
Explanation-Guided Large Neighborhood Search

Charles Prud’homme1, Xavier Lorca1, and Narendra Jussien1

École des Mines de Nantes, INRIA TASC, LINA UMR CNRS 6241,
FR-44307 Nantes Cedex 3, France

{Charles.Prudhomme,Xavier.Lorca,Narendra.Jussien}@mines-nantes.fr

Abstract. One of the most well-known and widely used local search
techniques for solving optimization problems in Constraint Programming
is the Large Neighborhood Search (LNS) algorithm. Such an hybrid tech-
nique is, by nature, very flexible and can be easily integrated within stan-
dard backtrack procedures. One of its drawbacks is that the relaxation
process is quite often problem dependent and requires randomization to
ensure search diversification. Several works have been dedicated to over-
come this issue through problem independent parameters. In this paper,
we show that LNS hard-to-find problem independent relaxation strategy
can be addressed using an explanation-based search. We evaluate our
proposal on a set of optimization problems. We show that our approach
is at least competitive with or even better than state-of-the-art algo-
rithms paving the way to a new use of explanation-based approaches for
improving search.

1 Introduction

In the context of constraint programming (CP) for optimization problems, one of
the most well-known and widely used local search techniques is the Large Neigh-
borhood Search (LNS) algorithm[11]. A LNS is a two-phase algorithm which
improves a given solution by alternatively destroying and repairing it. LNS com-
bines Local Search by relaxing part of a solution and Constraint Programming
for repairing process and bounding the objective variable. This technique has
proven to be very flexible and to be easily integrated within standard backtrack
procedures. One drawback of LNS is that the relaxation process is quite problem
dependent [1, 2, 7]. A random selection of the variables to unfix may be consid-
ered first. But problem dedicated variations tends to be more efficient[1, 2, 7, 11].
More sophisticated neighborhoods, which did not rely on a dedicated problem,
have been proposed in [8]. They introduced a Propagation-Guided LNS: the vol-
ume of domain reduction related to propagation enables to link variables together
inside or outside neighborhoods. Such approaches rely on a parametrization of
the heuristics.

The general behavior of LNS is described in Algorithm 1. Starting from an
initial solution S, LNS selects and releases a subset of variables, referred to as
the neighborhood (line 3). The partially destroyed solution is then repaired in
order to find an improving solution S′ (line 4). If such a solution is found (line 5),



Algorithm 1 Large Neighborhood Search
Require: an initial solution S
1: procedure LNS
2: while Optimal solution not found and a stop criterion is not encountered do
3: relax(S)
4: S′ ← findSolution()
5: if eval(S’) < eval(S) then
6: S = S′

7: end if
8: end while
9: end procedure

it is stored (line 6). These operations are executed until the optimal solution is
found or a stopping criterion (for instance a time limit) is encountered (line 2).

During the last decade, explanation-based techniques have regained attention
in CP. Nogoods and explanations have long been used in various paradigms for
improving search [3, 4, 9, 10]. An explanation records some sufficient information
to justify an inference made by the solver (domain reduction, contradiction, etc.).
It is made of a set of propagators (a subset of the set of the original propagators
of the problem) and a set of decisions taken during search.

Explanations have been successfully used for improving constraint program-
ming solving. Both complete (as the mac-dbt algorithm [5]) and incomplete (as
the decision-repair algorithm [4]) techniques have been proposed. Those tech-
niques follow a similar pattern: learning from failures by recording each domain
modification with its associated explanation (provided by the solver) and tak-
ing advantage of the information gathered to be able to react upon failure by
directly pointing to relevant decisions to be undone.

Despite being possibly very efficient, explanations suffer from several draw-
backs: they naturally induce several costs (memory, cpu) and their implemen-
tation can be quite intrusive. Moreover, explanations, as constraint programing
itself, is inclined to satisfaction problems rather than optimization problems.

In this paper, we show that LNS hard-to-find problem independent tech-
nique can be addressed using explanations. A first contribution relies on a
configuration-free neighborhood selection based on the explanation of the cur-
rent solution. A second contribution is the operational implementation of this
mechanism. We evaluate our proposal on a set of optimization problems. We
show that our approach is competitive with or even better than state-of-the-art
algorithms paving the way to a new use of explanation-based approaches for
improving search.

2 The Explanation-Guided LNS

Explanation-Guided LNS (EGLNS), an explanation-guided neighborhood for
Large Neighborhood Search is a generic, configuration-free approach to choose
variables to relax, based on the explanation of the non optimal nature of the cur-
rent solution. Basically, we modify the RELAX(S) method of Algorithm 1. For
sake of simplicity, the following descriptions are stated in a minimization con-



Algorithm 2 Explanation-Guided neighborhood (in a minimization context)

Require: o: the objective variable
1: procedure relax(S)
2: if a new solution has been found then
3: computeNeighborhood(S, o)
4: else
5: diversify()
6: end if
7: end procedure

1: procedure computeNeighborhood(S, o)
2: k ← 0, Ik ← {Lowo}
3: Pk ← relaxPath(pathTo(S), o, Ik)
4: while apply(Pk) fails do
5: k ← k + 1
6: Ik ← Ik−1 ∪ {Lowo + k}
7: Pk ← relaxPath(Pk−1, o, Ik)
8: end while
9: end procedure

text. Obviously, they can be adapted to a maximization context with marginal
modifications. Algorithm 2 is decomposed in two main steps: (a) a new solution
has been found, a new neighborhood has to be computed (left hand side, line 2-
3); (b) or the current neighborhood does not let to find a new solution, it has to
be diversified (left hand side, line 5).

We introduce the intuition of the method computeNeighborhood of Al-
gorithm 2 that builds such a neighborhood (right hand side, lines 1-9). Given
a solution S and its decision path P (i.e., a chronologically ordered sequence
of decisions), retrieving the subset of decisions of P which are related to the
restrictions of Domo, the initial domain of the objective variable o, provides
enough information to define a neighborhood. Removing such decisions from P
relaxes the domain of the objective variable o, and enables to improve the value
assigned to o, i.e., a value in [Lowo, o

∗[, where o∗ is the value assigned to o in
the last solution. Computing decisions related to the value removals is achieved
thanks to the computation of explanations.

The computation of the neighborhood is conditioned by the discovery of a
new solution S. First, an interval I0 is set to the initial domain lower bound of the
objective value (line 2). Then, an initial neighborhood is computed by a call to
the relaxPath method (line 3) (not described here): it consists in a relaxation
of the decision path which led to S (retrieved thanks to the pathTo(S) method).
Decisions related to the removal of I0 from Domo are removed from the decision
path. The newly updated decision path Pk is applied (line 4), with respect to the
chronological order. Due to the cut on the objective variable o, the application
of Pk may fail. In that case, the neighborhood needs to be updated until Pk can
safely be applied. A new interval Ik is computed by adding the kth value after
Lowo, contained in Domo (line 5-6). Building a larger interval relaxes Pk a little
more at each step k.

When the relaxed decision path has been applied without fail but no im-
proving solution has been found during the exploration of the remaining search
space, a diversification of the neighborhood is required to explore another search
space. This is achieved through a call to the method diversify (left hand side,
line 5). We choose to randomly select a set of variables to fix, based on S. To
ensure that such method ends, the number of variables selected monotonically
decreases with failures.



3 Evaluation

The central issue of the Explanation-Guided LNS algorithm is to speed up the
LNS process by designing neighborhoods directly related to the objective vari-
able and yet to explore more appropriate parts of the search space. This section
demonstrates the benefits of plugging Explanation-Guided LNS in and its ro-
bustness.

Benchmark protocol. Random LNS, Propagation-Guided LNS and Explanation-
Guided LNS were implemented in Choco-13.03 [12], a Java library for constraint
programming. All the experiments were done on a Macbook Pro with a 6-core
Intel Xeon at 2.93Ghz running on MacOS 10.6.8, and Java 1.7. Each run had
a five minutes time limit. EGLNS has been evaluated on three problems ex-
tracted from the MiniZinc 1.6 [6] distribution. Optimization problems without
any global constraints have been selected for the evaluations.1 Moreover, we kept
instances for which classic backtrack algorithm finds at least one solution within
a five minutes time limit (a LNS needs an initial solution to be activated). Each
example is run ten times and the arithmetic mean of computation time, best ob-
jective and number of solutions are reported. Note that the first solution of each
run is always the same one, whatever versions of LNS is plugged in. The results
are represented with tables. Tables are presented to report pairwise contribu-
tion of approaches in the best found solutions. The column worse (resp. same
and better) counts the number of instances where a given approach provides a
worse (resp. equivalent and better) objective value than the best one found with
another approach in the time limit.

3.1 Comparisons with RLNS and PGLNS

The main motivation of this paper is to improve the resolution of optimiza-
tion problems. In this section, we compare EGLNS with a Random LNS and
Propagation-Guided LNS. Even though the former is a naive approach, it comes
with two benefits: it does not require any configuration and, the strong diver-
sification it provides kicks it out of local optimum. The latter, neither custom
designed neighborhood but relying on global parameters, has been proven to be
very efficient.

Explanation-Guided LNS versus Random LNS. As a more complex approach
but still configuration-free, EGLNS may be less efficient in getting out of local
optima and may suffer from the computation of the explanations. The first eval-
uation concerns the contribution of EGLNS in comparison with RLNS. Table 1
shows that EGLNS finds an equivalent or better solution in 82% of the instances
within the time limit. And the gain of using EGLNS (144 instances) clearly over-
comes the loss (43 instances). Thanks to the explanations, EGLNS discovers the
structure of the problem and forces first to focus on it. In that sense, EGLNS is

1 Global constraints require implementation of specific explanation schemas.



Table 1. Impact of EGLNS in compar-
ison with RLNS.

Problem inst. worse same better

cutting stock 100 26 9 65
prize collect. 66 10 43 13
vrp 74 7 1 66

total 240 43 53 144

Table 2. Impact of EGLNS in compar-
ison with PGLNS.

Problem inst. worse same better

cutting stock 100 41 9 50
prize collect. 66 13 42 11
vrp 74 26 1 47

total 240 80 52 108

a kind of an instance dedicated approach. The difficulty of the Prize Collecting
Problem remains more on the proof of the optimum value rather than on finding
it. That explains why there are so many equivalent solutions between EGLNS
and RLNS.

Explanation-Guided LNS versus Propagation-Guided LNS. Another generic ap-
proach outperforms RLNS, even if it requires parametrization.2 The next eval-
uation, in Table 2, compares EGLNS with PGLNS. Once again, even though
it is less obvious than with RLNS, selecting the neighborhoods with EGLNS
is a good choice: it finds an equivalent or better solution in 66.6% within the
time limit. The gain of using EGLNS (108 instances) overcomes the loss (80
instances) once again. The closeness relation3 in PGLNS is naturally induced
by EGLNS thanks to both the explanation network and the use of the decisions
(which impact variables through the propagation phase). However, PGLNS does
not focus on a particular subpart of the problem (due to randomness), whereas
EGLNS always starts from the objective variable to explore the subparts of the
problem.

We show that the Explanation-Guided LNS is competitive with both the
Random LNS and the Propagation-Guided LNS, two problem-independent al-
gorithms. The standard deviations of the best objective for RLNS, PGLNS
and EGLNS are respectively 2.4%, 2.1% and 2.6%, which make them very
stable. However, the standard deviation of the computation time are respec-
tively 73%, 61% and 54% in average. Such observations distinct the robustness
of EGLNS.

4 Conclusion and future work

In this paper, we propose a configuration-free approach to compute neighbor-
hoods in a LNS, based on the explanation of the non optimal nature of the
current solution. We show that our approach is competitive with or even better
than state-of-the-art algorithms, on a set of optimization problems. Our results

2 We use the default parameters of [7]: a list of size 10, a constant valued to 30, a
dynamic epsilon and a fair combination of PGLNS, reverse PGLNS and random.

3 The closeness relation, defined in [7], enables to “discover the closely linked subparts
of the problem (...) by following the effects of the propagation”.



are encouraging and should be validated on a larger set of problems. Both the
search strategy (how decisions are selected) and the propagation engine (how
events are relayed in the constraint network) influence the quality of the com-
puted explanations. Since the explanation of a domain reduction is not unique,
our approach would benefit from more concise explanations, e.g., by enabling
global constraints. Future works should focus on the diversification procedure,
more particularly exploiting explanation of the conflict induced by a cut, and
NoGoods should be the key combination to avoid multiple exploration of nested
search spaces.

References

1. Alain Chabrier, Emilie Danna, Claude Le Pape, and Laurent Perron. Solving a
network design problem. Annals of Operations Research, 130(1-4):217–239, 2004.

2. Emilie Danna and Laurent Perron. Structured vs. unstructured large neighbor-
hood search: A case study on job-shop scheduling problems with earliness and
tardiness costs. In Francesca Rossi, editor, Principles and Practice of Constraint
Programming CP 2003, volume 2833 of Lecture Notes in Computer Science, pages
817–821. Springer Berlin Heidelberg, 2003.

3. M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25–46, 1993.

4. N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence, 139(1):21–45, July 2002.

5. Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Principles and Practice of Constraint
Programming (CP 2000), number 1894 in Lecture Notes in Computer Science,
pages 249–261, Singapore, September 2000. Springer-Verlag.

6. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard cp modelling language. In
In: Proc. of 13th International Conference on Principles and Practice of Constraint
Programming, pages 529–543. Springer, 2007.

7. Laurent Perron and Paul Shaw. Combining forces to solve the car sequencing prob-
lem. In Jean-Charles Régin and Michel Rueher, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
volume 3011 of Lecture Notes in Computer Science, pages 225–239. Springer Berlin
Heidelberg, 2004.

8. Laurent Perron, Paul Shaw, and Vincent Furnon. Propagation guided large neigh-
borhood search. In CP’04, pages 468–481, 2004.

9. P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed back-
jumping. Technical Report Research Report/95/177, Dept. of Computer Science,
University of Strathclyde, 1995.

10. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problem. IJAIT, 3(2):187–207, 1994.

11. Paul Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In Michael Maher and Jean-Francois Puget, editors,
Principles and Practice of Constraint Programming CP98, volume 1520 of Lecture
Notes in Computer Science, pages 417–431. Springer Berlin Heidelberg, 1998.

12. Choco team. choco-13.03. http://www.emn.fr/z-info/choco-
solver/index.php?page=choco-3, 2013.


