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Abstract. In this paper we present a generalization of conditional pref-
erence networks (CP-nets) that incorporates uncertainty. CP-nets are a
formal tool to model qualitative conditional preference statements about
preferences over a set of objects. They are static structures, both in their
ability to capture dependencies between objects and in their expression
of preferences over features of a particular object. Moreover, CP-nets do
not provide the ability to express uncertainty over the preference state-
ments. We present and study a generalization of CP-nets which supports
changes and allows for encoding uncertainty over the structure of the de-
pendency links and over the individual preference relations.
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1 Introduction

CP-nets are used to model conditional information about preferences [1]. Pref-
erences play a key role in automated decision making [6] and there is some
experimental evidence suggesting qualitative preferences are more accurate than
quantitative preferences elicited from individuals in uncertain information set-
tings [10]. CP-nets are compact, arguably quite natural, intuitive in many cir-
cumstances, and widely used in many applications in computer science such as
recommendation engines [5].

Real life scenarios are often dynamic. A user can change his preferences over
time or the system under consideration can change its laws. Thus, we need a
dynamic structure that can respond to change, without the need to completely
rebuild the structure. We often meet situations characterized by some form of
uncertainty. We may have some missing informations or we may be uncertain
about our preferences or on what features our preferences depend. Thus, we
need a structure that includes probabilistic information. The need for encoding
uncertain, qualitative information has seen some work in the recommendation
engine area [4, 7].

Consider a household of two people and their Netflix account. The recom-
mendation engine only observes what movies are actually watched, what time
they are watched, and their final rating. Let us say that one person prefers drama
movies to action ones while the other has the opposite preference. When making
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a recommendation about what type of movie to watch, the engine may have
several solid facts: comedies may always be watched in the evening, so we can
put a deterministic, causal link between time of day and type of movie. However,
we cannot observe which user is sitting in front of the television at a given time.

There is strong evidence from the behavioral social sciences showing that
adding uncertainty to preference frameworks may be a way to reconcile transi-
tivity when eliciting input from users [8]. Using this idea, we add a probabilistic
dependency between our belief about who is in front of the television and what
we should recommend. Thus we need a dynamic structure that encode uncer-
tainty. We propose and study the Dynamic PCP-nets (Dynamic Probabilistic
CP-nets) structure which allow for uncertainty and online modification of the
dependency structure and preferences.

2 Background

In this section we are going to introduce the main background concepts concern-
ing CP-nets (the starting point of our work) and Bayesian Networks, that we
use as a tool to reason about PCP-nets.

2.1 CP-nets

CP-nets are a graphical model for compactly representing conditional and quali-
tative preference relations [1]. They exploit conditional preferential independence
by decomposing an agent’s preferences via the ceteris paribus assumption (all
other things being equal). CP-nets bear some similarity to Bayesian Networks
(see Section 2.2). Both use directed graphs where each node stands for a domain
variable, and assume a set of features F = {X1, . . . , Xn} with finite domains
D(Xi). For each feature Xi, each user specifies a set of parent features Pa(Xi)
that can affect her preferences over the values of Xi. This defines a dependency
graph in which each node Xi has Pa(Xi) as its immediate predecessors. Given
this structural information, the user explicitly specifies her preference over the
values of Xi for each complete assignment on Pa(Xi). This preference is a total
or partial order over D(Xi) [1]. Each node Xi has a conditional preference table
(CP-table) that contains the conditional preference statements.

Note that the number of complete assignments over a set of variables is
exponential in the size of the set, but we assume that there are bounds on
|Pa(X)| and on |D(X)|.

In this paper we focus on acyclic CP-nets (in which the dependency graph
is acyclic). The semantics of CP-nets depends on the notion of a worsening flip
that is a change in the value of a variable to a value which is less preferred by
the cp-statement for that variable. We say that one outcome (an assignment of
all the variables) α is better than another outcome β (written α > β) if and
only if there is a chain of worsening flips from α to β. This definition induces a
pre-order over the outcomes.
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In general, finding optimal outcomes and testing for optimality in this or-
dering is NP-hard but, in acyclic CP-nets, the unique optimal outcome can be
found via a sweep forward procedure [1] and takes polynomial time in the size of
the CP-net (recall that the number of parents is bounded).

2.2 Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph (DAG) where each node v ∈
V corresponds to a random variable. If there is a directed edge from node X to
node Y , X is said to be a parent of Y . Each node Xi has a conditional probability
distribution P(Xi|Parents(Xi)) that, in the case of discrete variables, is stored
in the conditional probability table (CPT) corresponding to that variable.

Inference in a BN corresponds to calculating P(X|E) where both X and E
are sets of variables of the BN, or to finding the most probable assignment for
X given E. The variables in E are called evidence.

There are three standard inference tasks in BNs: belief updating, which is
finding the probability of a variable or set of variables, possibly given evidence;
most probable explanation (MPE), that is the most probable assignment for
all the variables given evidence; and maximum a-posteriori hypothesis (MAP),
where we are interested in a subset of m variables A1, · · · , Am and we want
to compute the most probable assignment of {A1, · · · , Am} by summing over
the values of all combinations of V \ {A1, · · · , Am} ∪ E, where E is a (possibly
empty) set of evidence variables.These inference tasks are computationally hard.
However, they can be solved in polynomial time if we impose some restrictions
on the topology of the BNs such as bounding the induced width [2, 3].

3 Probabilistic CP-nets (PCP-nets)

We define a generalization of traditional CP-nets with probabilities on indi-
vidual cp-statements as well as on the dependency structure. In general, we
assume these probabilities are independent. This allows us to use algorithms
and techniques from BNs to obtain to efficiently compute restricted dependency
structures.

A PCP-net is a CP-net where each dependency link is associated with a
probability of existence; and for each feature A, instead of giving a preference
ordering over the domain of A, we give a probability distribution over the set of
all preference orderings for A. More precisely, given a feature A in a PCP-net,
its PCP-table is a table associating each combination of the values of the parent
features of A (including a null value to account for the possible non-existence of
the dependency link) to a probability distribution over the set of total orderings
over the domain of A.
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1

Fig. 1. PCP-net C

Example 1. Consider the PCP-net C with three features,
A, B and C, with domains DF = {f1, f2} with F ∈
{A,B,C}. The preferences on C depend on the assign-
ment to A with probability p. The structure and PCP-
tables are defined as follows:
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A orderings P
a1 > a2 rA
a2 > a1 1− rA

B orderings P
b1 > b2 rB
b2 > b1 1− rB

A & B C orderings P
a1b1

c1 > c2 q1
c2 > c1 1− q1

a2b1
c1 > c2 c2
c2 > c1 1− q2

nullAb1
c1 > c2 q3
c2 > c1 1− q3

A values B orderings P
a1b2

c1 > c2 q4
c2 > c1 1− q4

a2b2
c1 > c2 q5
c2 > c1 1− q5

nullAb2
c1 > c2 q6
c2 > c1 1− q6

Given a PCP-net C, a CP-net induced by C has the same features and do-
mains as C. The dependency edges of the induced CP-net are a subset of the
edges in the PCP-net which must contain all edges with probability 1. CP-nets
induced by the same PCP-net may have different dependency graphs. Moreover,
the CP-tables are generated accordingly for the chosen edges. For each inde-
pendent feature, one ordering over its domain (i.e., a row in its PCP-table) is
selected, and for dependent features, an ordering is selected for each combina-
tion of the values of parent features. Each induced CP-net has an associated
probability obtained from the PCP-net by taking the product of the probability
of the chosen edges (obtained by multiplying the probabilities pi for each active
dependencies and 1− pi for each of the inactive ones, where p is the probability
of the existence of an edge), and the probability of the chosen orderings.
Example 2. Given the PCP-net of Example 1, an induced CP-net is:

A

C

B

Fig.2. Induced CP-net

A orderings
a2 > a1

B orderings
b1 > b2

B values C orderings
b1 c2 > c1
b2 c1 > c2

This induced CP-net has probability: P = (1− p) · (1− rA) · rB · (1− q3) · q6.
Since we have a probability distribution on the set of all induced CP-nets, it

is important to be able to find the most probable induced CP-net. We are also
interested in finding the most probable optimal outcome.

3.1 The most probable induced CP-net

We reduce the problem of finding the most probable induced CP-net to that
of finding an assignment with maximal joint probability of an appropriately
defined BN (General-network or G-net, of which we omit the description for
lack of space). We prove that given a PCP-net C and the corresponding G-net
N , there is a one-to-one correspondence between the assignments of N and the
induced CP-nets of C and the probability of realizing one of its induced CP-nets
is the joint probability of the corresponding assignment in N . Thus, computing
the assignment with maximal joint probability of the G-net, we find the most
probable induced CP-net.

3.2 The most probable optimal outcome

To find the most probable optimal outcome (the outcome that occurs with the
greatest probability as the optimal one in the set of induced CP-nets), we must
make use of another BN (Optimal network). First we transform the given PCP-
net C into a PCP-net CT with probabilities only in the PCP-tables (not on
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edges), and then we build the Opt-net to find the most probable optimal out-
come associated with CT and thus with the PCP-net C. We obtain that given a
PCP-net C and the Opt-net of CT , there is a one-to-one correspondence between
the assignments (with non-zero probability) of the Opt-net and the outcomes that
are optimal in at least one induced CP-net of C. Given a PCP-net C, the prob-
ability that an outcome is optimal is the joint probability of the corresponding
assignment in the optimal network of CT . If no such corresponding assignment
exists, then the probability of being optimal is 0. To find the most probable op-
timal outcome for a PCP-net C, it is sufficient to compute the assignment with
the maximal joint probability on the optimal network for CT .

4 Dynamic Probabilistic CP-nets

We now turn our attention to dynamic modifications to the structure of a PCP-
net. One can think of modifying the structure of the PCP-net by adding or
removing an arc or a feature or setting an ordering for a variable. These changes
can be implemented in an efficient way and their effects on computing the most
probable optimal outcome and the most probable induced CP-net are minimal,
in terms of complexity.

To add or delete a dependency or a feature we just update the respective
probability tables, including nulli values. This may involve deleting redundancy
when we delete a feature. Additionally, due to the independence assumptions,
we can modify probabilities over ordering and features at a local level, with no
need to recompute the entire structure when new information is added.

When we modify a PCP-net C we also need to modify the associated BN:
G-net and Opt-net, but all the updating steps take constant time in the size
of the connected component of the change. When we update the most probable
induced CP-net, we must, in the worst case, recompute the whole maximal joint
probability of the G-net. Similarly, the updating of the most probable optimal
outcome, in the worst case, could involve the recomputing of the whole maximal
joint probability of the Opt-net.

5 PCP-nets and Induced CP-nets

A PCP-net defines a probability distribution over a set of induced CP-nets.
However, this step is not always reversible: given a probability distribution over a
set of CP-nets, all with the same features and domains, there may be no PCP-net
such that the given CP-nets are its induced CP-nets. However, the function that
maps a PCP-net to its set of induced CP-nets is injective. These considerations
give us interesting clues about the practicality of eliciting and aggregating CP-
nets. We have thus considered how to use PCP-nets in a multi-agent setting,
where classical CP-nets have already been considered [9]. We see the PCP-nets
as a compact way to model the preferences of a population. In some instances,
we can derive an exact PCP-net from a population of users, each one with his
elicited CP-net. This process is possible in the case that a function that maps
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a PCP-net to this set of induced CP-nets exists. If this set of induced CP-nets
has no a inverse image then we can only obtain an approximated PCP-net, the
one, for example, that generates a set of induced CP-nets that has the minimum
distance from the starting set (for a given notion of distance).

In this context the most probable induced CP-net represent the most common
profile of user in the population (the user that represent better the population)
and the most probable optimal outcome is the the will of the community, the
common preferences.

6 Current and Future Work

Currently we are interested in development of the aggregation approach briefly
introduced before (see Section 5) and in learning PCP-nets. For this latter pur-
pose we started from the known procedures for learning CP-net [11] and we
have tried to generalize this processes (we have some results only on the case of
separable PCP-nets). We plan to study dominance queries and optimality tests
in dynamic PCP-nets, as well as to study appropriate eliciting methods for both
preferences and probabilities. Additionally, we have made several assumptions
to bound the complexity of PCP-nets; we would like to relax these bounds or
obtain results about approximability when these assumptions are lifted.

References

1. Boutilier C., Brafman R., Domshlak C., Hoos H., Poole D.: CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements.
J. Artif. Intell. Res. (JAIR) 21, 135191 (2004)

2. D’Ambrosio B.: Inference in bayesian networks. AI Magazine 20(2), 21 (1999)
3. Dechter R.: Bucket elimination: A unifying framework for reasoning. Artificial In-

telligence 113(1-2), 4185 (1999)
4. Faltings B., Torrens M., Pu P.: Solution generation with qualitative models of pref-

erences. Computational Intelligence 20(2), 246263 (2004)
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