fine-tune procedure) delivered smaller inconsistent
subsets than any other considered method, most often. Let us also
emphasize that even on small instances like the aim ones, OMUS
proved very competitive, as well.

6 APPROXIMATING THE SET OF MUSes
Based on the OMUS procedure, we now address the problem of com-
puting the set of MUSes of unsatisfiable instances, also called clut-
ter by Bruni [4]. Since a MUS can be “broken” by removing one
of its clauses, a naive approach consists in removing one clause of
a MUS after this latter one has been discovered by the OMUS pro-
cedure, and then in iterating the process. Such an approach would
deliver the right result when any pair of MUSes exhibits an empty in-
tersection. However, MUSes can have non-empty intersections. Ac-

cordingly, when we remove a clause from a MUS, we actually break
all MUSes containing it. To prevent this drawback from occurring as
much as possible, we should prefer dropping clauses that belong to
a minimal number of MUSes. Accordingly, we have investigated the
following heuristic.

As max-SAT is intended to deliver a minimal number of unsatis-
fied clauses, the remaining unsatisfied clauses in a max-SAT solution
must belong to intersections of MUSes as much as possible. Accord-
ingly, for each clause, we record the minimum number of clauses that
have been falsified at the same time during a failed LS. After a MUS
is detected, the clause in the MUS with the lowest score is removed
from the instance.

Clearly, such an approach (that we note ASMUS (Approximate Set
of MUS)) is incomplete. However, it delivers very good results with
respect to current existing approaches, as illustrated by our experi-
mental investigations summarized in Table 2. For these experimen-
tations, the time-out was set to 20000 s. AleatX Y Z instances are
standard generated (unsatisfiable) random ones, with X variables and
Y clauses. XAIMY Z instances are the mere concatenations of X
AIMα β instances, where α = Y

X
and β = Z

Y
.

We have compared the ASMUS method with the complete algo-
rithm proposed in [16] from an experimental point of view. Table
2 shows that both approaches appear to deliver the exact sets of
MUSes on the simple “aim” benchmarks, using similar run-times.
On more difficult instances like Aleat30 75 *, ASMUS almost ex-
tracts all MUSes and its computation time is in general better than
the complete method one.

Moreover, Liffiton and Sakallah’s algorithm can get into trouble
for larger instances, since a CNF formula can exhibit an exponential
number of MUSes and since their approach aims at computing all
MUSes individually, only after having computed all maximally sat-



Table 2. Finding as many MUSes as possible.

Instance #var #cla L.&S. [16] ASMUS
#MUS Time #MUS Time

aim100-1 6-no-1 100 160 1 0.18 1 0.31
aim200-1 6-no-1 200 320 1 0.14 1 0.68
aim200-1 6-no-2 200 320 2 0.22 2 0.76
aim200-2 0-no-3 200 400 1 0.12 1 0.56
aim200-2 0-no-4 200 400 2 0.26 2 0.88
Aleat20 70 1 20 70 127510 6.9 6 4.9
Aleat20 70 2 20 70 114948 10.8 13 8.7
Aleat30 75 1 30 75 11 59.82 7 2.2
Aleat30 75 2 30 75 9 26.84 8 2.9
Aleat30 75 3 30 75 10 12.84 10 3.7
Aleat50 218 1000 50 218 Time out 67 173
Aleat50 218 100 50 218 Time out 39 126
2AIM100 160 100 160 2 0.21 2 0.69
2AIM400 640 400 640 2 14.9 2 3.1
3AIM150 240 150 240 3 73.84 3 1.46
4AIM200 320 200 320 Time out 4 2.82
dp02u01 213 376 Time out 14 26.12
Homer06 180 830 Time out 2 17.47

isfiable subformulas, which can be intractable. On the opposite, our
approximation technique does not suffer from such a drawback and
exhibits an anytime property since MUSes are directly computed one
after the other. For example, let us consider the Aleat20 70 2 ran-
dom instance. It exhibits 70 clauses and these constraints form more
than 114 000 MUSes. Due to the very small size of this formula, [16]
has been able to compute all MUSes. For larger instances involving
many MUSes, like dp02u01 (213 atoms, 376 clauses), the set of
MUSes could not be computed within 20000 s., while our approach
extracted 14 MUSes in 26 s.

7 CONCLUSION
In this paper, thanks to an original concept of critical clauses, a novel
meta-heuristic-based approach to compute MUSes in SAT instances
has been introduced. As our experimental results on difficult bench-
marks illustrate it, the approach proves to be viable and often more
competitive than previously published ones. The meta-heuristic is
based on the intuitive idea that the most often falsified constraints
during a failed local search are often the actual unsatisfiable ones.
This idea has been refined to take the falsification propagation effect
of these constraints. We believe that such a meta-heuristic could be
applied to various difficult decision and optimisation problems. We
plan to explore this in the near future.

REFERENCES
[1] F. Boussemart, F. Hémery, C. Lecoutre, and L. Saı̈s, ‘Boosting system-

atic search by weighting constraints’, in European Conference on Arti-
ficial Intelligence (ECAI’04), pp. 146–150, (2004).

[2] L. Brisoux, É. Grégoire, and L. Saı̈s, ‘Checking depth-limited consis-
tency and inconsistency in knowledge-based systems’, International
Journal of Intelligent Systems, 16(3), 333–360, (2001).

[3] R. Bruni, ‘Approximating minimal unsatisfiable subformulae by means
of adaptive core search’, Discrete Applied Mathematics, 130(2), 85–
100, (2003).

[4] R. Bruni, ‘On exact selection of minimally unsatisfiable subformu-
lae’, Annals of Mathematics and Artificial Intelligence, 43(1), 35–50,
(2005).

[5] H.K. Büning, ‘On subclasses of minimal unsatisfiable formulas’, Dis-
crete Applied Mathematics, 107(1–3), 83–98, (2000).

[6] M. Davis, G. Logemann, and D. Loveland, ‘A machine program for
theorem proving’, Journal of the Association for Computing Machin-
ery, 5(7), 394–397, (1962).

[7] G. Davydov, I. Davydova, and H.K. Büning, ‘An efficient algorithm for
the minimal unsatisfiability problem for a subclass of CNF’, Annals of
Mathematics and Artificial Intelligence, 23(3–4), 229–245, (1998).

[8] DIMACS. Benchmarks on SAT.
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/.

[9] T. Eiter and G. Gottlob, ‘On the complexity of propositional knowledge
base revision, updates and counterfactual’, Artificial Intelligence, 57,
227–270, (1992).

[10] H. Fleischner, O. Kullman, and S. Szeider, ‘Polynomial-time recogni-
tion of minimal unsatisfiable formulas with fixed clause-variable differ-
ence’, Theoretical Computer Science, 289(1), 503–516, (2002).

[11] É. Grégoire and D. Ansart, ‘Overcoming the christmas tree syndrome’,
International Journal on Artificial Intelligence Tools (IJAIT), 9(2), 97–
111, (2000).

[12] É. Grégoire, B. Mazure, and L. Saı̈s, ‘Using failed local search for SAT
as an oracle for tackling harder A.I. problems more efficiently’, in Inter-
national Conference on Artificial Intelligence: Methodology, Systems,
Applications (AIMSA’02), LNCS 2443, pp. 51–60, (2002).

[13] Readings in Model-Based Diagnosis, eds., Console L. Hamscher W.
and de Kleer J., Morgan Kaufmann Publishers Inc, 1992.

[14] J. Huang, ‘Mup: A minimal unsatisfiability prover’, in Asia and South
Pacific Design Automation Conference (ASP-DAC’05), pp. 432–437,
(2005).

[15] H. Kautz, B. Selman, and D. McAllester, ‘Walksat in the SAT 2004
competition’, in International Conference on Theory and Applications
of Satisfiability Testing (SAT’04), (2004).

[16] M.H. Liffiton and K.A. Sakallah, ‘On finding all minimally unsatisfi-
able subformulas’, in International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT’05), pp. 173–186, (2005).

[17] I. Lynce and J. Marques-Silva, ‘On computing minimum unsatisfiable
cores’, in International Conference on Theory and Applications of Sat-
isfiability Testing (SAT’04), (2004).

[18] B. Mazure, L. Saı̈s, and É. Grégoire, ‘A powerful heuristic to locate in-
consistent kernels in knowledge-based systems’, in International Con-
ference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU’96), pp. 1265–1269, (1996).

[19] B. Mazure, L. Saı̈s, and É. Grégoire, ‘Boosting complete techniques
thanks to local search’, Annals of Mathematics and Artificial Intelli-
gence, 22, 319–331, (1998).

[20] Y. Oh, M.N. Mneimneh, Z.S. Andraus, K.A. Sakallah, and I.L. Markov,
‘Amuse: a minimally-unsatisfiable subformula extractor’, in Design Au-
tomation Confrence (DAC’04), pp. 518–523, (2004).

[21] C.H. Papadimitriou and D. Wolfe, ‘The complexity of facets resolved’,
Journal of Computer and System Sciences, 37(1), 2–13, (1988).

[22] SATLIB. Benchmarks on SAT. http://www.intellektik.informatik.tu-
darmstadt.de/SATLIB/benchm.html.

[23] L. Zhang and S. Malik, ‘Extracting small unsatisfiable cores from un-
satisfiable Boolean formula’, in International Conference on Theory
and Applications of Satisfiability Testing (SAT’03), (2003).

ANNEX: PROOFS
Proof of Property 1 If C is critical w.r.t. I then for each literal l of C, ∃ C′

s.t. C′ is once-satisfied by I and l̄ belongs to C′. C is falsified by I , thus l
is false w.r.t. I and l̄ is true w.r.t. I . l̄ is the only literal of C′ satisfied by I .
Accordingly if the value of l is reversed then C′ becomes falsified. �

Proof of Property 2 Any clause falsified by I belongs to a MUS of Σ because
I is optimal w.r.t. the number of satisfied clauses and at least one clause of
each MUS cannot be satisfied by I . The fact that any clause falsified by I
is critical is proved thanks to property 4 since I is a global mimimum. I is
optimal w.r.t. the number of satisfied clauses, thus at most one clause per MUS
is falsified. Also, if one flip allows us to satisfy one of theses clauses, another
clause of the MUS becomes falsified. Accordingly, at least one once-satisfied
clause linked to a clause falsified by I belongs to a MUS of Σ. �

Proof of Property 3 Let Γ be a MUS of Σ and C be a clause of Γ. By
definition of a MUS, Γ \ {C} is satisfiable. Let M be a model of Γ \ {C}.
Let us prove that C is critical w.r.t. M . First, C is falsified. Indeed, if C were
not falsified then Γ would exhibit a model M , which is impossible because
Γ is a MUS. Second, C is critical. Indeed, if any variable occurring in C is
flipped w.r.t. M , then at least one clause of Γ becomes unsatisfied since Γ is
unsatisfiable. That means that this new unsatisfied clause was once-satisfied
and linked to C. Accordingly, C is critical w.r.t. M . �

Proof of Property 4 If a variable occurring in a falsified clause w.r.t. a mini-
mum is flipped, then this clause is satisfied and at least one previously satisfied
clause becomes unsatisfied. That means that this new unsatisfied clause was
once-satisfied. Accordingly, the initial falsified clause was critical. �


