Modeling Deterministic Spacecraft Networks
with Constraint Programming

David Gibson!, Steve Parkes', and Karen Petrie?

1 Space Technology Centre, School of Computing, University of Dundee, Scotland
{davidgibson, sparkes}@computing.dundee.ac.uk
2 School of Computing, University of Dundee, Scotland
karenpetrie@computing.dundee.ac.uk

Abstract. Traditionally, spacecraft deploy separate networks for han-
dling payload and platform communications. This is due to the high-data
rate required by payload instruments and the determinism and quality of
service required by platform avionics command and response style trans-
actions. Being able to utilise a single network for all onboard communica-
tion will decrease the cost and complexity of fulfilling the data-handling
requirements of a mission.

This paper describes the background technology and SpaceWire-D stan-
dard, which is a protocol that provides a deterministic data-handling
network, and presents an initial constraint programming model for the
design and scheduling of a SpaceWire-D network.

1 Background

SpaceWire is a data-handling network for use onboard spacecraft to facilitate
communication between instruments, mass-memory, onboard computers, teleme-
try, and other subsystems [1]. To enable data to flow between multiple subsys-
tems, SpaceWire enabled routers can be used to direct traffic. These routers
use wormhole routing which means that as soon as a packet has started to be
received, it is forwarded to the required output port, assuming the port is not al-
ready in use. This simplifies SpaceWire routers as there is reduced packet buffer-
ing requirements and it allows arbitrary length packets as SpaceWire packets are
terminated with a special token following the packet cargo. However, wormhole
routing may cause blocking and network congestion if two packets are in con-
tention for the same output port, so additional quality of service mechanisms
need to be in place for networks that require determinism.

To provide a deterministic network on top of existing SpaceWire devices, a
new protocol called SpaceWire-D [3] can be used. SpaceWire-D divides network
time into 64 discrete time-slots in which one or more devices may initiate trans-
actions. These transactions take place between an initiator node and a target
node and their coordination is controlled by a schedule, which must ensure that
no two transactions take place in a single slot if there is a chance they may
collide and cause blocking. Two transactions may collide if the paths they use
have any SpaceWire links in common. An exception to this is if the transactions

have the same initiating node, as SpaceWire-D allows a node to initiate trans-
actions to multiple targets within a single slot but the initiator must guarantee
all transactions are completed before the time-slot ends.

1.1 Real World Example

An example of a spacecraft with a network utilising determinism over SpaceWire
is the ASTRO-H X-ray observation satellite [5]. The ASTRO-H network is di-
vided into two subnets. The first is the data-handling section, which consists
of the payload instruments, data storage, and telecommunication devices. The
second subnet is the attitude and orbit control network which holds the devices
used to adjust the rotation and speed of the spacecraft. The two subnets are con-
nected by the attitude and orbit control processor. Determinism is provided by
controlling all transaction initiation through a device called the Satellite Man-
agement Unit (SMU). As the SMU is the only initiator, the network schedule is
simple, with every fourth slot allocated to node housekeeping, and every group
of three slots to payload data-handling with the exception of the first group
which is used for time and auxiliary data, and the last group which is allocated
to router housekeeping.

Constraint programming has been applied to networking before, such as the
SONET problem [4] and this paper looks at how constraint programming can
be applied to the design and scheduling of SpaceWire-D networks.

2 Problem Description

The SpaceWire-D scheduling problem requires the generation of an optimal net-
work topology and a deterministic schedule which meets the mission specific
data-handling requirements. In this case, an optimal network means one that re-
quires the minimum amount of routers. In addition to the general requirements
of a SpaceWire-D network, there are user-defined requirements that must be
met with regards to minimum bandwidth and timing of transactions, as payload
instruments generate a certain amount of data to be stored in mass-memory;
housekeeping information must be read from nodes at regular intervals; and
commands must be able to be sent from the onboard computer to nodes at
regular intervals.

In this model we will use the example mission of an earth observation satel-
lite in low earth orbit (LEO). Due to the curvature of the Earth, the satellite
will only be able to communicate with its ground station for part of its orbit, so
there are two operation modes for the mission. The first is called normal mode,
and for the duration of this mode, the cameras will generate data to be stored
in mass-memory. The second mode is called downlink mode and adds the addi-
tional responsibility of moving data from mass-memory to downlink telemetry
for transmission to Earth.

There are three types of data that are dealt with in this mission. Payload
data is generated by the instruments and is of high data-rate but not critical to

the operation of the satellite. Housekeeping data is of low data-rate but critical
for keeping the spacecraft in operation and is read from equipment at regular
intervals so that onboard equipment can be maintained and problems diagnosed.
Command data is the control commands sent to subsystems from the onboard
computer. Payload data does not require determinism, but housekeeping and
control data have time constraints, and so if we are to combine payload and
platform data-handling on a single network, it must be deterministic.

The onboard equipment and subsystems for this mission include the follow-
ing SpaceWire enabled devices with their identifiers in parentheses: an 8-port
router (0), payload camera (1), payload camera (2), mass-memory (3), onboard
computer (4), telemetry (5), thermal subsystem (6), power subsystem (7), and
the attitude and orbit control subsystem (8).

3 Input Parameters

As input to the model, we take a list of pairs of nodes node_pairs which describe
the required initiator/target pairs for the network. For example, housekeeping
node-pairs allow data to be read from each device by the onboard computer, and
in this case there are D devices on the network, so there are D — 1 housekeep-
ing node-pairs. Another example is payload data node-pairs, when instruments
generate information to be read by or written to another node. The node-pairs
required for the normal operation mode for this mission are shown in Figure 1
using the device identifiers from the previous section. Downlink mode adds an
additional node-pair between the telemetry and mass-memory.

> Housekeeping / Command

—————————> Instrument / Mass-Memory

@ @ Onboard Computer
° ° ° @ Mass-Memory Device

Fig. 1. Node-Pairs for the Normal Operation Mode

Another input parameter is the capacity of each device which is a list capacities
of length D. For this mission capacities = {8,1,1,1,1,1,1,1}, as we have an 8-
port router and the other devices are single port nodes.

4 Decision Variables

Network topology is represented as a bidirectional graph and implemented as
both an adjacency matrix network_am which is a two-dimensional square Boolean
variable array of length D, and as an adjacency list network_al which is a length
D set variable array.

The schedule is represented as a |node_pairs| length set variable array with
the power set of 64 slots as their domain. Bandwidth allocated, in kB/s, to each
node-pair bw_alloc is a |node_pairs| length array of integer variables. Two num-
bers are used to calculate the bandwidth. The first is the maximum number of
transactions that a node can execute in a single slot, in this case 23. The second
is the size of a transaction, which in this case is 1kB. These values are represen-
tative of the deterministic network, running at 64 slots/s, used in ASTRO-H [5].
The allocated bandwidth is then:

bw_alloc[i] = 23 - 1 - |schedule[i]| V 0 < i < |node_pairs| (1)

5 Topology Constraints

For this model, we assume a simple graph and as such, there can be no multiple
edges or loops. The former is implicit in the selection of a Boolean adjacency
matrix, and the latter is restricted by the constraint on the network adjacency
list:

i ¢ network_alli]| V0 <i<D (2)

There is a channeling constraint between network_al and network_am and as
SpaceWire links are bidirectional, the graph is undirected and so network_am is
symmetrical along its main diagonal:

channeling(network_am, network_al) (3)

network_amli, j| = network_am[j,i{]V0<i<j<D (4)

The maximum number of links that a device can be connected to is specified
by the capacities input parameter:

|network_alli]| < capacities[i]| V0 < i < D (5)

To make sure that the network is connected and that each device is connected
to at least one router, in this case the only router, we can add a constraint to
make sure the set of devices connected to the router contains the set of all
non-router devices:

network_al[0] 2 {1,...,D — 1} (6)

6 Schedule Constraints

To make sure that a valid SpaceWire-D schedule is generated, no node-pair can
be scheduled in a slot if it causes blocking with another node-pair in the same
slot. In a single router network, this simply means that no two node-pairs can
be scheduled in the same slot if they have the same target node.

7 Mission Constraints

For this mission, we consider two types of user-defined constraints. Interval con-
straints allow one or more node-pairs to be allocated slots at regular intervals
based on a resolution value. If we assume that we are running SpaceWire-D slots
at 64 slots/s, then a node-pair with a resolution value of 64 is allocated in each
slot, and a node-pair with a resolution value of 32 is allocated 32 slots at equal
distances starting from the first slot. Running at 64 slots/s, our mission requires
that the housekeeping node-pairs meet an interval constraint resolution of 4, and
the command node-pairs meet a resolution of 16. The second type of constraints
are bandwidth constraints, and the mission requires instrument and telemetry
node-pairs to be allocated a minimum data-rate of 640kBps

8 Results

Implementing the model using the constraint solver Gecode [2] for both oper-
ation modes results in a solution as shown in Figures 2 and 3, with the same
network topology for both, but different schedules. The schedules are similar
for the housekeeping/command node-pairs, but differ in the slots allocated to
instrument node-pairs.

Fig. 2. Network Topology Result

Normal Mode Downlink Mode

NodePair Source Dest. Slots Bandwidth NodePair Source Dest. Slots Bandwidth

0 4 1 0,16,32,48 92 0 4 1 0,16,32,48 92

1 4 2 0,16,32,48 92 1 4 2 0,16,32,48 92

2 4 3 0,16,32,48 92 2 4 3 0,16,32,48 92

3 4 5 0,16,32,48 92 3 4 5 0,16,32,48 92

4 4 6 0,16,32,48 92 4 4 6 0,16,32,48 92

5 4 7 0,16,32,48 92 5 4 7 0,16,32,48 92

0,4,8,12,16,20,24, 0,4,8,12,16,20,24,
6 4 8 28,32,36,40,44,48, 460 6 4 8 28,32,36,40,44,48, 460
52,56,59..63 52,56,59..63

7 3 1 30,31,33..47,49..63 736
B 3 ' ;;‘Z; 7..31,33.47, 1380

8 3 2 30,31,33..47,49..63 736
1..15,17..31,33..47,

8 3 2 ’ 1380
49.63 9 5 3 1.15,17.29 644

Fig. 3. Network Schedule Result

9 Future Work

The example mission in this paper was a simple SpaceWire-D network. Multiple
router networks will be considered next, which will require dealing with much
larger topology domains and paths between initiator/target node-pairs, ensur-
ing they are scheduled without collisions. SpaceWire networks allow multiple
connections between routers and so multi-graph variables should be utilised in
future work. Alternative models will need to be explored to find how they scale
to meet the added complexities of a multiple-router network.

In order to allow the general purpose modeling of SpaceWire-D networks, an
interactive constraint application needs to be built to allow network engineers
to design these types of networks. Ease of use is important for this application
as the users may not be familiar with constraint programming.

References

1. ECSS: SpaceWire - Links, nodes, routers and networks. Standard, ECSS (Jul 2008),
ECSS-E-ST-50-12C

2. Gecode Team: Gecode: Generic Constraint Development Environment (2006), avail-
able from http://www.gecode.org

3. S. Parkes, A. Ferrer, S.M., Mason, A.: SpaceWire-D: Deterministic Data Delivery
with SpaceWire. Third International SpaceWire Conference, St Petersburg (2010)

4. Smith, B.M.: Symmetry and search in a network design problem. In: Proc. 2nd
Int. Conf. on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR), LNCS 3524. pp. 336-350.
Springer (2005)

5. T. Yuasa, e.a.: A Deterministic SpaceWire Network Onboard the Astro-H Space X-
Ray Observatory. Third International SpaceWire Conference, San Antonio (2011)

