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Abstract. Car sequencing is a well known NP-complete problem. In
this paper we describe encodings of this problem into CNF and demon-
strate that SAT solvers are powerful in this domain. We also compare
these encodings to automatic translations of pseudo-Boolean solvers and
demonstrate the advantages of our approach.

1 Introduction

Car sequencing is the first benchmark in the constraint programming library
(prob001 in CSPLib [8]). The associated decision problem (is there a production
sequence for cars on the assembly line satisfying the sliding capacity constraints?)
has been shown to be NP-complete [7]. To date, however, it has not received much
attention from the SAT community. This is disappointing as we show here that
SAT is a very effective technology to solve such problems. We describe several
CNF encodings for this problem and demonstrate the strength of SAT solvers.

The paper is organised as follows. First we formally introduce the car se-
quencing problem. Then in Section 2 we define the CNF encodings and discuss
their properties. In Section 3 we evaluate the CNF encodings on the CSPLib
benchmark.

1.1 Car Sequencing

Car sequencing deals with the problem of scheduling cars along an assembly
line with capacity constraints for different stations (e.g. radio, sun roof, air-
conditioning, etc). Cars are partitioned into classes according to their require-
ments. Let C and O be disjoint sets of classes and options. To each class k ∈ C
there is given a demand of cars dk to be scheduled. Each option l ∈ O is limited
to ul occurrences on each subsequence of length ql (denoted as a capacity con-
straint ul/ql), i.e. no more than ul cars with option l can be sequenced among ql
consecutive cars. To each class k ∈ C we denote the set Ok of options it requires
and for convenience to each option l ∈ O we denote Cl the set of classes that
require this options. A solution is a valid sequence of all cars.

Let n be the length of the total sequence. The following pseudo Boolean
model is a basis for our translation to CNF. We use 0/1 variables cki to denote
that a car k ∈ C is at position i, likewise oli for option l ∈ O. For the sequence
it must hold:



– Demand constraints: ∀k ∈ C
∑n

i=1 c
k
i = dk

– Capacity constraints: ∀l ∈ O with ratio ul/ql
∧n−ql

i=0 (
∑ql

j=1 o
l
i+j ≤ ul)

– Link between classes and options: For all i ∈ {1 . . . n} and k ∈ C
• ∀l ∈ Ok : cki − oli ≤ 0
• ∀l ∈ O with l 6∈ Ok : cki + oli ≤ 1

– In each position i ∈ {1 . . . n} there is exactly one car:
∑

k∈C cki = 1

Example 1. Given classes C = {1, 2, 3} and options O = {a, b}. The demands
(number of cars) for the classes are 3, 2, 2 and capacity constraints on options are
1/2 and 1/5, respectively. Class 1 has no restrictions, class 2 requires option a
and class 3 needs options {a, b}. Given these constraints the only legal sequence
for this problem is [3, 1, 2, 1, 2, 1, 3], since class 2 and 3 cannot be sequenced after
another and class 3 need to be at least 5 positions apart.

Car sequencing in the CSPLib contains a selection of benchmark problems
of this form ranging from 100 to 400 cars. Over the years different approaches
have been used to solve these instances, among them constraint programming,
local search and integer programming [9][10].

2 Modelling the Car Sequencing Problem

In this section we introduce different ways to model the car sequencing prob-
lem in CNF. The basic building blocks are cardinality constraints of the form∑

i∈{1...n} xi = d and
∑

i∈{1...n} xi ≤ d.
First we describe how to translate cardinality constraints as a variant of the

sequential counter encoding proposed by [11]. Then we show how to enforce a
global view by integrating capacity constraint into the sequential counter. We
then show that this combination of the demand and the capacity constraints can
be used both for classes and options and we define three complete encodings for
the car sequencing problem.

2.1 Sequential Counter Encoding

We describe how to encode a cardinality constraint of the form
∑

i∈{1...n} xi = d

where xi are 0/1 variables and d ∈ N is a fixed demand. The key idea is to
introduce auxiliary variables to represent cumulative sums.

In this section we use two types of variables. The variable xi is true iff an
object (class or option) is at position i ∈ {1, . . . n}. The auxiliary si,j is true iff
in the positions 0, 1 . . . i the object exists at least j times (for technical reasons
0 ≤ j ≤ d + 1).

The following set of clauses (1) to (5) define the sequential counter encoding:
∀i ∈ {1 . . . n} ∀j ∈ {0 . . . d + 1}:

¬si−1,j ∨ si,j (1)

xi ∨ ¬si,j ∨ si−1,j (2)



∀i ∈ {1 . . . n}∀j ∈ {1 . . . d + 1}:

¬si,j ∨ si−1,j−1 (3)

¬xi ∨ ¬si−1,j−1 ∨ si,j (4)

s0,0 ∧ ¬s0,1 ∧ sn,d ∧ ¬sn,d+1 (5)

The variables si,j represent the bounds for cumulative sums for the sequence
x1 . . . xi. The binary clauses (1) and (3) ensures that the counter (i.e. the vari-
ables representing the cumulative sums) is monotonically increasing. Clauses
(2) and (4) control the interaction with the variables xi. If xi is true, then the
counter has to increase at position i whereas if xi is false an increase is prevented
at position i. The conjunction (5) sets the initial values for the counter to start
counting at 0 and ensures that the total sum at position n is equal to d.

The encoding in [11] follows a similar idea and focuses on inequalities. The
encoding here can easily be adapted to represent such constraints by remov-
ing sn,d from the conjunction (5). Then the counter accepts all assignments to
x1 . . . xn with up to d variables set to true. Comparing the resulting clauses there
are small differences between the encoding proposed here and the one in [11]. In
particular, we use twice as many clauses and but ensure uniqueness by means of
the auxiliary variables, i.e. we ensure the same model count. The encoding here
also has similarities to the translation of cardinality constraints through binary
decision diagrams, see [5].

2.2 The Capacity Constraint

We now show how to translate the interleaving capacity constraints to CNF.
Each subsequence of length q can have at most u true assignments. Thus, the
capacity constraints are a sequence of cardinality expressions. We will translate
this expression to CNF in two ways. The straight forward way is to encode a
sequential counter for each subsequence separately. This will introduce indepen-
dent auxiliary variables for each subsequence. The second way is more elaborate
and is explained in this section.

The idea is to encode a more global view into the demand constraint by
integrating the capacity of each subsequence into the counter. We intend to
encode the following expression: (

∑n
i=1 xi = d) ∧

∧n−q
i=0 (

∑q
l=1 xi+l ≤ u).

Interestingly, we can reuse the auxiliary variables of the sequential counter
and impose the following set of clauses: ∀i ∈ {q . . . n}, ∀j ∈ {u . . . d + 1}:

¬si,j ∨ si−q,j−u (6)

The clauses restrict the internal counting not to exceed the capacities con-
straints and the encoding detects dis-entailment on the conjunction of the de-
mand constraint and the capacity constraints by unit propagation. In particular,
these binary clauses improve propagation when branched on auxiliary variables.

The encoding presented here is in fact similar to a special case of the encoding
of the gen-sequence constraint in [1]. One difference lies in their auxiliary



variables qji that encode the equality
∑i

l=1 xl = j. This also changes the size
and shape of the clauses and will have different behaviour when branching on
auxiliary variables. Our encoding also has similarities to the decomposition of
the sequence constraint into cumulative sums as definied in [2].

2.3 Link Cars and Options

For a complete CNF translation of car sequencing we need to link classes and
options. This is done by the following clauses.

∀i ∈ {1 . . . n}:

∧
k∈C
l∈Ok

(¬cki ∨ oli) ∧
∧
k∈C
l 6∈Ok

(¬cki ∨ ¬oli) ∧
∧
l∈O

((
¬oli ∨

∨
k∈Cl

cki

))
(7)

The first two set of Clauses follow directly from the pseudo Boolean model.
We also add the third to ensure more propagation when e.g. branched negatively
on a set of variables of classes such that a support for an option is lost and its
variable should be false. Furthermore, for each position an additional sequential
counter is used to restrict the number of cars to exactly one.

2.4 The Complete Model

The demand constraints for classes are translated through cardinality constraints.
In fact, we can identify for each option l ∈ O the implicit demand by adding up
the demand of all classes Cl that require this option. dl =

∑n
i=1 o

l
i =

∑
k∈Cl

dk.

Moreover, for each class we may use one capacity constraint of its options
as this restriction applies also to the class. To maximise pruning we choose the
strictest capacity constraint with minimal (u/q), e.g. 1/5 restricts more than 2/3.
With this setting the translation of classes and options can be uniformly done by
the same type of constraints - a demand constraint and consecutive overlapping
capacity constraints. In the following we refer to capacity constraints both for
options and classes.

We define three CNF encodings E1, E2 and E3. All three encode the demand
constraint by a sequential counter with clauses (1) to (5). The link between
classes and options for all three models is encoded by clauses (7). In the exper-
imental evaluation we want to identify the impact clauses (6) have in practice
and we alternate the translation of the capacity constraint in the following ways:

– E1 translates each capacity constraint separately by the clauses (1) to (5)
with a fresh set of auxiliary variables.

– E2 translates the capacity constraints by clauses (6) and thus reuses the
variables of the sequential counter on the demand constraint.

– E3 uses both E1 and E2.



3 Evaluation

We will compare the SAT encodings of Section 2 with pseudo Boolean solvers
on the CSPLib instances. Our focus is on the 9 traditional instances plus the
30 hard instances proposed by [9] and we leave out the set of 70 easy satisfiable
instances.

All encodings and results are available at github.com/vale1410/car-sequencing.
For our experiments we choose the well-known SAT solver Minisat [4] of version
2.2.0. All experiments are done on Linux 64bit, Intel Xeon CPUs at 2.27GHs.

We compare to the pseudo Boolean solver (PB) Minisat+ version 1.0-2 [5] and
to the answer set programming solver Clasp 2.1.3 [6], referred to as PB and ASP
respectively. Both approaches offer native cardinality constraints. We use for PB
and ASP the basic model of Section 2 and add the redundant constraint for the
implicit demand on options. Apart from the encoding of cardinality constraints
this should be equivalent to model E1.

Clasp solves hardly any instance with the standard configuration. Instructing
Clasp to ground all cardinality constraints to normal rules improves the number
of solved instances (using the switch --trans-ext=all), so we will report here
with this switch turned on. Apart from that we use the standard configuration
for all solvers. Clasp and Minisat+ apply different translations for cardinality
constraints. Clasp applies an encoding based on counters and Minisat+ uses
encodings through adders, sorting networks and binary decision diagrams [5].

We show the results for the selected benchmark on models E1, E2, E3, ASP
and PB with a timeout of 1800sec. In total 11/39 instances cannot be solved by
any approach.

E1 E2 E3 ASP PB
#solved UNSAT 17 15 17 10 8
#fastest UNSAT 5 4 4 0 4
#solved SAT 11 11 11 7 2
#fastest SAT 0 4 7 0 0

We see that the models E1 to E3 perform considerably better than the one
generated through Minisat+ or Clasp (Running Clasp as a SAT solver on our
models is comparable to Minisat). This indicates that the internal treatment of
cardinality expressions of both tools is inferior compared with Minisat on our
encodings.

There is a tendency of model E3 to solve satisfiable instances faster than the
other two models, whereas model E1 is stronger in finding UNSAT proofs. Since
E3 is a superset of E1, the additional clauses cost some performance in finding
unsatisfiability proofs. On the other hand the increased propagation due to the
global view is a factor for faster solving times for satisfiable instances, since E2
and E3 dominate here clearly. Interestingly Minisat+ which in general performs
poor, does in some cases find UNSAT proofs faster than all other methods.
Overall, the results show clearly that it is crucial how cardinality constraints are
translated and automatic translations should be handled with care.



4 Conclusion and Future Work

We have introduced CNF encodings for the car sequencing problem based on
sequential counters and demonstrated that SAT solvers perform well on the
instances of the CSPLib. This specialised translation has advantages over au-
tomatic translations of cardinality constraints as done in Minisat+ and Clasp.
Our approach is still work in progress and in the following we identify our next
steps and future work.

To identify the precise advantages of our encodings we will extend the com-
parison to other CNF encodings for cardinality constraints, like parallel counters
and various types of sorting networks [3]. We will also contrast our work in more
depth with [1]. We have pointed out properties of the presented encodings and
we plan to extend this analysis to a theoretical level and prove consistency prop-
erties.

Our experimental analysis still lacks comparison to related paradigms as con-
straint programming, local search and integer programming. We plan to extend
the evaluation by comparing these approaches.
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