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Abstract. Energetic Reasoning (ER) is a powerful filtering algorithm for the
Cumulative constraint. Unfortunately, ER is generally too costly to be used in
practice. One reason of its bad behavior is that many intervals are considered as
relevant by the checker of ER, although most of them should be ignored. In this
paper, we provide a sharp characterization that allows to reduce the number of
intervals by a factor seven. Our experiments show that associating this checker
with a Time-Table filtering algorithm leads to promising results.

1 Introduction

Due to its relevance in many industrial contexts, the Cumulative Scheduling Problem
(CuSP) has been widely studied in Constraint Programming (CP). The CuSP is NP-
Hard. It is defined by a set of activities A and a resource of capacity C. Each activity
a ∈ A is defined by four variables: its starting time sa, its processing time pa, its
ending time ea and its height ha, which represents the amount of resources consumed
by the activity when it is processed. We use the notation a = {sa, pa, ea, ha}. Usually,
variables pa and ha are fixed integers. In this paper, we make such an assumption. A
solution to a CuSP is a schedule that satisfies the following constraints:

∀a ∈ A : sa + pa = ea ∧ ∀i ∈ N :
∑
a∈A

i∈[sa,ea[

ha ≤ C

In CP, this problem is generally represented by the global constraint Cumulative
[1]. The Energetic Reasoning of Baptiste et al. (ER) is one of the most powerful fil-
tering algorithm for Cumulative [2]. This algorithm uses a characterization of intervals
of interest, that is, intervals that are sufficient to check in order to ensure that all the
undergoing rules used for filtering domains are satisfied. Unfortunately, ER is often too
costly to be used in practice. First, its time complexity is O(n3). Moreover, the hid-
den constant in that time complexity is huge, as many intervals are characterized to be
of interest although most of them should be ignored. In the literature, only heuristics
approaches have been proposed for reducing the number of checked intervals [3].

This article provides a sharper characterization of intervals of interest. Our exper-
iments show a significant reduction in the running time of the ER checker. We point
out that assocating this energetic checker with a Time-Table filtering algorithm (based
on the cumulative profile of mandatory parts [7]) leads to promising results. Further,
our approach should permit to answer affirmatively to a theoretical open question with
respect to energetic filtering algorithms: Are the intervals of interest for the ER checker
sufficient in order to perform a complete ER filtering for the activities variables?



2 Background

Given a variable x, we denote x the minimum value in its domain and x the maxi-
mum value. The principle of ER is to compare the available area within a given interval
(length of that interval × capacity) with the quantity of resource necessarily taken by
activities that should partially or totally overlap this interval. The ER checker is de-
fined using MIa(t1, t2), the minimum intersection of activity a with an interval [t1, t2].
MIa(t1, t2) = max

(
0,min

(
pa, t2−t1, ea−t1, t2−sa

))
.

Proposition 1 (ER checker [4]). If the condition

∀t1, t2 ∈ N2, t1 < t2 C × (t2 − t1) ≥
∑
a∈A

ha ×MIa(t1, t2) (1)

is violated then the problem represented by Cumulative is unfeasible.

The issue is then to find the smallest set of intervals [t1, t2], t2 > t1 that should be
checked to detect the unfeasibility. From this condition a bound adjustment rule can be
defined. Value sa can be updated if scheduling activity a on sa would cause an overload
as described above. To check such potential overloads, we need to compute how much
additional energy a would require during [t1, t2] if a is scheduled on sa.

Baptiste et al. characterization In order to ensure that condition (1) holds, it is enough
to check intervals of the form: [t1, t2], t1 ∈ O1 < t2 ∈ O2, [t1, t2], t1 ∈ O1 < t2 ∈
O(t1), [t1, t2], t2 ∈ O2 > t1 ∈ O(t2), where O1 = {sa,∀a ∈ A} ∪ {sa,∀a ∈
A} ∪ {ea,∀a ∈ A}, O2 = {ea,∀a ∈ A} ∪ {sa,∀a ∈ A} ∪ {ea,∀a ∈ A},
O(t) = {sa + ea − t,∀a ∈ A}. The resulting subset of intervals forms the intervals of
interest of the ER. There is for each pair of activities 9+3+3=15 intervals of interest.
The characterization is proved to be sufficient in [2] (proposition 19), by implicitly an-
alyzing the slack function Slack(t1, t2) = C × (t2 − t1) −

∑
a∈A ha ×MIa(t1, t2).

As MIa(t1, t2) can be computed in constant time and given the definitions of O1, O2

and Ot, we obtain a naive checker in O(n3), by computing MIa(t1, t2) for all a, t1, t2.
However, the slack function is continuous piecewise linear, a local extrema can only be
found at flexion points, i.e., when the slope is changing, which has been proved to be
only in such intervals. This leads to a checker inO(n2) [2]. Two open questions remain.

1. The new set of intervals of interest is proved to be sufficient but could it be reduced?
2. Is the new set of intervals also sufficient to ensure a complete filtering of the time

bound adjustment rule based on the checker?

Schwindt’s characterization Schwindt has proposed a finer characterization of the
minimal value of the slack function (Theorems 3.7 and 3.8 in [8], written in German):
The slack function is locally minimal in interval [t1, t2] only if its left derivative is neg-
ative and right derivative positive, for both t1 and t2. As the slack function correspond
to the negation of the sum of minimal intersections, it must exists an activity i (resp j)
such that its minimal intersection has a left derivative greater than its right derivative on
t1 (resp. t2). This leads to Theorem 1.



Theorem 1. The slack function is locally minimum in interval [t1, t2] only if it exists
two activities i, j such that the two following conditions are satisfied.

δ−MIi(t1, t2)

δt1
>
δ+MIi(t1, t2)

δt1
(2)

δ−MIj(t1, t2)

δt2
>
δ+MIj(t1, t2)

δt2
(3)

Schwindt analyzes the variation of minimum intersection. He provides a first char-
acterization of the 8 possible intervals of interest for any pair of activities. This answers
to the first open question: The number of intervals in Baptiste et al. characterization can
be reduced. We propose in next section a different analyze of the minimum intersection,
which leads to a sharper characterization of activity pairs.

3 A New Characterization

For symmetry reasons we focus on condition (3). We wish to characterize for a starting
time t1 and an activity a the positive inflection points of function t2 → MIa(t1, t2):
Values t2 at which the left derivative of is greater than the right derivative.

Theorem 2. For a starting time t1 and an activity a the function t2 →MIa(t1, t2) has
at most one positive inflection point.

Proof. We prove theorem 2 by studying the four positions of t1 w.r.t. a. We prove that the function
t2 → MIa(t1, t2) is continuous piecewise linear, composed of at most three parts. The two
inflection points correspond to the start of consumption (SoCa) and the end of consumption
(EoCa). We also prove that EoCa is the only inflection point with a left derivative greater than
the right derivative. Graphically we show an example of each cases with an activity a = {sa ∈
[2, 4], pa=4, ea∈ [6, 8], ha}.

Case 1.

On the first case, the minimum starting time
of the activity a is greater than or equal to
the profile starting time: t1 ≤ sa. T ime

0 1 2 3 4 5 6 7 8 9 10

t1=1

a

0

4

By definition we have MIa(t1, t2) = max
(
0,min

(
pa, t2−t1, ea−t1, t2−sa

))
. We can de-

duce three different situations:

1. if t2 ≤ sa then MIa(t1, t2) = 0.
2. or sa ≤ t2 ≤ ea then MIa(t1, t2) = t2 − sa.
3. and finally ea ≤ t2 then MIa(t1, t2) = pa.

pa−(ea−t2) equals 0 when t2 = sa and pa when t2 = ea. This proves that when t1 ≤ sa then
consumption function is continue and piecewise linear, composed of three pieces with only one
positive inflection point: EoCa.



Case 2.

On the second case, the minimum ending
time of the activity a is smaller than or
equal to the profile starting time: t1 ≥ ea. T ime

0 1 2 3 4 5 6 7 8 9 10

t1=7

a

0

In this case, we have MIa(t1, t2) = 0 for any interval. Then the function is trivially continue
and piecewise linear with zero inflection point.

Case 3.

On the third case, the profile starting time
is greater than the minimum start time, but
smaller than the minimum end time and
maximum start time:
t1>sa and t1<ea and t1<sa

T ime
0 1 2 3 4 5 6 7 8 9 10

t1=3

a

0

3

Let ∆ = t1 − sa. We distinct three cases for the value of t2 :

1. if t2 ≤ sa then MIa(t1, t2) = 0.
2. or sj ≤ t2 ≤ ej −∆ then MIa(t1, t2) = t2 − sa.
3. and finally t2 ≥ ea −∆ thenMIa(t1, t2) = pa −∆.

As t2 − sa equals 0 when t2 = sa and pa − ∆ when t2 = ea − ∆ we have proved that the
consumption is continue and piecewise linear, composed of three pieces with only one positive
inflection point: EoCa.

Case 4.

On the fourth case, the profile starting time
intersect the mandatory part a:
t1>sa and t1<ea and t1≥sa T ime

0 1 2 3 4 5 6 7 8 9 10

t1=4.5

a

0
1.5

In this case we have two distinct cases for the value of t2 :

1. if t2 ≤ ea then MIa(t1, t2) = t2 − t1
2. otherwise MIa(t1, t2) = pa −∆

As t2 − t1 = pa − ∆ when t2 = ea then the consumption function is continue and piecewise
linear, composed of two pieces, with only one positive inflection point : EoCa.

Conclusion We have shown that for any starting value t1, and any activity a the function t2 →
MIa(t1, t2) is linear and piecewise continue, with, in each case, at most one point at which the
left derivative is greater than the right derivate: EoCa. This proves the Theorem. ut



Table 1: Intervals of interest for a pair of activities (i,j)
conditions interval
si≤sj ∧ ej≥ei [si, ej ] A
si≥sj ∧ si≤ej ∧ si≤sj ∧ sj+ej−si≥ei [si, sj+ej−si] B
si≥sj ∧ si≤ej ∧ ej≥ei [si, ej ] C
si≤sj≤ej≤ei [si, ej ] D
si≥sj ∧ si≤ej ∧ si≤sj ∧ sj+ej≤si+ei ∧ sj+ej≥2× si [si, sj+ej−si] E
sj≤si≤ej≤ei [si, ej ] F
ej≤ei ∧ ej≥si ∧ ej≥ei ∧ si+ei≤sj+ej [si+ei−ej , ej ] G
ej≤ei ∧ ej≥si ∧ ej≥ei ∧ si+ei≤sj+ej ∧ si+ei≤2× ej [si+ei−ej , ej ] H

We have characterized for an activity a the possible value at which condition (3)
holds. By symmetry, we can deduce the value of the starting time at which condition
(2) holds. Table 1 summarizes the intervals of interest of a pair of activities (i, j).

Our characterization is sharper than the one proposed by Schwindt: For instance,
case B in Table 1 is sharper than the equivalent case iii in table 3.5 page 84 in [8].
We may notice that intervals of interest may only start at values of the form sa, sa or
end at values ea, ea. This leads to a lighter algorithm for the O(n2) checker proposed
by Baptiste et al. [2]. We present the checker for interval with starting dates in OS =
{sa,∀a ∈ A}∪{sa,∀a ∈ A} as possible starting values (as CuSP is symmetric).

We define an event as a pair (time,activity). Let EM be the events for the last com-
pletion times, (ea, a)∀a ∈ A and ordered in increasing order of time. Similarly, we
define Em = (ea, a),∀a∈A, SM = (ea, a),∀a∈A and L = (sa + ea, a),∀a∈A.

1 foreach t1 ∈ OS do
2 slope = C −

∑
aMIa(t1, t1 + 1);

3 Load = 0; told2 = t1;
4 L′ = {(t′ − t1, a) | (t′, a) ∈ L};
5 foreach event(t2, a) in SM , Em, EM , L′ do
6 Load+= slope× (t2 − told2 ) ;
7 if Load < 0 then Fail;
8 if event is a SoCa then
9 slope−= ha;

10 else if event is aEoCa then
11 slope+= ha;
12 end
13 told2 = t2;
14 end
15 end

Algorithm 1: Energetic Reasoning Checker.

// The slope represents the evolution of
the Slack over time.
// Events are evaluated in increasing
order of their time. Starting on t1+1.

4 Experiments and Future Work

Experiments were run on a 2.9 GHz Intel Core i7, in Choco [9] version 3 (release 13.03).
In order to check the gain obtained with the new characterization we have considered
random instances and instances from the PSPLIB[6]. Random instances have either 10
or 20 activities. Their processing times were chosen within [1, 10], their heights within
[1, 5]. We used the first fail [5] search strategy, and three checkers: Algorithm 1, Baptiste
et al. checker and the basic O(n3) checker. The number of nodes is identical for all
instances for the three checkers, as expected. Table 2 shows a running time improvement
of 20 to 30% using Algorithm 1, in comparison with Baptiste et al. algorithm.

We also used our checker in combination of the Time-Table filtering algorithm [7],
to compare that combination with Time-Table Edge-Finding filtering algorithm [10].



We fixed a solving time limit of five minutes. Surprisingly, when proving optimality on
random instances with a single resource, using the checker proved optimality for 72 of
the 100 generated instances, while TTEF was unable to do so. This proves that associ-
ating this new checker with a Time-Table approach could be a good default propagator
in constraint solvers.

Algorithm 1 Baptiste et al. O(n3)
Instances (µs/node) (µs/node) (µs/node)
Random10 16.47 24.97 29.31
Random20 43.95 56.24 78.74
PspLib 30 450.67 618.77 1268.92
PspLib 120 1 339.24 1 683.26 11 288.54

Table 2: Average time per node.

TT TT + TT +
TTEF Algorithm 1

Random20 6 7 72

Table 3: #proved optimum over 100 in-
stances.

As a future work, our results should be confirmed by using dedicated search heuris-
tics, which was not the case in our preliminary experiments. Moreover, as a direct con-
sequence of our new case-based characterization, we can answer affirmatively to the
second theoretical open question: The interval of interests of Baptiste et al. is complete
for the propagation algorithm. As the proof needs a better enlightenment and cannot
easily fit in a short paper, we will present it in a new paper.
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