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Abstract. Course Timetabling (CTT) [I1] is a popular combinatorial
optimization problem, which deals with generating university timetables
by scheduling weekly lectures, subject to conflicts and availability con-
straints, while minimizing costs related to resources and user discomfort.
In CB-CTT, students enrol to curricula i.e., (possibly overlapping) col-
lections of courses. Lectures of courses pertaining to the same curriculum
must therefore be scheduled at different times, so that students can at-
tend all courses. In this paper we propose (i) a Constraint Programming
(CP) model for CB-CTT and (ii) a Large Neighborhood Search (LNS)
[I0] strategy exploiting constraint propagation to solve hard instances
of the problem. We then compare our findings against the current best
results on the ITC2007 [7] testbed.

1 Introduction

The problem of generating good timetables arises periodically in every university
of the world. The problem is inherently complex, involving scheduling weekly
lectures while avoiding conflicts i.e., situations in which students would have to
attend two lectures at the same time, and possibly generating timetables which
cause the least discomfort to both teachers and students. From a theoretical
point of view, the underlying graph-coloring problem is NP-complete [6]. For
this reason, CB-CTT has been seldom tackled by means of incomplete methods.

Because of its practical relevance, the problem has been widely studied (see
[11] for a survey) and many formulations exist, reflecting policies from various
universties. Two of them are particularly popular: the Post-Enrolment Course
Timetabling (PE-CTT) and the Curriculum-Based Course Timetabling (CB-
CTT) [7]. Both formulations have been the subject of the Second International
Timetabling Competition (ITC2007) [7], and are currently considered as stan-
dard formulations. The primary difference between the two formulations is the
origin of the matrix of conflicts between lectures. In PE-CTT, students enrol to
individual courses, thus two courses are in conflict if they appear together in a
student’s plan. Conversely, in CB-CTT, students enrol to curricula (presets of
courses), so a course is only in conflict with other courses in the same curriculum.
In this paper we are focusing on the latter formulation, whose variants have been
described thoroughly in [3]. Except for one case, CB-CTT variants only differ
on the nature and the relative importance (weight) of soft constraints.
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Problem description

We now formally define the considered variant of CB-CTT. The definition in-
volves the following entities

Days x Timeslots = Periods. We are given a set D of teaching days,
each one partitioned in a set of timeslots T C N. Each p ¢ P =D x T
defines a period which is unique within a week.

Rooms. We are allowed to schedule lectures in a set R of rooms, each one
with a specific capacity k, for r € R. Additionally, a roomslot rs € RS =
R x P represents a room in a specific period.

Courses. A course ¢ € C is composed of a set L. of lectures, that must be
scheduled at different times. Each course is taught by a teacher t. and is
attended by a set of students S¢. In addition, the lectures of a course should
be scattered over a minimum number of working days we and must not be
scheduled in any period u € U, C P declared as unavailable. The complete
set of lecture is L = | L, for all ¢ € C.

Curricula. Courses are organized in curricula ¢ € Q that students can
enrol to. Each curriculum has a set of courses Cq € C. Lectures pertaining
courses in the same curriculum cannot be scheduled together, in order to
allow students of each curricula to attend all courses.

A feasible solution of the problem is an assignment of a period and a room, to
each lecture, that satisfies the following hard constraints

Lectures. All lectures L must be scheduled.

Room occupancy. Two lectures l1, 1o € L,l; # l; cannot take place in the
same roomslot, no matter what course or curriculum they pertain to.
Conflicts. Lectures in the same course or in conflicting courses i.e., same
teacher or same curriculum, may not be scheduled at the same time.
Availabilities. A course may not be taught in any of its unavailable periods.

Feasible solutions can be ranked on the basis of their violations of the following
soft constraints

Room capacity. Every lecture [ € L. for ¢ € C should be scheduled in a
room r € R so that k, < S|, which can accomodate all of its students. If
this is not the case, |Sc| — ky m00m capacity violations are considered.
Room stability. Every lecture [ € L, for ¢ € C should be given in the same
room. Every additional room used for a lecture in course ¢ generates a room
stability violation.

Minimum working days. Lectures L. of a course ¢ € C should be scat-
tered over a minimum number of working days w¢. Each time a course is
scheduled in d < w¢ days, we count we — d working days violations.
Isolated lectures. When possible, lectures of the same curriculum should
be adjacent within a day. Each time a lecture is not preceded or followed
by lectures of courses in the same curriculum counts as a isolated lectures
violation.



Thus, in addition of being feasible, a solution s should have the minimal linear
combination of soft violations (see weights in Table

cost(s) = re(s) - wpe + 18(8) - wrs + Mmwd(8) - Wia + 81(s) - wy (1)
Violation Weight|Symbol
Room capacity 1 rc
Room stability 1 TS
Minimum working days 5 muwd
Isolated lectures 2 il

Table 1. Weights of the various types of violations [3]

3 Related work

We discuss previous work involving both CP models for other CTT variants,
and meta-heuristics for CB-CTT. To the best of our knowledge, our approach is
the first to address CB-CTT from a CP perspective.

Constraint programming. Cambazard et al. [4] describe a hybrid approach for
PE-CTT, that shares many similarities with our technique. Among other things,
the authors propose a CP model, coupled with a LNS search strategy, to tackle
complex instances of the problem. Some interesting insight is given on the ap-
proach. First, the authors stress the importance of releasing the right variables
during the LNS step. Second, they propose a Simulated Annealing (SA) ac-
ceptance criterion to escape local minima. Third, they handle feasibility and
optimization in different search phases. Cipriano et al. [5] describe a framework
for the integration of a CP solver with LNS and solve a simple CTT variant
where conflicts are solely determined by the availability of teachers.

Meta-heuristics. Many meta-heuristic methods have been proposed to deal with
the CB-CTT problem. Miiller [9] describes a multi-phase local-search algorithm
combining a constructive forward search to obtain a feasible solution with suc-
cessive local-search steps based on Hill-Climbing (HC), Great Deluge (GD) and
SA. Bellio et al. [2] propose a hybrid local-search algorithm which alternates
SA with dynamic Tabu Search (TS) with shifting penalties. The work is sup-
ported by an extensive statistical analysis on the effect of parameters. Li and
Hao [8] propose a three-phase hybrid algorithm which improves a greedy feasible
solution through alternate intensification (TS) and perturbation. The trade-off
between intensification and diversification is controlled by two parameters that
are adjusted based on the past performance. Abdullah et al. [T] describe a hybrid
meta-heuristic based on GD and an electromagnetic-like mechanism (EM) that
performed very well on various tracks of the ITC2007 competition.

4 Model and search strategy

Similarly to [4] and [5], we model CB-CTT in CP, and explore it employing a
LNS [10] search strategy. For the purpose of reproducibility, both the model and
of the LNS engine are available at http://bitbucket.org/tunnuz/cpctt.


http://bitbucket.org/tunnuz/cpctt

4.1 Model

Variables. We represent a solution as a set of roomslot; variables, that represent
both the room and the period a lecture | € L is scheduled in. The variable
domains are initialized as dom(roomslot;) = {1...|R|-|P|}. Additionally, some
redundant variables (namely day;, period;, timeslot;, room; with the obvious
channellings) are used as modeling sugar.

Hard constraints. Since we are using exactly |L| decision variables, expressing
the Lectures and Room occupancy constraints is trivial

alldifferent(roomslot)

To model the Conflicts constraint, we must take into account pairs of conflicting
courses and constrain their lectures to be scheduled at different periods

alldifferent({roomsiot; |l € L¢,ULc,})

Vi, € C,conflicting (c;, c2) where conflicting checks whether two courses
belong to the same curriculum or have the same teacher (note that this holds
when checking a course against itself). Finally, the Availabilities constraint
can be modeled by imposing that

period; € Ue, Vece C)l e L,

Note that, for our purpose, some of the hard constraints are available both as
hard and soft constraints. In particular, the Lectures and Conflicts constraint
can be transformed into soft constraints by imposing nvalues and count con-
straints between the roomslot and period variables and two auxiliary variables,
and then embedding the auxiliary variables in the cost function.

Soft constraints. For each of the soft constraints, we defined an auxiliary variable
to accumulate the violations of the constraints. For some of them, such as Room
stability, this involves counting, for each ¢ € C how many different values
(nvalues) were taken by {roomslot; | I € L¢}, and then subtracting it from |L.]|
to calculate how many extra rooms were used by the course. A similar approach
was taken to compute the violations for Minimum working days, while set
variables and cardinality constraints were used for Isolated lectures.

4.2 Search strategy

While some instances can be solved by CP alone, this is not the case for the
harder ones. In particular, the essential Lectures and Conflicts hard con-
straints are very difficult to tackle with classic branch & bound.

Our approach treats them as soft constraints, and solves the lexicographic
minimization problem where first all hard violations are eliminated, and then
the objective function (Equation [1f) is minimized. In order to get an advantage
on instances where CP alone is able to solve the hard constraints, we start each
resolution with a 10-seconds branch € bound attempt to solve the complete
model.



Our LNS search strategy revolves around the following ideas

— SA-like cost bounding. In order to escape from local minima, we allow
the cost of a neighboring solution to increase. However, to avoid disrupting
the positive effect that cost bounding has on propagation, we reverse the
standard SA probability of acceptance, and we compute the allowed cost
increase as A = —(tInp), where ¢ is the typical temperature parameter and
p ~U(0,1) is a random number in [0, 1]. Temperature ¢ is updated as t = ¢-A,
with 0 < A < 1 after p solutions have been accepted at the current level of ¢.

— Biased relaxation. At each LNS step we select a number d € {dmin, dmaz }
of variables to release, and re-assign them through branch & bound. A frac-
tion of the variables to release is chosen heuristically based on to the con-
straints being violated by the solution, the rest is chosen randomly. Branch
& bound is given a timeout of ¢, - d milliseconds where t,4, is a constant.

— Growing neighborhoods and stagnation. After iter,,,, - d iterations
have been spent at a certain d without any improvement, d is increased in a
VNS fashion. When d = d,,q, the search restarts with a perturbed solution.

— Adaptive d,i,. At each restart, the new d,,;, is set to the d that yielded
the highest number of (temporary) best solutions in the past iterations.

In general, our biased relaxation mechanism works as follows: whenever a lecture
[ causes some violations (either hard or soft), the variable roomslot; and the
variables related to the other lectures involved in the violation, are released. As
for the parameters, we currently use d,in = 2, dmaez = 5% of the number of
lectures, tyqr = 10, tinit = 35, p = 5, ttermar = 250 and A = 0.97.

5 Results

Table |2| shows our preliminary results (grey) against the current best ones in
literature, on the ITC2007 testbed. Our approach is still outperformed by the
well-established algorithms on many instances and further investigation is needed
to better deal with local minima in order to improve our solutions.

6 Conclusions and future work

Coupling a LNS strategy with a CP model seems a promising way to get the
best of the two worlds. On the one hand, CP allows to model problems in a high-
level language and comes with powerful propagation techniques. On the other
hand, LNS allows to explore the search space while exploiting the neighborhood
reduction provided by propagation. We expect the importance of neighborhood
reduction to become more and more relevant when dealing with problems in-
volving large neighborhoods or combination of them.

One of the most promising directions for the future of this approach is the use
of multiple channeled CP models to provide even better propagation and make
the LNS step faster. Another interesting area for development is the acceptance
criterion which, in our opinion, is fundamental to deal with local minima.



Inst.[Miiller [7] U [9]|Lii & Hao [8]|Abdullah et al. [1]|Bellio et al. [2]| CP+LNS |[Best
avg best avg best avg best avg best |[median|best
1 5.0 5 5.0 5 5.0 5| 5.00 5 6.0 5 5
2 61.3 43| 60.6 34| 53.90 39| 53.0 40| 219.5| 158 24
3 94.8 72| 86.6 70| 84.20 76| 79.0 70| 226.0| 158 66
4 42.8 35| 47.9 38| 51.90 35| 38.3 35 92.0| 62 35
5 |343.5 298(328.5 298| 339.5 315(365.20 326 931.5| 637| 290
6 56.8 41| 69.9 47| 64.40 50| 50.4 41| 174.0| 130 27
7 33.9 14| 28.2 19| 20.20 12| 23.8 17| 156.5| 97 6
8 46.5 39| 514 43| 47.90 37| 43.6 401 162.5| 70 37
9 |113.1 103| 113.2 99(113.90 104| 105.0 98| 216.0| 173 96
10 21.3 9| 38.0 16| 24.10 10| 20.5 11 137.5| 91 4
11 0.0 0 0.0 0 0.0 0| 0.00 0 0.0 0 0
12 |351.6 331| 365.0 320(355.90 337| 340.5 325| 716.0| 616| 300
13 | 73.9 66| 76.2 65| 72.40 61| 71.3 64| 152.0| 120 59
14 61.8 53| 62.9 52| 63.30 53| 57.9 54| 131.0| 103 51
15 | 94.8 —-| 87.8 69| 88.00 73| 78.8 70| 226.5| 150 66
16 | 41.2 —-| 53.7 38| 51.70 32| 34.8 27| 124.5| 93 18
17 | 86.6 —| 100.5 80| 86.20 72| 75.7 67| 198.5| 152 56
18 91.7 - 82.6 67| 85.80 77| 80.8 69| 144.5| 116 62
19 | 68.8 —-| 75.0 59| 78.10 60| 67.0 61| 199.0| 141 57
20 | 34.3 —| 58.2 35| 42.90 22| 38.8 33| 185.0| 137 4
21 |108.0 —| 125.3 105(121.50 95| 100.1 89| 257.5| 209 75

Table 2. Comparison with the best approaches in literature on ITC2007 instances.
Timeout (5 minutes) has been calculated using the competition benchmarking tool.

References

1

11.

. S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan. A hybrid metaheuristic

approach to the university course timetabling problem. Journal of Heuristics,
18(1):1-23, 2012.

R. Bellio, L. Di Gaspero, and A. Schaerf. Design and statistical analysis of a hybrid
local search algorithm for course timetabling. 15(1):49-61, 2012.

A. Bonutti, F. De Cesco, L.. Di Gaspero, and A. Schaerf. Benchmarking curriculum-
based course timetabling: formulations, data formats, instances, validation, visu-
alization, and results. 194(1):59-70, 2012.

H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos. Local search and
constraint programming for the post-enrolment-based course timetabling problem.
2008.

R. Cipriano, L. Di Gaspero, and A. Dovier. A multi-paradigm tool for large neigh-
borhood search. In Hybrid Metaheuristics, volume 434 of Studies in Computational
Intelligence, pages 389-414. Springer Verlag, 2012.

D. de Werra. An introduction to timetabling. 19:151-162, 1985.

L. Di Gaspero, B. McCollum, and A. Schaerf. The second international timetabling
competition (ITC-2007): Curriculum-based course timetabling (track 3). Technical
report, Queen’s University, Belfast (UK), August 2007.

Z. Li and J.-K. Hao. Adaptive tabu search for course timetabling. 200(1):235 —
244, 2009.

T. Miiller. ITC2007 solver description: a hybrid approach. 172(1):429-446, 2009.

. D. Pisinger and S. Ropke. Large neighborhood search. In Handbook of metaheuris-

tics, pages 399-419. Springer, 2010.
A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review,
13(2):87-127, 1999.



	Hybrid CP+LNS for the Curriculum-Based Course Timetabling Problem

