
Explaining the ATMOSTSEQCARD constraint∗

Mohamed Siala1,2, Christian Artigues1,3, and Emmanuel Hebrard1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France
{siala, artigues, hebrard}@laas.fr

Abstract. We firstly propose an O(n) propagation-based procedure for explain-
ing the ATMOSTSEQCARD constraint. Then, we evaluate it against pure CP mod-
els for solving car-sequencing benchmarks. The experimental evaluation empha-
sizes the importance of combining CP with SAT for solving this problem.

1 Introduction

The ATMOSTSEQCARD constraint, recently proposed in [7], has been shown to be ex-
tremely efficient for solving Car-sequencing and Crew-rortering benchmarks. However,
efficient propagators might be not enough for solving hard problems without powerful
learning mechanisms. In this sense, several hybrid approaches combining the strengths
of SAT and CP have been proposed. These methods are based on the notion of explana-
tion. The idea is to keep some constraints in their implicit form (i.e. with a specific prop-
agator) with the ability to explain themselves. In particular, whenever a pruning/failure
is triggered by a constraint C, the latter should be able to generate a relevant explana-
tion.

In this context, we introduce a linear time procedure for computing compact expla-
nations for the ATMOSTSEQCARD constraint. This algorithm can be used in a hybrid
CP/SAT approach such as SAT Modulo Theory, CSP Solvers with learning, or Lazy
Clause Generation.

Our experimental evaluation provides good empirical evidence for the two follow-
ing observations regarding the Car-sequencing problem: First, we emphasize the hy-
pothesis that propagation, even with state-of-the-art heuristics, does not seem as im-
portant for proving unsatisability than clause learning. Second, as expected, specic CP
heuristics are very useful to quickly find solutions. Moreover, they can be combined
with adaptive heuristics (VSIDS) in order to keep clause learning strength for building
proofs.

The remainder of this paper is organized as follows. We give in Section 2 a short
background on the hybridisation of CP and SAT. In Section 3, we show that, based
on the ATMOSTSEQCARD propagator, one can build a linear time explanation for this
constraint. Finally, we empirically evaluate, in Section 4, the hybrid model based on
this explanation against the related pure-CP one.
? Mohamed Siala is the student ; Dr. Artigues and Dr. Hebrard are the supervisors

2 Constraint Programming and its hybridisation with SAT

A Constraint Satisfaction Problem (CSP) is defined by a triplet P = (X ,D, C) where
X is a set of variables, D is a mapping of variables to finite sets of values and C is a set
of constraints that specify allowed combinations of values for subsets of variables. We
assume thatD(x) ⊂ Z for all x ∈ X . We denote x← v the assignment of the value v to
the variable x, and x 8 v the pruning of the value v from D(x). A partial instantiation
S is a set of assignements and/or pruning such that no variable is assigned more than
one value and no value is pruned and assigned for the same variable. Let ⊥ be a failure
or a domain wipe-out, by convention equal to the set of all possible assignments and
prunings. A constraint C defines a relation Rel(C), that is, a set of instantations, over
the variables in Scope(C). It is generalized arc consistent (GAC) iff, for every value
v of every variable x in Scope(C), there exists a consistent instantiation S in Rel(C)
such that x ← v ∈ S. Throughout the paper we shall associate a constraint C to a
propagator, that is, a function mapping partial instantiations to partial instantiations or
to the failure ⊥. Given a partial instantiation S we denote C(S) the partial instantiation
(or failure) obtained by applying the propagator associated to C on S, and we have
S ⊆ C(S). Let p be an assignment or a pruning. The level of p (denoted by lvl(p))
is its order of appearance in the search tree. We say that the partial instantiation S
implies p w.r.t C iff p 6∈ S & p ∈ C(S). We denote S(x) the domain D(x) updated by
the assignment or pruning associated to x in S. Moreover, we shall denote min(S(x))
(resp. max(S(x))) the minimum (resp. maximum) value in S(x). We say that a partial
instantiation S is an explanation of the pruning x 8 v with respect to a constraint C if
it implies x 8 v (that is, x 8 v ∈ C(S) \ S). Moreover, S is a valid explanation iff
lvl(x 8 v) > max({lvl(p) | p ∈ S}). For instance, if C is the clause p ∨ ¬q ∨ r, the
only possible explanation for p 8 0 with respect to C is {q ← 1, r ← 0}.

The Boolean Satisfiability Problem (SAT) is a particular case of CSP where all the
domains are {0, 1} and constraints are clauses (i.e. disjunction over these variables
and their negation). Modern SAT Solvers implement extremely efficient techniques
like Conflict-Driven Clause Learning (CDCL), the two-Watched literals, activity-based
heuristics, etc [1]. Several hybrid approaches trying to exploit these techniques into
CP Solvers were proposed. The idea is to incorporate a SAT engine with finite domain
propagators. For instance Katsirelos’s generalized nogoods [3] [4] enable this type of
approaches for arbitrary domains. However, to simulate the behavior of CDCL, it is
necessary to explain either a failure or the pruning of a domain value. Lazy-clause gen-
eration [5] solvers add a clause whenever pruning is performed in order to provide an
explanation for the pruning. In this paper we use a solver with a slightly different ar-
chitecture, where constraints generate explanations as lazy as possible (i.e. when the
learning scheme asks for explanations).

3 Explaining the ATMOSTSEQCARD constraint

Let X = [x1..xn] be a be a sequence of Boolean variables, u, q and d be integer
variables. The ATMOSTSEQCARD constraint is defined as follows :

Definition 1. ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) ⇔
∧n−q

i=0 (
∑q

l=1 xi+l ≤ u) ∧
(
∑n

i=1 xi = d)

In [7], the authors proposed a O(n) filtering algorithm achieving GAC on this con-
straint. We outline the main idea of the propagator. Let S be a partial instantiation.
The leftmost procedure returns an instantiation −→w S ⊇ S of maximum cardinal-
ity by greedily assigning the value 1 from left to right while respecting the ATMOST

constraints. Let −→w i
S denotes the partial instantiation −→w S at the begining of iteration

i, and let −→w 1
S = S. The value maxS(i) denotes the maximum minimum cardinality,

with respect to the current domain −→w i
S , of the q subsequences involving xi. It is com-

puted alongside−→w S and will be useful to explain the subsequent pruning. It is formally
defined as follows (where min(−→w i

S(xk)) = 0 if k < 1 or k > n):

maxS(i) = max
j∈[1..u]

(

i+j−1∑
k=i−q+j

min(−→w i
S(xk)))

Definition 2. The outcome of the procedure leftmost can be recursively defined
using maxS: at each step i, leftmost adds the assignment xi ← 1 iff this assignment
is consistent with −→w i

S and maxS(i) < u, it adds the assignment xi ← 0 otherwise.

In order to express declaratively the full propagator, we need the following further
steps: The same procedure is applied on variables in reverse order [xn..x1], yielding the
instantiation←−w S . We denote respectively LS(i) and RS(i) the sum of the values given
by −→w S (resp.←−w S) to the i first variables (resp. n− i+ 1 last variables). That is:

LS(i) =

i∑
k=1

min(−→w S(xk)) , RS(i) =

n∑
k=i

min(←−w S(xk))

Now we have all the tools to define the propagator associated to this constraint
described in [7], and which is a conjunction of GAC on the ATMOST constraints on
each subsequence, of CARDINALITY constraint

∑n
i=1 xi = d, and of the following:

ATMOSTSEQCARD(S) =

S, if LS(n) > d
⊥, if LS(n) < d
S ∪ {xi ← 0 | S(xi) = {0, 1}& LS(i) + RS(i) ≤ d}
∪ {xi ← 1 | S(xi) = {0, 1}& LS(i− 1) + RS(i + 1) < d} otherwise

(3.1)

If a failure/pruning is detected by the CARDINALITY or an ATMOST constraint,
then it is easy to give an explanation. However, if a failure or a pruning is due to the
propagator defined in equation 3.1, then we need to specify how to generate a relevant
explanation. We start by giving an algorithm explaining failure then show how to use it
to explain pruning. We suppose in the following that failure/pruning was fired at level l.

3.1 Explaining Failure

The original instantiation S would be a possible naive explanation expressing this fail-
ure. We propose in the flowing a procedure returning more compact explanations with
no grantee regarding the optimality (see later example 1).

Let I = [xk+1..xk+q] be a (sub)sequence of variables of size q and S be a partial in-
stantiation. We denote card(I, S) the minimum cardinality of I under the instantiation
S, that is: card(I, S) =

∑
xi∈I min(S(xi)).

Lemma 1. If S∗ = S \ ({xi ← 0 | maxS(i) = u} ∪ {xi ← 1 | maxS(i) 6= u}) then
−→w S = −→w S∗ .

Proof. Suppose that there exists an index i ∈ [1..n] s.t.−→w S(xi) 6= −→w S∗(xi) and let k be
the smallest index verifying this property. Since the instantiation S∗ is a subset of S (i.e.,
S∗ is weaker than S) and since leftmost is a greedy procedure assigning the value
1 whenever possible from left to right, it follows that −→w S(xk) = 0 and −→w S∗(xk) = 1.
Moreover, it follows that maxS(k) = u and maxS∗(k) < u. In other words, there
exists a subsequence I containing xk s.t the cardinality of I in −→w k

S (card(I,−→w k
S))

is equal to u, and the cardinality of I in −→w k
S∗ (card(I,−→w k

S∗)) is less than u. From
this we deduce that there exists a variable xj ∈ I such that min(−→w k

S(xj)) = 1 and
min(−→w k

S∗(xj)) = 0.
First, we cannot have j < k. Otherwise, both instantiations −→w k

S(xj) and −→w k
S∗(xj)

contain an assignment for xj , and therefore we have −→w k
S(xj) = {1} and −→w k

S∗(xj) =
{0}, which contradicts our hypothesis that k is the smallest index of a discrepancy.

Second, suppose now that j > k. Since we have card(I,−→w k
S) = u, we can deduce

that card(I,−→w j
S) = u. Indeed, when going from iteration k to iteration j, leftmost

only adds assignments, and therefore card(I,−→w j
S) ≥ card(I,−→w k

S). It follows that
maxS(j) = u, and by construction of S∗, we cannot have xj ← 1 ∈ S \ S∗. However,
it contradicts the fact that min(−→w k

S(xj)) = 1 and min(−→w k
S∗(xj)) = 0.

ut

Theorem 1. If S is a valid explanation for a failure and S∗ = S\({xi ← 0 |maxS(i) =
u} ∪ {xi ← 1 |maxS(i) 6= u}), then S∗ is also a valid explanation.

Proof. By Lemma 1, we know that the instantiations −→w S and −→w S∗ , computed from,
respectively the instantiations S and S∗ are equal. In particular, we have LS(n) =
LS∗(n) and therefore ATMOSTSEQCARD(S) =⊥ iff ATMOSTSEQCARD(S∗) =⊥.

ut
Theorem 1 gives us a linear time procedure to explain failure. In fact, all the values

maxS(i) can be generated using one call of leftmost.

Example 1.

S 1 0 1 0 0 . . 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
maxS(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
LS(i) 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5 5 6 6 6 6 6 7
S∗ 1 . 1 1 1 . . . 0 . 0 0 0 0 .

maxS∗(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S∗(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

We illustrate in Example 1 the explanation of a failure on ATMOSTSEQCARD(2, 5, 8, [x1..x22]).
The propagator returns a failure since LS(22) = 7 < d = 8. The default explanation
corresponds to the set of all the assignments in this sequence, whereas our procedure
shall generate a more compact explanation by considering only the assignments in S∗.
Bold face values in the maxS(i) line represent the variables that will not be included in
S∗. As a result, we reduce the size of the default explanation from 20 to 9 assignments.
Note, however, that S∗ is not optimal (w.r.t the size) since leftmost returns exactly
the same result on S∗ and S∗ \ x1 ← 1 (hence the same failure).

3.2 Explaining Pruning
Suppose that a pruning xi 8 v was triggered by the propagator in equation 3.1 at a
given level l on S (i.e. propagating ATMOSTSEQCARD(S) implies xi 8 v). Consider
the partial instantiation Sxi←v identical to S on all assignments at level l except for
xi ← v instead of xi 8 v. By construction Sxi←v is unsatisfiable. Let S∗ be the expla-
nation expressing this failure using the previous mechanism. We have then S∗ \xi ← v
as a valid explanation for the pruning xi 8 v.

4 Experimental results

To evaluate the proposed explanation, we compare it against pure CP models for solving
the car-sequencing problem [9]. In the latter, a set of vehicles has to be sequenced in
an assembly line. Each class of cars requires a set of options. However, the working
station handling a given option can only mount it on a fraction of the cars passing on
the line. Each option j is thus associated with a fractional number uj/qj standing for
its capacity (at most uj cars with option j occur in any sub-sequence of length qj).
We used the benchmarks available from the CSPLib [2]. We grouped the instances into
three categories sat[easy] (74 instances), sat[hard] (7 instances) and unsat
(28 instances). All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. For
each instance, we launched 5 randomized runs with a 20 minutes time cutoff. We ran
the following methods (all using the ATMOSTSEQCARD propagator):

– Mistral as a hybrid CP/SAT solver implementing standard CDCL features and using
the proposed explanation. We tested four branching heuristics :
1. hybrid (VSIDS) uses VSIDS;
2. hybrid (Slot) uses a cp heuristic based on the usage rate[8].
3. hybrid (Slot → VSIDS) first uses hybrid (Slot) then switches after 100 non-

improving restarts to VSIDS.
4. hybrid (VSIDS → Slot) uses VSIDS and switches after 100 non-improving

restarts to hybrid (Slot).
– pure-CP: Mistral without clause learning using the Slot branching.

For each considered data set, we report the total number of successful runs (#suc).Then,
we report the number of fails (fails) and the CPU time (time) in seconds both averaged
over all successful random runs on every instance. We emphasize the statistics of the
best method (w.r.t. #suc) for each data set using bold face fonts.
Finding solutions quickly: We observe that pure CP approaches are difficult to outper-
form. It must be noticed that the results reported here are significantly better than those
previously reported for similar approaches. For instance, the best methods introduced
in [10] take several seconds on most instances of the first category and were not able
to solve two of them within a one hour time cutoff. Moreover in [7], the same solver
on the same model had a similar behavior on the first category (sat[easy]), how-
ever was only able to solve 2 instances of the second category (sat[hard]). The only
difference with the method we ran in this paper is that restarts according to the Luby
sequence were used. However, overall, the best method on satisfiable instances is the
hybrid solver using a pure CP heuristic. This study shows that propagation is very im-
portant to find solution quickly when they exist, by keeping the search “on track” and
avoiding exploring large unsatisfiable subtrees. In fact, previous CP approaches that did
not enforce GAC on the ATMOSTSEQCARD constraint are all dominated by pure-CP.

Proving unsatisfiability: The hybrid models are far better than pure CP approach that
was not able to prove any case of unsatisfiability. To mitigate this observation, how-
ever, notice that other CP models with strong filtering, using the Global Sequencing
Constraint [6], or a conjunction of this constraint and ATMOSTSEQCARD [7, 10] were
able to build proofs for some of the 5 known unsatisfiable instances of the CSPLib.
However, these models were not sufficient to solve any of the 23 larger unsatisfiable in-
stances. These results clearly show that clause learning is by far the most critical factor.

Table 1: Experimental Evaluation

Method
sat[easy] (74× 5) sat[hard] (7× 5) unsat (28× 5)
#suc avg fails time #suc avg fails time #suc avg fails time

hybrid (VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78
hybrid (VSIDS→ Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
hybrid (Slot→ VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
pure-CP 370 43.06 0.03 35 57966 16.25 0 - -

5 Conclusion

We proposed a linear time procedure for explaining the ATMOSTSEQCARD constraint
and empirically evaluate it with car-sequencing benchmarks. Experimental results em-
phasize the importance of advanced propagation as well as built-in heuristics for search-
ing feasible solutions and of clause learning for building unsatisfiability proof for this
problem.

References

1. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

2. I. P. Gent and T. Walsh. CSPlib: a benchmark library for constraints, 1999.
3. G. Katsirelos. Nogood Processing in CSPs. PhD thesis, University of Toronto, 2008.
4. G. Katsirelos and F. Bacchus. Generalized NoGoods in CSPs. In Proceedings of AAAI, pages

390–396, 2005.
5. Olga. Ohrimenko, P-J. Stuckey, and M. Codish. Propagation via Lazy Clause Generation.

Constraints, 14(3):357–391, 2009.
6. J-C Régin and J-F Puget. A Filtering Algorithm for Global Sequencing Constraints. In

Proceedings of CP, pages 32–46, 1997.
7. M. Siala, E. Hebrard, and M-J. Huguet. An Optimal Arc Consistency Algorithm for a Chain

of Atmost Constraints with Cardinality. In Proceedings of CP, pages 55–69, 2012.
8. B. Smith. Succeed-first or Fail-first: A Case Study in Variable and Value Ordering, 1996.
9. C. Solnon, V-D. Cung, A-N, and C Artigues. The car sequencing problem: Overview of

state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge problem.
European Journal of Operational Research, 191:912–927, 2008.

10. W-J. van Hoeve, G. Pesant, L-M. Rousseau, and A. Sabharwal. New Filtering Algorithms
for Combinations of Among Constraints. Constraints, 14(2):273–292, 2009.

