
The Bi-Objective Pareto Constraint

Renaud Hartert? and Pierre Schaus

UCLouvain, ICTEAM,
Place Sainte Barbe 2,

1348 Louvain-la-Neuve, Belgium
{renaud.hartert,pierre.schaus}@uclouvain.be

Abstract. Multi-Objective Combinatorial Optimization (MOCO) problems are
ubiquitous in real-world applications. Gavanelli proposed a complete constraint
programming approach to find the exact set of optimal solutions – known as effi-
cient solutions – of MOCO problems. This approach has recently been extended
in a new global constraint called the Pareto constraint. In this paper, we bring
some complementary information on the Pareto constraint. Particularly, we
discuss its efficiency for generic MOCO problems and present two ways of im-
proving this efficiency for bi-objective combinatorial optimization problems.

Keywords: constraint programming, multi-objective combinatorial optimization,
bi-objective combinatorial optimization, global constraint.

Despite the increasing interest in the field of Multi-Objective Combinatorial Op-
timization (MOCO) during the last decades, only a small number of approaches have
been introduced to tackle MOCO problems with Constraint Programming (CP) [2].
Among them, Gavanelli [3] proposed a dedicated branch-and-bound algorithm to find
the exact set of efficient solutions in a single exploration of the search tree.

The Pareto constraint (briefly introduced in [6]), extends the original idea of Ga-
vanelli in a more flexible way. In this paper, we complete our brief introduction of the
Pareto constraint with a detailed formalization. Furthermore, we discuss the com-
plexity of its general case and show how it can be improved for bi-objective combina-
torial optimization problems.

Outline. In Section 1, we introduce the definitions and concepts necessary to the un-
derstanding of this work. Section 2 presents the original approach of Gavanelli. Then,
we formalize the Pareto constraint in Section 3. Section 4 describes two ways of
improving the efficiency of the Pareto constraint to tackle bi-objective combinato-
rial optimization problems. Finally, we conclude this paper in Section 5 by discussing
future work on the Pareto constraint.

1 Multi-Objective Combinatorial Optimization

The following definitions, adapted from [1], introduce Multi-Objective Combinatorial
Optimization (MOCO) and the class of problems we are trying to solve.
? MSc student.



2 Renaud Hartert and Pierre Schaus

Definition 1 (MOCO problem). A MOCO problemP is a tuple 〈X,D,C, f1, . . . , fm〉
where X is a set of variables, D is the set of the domains, C is a set of constraints, and
f1, . . . , fm are integer objective functions to minimize. We assume that m objective
variables obj1, . . . , objm have been added to the set of variables X and constrained to
be equal to their corresponding objective function i.e. obji = fi(X).

Definition 2 (Solution). A solution is a complete assignment of the variables of P
that satisfies the constraints of this problem. In the following, we represent a solution
sol = (sol1, . . . , solm) as the vector of the values assigned to its objective variables.

As it is not likely that a solution is simultaneously optimal for all objectives, one is
generally interested in the set of all the efficient solutions i.e. all the optimal compro-
mises between the objectives.

Definition 3 (Weak Pareto dominance). Let sol and sol′ be two solutions of a MOCO
problem P . We say that sol dominates sol′, denoted sol � sol′, if and only if:

∀i ∈ {1, . . . ,m} : soli ≤ sol′i. (1)

Definition 4 (Efficient solution). Let sols(P) denote the set of all the feasible solu-
tions of a MOCO problem P . A solution sol of a MOCO problem P is efficient if and
only if there is no solution sol′ in sols(P) that dominates sol:

@sol′ ∈ sols(P) : sol′ � sol. (2)

Definition 5 (Efficient set). The efficient set of a MOCO problem P is the set of all the
efficient solutions of the problem:

{sol ∈ sols(P) | @sol′ ∈ sols(P) : sol′ � sol}. (3)

In practice, it is difficult to find the exact efficient set of challenging MOCO prob-
lems [1]. We are thus interested in finding a good approximation of the efficient set,
also known as an archive. It is formalized as follows:

Definition 6 (Archive). An archiveA is a set of solutions such that there is no solution
in the archive that dominates an other solution in the archive. This property is known
as the domination-free property:

∀sol ∈ A,@sol′ ∈ A : sol′ � sol. (4)

An archive may contain non-efficient solutions as well as efficient solutions.

2 Related work
In [3], Gavanelli proposed a branch-and-bound algorithm to find the exact efficient set
of MOCO problems. This algorithm makes use of the previously discovered solutions
(i.e. the solutions contained in an archive A) to prune branches of the search tree that
cannot lead to an efficient solution. In other words, this algorithm ensures that each
newly discovered solution is nondominated by any solution in the archive:

@sol ∈ A : sol � (obj1, . . . , objm). (5)

Particularly, each time a new solution is discovered, it is inserted into the archive A to
tighten the bounds of the objective variables.1

1 According to the domination-free property, dominated solutions are removed from the archive.
Hence, discovering a new solution could reduce the size of the archive.



The Bi-Objective Pareto Constraint 3

Definition 7 (Dominated point). Let objmin
i and objmax

i denote the lower and upper
bounds of the objective variable obji, the dominated point DPi is defined as follows:

DPi = (objmin
1 , . . . , objmin

i−1 , obj
max
i , objmin

i+1 , . . . , obj
min
m ). (6)

Observe thatDPi dominates all the solutions sol contained in the Cartesian product
of the domain of the objective variables such that soli ≥ objmax

i . Hence, if the domi-
nated point DPi is dominated by a solution in the archive, one can use this solution to
adjust the upper bound of the objective variable obji:

∃sol ∈ A, sol � DPi : objmax
i ← soli − 1. (7)

The left part of Fig. 1 illustrates the filtering of the bounds of the objective variables
on an arbitrary archive. If a dominated point DPi is dominated by several solutions
at the same time, the filtering rule of Equation 7 has to be called until no solution in
the archive dominates DPi. Clearly, the order in which the dominating solutions are
selected affects the number of calls of the filtering rule. This situation is illustrated in
the right part of Fig. 1 where a, b, c is the worst possible selection order.

DP
2

DP
1

DP
2

a

b

c

Fig. 1. Filtering of the bounds of the objective variables. Gray areas represent the subspaces of
solutions that are dominated by the archive.

3 The Pareto Constraint

The Pareto constraint [6] is a global constraint defined over the set of m objective
variables of a MOCO problem P and the solutions contained in an archive A:

Pareto(obj1, . . . , objm,A). (8)

As for the approach of Gavanelli, the Pareto constraint guarantees that the archive A
is equal to the efficient set of P once the search tree is entirely explored.

The aim of the Pareto constraint is to extend the approach of Gavanelli by taking
advantage of the information available during propagation and offering more flexibility
by not requiring the implementation of a dedicated branch-and-bound algorithm.

3.1 Filtering and efficiency

From Section 2, it appears that the Pareto constraint can reach its fix point in one step
if it is able to access directly the solution that dominates DPi with the lowest value for



4 Renaud Hartert and Pierre Schaus

objective i (we call this solution the tightest solution in objective i). We formalize this
improved filtering rule as follows:

objmax
i ← min({objmax

i } ∪ {soli − 1 | sol ∈ A, sol � DPi}) (9)

Clearly, the time needed to access the tightest solutions is the bottle-neck of the
Pareto constraint and is strongly related to the data structure used to implement
the archive. In [3], Gavanelli suggested the use of domination-free quad-trees2 (sim-
ply quad-trees in the sequel) to implement the archive. However, quad-trees suffer from
several weaknesses:

– As for binary search tree, a quad-tree is not auto-balanced and is strongly influenced
by the order in which solutions are inserted in its structure. The worst possible case
being a quad-tree structured as a linked-list i.e. only one son by node. Hence, the
theoretical worst case complexity of accessing a solution is larger than O(log n).3

– Removing nodes in the structure of a quad-tree (e.g. to maintain the domination-
free property) often yield to important computational costs [4].

The next section is an attempt to provide more efficient methods to access solutions
in the archive when applied on bi-objective combinatorial optimization problems.

4 Efficient Bi-Objective Implementations
According to Definitions 3 and 4, bi-objective problems have the particularity that im-
proving the first objective of a Pareto optimal solution cannot be done without degrading
the value of the second objective (and vice-versa). Hence, sorting the solutions of a bi-
objective problem in increasing order w.r.t. one objective amounts to sort these solutions
in decreasing order w.r.t. the other objective. We call this property the ordering property
of bi-objective problems. In the following, we denote A>1 (resp. A>2 ) the archive A
ordered by decreasing value of obj1 (resp. obj2).

We introduce two possible uses of the ordering property to implement efficiently
the idempotent filtering rule (Equation 9) of the Pareto constraint when considering
bi-objective combinatorial optimization problems.

4.1 Balanced Linked-Tree

A balanced linked-tree (or braided balanced trees [5]) is an ordered linked-list and a
balanced binary tree at the same time. Balanced linked-trees ensure a worst case time
complexity of O(log n) for operations as access, insertion and deletion while allowing
to access the successor and the predecessor of a given element in constant time.

Let T1 be a binary linked-tree containing all the solutions of a bi-objective archive
where sol1 is the key value of a solution sol. The following algorithm is able to access
the tightest solution of obj2 (if it exists) within a time complexity ofO(log n). The idea
consists in finding the position of the key objmin

1 in T1. If the tree is not empty, one of
the three following situations has to be considered:4

2 Quad-trees can be seen as the extension of binary search trees tom dimensional data. We refer
to Habenicht [4] for more information about quad-trees and their efficiency.

3 This affirmation is particularly true when considering more than two dimensions since more
than one branch could be explored at each node when searching for a specific element [4].

4 The tightest solution of obj1 can be accessed similarly in T2.



The Bi-Objective Pareto Constraint 5

1. If T1 already contains a solution sol with objmin
1 as key value, then, sol is the

tightest solution of obj2.
2. If objmin

1 has to be inserted in the left branch of a solution sol, then, the direct
successor of sol in A>1 is the tightest solution of obj2.

3. If objmin
1 has to be inserted in the right branch of a solution sol, then, sol is the

tightest solution of obj2.
Fig. 2 illustrates the access of the tightest solution of both objective.

Clearly, accessing the tightest solution of an objective is performed within a time
complexity of Θ(log n). The insertion of a new solution solnew has a time complexity
of Θ(k log n) where k is the number of solutions in the archive that are dominated by
solnew. These complexities are reported in Table 1.

a

b
c

e

d

c
2

b
2

d
2
 = obj

2

min

c
1

b
1

e
1

obj
1

mina
1

d
1

a
2

e
2

Fig. 2. Access of the tightest solutions (i.e. b and d) with balanced linked-trees.

4.2 Reversible Ordered Linked-List

An alternative to the balanced linked-tree based implementation is to exploit the order-
ing property of bi-objective problems to maintain the tightest solution of each objec-
tive incrementally during the exploration of the search tree. Here, the archive is imple-
mented as an ordered linked-list following the bi-objective ordering property.
Definition 8 (Support). Let sol be a solution in a bi-objective archive A. We say that
sol is the support of obj1 (resp. obj2) if and only if:

sol = argmaxsol′∈A{sol′2 | sol′2 < objmin
2 }. (10)

Proposition 1. Supports are never included in the Cartesian product of the domain of
the objective variables i.e. supports cannot be dominated by newly discovered solutions.
Proposition 2. If it exists, the tightest solution of obji is its support or its direct suc-
cessor in A>i .

Proof. Propositions 1 and 2 are trivially derived from Definitions 3 and 8. ut
Proposition 3. Let solnew = (objmin

1 , objmin
2 ) be a newly discovered solution. If the

archive is ordered according to the value of one objective (i.e. A>1 or A>2 ), then,
solnew dominates all the solutions contained between the supports.

Proof. Let solsup be the support of obji, and let Si denote the set of all the successors
of solsup inA>i . By Definition 8, we know that Si = {sol ∈ A | soli ≥ objmin

i }. Since
solnew = (objmin

1 , objmin
2 ), the solutions contained in the intersection of the successors

of both supports are dominated by solnew:

∀sol ∈ S1 ∩ S2 = {sol′ ∈ A | sol′1 ≥ objmin
1 ∧ sol′2 ≥ objmin

2 } : solnew � sol. ut



6 Renaud Hartert and Pierre Schaus

We describe now a second algorithm to adjust the upper bound of obj1 (resp. obj2)
based on Propositions 1, 2, and 3:

1. Each time the lower bound of obj2 is adjusted, we have to reconsider the support
solsup of obj1. To do so, we iterate on the direct successors of solsup in A>1 until
we reach a new support. Let ∆ denote this number of iterations. Clearly, the sum
of the ∆ cannot exceed the size of the archive along a branch of the search tree.

2. When the new support is found, we use Proposition 2 to apply the idempotent
filtering rule from Equation 9 to adjust the upper bound of obj1.

3. To insert a new solution solnew in A, we simply have to replace the sublist con-
tained between the supports of both objectives by solnew (see Proposition 3). This
operation is performed in constant time.

Assuming a trailed based CP solver, reversible pointers can be used to maintain the
supports. Thus, each time a backtrack occurs, the bi-objective Pareto constraint is
able to recover its previous supports in constant time (see Table 1).

Table 1. Best and worst time complexity of the bi-objective Pareto constraints to access the
tightest solutions and to insert a new solution in an archive of n solutions.

Structure Access (Θ) Insertion (Θ)
Linked-list n n
Balanced Linked-Tree logn k logn
Reversible Ordered Linked-List ∆ 1

5 Conclusion

We have detailed and formalized the Pareto constraint while pointing out the im-
portance of the underlying data structure in the efficiency of the filtering algorithm.
Furthermore, we have presented two different ways of taking advantage of the ordering
property to improve the efficiency of the Pareto constraint on bi-objective combina-
torial optimization problems. As future work, we would like to compare the efficiency
of our bi-objective approaches on challenging MOCO problems.

References

1. Matthias Ehrgott. Multicriteria optimization, volume 2. Springer Berlin, 2005.
2. Matthias Ehrgott and Xavier Gandibleux. Hybrid metaheuristics for multi-objective combi-

natorial optimization. Hybrid metaheuristics, pages 221–259, 2008.
3. M. Gavanelli. An algorithm for multi-criteria optimization in CSPs. ECAI, 2:136–140, 2002.
4. W Habenicht. Quad trees, a datastructure for discrete vector optimization problems. In Essays

and Surveys on Multiple Criteria Decision Making, pages 136–145. Springer, 1983.
5. Stephen V Rice. Braided AVL trees for efficient event sets and ranked sets in the SIMSCRIPT

III simulation programming language. In Proceedings of the 2007 Western Multiconference
on Computer Simulation, pages 150–155, 2007.

6. Pierre Schaus and Renaud Hartert. Multi-Objective Large Neighborhood Search. In 19th
International Conference on Principles and Practice of Constraint Programming, 2013.


	The Bi-Objective Pareto Constraint
	Multi-Objective Combinatorial Optimization
	Related work
	The Pareto Constraint
	Filtering and efficiency

	Efficient Bi-Objective Implementations
	Balanced Linked-Tree
	Reversible Ordered Linked-List

	Conclusion


