
A Global Acyclicity Constraint for Bayesian
Network Structure Learning

Hella-Franziska Hoffmann and Peter van Beek

David R. Cheriton School of Computer Science, University of Waterloo, Canada
{hrhoffmann,vanbeek}@uwaterloo.ca

Abstract. In this work we present a global acyclicity constraint that
has applications in Bayesian network structure learning. Given a set of
vertices V = {V1, . . . , Vn} and a set of potential parent sets P(Vi) (sub-
sets of V \ {Vi}) for each vertex Vi, we consider a constraint model with
variables xi corresponding to vertices Vi and domains Di equal to P(Vi).
The acyclicity constraint requires every parent set assignment to induce
a directed acyclic graph. We describe a pre-pruning process and give
a polynomial-time filtering algorithm that achieves arc consistency for
the constraint. We then illustrate how this propagator can be integrated
into a branch-and-bound framework to exactly learn Bayesian network
structures from complete discrete data.

1 Introduction

A Bayesian network (BN) is a probabilistic graphical model that provides a
compact representation of a joint probability distribution of random variables.
It consists of a labeled directed acyclic graph (DAG) whose vertices correspond
to random variables and whose edges display conditional dependencies among
the variables. Each vertex is labeled with a conditional probability distribution
that specifies the dependence of the vertex on its parents in the DAG.

One of the main challenges is learning a BN structure from data. A standard
approach is to define a score for each candidate BN that measures how well it
is supported by the observed data and then search for a BN with maximum
score. The resulting optimization problem is known to be NP-hard ([1]) for any
reasonable scoring function, even if we limit the number of parents per vertex in
the DAG to two.

Heuristic and exact algorithms for this problem have been studied extensively
in recent time. Most heuristic approaches are based on local search strategies
that fail to guarantee optimality. Most exact algorithms are based on a dynamic
programming (e.g. [7,9]) or a mixed integer linear programming approach (e.g.
[6]) that are only applicable to small settings (up to 30 variables). Cussens [2]
applied a cutting plane algorithm to larger problem instances (up to 60 variables)
but it may require several hours of computation to find the optimal network.

De Campos et al. [3] and Etminani et al. [5] both proposed a branch-and-
bound algorithm that uses constraints and, in contrast to the above described



approaches, provides an any-time procedure; if stopped at any moment, it pro-
vides approximate solutions. Here we introduce a different branch-and-bound
approach that uses a global acyclicity constraint propagator to speed up the
search. The main difference to De Campos et al.’s approach is that while main-
taining feasible upper bounds on the optimal score, their intermediate solutions
may contain cycles. Their algorithm relies on branching over (forbidden) arcs in
order to break cycles in intermediate solutions. Our approach maintains feasible
acyclic solutions at all times while providing an easy way to incorporate side
constraints.

Our work is also related to Grégoire Dooms work on a general graph con-
straint solver [4] which, among other constraints, includes a directed acyclic
graph constraint over a single graph domain variable. However, this constraint
and the corresponding propagator cannot be used to learn BNs efficiently as the
number of feasible network structures (and thus the domain size for a graph
domain variable) may be exponential in the input size.

Our work is still in progress and its practical applicability remains to be
evaluated via experiments. We are convinced that our approach can compete
with existing exact algorithms in terms of running time while providing any-time
features and the possibility to incorporate side constraints. We also speculate
that the filtering algorithm for the global acyclicity constraint may be useful in
other applications that require the computation of a DAG.

Outline. The remainder of this paper is organized as follows. In Section 2, we
establish the necessary background and notation. We describe a new constraint
programming approach to BN structure learning in Section 3 and conclude with
a short discussion of future work in Section 4.

2 Background

A Bayesian network can be defined as a triple (G,X , P ), where G is a directed
acyclic graph with vertices corresponding to random variables X and P is a
collection of conditional probability distributions; see [9] for an example.

In this paper we consider the Bayesian network (BN) structure learning prob-
lem. Given complete data over attributes and a scoring function σ, learn a BN
structure (DAG) that maximizes the score. Throughout this paper we assume
that the scoring function is decomposable. That is, the total score of a BN struc-
ture G can be expressed as the sum of local scores σi(G) for each vertex Vi in G.
Each of these local scores σi(G) only depends on the parent set of Vi in G. Thus,
we can compute local scores c(Vi,S) for each candidate parent set S of each
vertex Vi in a preprocessing step and use them to evaluate the overall quality of
candidate BNs.

3 Constraint Programming Approach

In this section we describe a new approach to BN structure learning using con-
straints. We give a constraint model in Section 3.1. In Section 3.2, we identify



some properties of satisfying parent set assignments and describe a propagation
technique that can be used to pre-prune the domains. In section 3.3, we present
a filtering algorithm that achieves generalized arc-consistency for the acyclicity
constraint in polynomial time and discuss the integration of the propagators into
a branch-and-bound framework in Section 3.4.

3.1 Constraint Model

Given a set of vertices V = {V1, . . . , Vn}, a set P(Vi) ⊆ 2V\{Vi} of potential
parent sets for each vertex Vi ∈ V and a score c(Vi,S) for every Vi ∈ V and
every S ∈ P(Vi), we define a variable xi for every vertex Vi ∈ V and set its
domain Di to the candidate set P(Vi). The model uses a single global acyclicity
constraint called acyclic(x1, . . . , xn) that requires any feasible assignment of a
parent set Si ∈ P(Vi) to each of the vertices Vi to not induce a directed cycle in
the corresponding directed graph, i.e. G = (V,

⋃n
i=1{(P, Vi) : P ∈ Si}) is a DAG.

The goal is to find a parent set assignment with maximum score that satisfies
the acyclicity constraint.

3.2 Pre-Pruning of the Domains

We start with a simple observation. Suppose vertex V1 is included in every
candidate parent set for V2, then we know that the edge (V1, V2) must exist in
any DAG corresponding to a feasible parent set assignment. This implies that
(V2, V1) cannot be an edge of a valid DAG. Thus, we can remove all parent sets
that contain V2 from x1’s domain. We can further prune the domains in a similar
way by ruling out larger cycles; identify edges that are included in any feasible
parent set assignment, then remove all parent sets from the variable domains
that would introduce cycles with repect to these edges.

Identifying necessary edges for the parent set assignment of a vertex V1 takes
O((m− 1)k) time where m is the number of potential parent sets in P(V1) and
k is an upper bound on the number of vertices per candidate parent set. Thus,
identifying the backbone of all necessary edges takes O(nmk) time.

Note that there is no valid parent set assignment for a given instance if
the corresponding backbone contains a directed cycle. We should therefore first
check whether the backbone contains any directed cycles. This can simply be
done using a depth-first search. Any time we remove a parent set S from the
candidate set of a vertex V1, new parents can become necessary for V1 with
respect to the resulting candidate set. In this case we can add the corresponding
necessary in-arcs to the backbone structure and repeat the pruning process.

Unfortunately, this procedure does not necessary achieve arc consistency, as
there are instances in which not even a single edge may be forced by the given
candidate parent sets.

3.3 A Polynomial-Time Filtering Algorithm

In this section we describe a propagator for the acyclicity constraint that achieves
generalized arc consistency in polynomial time. We first present and analyze an



Algorithm 1: Checking Satisfiability

Input: Vertex set V, set P(Vi) of potential parent sets for each vertex Vi in V.
Output: True if there is a feasible parent set assignment and false otherwise.

The variables Si represent a feasible assignment if there exists one.
1 k ← 0;
2 Si ← nil for all Vi ∈ V;

3 while
⋃k−1

j=0
W j 6= V do

4 W k ← ∅;
5 for all vertices Vi not in

⋃k−1

j=0
W j do

6 if Vi has a candidate parent set S ∈ P(Vi) with S ⊆
⋃k−1

j=0
W j then

7 Si ← S;

8 W k ←W k ∪ {Vi};

9 if W k = ∅ then return false;
10 k ← k + 1;

11 return true;

algorithm that checks satisfiability for given candidate parent sets. We then ex-
plain how this algorithm can be used to achieve generalized arc consistency.

Checking Satisfiability. Algorithm 1 can check whether a collection of poten-
tial parent sets allows a feasible parent set assignment, i.e. an assignment that
represents a DAG. Its correctness is based on the following well-known property
of directed acyclic graphs.

Proposition 1. Let G = (V,A) be a directed graph and let PG(v) denote the
parent set of vertex v in G. Then G is acyclic if and only if for every non-empty
subset C ⊂ V there is at least one vertex v with PG(v) ∩ C = ∅.

The algorithm works as follows. First, it searches potential sources for the DAG,
i.e. vertices for which ∅ is a potential parent set. We store these vertices in W 0.
Note that if a directed graph does not have a source, it must contain a cycle by
Proposition 1. Thus, if W 0 remains empty, any possible parent set assignment
will contain a cycle. Hence, there is no parent set assignment satisfying the
acyclicity constraint. In the next iteration, the algorithm searches for vertices
that have a candidate parent set consisting of potential sources only. These
vertices form set W 1. Again, if there are no such vertices, then no vertex in
V \W 0 has a candidate parent set completely outside V \W 0, which violates the
acyclicity characterization of Proposition 1. Thus, there is no consistent parent
set assignment. We continue this process until all vertices are included in one of
the W k sets or until we find a contradicting set V \ (

⋃k
i=0W

i) for some k.

Theorem 1. We can test satisfiability in O(n2m) time, where n is the number
of vertices and m is an upper bound on the number of candidate parent sets per
vertex.



Achieving Generalized Arc Consistency. The algorithm for checking satis-
fiability can be used to achieve generalized arc consistency. The main idea is that
we can use the satisfiability check to test for each vertex whether every given
parent set Si in the candidate set P(Vi) has a support. We simply substitute the
set of potential parent sets P(Vi) for Vi by the set {Si}. A satisfiability check on
the resulting instance successfully tests whether there is a consistent parent set
assignment containing Vi ← Si.

We run this test for every possible value in every domain. If we find a parent
set that cannot appear in any feasible solution, we remove this parent set from
the corresponding domain. Otherwise, if there is no such parent set, then all of
the domain elements have a support and hence the instance is arc-consistent.
Lallouet and Legtchenko [8] used a similar technique to achieve arc consistency
provided that they are given certificates to check satisfiability.

Theorem 2. We can enforce arc consistency for the acyclicity constraint in
O(n3m2) steps.

3.4 The Branch-and-Bound Framework

So far we have described domain pruning techniques for the proposed acyclicity
constraint. In order to solve the optimization problem that arises in BN structure
learning, we integrate the propagators into a branch-and-bound framework.

The pre-pruning step described in Section 3.2 can easily be used iteratively
in a branch-and-bound algorithm as all necessary parents corresponding to the
original candidate sets stay necessary for any pruned version of the candidate
sets. Thus, it suffices to check whether any in-arcs not already in the backbone
graph become necessary. Hence, the more necessary edges we have identified,
the less time we need per iteration. An important part of future work is to
empirically asses the running time in practice. It might be beneficial to apply
this pruning technique only for a certain subset of vertices, restrict the number
of iterations or only look for cycles with bounded length.

We speculate that branching over the domain of one vertex in each level
of the tree would work best with our filtering algorithm. Running Algorithm 1
on the pre-pruned domains will provide a first (sub-optimal) feasible parent set
assignment and create initial sets W j that can be used to find a good odering of
the vertices for the branching process. It is best to first branch over the domain
of vertices Vi in the W j with largest index, as the least changes have to be
made to check feasibility of the resulting CSP and these vertices are likely to
have smaller domains compared to vertices in any of the lower order W j sets.
Analogously to Etminani et al. [5] we consider the vertices in each level in the
order that maximizes the score of the forced parent sets. This way we can use
additional bounding rules based on the score like the ones described in [5].

Note that the pruning methods described above all worked independently of
the respective scores. There are simple, widely used pre-processing steps that
rule out suboptimal candidate parent sets based on their score; see e.g. Lemmas
in [3]. We will use these rules in our implementation to prune the initial domains.



Of course, the model also allows us to incorporate additional constraints that
are relevant for specific application. De Campos et al. [3] describe constraints
that restrict the indegree of a vertex or force certain arcs. We can easily integrate
these constraints to further reduce the search space.

4 Conclusion and Future Work

In this work we presented and analyzed the first filtering algorithm for an acyclic-
ity constraint. We described a technique that can be used to pre-prune the do-
mains. We presented an algorithm that can successfully check satisfiability of a
given instance and used this satisfiability test to design a poly-time propaga-
tor for the acyclicity constraint. We then sketched how these algorithms could
be integrated into a branch-and-bound framework to efficiently learn Bayesian
network structures from data.

This is work in progress and many open problems remain. Most importantly,
the algorithms should be implemented. An extensive empirical study is needed to
assess the practical performance and competability of the proposed algorithms.

References

1. D. Chickering, C. Meek, and D. Heckerman. Large-sample learning of Bayesian
networks is NP-hard. In Proceedings of the 19th Conference on Uncertainty in
Artificial Intelligence (UAI-03), pages 124–133, 2003.

2. J. Cussens. Bayesian network learning with cutting planes. In Proceedings of the
27th Conference on Uncertainty in Artificial Intelligence (UAI-11), pages 153–160,
2011.

3. C. P. de Campos, Z. Zeng, and Q. Ji. Structure learning of bayesian networks using
constraints. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 113–120, 2009.

4. G. Dooms. The CP(Graph) Computation Domain in Constraint Programming. PhD
thesis, Université Catholique de Louvain, Belgium, 2006.

5. K. Etminani, M. Naghibzadeh, and A. R. Razavi. Globally optimal structure learn-
ing of bayesian networks from data. In Proceedings of the 20th International Con-
ference on Artificial Neural Networks: Part I, ICANN’10, pages 101–106, Berlin,
Heidelberg, 2010. Springer-Verlag.

6. T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian network
structure using lp relaxations. Journal of Machine Learning Research - Proceedings
Track, 9:358–365, 2010.

7. M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks.
J. Mach. Learn. Res., 5:549–573, 2004.

8. A. Lallouet and A. Legtchenko. From satisfiability to consistency through certifi-
cates: application to partially defined constraints. In Proceedings of the 2006 ACM
Symposium on Applied Computing, SAC ’06, pages 415–416, New York, NY, USA,
2006. ACM.

9. T. Silander and P. Myllymäki. A simple approach for finding the globally optimal
Bayesian network structure. In Proceedings of the 22nd Conference on Uncertainty
in Artificial Intelligence (UAI-06), pages 445–452, 2006.


