Table Constraints in Clause Learning CSP
Solvers

Ozan Erdem (student), George Katsirelos, and Fahiem Bacchus (supervisor)

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, M5S 3H5
{ozan, fbacchus}@cs.toronto.edu

Abstract. We investigate alternative methods for implementing table
constraints in clause learning CSP solvers (CL solvers). CL solvers have
been an important development in CP solving as they can provide impor-
tant performance improvements on some problems. Furthermore, table
constraints remain an important and useful modeling tool in CP. Hence,
it is important to be able to utilize table constraints in CL solvers ef-
fectively. Here we compare different ways of achieving GAC propagation
over table constraints in a CL solver. These methods require different
representations of the constraint. First we utilize a CNF encoding of the
table constraint which has the property that unit propagation achieves
GAC. We compare this with the use of a traditional GAC propagation
algorithm for tables, Simple Tabular Reduction (STR). To utilize STR in
a CL solver we also develop a method for extracting clausal explanations
for pruned values from it. We also develop and test a negative version of
STR which more compactly represents tables that have fewer falsifying
than satisfying tuples, which also generates clausal explanations. We im-
plement these different methods in the CL solver minicsp, and analyze
their performance empirically.

1 Introduction

A number of robust and powerful CSP solvers have been developed and are
publicly available. A recent development in CSP solver technology has been the
importation of ideas from SAT, specifically clause learning [5,6,8,9]. Clause
learning improves the theoretical power of a CSP solver, and recently well en-
gineered clause learning CSP solvers (CL solvers) have demonstrated very good
empirical performance on a range of problems (see, e.g., the results of recent
MiniZinc Challenges, http://www.minizinc.org/).

One of the main technologies exploited by CL solvers is the ability to generate
clausal explanations from global constraints. Once the solver can obtain a clause
for each pruned value, it can perform clause learning much like a regular SAT
solver. In particular, when a contradiction is detected the CL solver must be
able to obtain the clausal reasons for the various domain prunings that lead up
to the contradiction, and resolve these reasons against the base contradiction.

A considerable amount of work has been done showing how to generate
clausal reasons from propagators for various global constraints, e.g., [5, 10,3,

2 O. Erdem, G. Katsirelos and F. Bacchus

2]. Methods for generating explanations from table constraints were examined
in [5], but from a practical point of view these methods have not been previously
examined in the light of the performance tradeoffs of modern CL solvers.

Table constraints are of course very important in constraint programming.
They are easy for inexperienced users to use, problem domains often contain
special ad-hoc constraints that are most easily encoded extensionally as table
constraints, and information stored in databases is often accessed most conve-
niently as a table constraint.

In this paper we examine some different options for implementing table con-
straints in a CL solver so as to efficiently achieve GAC. We look at a clausal
decomposition, i.e., representing the table constraint as a set of clauses (CNF).
The main inference method available on clauses in a CL solver is unit propaga-
tion, hence we examine a clausal encoding on which unit propagation is sufficient
to achieve GAC. As mentioned above, all that the CL solver needs is the ability
to generate clausal reasons for the values pruned by the constraint. We examine
one of the most efficient and simplest “propagators” for table constraints, Simple
Tabular Reduction [7]. Finally, we examine a new STR-like algorithm for prop-
agating table constraints represented by their falsifying rather than satisfying
tuples. We give an algorithm for achieving GAC on this negative STR table.
We compare these different ways of handling table constraints in CL solvers and
draw some conclusions about their relative effectiveness in practice.

2 Background

A constraint problem P consists of a finite set V = {V4,...,V,,} of variables,
each with a finite domain of values Dom[V;] and a finite set of constraints C =
{c1,...,cm}. Each constraint ¢; is over some subset of variables, scope(c;) C V.
An assignment A is a set of variable value assignments {V! = d',... , V¥ = d*} in
which any variable is assigned at most a single value. Let vars(A) C V denote the
set of variables assigned in A. A is said to cover a constraint ¢ if scope(c) C A.

A constraint ¢ can be viewed as a Boolean function from assignments .4 that
cover it to true (in which case the A is said to be satisfying) or false (A is said to
be falsifying). Often we consider scope(c) to be ordered, and then for assignments
A such that vars(A) = scope(c) we can order its variable assignments in the same
way and then without loss of information remove the variables leaving only a
sequence of values. This ordered sequence of values is called a tuple for c. If A
is satisfying then its corresponding tuple is said to be a positive tuple (p-tuple)
for ¢, otherwise it is a negative tuple for ¢ (n-tuple). If ¢ is a tuple we let vars(t)
denote the variables ¢ specifies values for. If V' € vars(t) we let ¢[V] denote the
value assigned to V in ¢, and we say that t is valid iff for all V' € vars(t) we
have that t[V] € Dom[V]. A valid p-tuple ¢ for ¢ is said to be a support for the
value d € Dom[V] (where V' € scope(c)) if t[V] = d.

A positive table constraint (p-table) is a constraint that is specified by a
set of p-tuples, a negative table constraint is specified by a set of n-tuples. In

Table Constraints in Clause Learning CSP Solver 3

particular these sets of tuples are complete: ¢ satisfies a p-table constraint T if
and only if t € T (similarly for n-tables).

Finally, a constraint c is said to be generalized arc-consistent (GAC) if VV €
scope(c),d € Dom[V] there exists a valid p-tuple ¢ for ¢ such that ¢[V] = d.

A propositional variable is a variable with domain {0,1}. By convention, if
x is a propositional variable, we write z for x = 1 and -« for x = 0. and —x
are literals of the variable x and they are called complementary to each other.
If [is a literal, we denote its complement by I. A clause is a constraint which
is a set of literals, interpreted as their logical disjunction, e.g., (x,y, %), which is
interpreted as x Vy V —z.

In a CL solver, for each variable we maintain (implicitly or explicitly) a
clausal encoding of its domain. We use the order encoding, as suggested in [8]. For
every multi-valued variable V' with Dom[V] = {dy,...,d;} we have k Boolean
assignment variables Ay—g4;, and k + 1 order variables Ay<g4,, 0 < j < k The
variable Ay —g; is true when V' = d;, and is false when d; has been pruned from
V’s domain. The variable Ay <4, is true when all values greater than d; have
been pruned from the domain of V' and false when all values less than or equal
to d; have been pruned. We also have O(k) clauses that encode Ay—q <=
Av<g N Ay<q—1 and Ay<q — Av<as1 and the unit clauses (Ay<gq,) and
(~Av<a,)-

3 Clausal Decompositions of Table Constraints

We aim to examine methods for implementing table constraints in CL solvers.
Such solvers have efficient mechanisms for handling clauses, as they can learn
many clauses during solving, and it is very easy to use the same mechanisms to
deal with an initial set of input clauses. Hence, one way of implementing table
constraints is to convert them into a set of input clauses. The only restriction is
that the solver only has access to unit propagation (UP) to reason about these

clauses. Thus to achieve GAC we must use an encoding on which UP achieves
GAC.

3.1 Support Tuple Encoding

In [1] a CNF encoding for a table constraint ¢ was given on which UP achieves
GAC. This encoding was an adaptation of encodings presented in [4].
To encode the constraint ¢ we utilize additional propositional variables 1,
.., tm, each one representing one of the m different p-tuples of c. Let 7; be the
p-tuple represented by the propositional variable ¢;. Using the ¢; variables we
can write the clauses capturing C' as follows. For the variable V' € scope(c) and
value d € Dom[V], let {s1,...,s;} be the subset of {t1,...,¢m,} such that the
satisfying tuples represented by the s; are precisely the set of tuples 7; such that
7;[V] = d (these are the supports of V' = d). For each variable and value V = d
we have the clause (s1, ..., $;, 7Ay—4) (V = d must be false if it has no support).
Finally, we have for each p-tuple of C, 7, and assignment V = d € 7; the clause

4 O. Erdem, G. Katsirelos and F. Bacchus

(Ay—q4, —t;), which captures the condition that the tuple of assignments 7; cannot
hold if V' = d cannot be true and also the condition that if 7; holds then so do
all of its variable assignments.

It has been shown [1] that this encoding enforces GAC on a table constraint
in linear size of the constraint’s p-table Hence UP on this encoding will operate
in time linear in the size of the constraint’s p-table representation.

4 Clausal Reasons from Table Propagators

In this section we examine an algorithmic representation for achieving GAC on
a table constraint. First we discuss the standard STR algorithm that works on
p-table constraints. Then we turn our attention to a negative version of STR
that works on n-table constraints, which is new.

4.1 Positive STR

Simple Tabular Reduction (STR) is an efficient GAC algorithm which dynami-
cally maintains tables in order to keep track of supports. It was first introduced
by [11], and used in the context of a backtracking search algorithm by [7] along
with a number of optimizations under the name STR2+. In this paper we will
refer to STR2+ as positive STR, and as STR when the context is clear. In pos-
itive STR, the table ¢t of a constraint is divided into its upper and lower parts
called top(t) and bottom(t) with all the tuples in bottom being invalid.

As described in [7] achieving GAC with STR involves processing the tuples
in top to determine if they are valid. If a tuple ¢ is found to be invalid it is
moved to bottom, while if ¢ is found to be valid all of the values it assigns are
marked as having a support (i.e., these values are GAC). After all tuples in top
are processed, the unsupported variable values are pruned. The key contribution
of STR is that the invalid tuples need never be examined, the valid tuples need
be examined only once, and backtracking can be achieved by simply restoring
the variable domains and moving the marker that divides top from bottom.

Our addition to STR is to compute clausal reasons for the values pruned,which
can be computed lazily. When processing the tuples in top for any invalid tuple
t we detect we remember the variable value pair that made ¢ invalid. This is
some X = d such that t[{X] = d and d ¢ Dom[X]. Hence, each tuple in bottom is
marked with a proposition Ay —g4;. Then if we prune a value, e.g., X = d to com-
pute a reason we scan all tuples in bottom, locate those tuples ¢ with ¢[X] = d
and accumulate their propositional reasons into a set. The conjunction of these
propositions then implies the loss of all supporting tuples for X = d, and thus
implies = Ax—4. This implication is a clause and supplies the reason we want.

Computing reasons can be done lazily by simply restoring the marker between
top and bottom to its state when the value was pruned and then examing all
tuples in bottom. Alternatively, by using more memory these reasons could be
accumulated as the tuples are detected to be invalid.

Table Constraints in Clause Learning CSP Solver 5

4.2 Negative STR

The new STR-based algorithm that we describe for negative table constraints
c reuses the table data structures of the positive STR and whenever a tuple
becomes invalidated we swap it to the bottom part of the table. To compute the
prunings, we keep track of the following: For each variable value pair (X, d), we
keep a count of the forbidden tuple counts ftc(X,d) and for each variable X an
array dprod of size |scope(c)| where dprod(i) is the number of valid tuples that
contain each value of variable i. Whenever ftc(X,d) == dprod(i), we prune the
assignment X = d. Full details of the algorithm is given in a paper we have
submitted.

To compute clausal reasons from n-STR is more complex to implement. We
chose to implement a simple but non-minimal way of computing reasons. If n-
STR ¢ prunes X = d then it is easy to see that the conjunction of all of the
other pruned values for the other variables in ¢’s scope is a sufficient reason.

5 Empirical Results

To evaluate these three methods, we have implemented them in the CL solver
minicsp (http://www7.inra.fr/mia/T/katsirelos/minicsp.html). The eval-
uation was performed using XCSP benchmarks (http://www.cril.univ-artois.
fr/~lecoutre/benchmarks.html).

<xx p-STR 600 xxx p-STR
eoe STE oo coe STE
150 =

e P

Number of instances
8
g
L%i
Number of instances
e
8
8

u
&
N w
8 8
3 3
-
-
-
x "o

Fig. 1. Real instances Fig. 2. Patterned instances

Figure 1 reports the number of solved real instances and Figure 2 reports
the number of solved patterned instances using the CNF support tuple encod-
ing (STE) and the positive STR method (p-STR). We also generated random
instances of table constraints of 50% tightness, Figure 3 shows the compari-
son between our p-STR implementation and the support tuple encoding (STE).
Finally, we tested the n-STR algorithm against a naive encoding where each
conflicting tuple is directly represented as a clause which is shown in Figure 4.

In general, it would seem that once the simplicity of using the clausal en-
coding is considered for CL solvers a CNF encoding will probably be the best

6 O. Erdem, G. Katsirelos and F. Bacchus

w
g

9
3

o x
o x
o x
. |93
mS
o

N

3

8

2
8
1
%

w
3
o0,

Number of instances
%,

Number of instances
o
13
3

N
S
%

o

t 50

° 5
et
%00,

10° 10" 107 10° 10?2 107 10° 10! 10? 10%

Fig. 3. Random instances Fig. 4. Instances with negative tables

choice for representing table constraints. The results could change, however, de-
pending on future developments: (1) potentially a more memory expensive way
of computing reasons from p-STR tables might benefit p-STRs; (2) better rea-
sons could potentially be computed from n-STRs. These are useful questions for
future research.

References

1. Bacchus, F.: Gac via unit propagation. In: Principles and Practice of Constraint
Programming (CP). pp. 133-147. Springer-Verlag, New York (2007)

2. Downing, N., Feydy, T., Stuckey, P.J.: Explaining flow-based propagation. In: In-
tegration of AT and OR Techniques in Contraint Programming for Combinatorial
Optimzation Problems (CPAIOR). pp. 146-162 (2012)

3. Gange, G., Stuckey, P.J.: Explaining propagators for s-dnnf circuits. In: Integration
of AT and OR Techniques in Contraint Programming for Combinatorial Optimza-
tion Problems (CPAIOR). pp. 195-210 (2012)

4. Hebrard, E., Bessiere, C., Walsh, T.: Local consistencies in sat. In: Proceedings of
Theory and Applications of Satisfiability Testing (SAT). pp. 400-407 (2003)

5. Katsirelos, G.: Nogood Processing in CSPs. Ph.D. thesis, University of Toronto
(2008)

6. Katsirelos, G., Bacchus, F.: Generalized nogoods in csps. In: Proceedings of the
AAAI National Conference (AAAI). pp. 390-396 (2005)

7. Lecoutre, C.: Str2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341-371 (2011)

8. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Principles and Practice of Constraint Programming (CP). pp. 544-558 (2007)

9. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357-391 (2009)

10. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250-282 (2011)

11. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci.
177(18), 3639-3678 (Sep 2007), http://dx.doi.org/10.1016/j.1ins.2007.03.030

