Constructing problem-specific constraint solvers
using Monte Carlo Tree Search

Artnas Prokopas, Ian Gent, Ian Miguel

University of St Andrews

Abstract Constraint solvers are complex pieces of software that often offer a few
customisation opportunities and require specialist knowledge in order to optimise
them. The Dominion constraint solver synthesizer addresses these issues by auto-
matically building problem-specific solvers. This paper demonstrates that Monte
Carlo Tree Search can be employed to tackle the difficult problem of configuring
these solvers.

1 Introduction

Since constraint solvers must be able to handle a wide range of unseen problems, mod-
ern constraint solvers are sophisticated and complex pieces of software. This means
that in order to optimise the solver for a particular large, complex problem, a significant
amount of manual tuning is often required.

The Dominion constraint solver synthesiser [1] provides an alternative approach.
Rather than providing a fixed core solver with limited configuration options, it analyses
the input problem and synthesises a solver for that particular problem from the library
of available components. This approach allows the automatic customisation of every
aspect of the solver to suit the input problem.

The main problem with this approach is that a large number of components have to
be selected for each solver and the number of different configurations increases expo-
nentially with the problem complexity and the library size. Additionally, these compon-
ents may have an arbitrary number of subcomponents and internal constraints to ensure
the validity of solvers (ability to solve the given problems correctly).

Since the shape and size of the component (and in turn decision) tree can vary
significantly for every problem, it is difficult to apply the standard tuning methods to it
and a specialised algorithm is needed. In this paper we demonstrate how Monte Carlo
Tree Search[6] (MCTS) can be used for this purpose.

The approach we describe in this paper relies on no background knowledge and
discovers the performance impact of the various decisions to be made dynamically and
for the specific problem to be solved.

2 Dominion

Dominion consists of a database of components, which are described in the architecture
description language (ADL) Grasp [3]. A full description of how Dominion uses Grasp
to specify solvers can be found in [2].

Grasp is designed to capture the structure, behaviour and rationale of systems at the
architectural level and supports a range of architectural primitives. This is needed to
represent the complex relationships between different components in Dominion. Each
component in Dominion is represented by a Grasp template, which expresses the in-
terfaces the component provides and the child components which it requires. Further,
Grasp allows a range of constraints to be expressed between components. A complete
solver forms a tree of Grasp templates.

@Dominion(Filename="nqueens.hpp)

@Dominion(<external annotation >) template DominionProblem () {
template <identifier >(<variables >){ provides IProblemClass;
provides <function >; requires IPropagator_sum suml;
requires <function> <id >; requires IDiscreVar queens;
property <id> = <value >; A
check <list> subsetof <list >; link queens to suml.varl;
link <component> to <variable >; check [’bound’] subsetof
queens .domainType;
} ¥
Figure 1: Grasp Template Figure 2: Grasp Component Example

In general, different templates which implement the same interface can have very
different implementations. For example, Dominion contains five implementations of the
> x; = d constraint. Some of these impose extra requirements on the variables, and
different implementations perform better or worse as the number of variables increases.

An initial algorithm analyses the input problem and determines what kind of al-
gorithms are needed to solve the given problem, what storage is needed for the variables
within the problem and how they are all linked together. These requirements are then
noted down as a Grasp specification to be used in the solver synthesis.

The solver synthesis is a configuration problem [7] by itself . At the root of this con-
figuration tree is always the same component (ISolver) that provides the main interface
and requires the problem specification (produced during the analysis step), a search al-
gorithm and a search heuristic. Making a choice for each of these components opens
up the further component choices. As different components, which implement the same
interface, can have different requirements and impose different constraints, the shape of
the resulting component tree can vary very significantly, even when constructing solvers
for a very specific constraint problem. This means that it is often not feasible to list all
the decisions, which have to be made during the configuration, in advance and in turn it
makes the application of standard tuning techniques very difficult.

3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTY) is a recent best-first search algorithm that can be ap-
plied to a wide range of problems that can be expressed as a tree of sequential decisions.
The main advantage of MCTS over similar methods is that it can be used with little or
no domain knowledge and has shown to be applicable in cases where other algorithms

have failed [5]. Because of this, since its appearance, MCTS has been applied to a wide
range of complex problems (most notably in various game simulations[4,8,10]).

The concepts of the MCTS algorithm are quite simple — every iteration of the al-
gorithm consists of four stages: selection, expansion, simulation and backpropaga-
tion.

During the selection step a selection strategy is applied to recursively build the
tree from the previously explored nodes balancing between the most promising nodes
(exploitation) and nodes with a lot of uncertainty (exploration). The expansion step
is used to add new nodes to the partially completed tree at which point a number of
simulations are run to evaluate the new expansion. The results of those simulations are
then backpropagated to update the values of the ancestor nodes.

4 Implementation

Given that the completed solver is a tree of components of undefined shape that is filled
as the search progresses, our Monte Carlo Tree Search algorithm relies on the following
data-structures:

— PartialTree: This is the list of components we have assigned so far. Initially this
contains only the ISolver component, which is the root of all Dominion solvers.

— OpenNodes: The list of Grasp interfaces to which we can assign the next compon-
ent. Initially this contains the three interfaces that are required by the ISolver

— PreviousTests: The specifications and runtimes of all solvers that are tested so far.
This list starts empty.

ISolver

[| I |
— [[S E— E— — | —

[Partial Tree Il Open Nodes

Figure 3: Dominion Solver Component Tree

At the core of the MCTS algorithm is the Evaluation subroutine. It generates and
tests a number of random solvers by extending the PartialTree (which can be treated
asi a MCTS node). During this generation, the Grasp specification is evaluated, com-
ponents are filtered by their function and assigned randomly. If any of the constraints
become violated after the assignment, the algorithm backtracks. All the successful tests
and their runtimes are then appended to the PreviousTests list. This can be repeated
with multiple parameter sets to avoid overfitting.

4.1 Core Algorithm

The main algorithm begins with the Evaluation subroutine, to generate some initial
data to guide the rest of the algorithm. After which we enter the main loop of the al-
gorithm.

Each algorithm iteration begins with the Interest function. This function iterates
over each element in the OpenNodes list and checks what possible assignments can be
made for each of those nodes. If the element can only have one possible assignment,
that component is immediately noted in the PartialTree and its child nodes are added
to the OpenNodes list.

If there are multiple possible component assignments for that particular Node, Pre-
viousTests list is examined to find all tests, that fit Partial Tree to see which assignments
were previously made. The difference between the best and worst assignment is noted
as the Interestingness of the node.

After the Interest function finishes evaluating the nodes within the OpenNodes list,
the node with the highest Interestingness is selected. For each of the possible assign-
ments to that particular node, the assignment is made temporarily and the Evaluation
subroutine is run. This provides additional information, which is used to select the best
component.

At this point, the best component is chosen and the assignment is made within the
PartialTree, the child components of that node are added to the OpenNodes list and
the algorithm moves to the next iteration.

4.2 Restarts

One very significant flaw inherent to this approach is the fact that it favours exploitation
very heavily and does very little in terms of exploration. As a result of this, if not
enough data is gathered by the initial runs of the Evaluation subroutine, it can make
some terrible decisions and never reach the desired results.

Refalo [9] demonstrates, that in cases like this, where an algorithm relies heavily
on random selection, restarting the search can dramatically improve the performance
of the algorithm. To implement this, the Evaluation algorithm was extended to check
the number of tests done so far and initiate a Restart when the predefined threshold is
reached.

The Restart subroutine resets the PartialTree and OpenNodes list, but maintains
the PreviousTests list. It then starts the whole MCTS algorithm. Since it very likely that
the new iteration would follow the same path (because of all the good solvers already
discovered there), the initial Evaluation algorithm is run again as well.

5 Evaluation and Problems Encountered

One of the biggest problems inherent to this approach is the fact that a large number of
solvers have to be compiled and tested. Additionally, running each of these solvers can
be a very expensive operation. These two factors, when combined, mean that in may
take a prohibitively long time to find a good solver for any particular problem class.

This is especially true for the more complex problems, which do not have relatively
easy instances.

If the problems have both easy and hard instances, and collection of these can be
assembled, a large number of tests with very small timeouts can be used to sample the
components. Additionally, if the instances are already sorted by difficulty, the testing
can be further sped up by assuming time-outs for the remaining instance after the first
time-out is encountered.

In cases where it is possible to apply the both techniques it is already possible to
achieve very good results as shown in the Table 1. In case of N Queens, the Dominion
was able to build solvers that can scale extremely well up to 470 queens, while Minion
with standard configurations was struggling above 30.

Problem Class|Dominion|{Minionl Minion2 Minion3 Minion4
20 Queens 0.017 0.721 0.128 0.120 0.112

30 Queens 0.032| 105.1 0447 109.6 0.578

40 Queens 0.066] 599.1 599.6 599.7 599.6
Magic Squares 5 0.102| 0.337 0.115 0428 0.123
Magic Squares 6 0.207| 599.7 26.84 133.8 599.7
Magic Squares 7 1.817 599.6 599.7 599.7 599.7

Table 1: Runtimes: Dominion vs Minion with different variable orderings
Minion search orders: standard, SDF, WDEG, domWDEG

Another problem emerges from the random sampling of the solver space. While the
algorithm is guaranteed to reach the good solvers eventually, “unlucky” samples can
delay this process tremendously. Figure 4 demonstrates that even for simple problems
like N Queens, a few “lucky” random configurations is not enough to identify the com-
ponent choices that are needed to reach the good solver configurations. (The vertical
bars in the graphs represent restarts and subsequent random sampling.)

200
200

Runtime (log scale)
5 10 20 50

Runtime (log scale)
5 10 20 50

I T T T T 1 T T 1
0 50 100 150 200 250 0 50 100 150 200 250

Algorithm iteration Algorithm iteration

Figure 4: 10/20/100/200 Queens, 60s t/o Figure 5: Magic Squares (5/7/9/11), 60s t/o

This generally happens for two reasons:

— Some components are not present in any of the tests. This leads to the Interest
function ignoring the important components.

— Some component combinations occur together too often. This leads to the Interest
function and subsequent checks choosing the wrong components.

To address this issue, we are currently investigating the possibility of modifying the
Evaluation subroutine so it would no longer generate solvers randomly. Instead, the
process will be guided to eliminate the missed components and increase the number of
different component combinations. Additionally, the naive Interest function that checks
best tests for each of the components will be replaced by more robust techniques like
Generalised Linear Regression models.

6 Conclusion

While there is still more work to be done to increase the scalability of the approach, the
early results demonstrate that this approach can be used to effectively (if not yet effi-
ciently) build specialised solvers that can outperform the standard monolithic solvers.

Acknowledgements We would like to thank EPSRC for funding this work through
grant EP/H004092/1. We thank Christopher Jefferson and Peter Nightingale for con-
structing the large portion of the underlying Dominion framework and Alan Frisch for
suggesting the Monte Carlo Tree Search simulation.

References

1. Balasubramaniam, D., Jefferson, C., Kotthoff, L., Miguel, 1., Nightingale, P.: An automated
approach to generatin efficient constraint solvers. In: Proceedings ICSE 2011 (2011)

2. Balasubramaniam, D., Jefferson, C., Kotthoff, L., Miguel, 1., Nightingale, P.: An automated
approach to generating efficient constraint solvers. In: 34th International Conference on Soft-
ware Engineering. pp. 661-671 (Jun 2012)

3. Balasubramaniam, D., de Silva, L.. Grasp language reference manual ver-
sion 1.0. Tech. rep., University of St Andrews (2011), http://www.cs.st-
andrews.ac.uk/"dharini/reports/GraspManual.pdf

4. Broeck, G.V., Driessens, K., Ramon, J.: Monte-carlo tree search in poker using expected
reward distributions pp. 367-381 (2009)

5. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and Al in Games 4(1) (2012)

. Chaslot, G.M.J.: Monte-Carlo Tree Search. Ph.D. thesis, Maastricht University (2010)

7. Ginter, A., Kiihn, C.: Knowledge-based configuration- survey and future directions pp. 47—
66 (1999)

. L. Szita an, G.C., Spronck, P.: Monte-carlo tree search in settlers of catan pp. 21-32 (2010)

9. Refalo, P.: Impact-based search strategies for constraint programming. In: CP 2004. pp. 557-
571 (2004)
10. Winands, M.H.M., Bjornsson, Y., Saito, J.T.: Monte-carlo tree search solver pp. 25-36
(2008)

=)

e}

