Boosting weighted CSP resolution with BDDs

Student: Miquel Palahi,
Miquel Bofill, Josep Suy, and Mateu Villaret

Departament d’Informatica i Matematica Aplicada
Universitat de Girona, Spain
{mpalahi,mbofill,suy,villaret}@ima.udg.edu

Abstract. We present a new approach for solving Weighted Constraint
Satisfaction Problems (WCSP). The method is based on encoding the
violation cost of soft constraints as a pseudo-Boolean objective function,
and successively calling a decision procedure bounding the maximum al-
lowable cost. The novelty of our approach consists in building a Binary
Decision Diagram (BDD) for the objective function, using state-of-the-
art generalized arc-consistent CNF encodings for it and, especially, max-
imising the reuse of the BDDs for the objective function between the
successive calls to the decision procedure. The method has been incor-
porated into the WCSP solving system WSimply, based on reformulation
into SMT, with preliminary encouraging results.

1 Introduction

A Constraint Satisfaction Problem (CSP) is a decision problem where the ob-
jective is to determine whether an assignment of values to a set of variables
exists which satisfies a given set of constraints. It is usually to find CSPs where,
additionally to determine if there exists a solution for the problem, the possible
solution has to minimize or maximize some objective function. These kind of
CSP are known as Constraint Optimization Problems (COP).

Occasionally, some real-world CSP instances have no solution. In such situ-
ations we can relax the CSP by allowing the violation of a subset of the con-
straints, and try to maximize the number of satisfied constraints. This CSP
variant is known as Maximum CSP (MaxCSP) [8]. Furthermore, there can exist
preferences over which constraints to violate. A convenient way of expressing
these preferences is by giving a weight to each constraint, denoting its violation
cost. The constraints that can be violated (the ones with a non-infinite weight)
are usually called soft, while those constraints that must be satisfied are called
hard. Then, the objective is to find an assignment which satisfies all hard con-
straints and minimizes the aggregated cost of the violated soft constraints [10].
These problems are known as Weighted CSP (WCSP) [9] or, alternatively, as
Cost Function Networks (CFN) [6].

WSimply [2, 3] is a language and system for solving intensionally represented
WCSPs by reformulation into Satisfiability Modulo Theories (SMT) [11], namely,
into SAT Modulo Linear Integer Arithmetic. WSimply takes profit from the ex-
pressiveness of the SMT language and the performance of current SMT solvers.

However, SMT solvers are decision procedures, designed to check satisfiability of
logical formulae with respect to background theories and they scarcely support
optimization. For this reason, optimization is implemented in WSimply by means
of successive calls to the decision procedure either by means of binary search or
by means of core based algorithms (WPM1 [4], etc.).

In this paper we introduce a new optimization approach for WCSP, based
on representing an objective function (generated from the violation cost of the
soft constraints) as a BDD. This allows us to encode the objective function as
a pure propositional formula, following the generalized arc-consistent encodings
proposed in [1]. This way, we tighten the link between optimization and the logi-
cal structure of the problem, with the hope of benefiting from crucial capabilities
of the underlying solver, such as conflict driven learning.

An interesting aspect of our approach is the reutilization of BDDs in suc-
cessive calls to the decision procedure. Changing the bounds of the objective
function implies building a new BDD, but some parts can be easily reused. This
allows not only to improve the performance of the BDD construction algorithm,
but also to keep a number of learned clauses from the solver.

Some preliminary but encouraging results of the implementation of this ap-
proach on WSimply are given.

2 Preliminars

A Binary Decision Diagram (BDD) is a data structure that is used to represent
a Boolean function. It can be represented as a rooted, directed, acyclic graph,
where each node represents a Boolean variable z which has two child nodes,
whose edges represent the true and the false assignment of z. From now on, we
will use the true child (false child) to refer the child node linked by the true (false)
edge. The terminal nodes are called O-terminal and 1-terminal, representing the
satisfiability of the formula. A BDD is called ordered if different variables appear
in the same order on all paths from the root. A BDD is said to be reduced if the
following two rules have been applied to its graph:

— Merge any isomorphic subgraphs.
— Eliminate any node whose two children are isomorphic.

The advantage of a Reduced Ordered Binary Decision Diagram (ROBDD) is that
it is canonical (unique) for a particular function and variable order.

Pseudo-Boolean (PB) constraints [5] are constraints of the form ajx; +- -+
anty, # K, where a;s and K are integer coefficients, the x;s are Boolean (0/1)
variables, and the relation operator # belongs to {<, >, <, >, =}. We will assume
that # is < and the a;s and K are positive, since other cases can be easily reduced
to this one.

There exist several BDD-based approaches which reformulate PB constraints
into SAT clauses [7]. We focus on the recent work [1] that proposes a simple an
efficient algorithm to construct ROBDD and a corresponding Generalized Arc
Consistent (GAC) SAT encoding for monotonic Boolean functions.

The key point of that ROBDD construction algorithm are the PB intervals.
Let C be a constraint of the form ayx1 + -+ anx, < K. The interval of C is
the set of all integers M such that the constraint ayx1 + -+ a,xz, < M, seen
as a Boolean function, is equivalent to C' (i.e. that the corresponding Boolean
functions have the same truth table). For instance, the interval of 2z, 4+ 35 +
4xs < 7is [7,8]. Since each node in a BDD represents a PB constraint, we can
naturally overload intervals and refer also to intervals of nodes.

The algorithm from [1] is a dynamic programming algorithm that works
with layers: for a given variable ordering of a PB constraint, say x1,xa, ..., Ty,
a list of layers £ = Ly,..., L,41 is created. For every i € {1,2,...,n + 1} the
layer L; will contain pairs ([3,v], B), where B is the ROBDD of the constraint
a;z; + -+ apr, < K for every K € {f..y}. The algorithm works as follows,
an initial procedure initializes £, with the pairs of the O-terminal and 1-terminal
nodes, and calls the construction of the ROBDD procedure with the following
parameters: a PB constraint a;z; + -+ - + anz, < K, the list of layers £ and
an index 4 of the current layer. The first step consists in searching in layer L;
if there exists a ROBDD B for the current K, i.e, if a pair ([5,7],B) with K €
{B..7} exists in L;. If so, the existing pair is returned, otherwise the procedure is
recursively called for the two descendants increasing the index layer to ¢ + 1 and
updating the K of the true child to K — a;. Once the two descendants’ ROBDD
are returned a new pair for the layer L; is created. If the two returned ROBDDs
are different, the B of the new pair will be a new ROBDD created from them,
otherwise B will be the returned ROBDD of the children.

With the ROBDD constructed, we only have to encode it to SAT. As usual
the encoding introduces an auxiliary variable for every node. Let v be a node
with selector variable x and auxiliary variable n. Let f be the variable of its false
child and t be the variable of its true child. We need two clauses per node:

f—=n tAz—n

Then, to obtain a GAC encoding, we add a unit clause forcing the variable
of the root node to be true.
Details of the BDD construction or the SAT encoding can be found in [1].

3 WCSP solving through ROBDDs

Since the objective of a WCSP consists in finding a solution where the sum of
the weights of the violated constraints is minimal, what we do is to reformulate
our WCSP into a COP having as objective function to be minimized this sum:

where w; is the weight (violation cost) of the constraint ¢; and b; is 1 when
constraint ¢; is falsified otherwise 0. In other words, the new COP has all original
WCSP hard constraints plus new hard constraints like:

CiHFi

for each original WCSP soft constraint ¢; with weight w;, and with the above
mentioned sum (1) as objective function. We refer to all this constraints without
the objective function as ¢.

The objective function can be easily represented in SAT modulo linear integer
arithmetic. However, in order to tighten the link between optimization and the
logical structure of the problem we propose a new optimization method based on
SAT encodings for PB constraints. With this encoding we hope to benefit from
crucial capabilities of the underlying solver, such as conflict driven learning.

3.1 Optimization algorithm

The main idea of the new method is to take the maximum advantage of the
ROBDD reuse that is done in the algorithm explained in the previous section.
Note that when the ROBDD construction procedure finishes, £ will contain
all the ROBDD nodes with their corresponding intervals. Since the objective
function of a WCSP will always have the same variable ordering and coefficients
(we only change the K), £ can be shared during all the optimization process.
As we have seen, in most of the cases the existing ROBDD nodes will be reused,
specially at the deepest layers.

In Figure 1 there is an example showing how the ROBDD nodes can be reused
from one iteration to another. The first diagram of the figure corresponds to the
ROBDD of the constraint 2z; 4+ 3x2 + 423 < 7 and the second one corresponds
to the ROBDD of the constraint 2z1 + 3z + 4x3 < 5, where only one new node
needs to be created because almost all the existing nodes of the first ROBDD
can be reused.

Fig. 1. ROBDDs for 2z1 + 3x2 + 4xs < 7 (left) and 21 + 3z2 + 423 < 5 (right).

The optimization algorithm is a binary search algorithm that uses the SAT
encoding of the above mentioned ROBDD to constraint the objective function
during the search.

First of all, we initialize the list of layers £ using the objective function (1).
After that we start the binary search, where in the first step we call the ROBDD
construction method, described in the previous section, with the corresponding
K of the iteration and £ as an input/output parameter. This way, we will have

in £ all the computed ROBDDs for the following iterations of the search, sig-
nificantly reducing the construction time. The procedure returns the ROBDD
B representing the objective function for the specific K of the iteration. In the
next step we generate the SAT clauses from the new nodes of B as explained
previously, and insert them into ¢. Then we insert the variable of the root node
of B into ¢ as a unit clause to make the encoding GAC. At this point we call the
SMT solver to check the satisfiability of ¢. If ¢ is satisfiable we can keep all the
learned clauses, otherwise we only have to remove the unitary clause with the
root node variable. This way we will only remove the learned clauses related to
this clause. In the last step we update the bounds and repeat these steps until
the optimal solution is found.

4 Benchmarks and further work

We test the performance of the new solving method with a softened version of
the well-known balanced academic curriculum problem (BACP), the Soft BACP
(SBACP) [2,3].

In SBACP the number of periods have been reduced until all the instances
are unsatisfiable due to the prerequisites chain, and then the prerequisites are
considered soft constraints. We use the five variants of the SBACP presented
in [2, 3] for this preliminary performance study.

First of all, we compare the performance of the new solving method (noted
as BDD) with the previously best solving method of WSimply (which uses a
linear integer arithmetic constraint and is noted as LIA). Table 2 contains the
aggregated solving time of the 28 instances for each variant. Clearly the new
method outperforms the old one, specially in the first variant where it is almost
9 times faster.

sbacp |sbacp_h1|sbacp_h2|sbacp_h2-ml2|sbacp_h2-ml3
LIA |112.27| 8.46 36.70 570.86 886.76
BDD| 13.61 | 8.47 13.08 132.57 150.85

Fig. 2. Aggregated times for the 5 set of instances of the SBACP variants.

In Figure 3 we present two plots showing (left) the average of the percentage
of reused nodes per iteration for the hardest SBACP variant (sbacp_h2_-ml3),
(right) the average of the aggregated time (in percentage) per iteration for the
same instances. With respect to the reused nodes plot, notice that in iteration 5
the percentage of reused nodes begins to increase significantly, and from iteration
9 almost 100% of the nodes are reused. On the other hand, in the aggregated
time plot we can observe a tendency to decrease the time needed per iteration
from iteration 5. The number of iterations needed to solve the 28 instances ranges
from 12 to 18 and in average is 15.80.

As further work we want to study more deeply the method with other prob-
lems, and extend the method for integer variables.

Reused nodes in %

T
100 - < x 100 R
g
]
£
=
50 |- 1 50 |- R
8
=
20
L
)
80
0 L ! ! ! 1= o \ ! ! ! |
0 5 10 15 0 5 10 15
Number of iterations Number of iterations

Fig. 3. Percentage of nodes reused and aggregated time per iteration of the
sbacp_h2-ml3 variant.

References

1.

10.

11.

I. Abio, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell, and V. Mayer-
Eichberger. A new look at bdds for pseudo-boolean constraints. J. Artif. Intell.
Res. (JAIR), 45:443-480, 2012.

C. Ansétegui, M. Bofill, M. Palahi, J. Suy, and M. Villaret. A Proposal for Solving
Weighted CSPs with SMT. In Proceedings of the 10th International Workshop on
Constraint Modelling and Reformulation (ModRef 2011), pages 5-19, 2011.

C. Ansétegui, M. Bofill, M. Palahi, J. Suy, and M. Villaret. Solving weighted
csps with meta-constraints by reformulation into satisfiability modulo theories.
Constraints, 18(2):236-268, 2013.

C. Ansétegui, M. L. Bonet, and J. Levy. Solving (weighted) partial maxsat through
satisfiability testing. In O. Kullmann, editor, SAT, volume 5584 of Lecture Notes
in Computer Science, pages 427-440. Springer, 2009.

E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Math-
ematics, 123(1-3):155-225, 2002.

S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency:
getting closer to full arc consistency in weighted CSPs. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI 2005), pages 84—
89, 2005.

N. En and N. Srensson. Translating pseudo-boolean constraints into sat. Journal
on Satisfiability, Boolean Modeling and Computation, 2:1-26, 2006.

E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial Intelli-
gence, 58(1-3):21 — 70, 1992.

J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc-Consistency.
Artificial Intelligence, 159(1-2):1-26, 2004.

P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, chapter 9. Elsevier,
2006.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Mod-
ulo Theories: From an abstract Davis—Putnam—Logemann—Loveland procedure to
DPLL(T). Journal of the ACM, 53(6):937-977, 2006.

