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Abstract. 3 Games theory is a highly successful paradigm for strategic deci-
sion making between multiple agents having conflicting objectives. Since a few
years, games have been studied in a computational perspective, raising new is-
sues like complexity of equilibria or succinctness of representation. Indeed, the
main representation for general games is still a n-dimensional matrix of expo-
nential size called normal form. In this paper, we introduce the framework of
Constraint Games to model strategic interaction between players. A Constraint
Game is composed of a set of variables shared by all the players. Among these
variables, each player owns a set of decision variables she can control and a Con-
straint Optimization Problem defining her preferences. Since the preferences of
a player depend on the decisions taken by the other players, each player may
try to improve her position by choosing a better assignment. Pure Nash equilib-
ria are situations in which no player may improve her preferences unilaterally.
Constraint Games are thus a generic tool to model general games and can be ex-
ponentially more succinct than their normal form. We present here the framework
and sketch the resolution of such games.

1 Introduction

The mathematical field of game theory [15, 12] has been set up to address problems
of strategic decision making when modelling interacting agents with conflicting objec-
tives. Game theory has an incredible success in description of economic processes, but
is also used in various other domains such as biology, political sciences or philosophy.
One of the most fundamental problems in computational game theory is undoubtedly
the computation of a Nash equilibrium [14], which models a situation where no agent
has an incentive to change her decision unilaterally. Other issues are numerous and in-
clude simultaneous or sequential interaction mode, complete or incomplete knowledge,
determinism, coalitions, repetition, etc.

3 This work is submitted to the CP 2013 doctoral program. Another version is submitted to
ICTAI 2013 at the same time. This work is supported by Microsoft Research grant MRL-
2011-046.
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A game is composed of a set of players, each of them having a set of possible actions
they can perform. A game in normal form is represented as a payoff matrix stating for
each player the reward she will get for any combination of actions of all players. One
important problem of game theory is the compactness of payoff representation because
the matrix grows exponentially with the number of player. Surprisingly, although com-
pactness can be achieved by switching to a combinatorial setting for payoffs, there are
few attempts to define compact yet generic languages for the expression of games.
We propose Constraint Games which use Constraint Satisfaction Problems (CSP) as
basic tool for expressing players preferences. In a constraint game, each player controls
a set of finite domain variables and their Cartesian product defines a possible action
space for the player. In addition, each player owns a CSP on all players variables which
defines her satisfaction. Given the partial state defined by the other players moves, a
player can choose her assignment in order to satisfy her own CSP. A global solution to
such a problem is given by the notion of pure Nash equilibrium, in which no player can
improve unilaterally her own satisfaction.
We propose four natural variants of this concept that differ from whether optimization
is allowed or not and from the definition of the search space. In Constraint Satisfaction
Games (CSG), the payoff of a player is simply defined as the satisfaction of a CSP. In
Constraint Optimization Games (COG), the objective of a player is to optimize some
value according to some constraints. We also introduce two variants called CSG-HC
and COG-HC (HC stands for with hard constraints) that allow to constrain the search
space in a flexible way, and are therefore easier to solve. For space reasons, we only
sketch the resolution of Constraint Games in this paper.

2 Constraint Games
Constraints and CSP. Let V be a set of variables and D = (D(X))X∈V be the
family of their (finite) domains. For W ⊆ V , we denote by DW the set of tuples on
W , namely ΠX∈WD(X). Projection of a tuple (or a set of tuples) on a variable (or a
set of variables) is denoted by |. For example, for t ∈ DV , t|W = (tX)X∈W and for
E ⊆ DV , E|W = {t|W | t ∈ E}. For W,U ⊆ V , the join of A ⊆ DW and B ⊆ DU

is A 1 B = {t ∈ DA∪B | t|W ∈ A ∧ t|U ∈ B}. When W ∩ U = ∅, we denote
the join of tuples t ∈ DW and u ∈ DU by (t, u). A constraint c = (W,T ) is a couple
composed of a subset W = var(c) ⊆ V of variables and a relation T = sol(c) ⊆ DW

(called solutions). A Constraint Satisfaction Problem (or CSP) is a set of constraints.
We denote by var(C) =

⋃
c∈C var(c) its set of variables and by sol(C) = 1c∈C sol(c)

its set of solutions.
Constraint Satisfaction Games. LetP be a set of players and V a set of variables. Each
player i is given a set of controlled variables Vi ⊆ V . The sets (Vi)i∈P are disjoint. Thus
each variable is controlled by at most one player. A variable which is not controlled by
any player is called an existential variable and belongs to VE .

Definition 1 (Constraint Satisfaction Game). A Constraint Satisfaction Game (or
CSG) is a 4-uplet (P, V,D,G) where P is a finite set of players, V is a set of variables
composed of a family of disjoint sets (Vi) for each player i ∈ P and a set VE of
existential variables disjoint of all the players variables,D = (D(X))X∈V is the family
of their domains and G = (Gi)i∈P is a family of satisfiable CSP on V .
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The CSP Gi is called the goal of the player i. The intuition behind CSG is that, while
a player i can only control her own subset of variables Vi, her satisfaction will depend
also on variables controlled by all the other players. A controlled variable is called a
decision variable. The intuition behind existential variables is that they are existentially
quantified (but most of the time they will be functionally defined from decision vari-
ables).

Example 1. We consider the following CSG: the set of players is P = {X,Y, Z}. Each player
owns one variable: VX = {x}, VY = {y} and VZ = {z} with D(x) = D(y) = D(z) =
{0, 1, 2}. The goals are GX = {x 6= y, x > z}, GY = {x ≤ y, y > z} and GZ = {x+y = z}.

A strategy for player i is an assignment of the variables Vi controlled by player i. A
strategy profile s = (si)i∈P is the given of a strategy for each player. A strategy profile
s is winning for i if it satisfies the goal of i: s ∈ sol(Gi). A CSG can be interpreted as
a classical game with a boolean payoff function which takes value 1 when the player’s
CSP is satisfied and 0 when not. The boolean payoff 3-dimensional matrix of Example
1 in normal form is depicted in Figure 1.

z = 0 y
0 1 2

x
0 (0,0,1) (0,1,0) (0,1,0)
1 (1,0,0) (0,1,0) (1,1,0)
2 (1,0,0) (1,0,0) (0,1,0)

z = 1 y
0 1 2

x
0 (0,0,0) (0,0,1) (0,1,0)
1 (0,0,1) (0,0,0) (0,1,0)
2 (1,0,0) (1,0,0) (0,1,0)

z = 2 y
0 1 2

x
0 (0,0,0) (0,0,0) (0,0,1)
1 (0,0,0) (0,0,1) (0,0,0)
2 (0,0,1) (0,0,0) (0,0,0)

Fig. 1. Boolean payoff matrix of Example 1. Nash equilibria are depicted in bold and italics
(italics stands for equilibria in which no player is satisfied).

We denote by s−i the projection of s on V − Vi. Given a strategy profile s, a player i
has a beneficial deviation if si 6∈ sol(Gi) and ∃s′i ∈ DVi such that (s′i, s−i) ∈ sol(Gi).
Beneficial deviation represents the fact that a player will try to maximize her satisfaction
by changing the assignment of the variables she can control if she is unsatisfied by the
current assignment. A strategy profile s is a Pure Nash equilibrium (PNE) of the CSG
C if no player has a beneficial deviation.

Example 2 (Example 1 continued). Each solution of GX is a winning strategy for player X .
For example, 100 (which stands for x = 1, y = 0, z = 0) is a winning strategy for player
X . However, 100 is not a PNE of the CSG because Player Y may deviate from 0 to 1 to get
the winning strategy 110 solution of GY . Player Z is able to do the same with 101. The strategy
profile 120 is a PNE because it is solution for X and Y , and Player Z is unable to deviate because
neither 120, 121 or 122 are solution of GZ . Pure Nash Equilibria are depicted in Figure 1.

Proposition 1 (derived of [3]). CSG are Σp
2 -complete.

Hard Constraints. In some case it is useful to model that the strategy a player is able
to choose depends on the strategy also chosen by other players. In other words, some
combinations of individual strategies are not allowed to form a strategy profile. This can
be easily expressed in the framework of Constraint Games by adding an additional CSP
on the whole set of variables in order to constrain the set of possible strategy profiles. A
Constraint Satisfaction Game with hard constraints (or CSG-HC) is a 5-uplet (P, V,D,
C,G) where (P, V,D,G) is a CSG and C is a CSP on V . The intended meaning of the
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hard constraints is that beneficial deviation is only allowed in the satisfiable subspace
defined by the additional CSP. It is useful to distinguish a strategy profile which does
not satisfy any player’s goal from a strategy profile which does not satisfy the hard
constraints. The former can be a PNE if no player has a beneficial deviation while the
latter cannot. Therefore hard constraints provide an increase of modelling expressibility
without changing the general complexity of CSG.
Constraint Optimization Games. By adding an optimization condition it is possible to
represent classical games. A Constraint Optimization Game (or COG) is an extension
of CSG in which each player tries to optimize his goal. This is achieved by adding for
each player i an optimization condition min(x) or max(x) where x ∈ Vi is a variable
controlled by i.

Definition 2 (Constraint Optimization Game). A Constraint Optimization Game
(or COG) is a 5-uplet (P, V,D,G,Opt) where (P, V,D,G) is a CSG and Opt =
(Opti)i∈P is a family of optimization conditions for each player of the form min(x) or
max(x) where x ∈ Vi.

A winning strategy for player i is still a strategy profile which satisfies Gi. However,
the notion of beneficial deviation needs to be slightly adapted. Given a strategy profile
s, a player i having as optimization condition min(x) (resp. max(x)) has a beneficial
deviation if ∃s′i ∈ DVi such that s′ = (s′i, s−i) ∈ sol(Gi) and s′|x < s|x (resp
s′|x > s|x). Given this, the notion of solution is the same as for CSG. In addition, COG
can be extended with hard constraints the same way CSG are, yielding COG-HC.

3 Results

Solving games is a remarkably difficult task. We are not aware of any efficient algorithm
to solve pure equilibria in normal form games [20]. We first propose a complete algo-
rithm called CG-enum-1 based on support enumeration. We use a complete static or-
dering on the variables and enumerate all solutions of all players in lexicographic order.
Then each candidate is tested against equilibrium condition and output if successful. Al-
though naive, this algorithm benefits from the power of constraint propagation on hard
constraints and compactness of encoding. The second algorithm we propose is a local
search algorithm based on tabu search called CG-tabu-1. The notion of move is given
by the deviation a player may perform and the tabu list is used to forbid a player to be
chosen too early after she has moved. Non-tabu players are checked against deviation.
If none of them can deviate, then tabu players are also checked to ensure correction. If
only a tabu player can deviate, a restart is performed, otherwise the Nash equilibrium is
reported. One important point is that modelling games using the CG framework is very
easy. We have examples of various scheduling games, location and assignment games.
We have implemented a solver called CG-Solver on top of the constraint library Choco
[18]. This solver allows to express Constraint Games and solves them using two algo-
rithms, CG-enum-1 and CG-tabu-1. An important point is that our solver accepts all
constraints provided by Choco, and reuses the constraint propagators already present in
the library. We have compared the efficiency with Gambit [19, 13], a game solving suite
which uses normal form representation as input. Although it mainly focuses on mixed
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equilibria, Gambit includes a solver for pure equilibria called gambit-enumpure.
Since we do not use the same representation, the comparison is difficult to establish. In
summary, since Gambit represents a game in normal form, the size of the input grows
exponentially and memory limits are quickly reached. On the other hand, since all data
can be quickly accessed, the discovery of equilibria is usually very fast. CG-enum-1 is
comparable to Gambit and reports all equilibria for reasonably small games and CG-
tabu-1 shows remarkable performances on large satisfiable games (up to 200 players).
For space reasons, we cannot report here the examples, algorithms and experiments.

4 Related works and Conclusion

Related works. Works on game theory are too numerous to be mentioned. But Con-
straint Games inherit from different lines of work that we try to survey. First they pro-
vide a compact encoding in the line of boolean games [10, 3]. One of the difference
(besides variable domain) is that we provide optimization to model preferences instead
of CP-nets [4].Graphical games [11] are games in which a player’s utility only depends
on a subset of the other players. However, like sparse, symmetric, anonymous, local-
effect or multimatrix games [16], they are not general games.
From a modelling perspective, solution concepts are heavily discussed in the game the-
ory community, as pure Nash equilibria do not provide a satisfactory notion of solution
all the time. The main directions are mixed equilibria [14] and taking a subset of equi-
libria with additional properties like Pareto-optimality or subgame equilibria [16].
There are few attempts to use Constraint Programming in Game Theory. In [9] is pre-
sented a CSP encoding of the reaction operator in graphical games. In [6], it has been
proposed to compute a mixed equilibrium using continuous constraints. Games with
Hard Constraints (originally called Shared Constraints) [17] are not related to constraint
programming but to general constrained optimization. Some other formalism solve one
combinatorial problem by multiple agents, either with a predefined assignment of vari-
ables to agents like in DCOP [8] or by letting the agents select dynamically their vari-
able like in SAT-Games [21] and Adversarial CSP [7]. Other types of equilibria such as
Stackelberg equilibria have been investigated within the QCSP framework [5, 2].
Elimination of dominated strategies can be seen as a form of propagation for games [1].
Several types of domination have been devised, among them the best known are strong
domination, weak domination and never best response. However, this detection is very
costly (actually Σp

2 -complete for boolean games, see [3]).
Conclusion. In this paper, we propose Constraint Games, the first framework that al-
lows to model and solve in a natural way strategic games by using Constraint Program-
ming. Constraint Games come in two flavours: Constraint Satisfaction Games (CSG)
and Constraint Optimization Games (COG), with or without hard constraints.
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