
Translating the At-Most-One Constraint into SAT

Pedro Barahona1, Steffen Hölldobler2 and Van Hau Nguyen2

1 Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

pb@fct.unl.pt
2International Center for Computational Logic

Technische Universität Dresden, 01062 Dresden, Germany
hau,sh@iccl.tu-dresden.de

Abstract. One of the most widely used constraint during the process of trans-
lating a practical problem into a propositional satisfiability (SAT) instance is the
at-most-one (AMO) constraint. This paper proposes a new encoding for the AMO
constraint, the so-called bimander encoding which can be easily extended to en-
code cardinality constraints. Experimental results reveal that the new encoding is
competitive. We will prove that the bimander encoding allows unit propagation
to achieve arc consistency. Furthermore, we show that a special case of the bi-
mander encoding outperforms the binary encoding, a widely used encoding, in
all our experiments.

1 Introduction

An increasing number of real-world applications in computer science can be expressed
as constraint satisfaction problems (CSPs) [17]. To utilize state-of-the-art SAT solvers,
CSPs need to be encoded as SAT instances (see [20,19,16]). There does not seem to be
general knowledge why a particular encoding performs better than others. In this study,
we will compare different encodings with respect to the following features:

– the number of auxiliary variables required,
– the number of clauses required,
– the number of variables per clause,
– the strength of the encoding in terms of performance of unit propagation in SAT

solvers,
– the runtime of a SAT solver on benchmark problems.

This paper propose a new way of encoding the at-most-one (AMO) constraint,
which is one of the most common constraint during the process of translating a CSP
into SAT ([21,10,18,14,7,9]). The new encoding, named the so-called bimander encod-
ing can be easily extended to cardinality constraints. We will show that one special case
of the bimander encoding outperforms the binary encoding [10] in all our experiments.
The bimander encoding allows unit propagation (UP) to preserve arc consistency, one
of the most important technique in Constraint Programming (see [6]).

2 Preliminaries

We adopt notions and notations from [9]. Let X = {Xi | 1 ≤ i ≤ n, n ∈ N} be a finite
set of propositional variables, let A be a finite, possibly empty set of auxiliary proposi-
tional variables, and let φ(X,A) be a propositional formula in conjunctive normal form
(CNF) encoding the constraint ≤1 (X1, ..., Xn). The encoding φ(X,A) is correct if
and only if:

– any (partial) assignment x̂ that satisfies≤1 (X1, ..., Xn) can be extended to a com-
plete assignment that satisfies φ(X,A), and

– for any (partial) assignment x̂ for X which assigns more than one variable of X
to TRUE, unit propagation (UP) detects a conflict, i.e., repeated applications of UP
yield the empty clause.

UP plays a crucial role in SAT solving as modern SAT solvers [15], whereas arc
consistency is one of the most important techniques in CSP solvers [6]. Therefore, when
translating a CSP to a SAT instance one should pay much attention to determine whether
UP on the resulting SAT instance enforces arc consistency. UP of a SAT encoding of
the constraint ≤1 (X1, ..., Xn) achieves the same pruning as arc consistency on the
original CSP if the following holds [9]:

– at most one propositional variable in X is assigned to TRUE, and if
– any variable Xi ∈ X is assigned to TRUE, then all the other variables occurring in
X must be assigned to FALSE using UP.

For the convenience,AMO(X) denotes the at-most-one clauses for the set of propo-
sitional variables X , and we illustrate the new encoding on a running example through
the set consisting of 8 Boolean variables, X = {X1, ..., X8}.

3 The Bimander Encoding

The new encoding, the so-called bimander encoding, is based on both the ideas of the
binary encoding and the commander encoding. Similarly to the commander encoding,
with a given positive number m, 1 ≤ m ≤ n, we partition a set of propositional vari-
ablesX = {X1, ..., Xn} intom disjoint subsets {G1, ..., Gm} such that each subsetGi

consists of g = d nme variables. However, we introduce a set of auxiliary propositional
variables B1, ..., Bdlog2me like in the binary encoding. The variables B1, ..., Bdlog2me
play the role of the commander variables in the commander encoding. The bimander
encoding is the conjunction of the following clauses:

1. At most one variable in each subset can be TRUE. We encode this constraint for
each subset Gi, 1 ≤ i ≤ m, by using the pairwise encoding:

m∧
i=1

〈AMO(Gi)〉,

In our running example we choose m = d
√
ne = 3 to obtain:

2

AMO(X1, X2, X3) ∧AMO(X4, X5, X6) ∧AMO(X7, X8).

2. The following clauses are generated by the constraints between each variable and
commander variables in a subset:

m∧
i=1

g∧
h=1

dlog2me∧
j=1

X̄i,h ∨ φ(i, j).

where φ(i, j) denotes Bj (or B̄j) if the bit j of i−1 represented by a unique binary
string is 1 (or 0).

The following set of clauses is generated for the running example:

X̄1 ∨ B̄1 X̄2 ∨ B̄1 X̄3 ∨ B̄1 X̄4 ∨B1 X̄5 ∨B1 X̄6 ∨B1 X̄7 ∨ B̄1 X̄8 ∨ B̄1

X̄1 ∨ B̄2 X̄2 ∨ B̄2 X̄3 ∨ B̄2 X̄4 ∨ B̄2 X̄5 ∨ B̄2 X̄6 ∨ B̄2 X̄7 ∨B2 X̄8 ∨B2

We prove the Correctness and the Complexity in [13] where we also show that the
bimander encoding maintains arc consistency. The bimander encoding can be gener-
alized to encode the at-most-k constraint. Furthermore, we point out that the pairwise
encoding and the binary encoding are two special cases of the bimander encoding (see
[13]).

4 Comparison

Table 1 presents the key features of many approaches for encoding the AMO constraint
(column enc). The columns clauses and aux vars depict the number of clauses required
and auxiliary variables, respectively. The column AC indicates whether UP achieves arc
consistency. The column origin refers to the original publications where the encoding
had been introduced. m denotes the disjointed subsets by dividing the set of proposi-
tional variables {X1, ..., Xn} in the bimander encoding.

Table 1. A summary of almost all known encodings of the AMO constraint, including several
encodings mainly used for cardinality constraints.

enc clauses aux vars AC origin

pairwise
(
n
2

)
0 yes none

linear 8n 2n no [21]
totalizer O(n2) O(nlog(n)) yes [4]
binary nlog2n dlog2ne yes [10]

sequential 3n− 4 n− 1 yes [18]
sorting networks O(nlog22n) O(nlog22n) yes [8]

commander ∼ 3n ∼ n
2

yes [14]
product 2n+ 4

√
n+O(4

√
n) 2

√
n+O(4

√
n) yes [7]

card. networks 6n− 9 4n− 6 yes [3]
PHFs-based nlog2n dlog2ne yes [5]

bimander n2

2m
+ nlog2m− n

2
log2m, 1 ≤ m ≤ n yes this paper

bimander (m = n
2

) nlog2n− n
2

dlog2ne − 1 yes this paper

As we can see in Table 1, the bimander encoding requires the least auxiliary vari-
ables – with the exception of the pairwise encoding – among known encodings. The

3

totalizer encoding proposed by Bailleux al et. [4] requires clauses of size at most 3,
and the commander encoding proposed by Klieber and Kwon [14] needs m (number of
disjointed subsets) clauses of size d nm +1e, whereas the product, sequential, binary and
bimander encodings require only binary clauses.

5 Experimental Evaluation

Our experiments use CLASP 2 [11] with default configuration on a 2.66-GHz Intel Core
2 Quad processor with 3.8 GB of memory. Bold font indicates the minimum time for
each benchmark. We abbreviate pairwise, sequential, commander, binary, product, and
bimander encodings as pw, seq, cmd, bin, pro and bim, respectively. For the commander
encoding, the set of variables is recursively divided into 2 disjoint subsets since it gives
best average results in our experiment. In case of the bimander encoding, we have
considered two different values for the parameter m, viz. m =

√
n and m = n

2 .

Table 2. A comparison of the run times for Pigeon-Hole problems. Run times are in seconds.

enc pw seq cmd bin pro bim(
√
n) bim(n/2)

10 2.16 0.73 0.56 0.80 0.22 0.33 0.22
11 22.15 5.79 4.46 6.59 6.13 5.10 2.10
12 244.59 117.83 43.27 29.52 43.21 38.19 26.06
13 >3600.00 1604.14 352.53 142.60 736.25 546.91 64.91
14 >3600.00 >3600.00 >3600.00 1271.24 >3600.00 >3600.00 560.03
average >1493.78 >1065.69 > 800.16 290.15 > 877.16 > 838.10 130.66

Table 3. A comparison of run times for satisfiable Quasigroup With Holes (QWH) problems [2].
Run times are in seconds.

1

enc pw seq cmd bin pro bim(
√
n) bim(n/2)

qwh.order30.holes320 0.46 0.28 0.23 0.25 0.23 0.20 0.22
qwh.order35.holes405 3.62 3.51 10.35 6.51 5.73 1.60 2.14
qwh.order40.holes528 134.71 115.62 124.26 120.47 241.20 58.90 159.21
qwh.order40.holes544 39.26 14.57 47.82 123.72 46.7 70.81 154.03
qwh.order40.holes560 121.74 65.36 55.68 119.66 33.16 21.22 53.27
qwh.order33.holes381 58.73 435.90 174.29 94.22 108.03 12.74 92.30
average 358.52 635.24 412.63 464.83 435.05 165.47 461.17

Table 4. A comparison of run times for All-Interval Series (AIS) problems (see prob007 in [12]).
Run times are in seconds. sol shows the number of all solutions of the corresponding instance.

enc pw seq cmd bin pro bim(
√
n) bim(n/2) sol

7 0.05 0.03 0.02 0.02 0.05 0.01 0.02 32
8 0.56 1.07 0.63 0.20 0.49 0.62 0.62 40
9 5.33 8.92 0.37 0.27 5.61 0.33 0.24 120
10 61.72 104.02 1.72 1.58 60.71 1.95 1.46 296
11 972.54 1387.67 11.96 8.94 269.43 11.34 6.72 648
12 >3600.00 >3600.00 78.91 49.24 >3600.00 69.52 43.81 1328
13 >3600.00 >3600.00 517.72 356.64 >3600.00 504.61 276.34 3200
14 >3600.00 >3600.00 3200.21 2748.69 >3600.00 3537.74 2005.18 9912
average >1480.02 >1537.71 476.44 395.69 >1392.03 515.76 291.79

4

Table 5. A comparison of run times for satisfiable Hamiltonian Cycle (HC) instances (taken from
[1]). Run times are in seconds.

enc pw seq cmd bin pro bim(
√
n) bim(n/2)

miles750 135.48 25.42 13.67 38.19 14.18 32.55 22.92
miles1000 67.77 10.93 7.65 7.38 12.45 9.52 8.19
miles1500 30.01 3.30 2.60 2.95 2.46 3.74 3.16
queen10 10 13.87 4.16 3.54 3.77 3.68 4.00 3.75
queen11 11 32.34 9.75 8.32 8.43 8.41 9.23 8.16
queen12 12 1.73 22.46 20.13 21.49 18.43 20.44 21.13
queen13 13 3.10 40.99 38.43 1.58 36.30 1.45 1.39
queen14 14 5.17 2.47 2.53 2.42 2.09 2.27 2.20
queen15 15 7.75 3.64 3.42 3.76 3.17 3.47 3.37
queen16 16 11.26 4.80 5.21 5.44 5.14 5.37 5.25
average 30.84 12.79 10.55 9.54 10.63 9.20 7.95

Throughout above experiments, we showed that two cases of the bimander encod-
ing, with certain parameters m =

√
n and m = n

2 , are very competitive. In particular,
the encoding in case m =

√
n performs clearly the best on QWH instances, and rather

well on the other benchmarks, whereas the encoding in case m = n
2 is clear the best on

the Pigeon-Hole, AIS, and HC problems, and acceptable on the QWH problem.

6 Conclusions and Future Works

Compared to many other well-known AMO encodings, the new encoding, bimander en-
coding, not only requires the least auxiliary variables (with the exception of the pairwise
encoding which does not erequire any auxiliary variables at all), but also binary clauses.
Although the commander encoding and the bimander encoding use the same approach,
the commander encoding requires clauses of size d nm + 1e (where m is the number
of disjoint subsets), whereas the bimander encoding requires only binary clauses. We
believe that this helps the bimander encoding to perform better than the commander
encoding in our experimental evaluation. Moreover, the bimander encoding has the ad-
vantage of high scalability, and it can easily be adjusted in terms of the number of addi-
tional propositional variables to obtain particular encodings. For example, the pairwise
or binary encodings are special cases of the bimander encoding.

The special case, by setting m = dn2 e disjoint subsets, of the bimander encoding
requires fewer auxiliary variables and clauses and shows a better performance in all our
experiments than the binary encoding [10].

In practice, the bimander encoding is practical and easy to implement. Our results
reveal that two particular cases of the bimander encoding are very competitive in a
comparison with other well-known encodings.

A future research is to study how the number of disjoint subsets could affect the
bimander encoding in realistic problems. It would be particularly useful to extend our
findings to the at-most-k constraint.

References
1. A computational symposium at cornell university, ithaca, ny, usa, 2002. http://mat.

gsia.cmu.edu/COLOR03/

5

2. Achlioptas, D., Gomes, C.P., Kautz, H.A., Selman, B.: Generating satisfiable problem in-
stances. In: Kautz, H.A., Porter, B.W. (eds.) Proceedings of the Seventeenth National Confer-
ence on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial
Intelligence, 2000, Austin, Texas, USA. pp. 256–261. AAAI Press / The MIT Press (2000)

3. Ası́n, R., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: Cardinality networks: a
theoretical and empirical study. Constraints 16(2), 195–221 (2011)

4. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. Prin-
ciples and Practice of Constraint Programming 9th International Conference CP-2003 pp.
108–122 (2003)

5. Ben-Haim, Y., Ivrii, A., Margalit, O., Matsliah, A.: Perfect hashing and CNF encodings of
cardinality constraints. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 7317, pp. 397–409. Springer (2012)

6. Bessiere, C.: Chapter 3 Constraint Propagation, vol. 2, pp. 27 – 81. Elsevier (2006)
7. Chen, J.C.: A new SAT encoding of the at-most-one constraint. In: Proc. of the Tenth Int.

Workshop of Constraint Modelling and Reformulation (2010)
8. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfia-

bility, Boolean Modeling and Computation 2, 1–26 (2006)
9. Frisch, A.M., Giannoros, P.A.: SAT encodings of the at-most-k constraint. some old, some

new, some fast, some slow. In: Proc. of the Tenth Int. Workshop of Constraint Modelling and
Reformulation (2010)

10. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-boolean satisfia-
bility problems with stochastic local search: A comparison of encodings. J. Autom. Reason.
35, 143–179 (October 2005)

11. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp: Progress
report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009, Potsdam, Germany, Septem-
ber 14-18, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5753, pp. 509–514.
Springer (2009)

12. Hnich, B., Miguel, I., Gent, I.P., , Walsh, T.: Csplib is a library of test problems for constraint
solvers. http://www.csplib.org/, [Online; accessed 24-August-2012]

13. Hölldobler, S., Nguyen, V.H.: An efficient encoding of the at-most-one constraint. Tech. rep.,
Knowledge Representation and Reasoning Group, Technische Universität Dresden, 01062
Dresden, Germany (2013)

14. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In: the Fourth
Workshop on Constraint in Formal Verification(CFV) (2007)

15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference, DAC 2001,
Las Vegas, NV, USA, June 18-22, 2001. pp. 530–535. ACM (2001)

16. Prestwich, S.D.: CNF Encodings, pp. 75–98. IOS Press (2009)
17. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming (Foundations of Arti-

ficial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)
18. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: CP 2005,

Spain, October 2005, Proceedings. Lecture Notes in Computer, vol. 3709, pp. 827–831.
Springer (2005)

19. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT.
Constraints 14(2), 254–272 (2009)

20. Walsh, T.: SAT v CSP. In: Principles and Practice of Constraint Programming - CP2000.
Lecture Notes in Computer Science, vol. 1894, pp. 441–456. Springer (2000)

21. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal
form. Information Processing Letters 68(2), 63–69 (1998)

6

