
Augmenting a CSP Portfolio with
SAT Representations and Solvers?

Barry Hurley??, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
{b.hurley|l.kotthoff|y.malitsky|b.osullivan}@4c.ucc.ie

Abstract. In recent years, portfolio approaches to solving SAT prob-
lems and CSPs have become increasingly common. There are also a num-
ber of different techniques for converting SAT problems into CSPs. In
this paper, we leverage advances in both areas and present a novel hierar-
chical portfolio-based approach to CSP solving that does not rely purely
on CSP solvers, but may convert a problem to SAT choosing a conversion
technique and the accommodating SAT solver. Our experimental eval-
uation relies on competition CSP instances and uses eight CSP solvers,
three SAT encodings and eighteen SAT solvers. We demonstrate that
significant performance improvements can be obtained by considering
alternative view-points of a combinatorial problem.

1 Introduction

The pace of development in both csp and sat solver technology has been rapid.
Combined with portfolio and algorithm selection technology, impressive perfor-
mance improvements over systems that have been developed only a few years
previously have been demonstrated. Constraint satisfaction problems and satis-
fiability problems are both NP-complete and, therefore, there exist polynomial-
time transformations between them. We can leverage this fact to convert csps
into sat problems and solve them using sat solvers.

In this paper we show that different sat solvers have different performance
on different encodings of the same csp. In fact, the particular choice of encoding
that will give good performance with a particular sat solver is dependent on
the problem instance to be solved. We show that, in addition to using dedicated
csp solvers, to achieve the best performance for solving a csp, the best course of
action might be to translate it to sat and solve it using a sat solver. We name
our approach Proteus, after the Greek god Proteus, the shape-shifting water
deity that can foretell the future.

Our approach offers a novel perspective on using sat solvers for constraint
solving. The idea itself is not new. The solvers Sugar, Azucar and CSP2SAT4J are
? This work is supported by Science Foundation Ireland Grant 10/IN.1/I3032 and FP7
FET-Open Grant 284715.

?? Student.

three examples for sat-based csp solving. Sugar [4] has been very competitive
in recent csp solver competitions. It encodes the csp to sat using a specific en-
coding, known as the order encoding, which will be discussed in more detail later
in this paper. Azucar [5] is a related sat-based csp solver that uses the compact
order encoding. However, both Sugar and Azucar use a single predefined solver
to solve the encoded csp instances. Our work does not assume that conversion
to sat is the best way of solving a problem, but considers multiple candidate
encodings and solvers.

In contrast to our approach, CSP2SAT4J [2] uses the SAT4J library as its sat
back-end and a set of static rules to choose either the direct or the support
encoding for each constraint. Our approach does not have predefined rules but
instead chooses the encoding and solver dynamically based on features of the
problem to solve.

Our approach employs algorithm selection techniques to dynamically choose
whether to translate to sat, and if so, which sat encoding and the solver to use.
We note three contrasting example approaches to algorithm selection for the
constraint satisfaction and satisfiability problems: CPhydra (csp), SATzilla
(sat), and isac (sat). CPhydra [3] contains an algorithm portfolio of csp
solvers which partitions CPU-Time between components of the portfolio in or-
der to maximize the expected number of solved problem instances within a fixed
time limit. SATzilla [6], at its core, uses cost-sensitive decision forests that vote
on the sat solver to use for an instance. In addition to that, it contains a number
of practical optimizations, for example running a pre-solver to quickly solve the
easy instances. isac [1] is a cluster-based approach that groups instances based
on their features and then finds the best solver for each cluster. A comparison
to these systems is discussed in Section 3.1.

2 Multiple Encodings and Solvers

To motivate our work, we performed a detailed investigation for two solvers to
assess the relationship between solver and problem encoding with features of the
problem to be solved. For this experiment we considered uniform random binary
csps with a fixed number of variables, domain size and number of constraints,
and varied the constraint tightness. The constraint tightness t is a measure of
the proportion of forbidden to allowed possible assignments to the variables
in the scope of the constraint. We vary it from 0 to 1, where 0 means that
all assignments are allowed and 1 that no assignments are part of a solution,
in increments of 0.005. At each tightness the mean run-time of the solver on
100 random csp instances is reported. Each instance contains 30 variables with
domain size 20 and 300 constraints. This allowed us to study the performance
of sat encodings and solvers across the phase transition.

Figure 1 plots the run-time for Minisat and Clasp on uniformly random
binary csps that have been translated to sat using three different encodings.
Observe that in Figure 1(a) there is a distinct difference in the performance of
Minisat on each of the encodings, sometimes an order of magnitude difference.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 1

R
un

-t
im

e
fo

r
m

in
is

at
 (

s)

S
at

is
fia

bi
lit

y

Constraint Tightness (t)

Direct
Order

Support
Satisfiability

(a) Performance of Minisat on sat-encoded URB CSP.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 1

R
un

-t
im

e
fo

r
cl

as
p

(s
)

S
at

is
fia

bi
lit

y

Constraint Tightness (t)

Direct
Order

Support
Satisfiability

(b) Performance of Clasp on sat-encoded URB CSP.

Fig. 1. Minisat and Clasp on random binary csps.

Before the phase transition we see that the order encoding achieves the best
performance on these instances and maintains this even at the phase transi-
tion. Beginning at constraint tightness 0.41, the order encoding gradually starts
achieving poorer performance and the support encoding now achieves the best
performance. Notably, if we rank the encodings based on their performance, the
ranking changes after the phase transition. This illustrates that there is not just
a single encoding that will perform best overall and that the choice of encoding
matters, but also that this choice is dependent on problem characteristics such
as constraint tightness.

Around the phase transition, we observe contrasting performance for Clasp,
as illustrated in Figure 1(b). Using Clasp, the ranking of encodings around the
phase transition is direct � support � order; whereas for Minisat the ranking
is order � direct � support. Note also that the peaks at the phase transition
differ in magnitude between the two solvers. These differences underline the im-
portance of the choice of solver, in particular in conjunction with the choice of
encoding – making the two choices in isolation does not consider the interdepen-
dencies that affect performance in practice.

3 Experimental Evaluation

In addition to the random csp instances, our analysis also comprises bench-
marks from the csp solver competitions.1 Of these, we consider the instances
that contain either inequality or binary extensional constraints that our tool
can translate to sat. Altogether, we use 2207 instances from the Graph Colour-
ing, Random, Quasi-random, Black Hole, Quasi-group Completion, Quasi-group
with Holes, Langford, Towers of Hanoi and Pigeon Hole problem classes. While
these benchmarks do not exhibit the full richness of what CP can offer, our re-
sults demonstrate significant gains and we are confident that these would also
be achievable for a larger benchmark set. An extension of this work to global
constraints and a wider set of benchmarks is currently underway.

Figure 2 illustrates the respective performance of csp-based and sat-based
methods on these instances. Unsurprisingly the dedicated csp methods often
achieve the best performance. There are, however, cases where considering sat-
based methods has the potential to yield significant performance improvements.
In particular, there are a number of instances that are unsolved by any csp
solver but can be solved using sat-based methods. The Proteus approach aims
to unify the best of both worlds and take advantage of the potential performance
gains.

3.1 Greater than the Sum of its Parts

Given the possibilities of Proteus, to consider multiple representations and solvers,
the question remains as to whether a different portfolio approach that considers
1 csp solver competition instances
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

V
irt

ua
l B

es
t S

A
T

Virtual Best CSP

Fig. 2. Performance of virtual best csp solver portfolio against the virtual best sat-
based portfolio that selects the best encoding/solver combination.

just csp or just sat solvers could do better. Table 1 summarizes the virtual best
performance that such portfolios could achieve. Our csp and sat models are
able to choose from 8 and 18 complete solvers respectively. The VB CSP is the
approach that always chooses the best csp solver for the current instance, while
the VB SAT chooses the best sat encoding/solver combination. VB Proteus is
the portfolio that chooses the best overall approach/encoding.

It is interesting to note that Proteus has the potential to outperform the
other approaches we present in this table. Specifically, the VB CPhydra, which
considers three of the csp solvers, is the best possible performance that could
be obtained from that portfolio if a perfect choice of solver was made. Neither
SATzilla nor isac consider different sat encodings. Therefore, the best possible
performance either of them could achieve for a specific encoding is represented
in the last three lines of Table 1.

These results do not only demonstrate the benefit of considering the different
ways of solving csps, but also eliminate the need to compare with existing port-
folio systems since we are computing the best possible performance that any of
those systems could theoretically achieve. Therefore, the strength of the Proteus
approach is very convincing.

Table 1. Virtual best performances ranked by PAR10 score.

Method Mean PAR10 Number Solved

VB Proteus 54 2207
VB SAT 111 2207
VB CSP 224 2197
VB CPHydra 326 2191
VB Order Encoding 969 2156
VB Direct Encoding 1450 2125
VB Support Encoding 2333 2070

4 Conclusions and Future Work

In this paper we have presented a portfolio approach that does not rely on a
single problem representation or set of solvers, but leverages our ability to con-
vert between problem representations to increase the space of possible solving
approaches. To the best of our knowledge, this is the first time a portfolio ap-
proach like this has been proposed. We have shown that, to achieve the best
performance on a constraint satisfaction problem, it may be beneficial to trans-
late it to a satisfiability problem. For this translation, it is important to choose
both the encoding and satisfiability solver in combination. By doing so, the
contrasting performance among solvers on different representations of the same
problem can be exploited. The overall performance can be improved significantly
compared to restricting the portfolio to a single problem representation.

References

1. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - Instance-Specific
Algorithm Configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI.
Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 751–756. IOS Press
(2010)

2. Le Berre, D., Lynce, I.: CSP2SAT4J: A Simple CSP to SAT Translator. In: Pro-
ceedings of the 2nd International CSP Solver Competition (2008)

3. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-
based Reasoning in an Algorithm Portfolio for Constraint Solving. Proceeding of
the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

4. Tamura, N., Tanjo, T., Banbara, M.: System Description of a SAT-based CSP Solver
Sugar. In: Proceedings of the 3rd International CSP Solver Competition. pp. 71–75
(2009)

5. Tanjo, T., Tamura, N., Banbara, M.: Azucar: A SAT-Based CSP Solver Using Com-
pact Order Encoding — (Tool Presentation). In: SAT 2012. pp. 456–462. Springer
(2012)

6. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Al-
gorithm Selection for SAT. Journal of Artificial Intelligence Research pp. 565–606
(2008)

	Augmenting a CSP Portfolio with SAT Representations and Solvers

