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Abstract—Usual techniques to solve WCSP are based on
cost transfer operations coupled with a branch and bound
algorithm. In this paper, we focus on an approach integrating
extraction and relaxation of Minimal Unsatisfiable Cores in
order to solve this problem. We derive our approach in two
ways: an incomplete, greedy, algorithm and a complete one.

I. INTRODUCTION

The Constraint Satisfaction Problem (CSP) consists in
determining if a Constraint Network (CN) is satisfiable or
not. The goal of this decision problem is to find a solution,
i.e., a complete instantiation of the variables of the CN
that satisfies each constraint. Sometimes, preferences among
solutions need to be expressed. This is possible through
the introduction of soft constraints. The framework called
WCSP (Weighted CSP) allows us to handle such constraints:
each soft constraint is defined by a cost function that
associates a violation degree, called cost, with every possible
instantiation of a subset of variables. The WCSP goal is to
find a complete instantiation with a minimal combined cost
of the soft constraints.

Most of the current methods to solve Weighted CNs
(WCNs) are based on branch and bound tree search to-
gether with the use of soft local consistencies for estimating
minimal costs of sub-problems during search. These local
consistencies, e.g., AC* [1], [2], FDAC [3], EDAC [4],
VAC [5], and OSAC [6], have been developed on the con-
cept of equivalence-preserving transformations (cost transfer
operations). Because they must combine costs, algorithms
establishing soft local consistencies are often more complex
than their CSP counterparts. In this paper, we propose an
original approach for WCSP that consists in solving a WCN
by iteratively generating and solving classical CNs. One
advantage is to benefit from efficient CSP solvers devel-
oped in the community for more than two decades. Notice
that reformulating WCNs into CNs has already been used
quite successfully to enforce VAC [5], where (classical) arc
consistency is established on a CN generated from a WCN
in order to identify some relevant cost transfer operations.

In our approach, to solve a WCN, soft constraints are
converted into hard constraints by retaining only the tuples

that have a specified cost. Actually, the principle is to
enumerate a sequence of CNs according to an increasing
cost order related to the WCN. When a CN is proved to
be unsatisfiable, a Minimal Unsatisfiable Core (MUC) is
extracted in order to identify the soft constraints whose
reformulation into hard constraints needs to be relaxed,
so as to finally obtain a solution. This approach comes
in two versions: a complete algorithm and a greedy one
(that is incomplete). Note that similar approaches have been
successfully exploited for MaxSAT [7], [8], [9], [10].

This paper is organized as follows. After some usual
definitions, we present the principle of our approach and
the required data structures. Next, we completely describe a
complete version of our approach, as well as a greedy one.
Finally, after presenting some practical results, we conclude.

II. TECHNICAL BACKGROUND

A. Generalities

A constraint network (CN) P involves a finite set of n

variables denoted by vars(P ) and a finite set of e constraints
denoted by cons(P ). Each variable x has an associated
domain, denoted by dom(x), which contains the finite set
of values that can be assigned to x; the initial domain
of x is denoted by dominit(x). Each (hard) constraint c

involves an ordered set of variables, denoted scp(c) and
called scope of c, and is defined by a relation containing
the set of tuples allowed for the variables in scp(c). The
arity of a constraint c is |scp(c)|. An instantiation I of a
set X = {x1, . . . , xp} of variables is a set {(x1, a1), . . . ,
(xp, ap)} such that ∀i ∈ 1..p, ai ∈ dominit(xi). I is valid
on P iff ∀(x, a) ∈ I, a ∈ dom(x). A solution is a complete
instantiation of vars(P ) (i.e., the assignment of a value to
each variable) such that all the constraints are satisfied. P

is satisfiable iff it admits at least one solution. For more
information about constraint networks, see [11], [12], [13].

An unsatisfiable core of P is an unsatisfiable subset of
constraints of P . A core C is a MUC (Minimal Unsat-
isfiable Core) iff each strict subset of constraints of C is
satisfiable. Several methods to extract MUCs of constraint
networks are presented in [14], [15], [16], [17]. Among the
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different versions presented in [17], we have chosen for our
implementation the dichotomic version, called dcMUC.

A weighted constraint network (WCN) W involves a finite
set of n variables denoted by vars(W ) and a finite set of e

soft constraints denoted by cons(W ), and has an associated
value k > 0 which is either a natural integer or +∞. Each
soft constraint w ∈ cons(W ) has a scope scp(w) and is
defined as a cost function from l(scp(w)) to {0, . . . , k},
where l(scp(w)) (labelling) is the Cartesian product of the
domains of the variables involved in w; for each instantiation
I ∈ l(scp(w)), the cost of I in w is denoted by w(I).

When an instantiation is given the cost k it is said
forbidden. Otherwise, it is permitted with the corresponding
cost (0, being completely satisfactory). Costs are combined
with the bounded addition ⊕ defined as:

∀a, b ∈ {0, . . . , k}, a⊕ b = min(k, a + b)

The objective of Weighted Constraint Satisfaction Prob-
lem (WCSP) is, for a given WCN, to find a complete
instantiation with a minimal cost. For more information on
weighted constraint networks, see [18], [19].

Different variations of soft arc consistency for WCSP
have been proposed during the last decade: AC* [1], [2],
full directional arc consistency (FDAC) [3], existential arc
consistency (EDAC) [4], virtual arc consistency (VAC) [5]
and optimal soft arc consistency (OSAC) [6]. All the algo-
rithms proposed to enforce these different levels of consis-
tency use cost transfer operations (based on the concept of
equivalence-preserving transformations) such as unary pro-
jection, projection and extension. In contrast, our approach
is based on selecting tuples of a given cost which are called
layers and defined below.

B. Layers and Fronts

In this paper, we focus on extensional soft constraints.
These are soft table constraints where some tuples are
explicitly represented with their costs in a table, and a default
cost indicates the cost of all implicit tuples (i.e., those not
present in the table) ; e.g., see [20]. We introduce now both
the notions of layer and front that we use in our algorithm.
Layers represent the different degrees of violation of a single
constraint and fronts represent the currently admitted global
degree of violation.

All tuples of a soft table constraint having the same cost
can be grouped to form a subset called layer. The cost of any
tuple from layer L is given by cost(L). A particular layer
corresponds to the default cost: this layer contains no tuple,
but implicitly represents all tuples that do not explicitly
appear elsewhere. The number of layers for a constraint w

is given by nbLayers(w). Within a constraint, we consider
that layers are increasingly ordered according to their costs.
Finally, for the sake of simplicity, we shall use indices, from
0 to nbLayers(w)− 1, to identify the different layers of a

constraint, and when the context is unambiguous, we shall
not distinguish between indices and the layers they represent.

A front f is a function that maps each constraint of
a WCN to one of its layers. A front represents a border
between the layers that will be considered (allowed) at
a given moment, and the layers that will be discarded
(forbidden). We shall use an array notation for the fronts. So,
f [w] will represent the layer associated with the constraint w

in the front f . The cost of a front f , cost(f), is obtained by
summing up all costs of the constraint layers corresponding
to the front f :

cost(f) =
⊕

w∈cons(W )

cost(f [w])

A front f ′ is the direct successor of a front f iff there
exists a constraint wi such that f ′[wi] = f [wi] + 1 and
∀j �= i, f ′[wj ] = f [wj ]. We note f → f ′ iff f ′ is a direct
successor of f and f →∗ f ′ iff there exists a sequence of
relations f → f1, f1 → f2, . . . fn → f ′ (transitive closure).

Because the layers of any constraint are increasingly
ordered following their costs, we deduce that:

f →∗ f ′ ⇒ cost(f) < cost(f ′)

We can observe that the set of all possible fronts and the
direct successor relation form a lattice structure, where the
lowest front (also noted ⊥) associates with each constraint
its first layer (of lowest cost) and the highest front (also
noted 
) associates with each constraint its last layer (of
highest cost).

III. GENERAL PRINCIPLE

Figure 1 illustrates the main idea of our approach for
solving weighted constraint networks. First, from a WCN
W , an initial constraint network P is built as follows: for
each constraint of W , the tuples occurring in the layer of
minimal cost are considered as allowed in P , while other
tuples are considered as forbidden (function toCN ). This
process is similar to that proposed in [5]. Next, the CN P

is solved using a constraint solver (through a call to the
function solveCN ). If P is satisfiable, then a solution is
returned. Otherwise a MUC is extracted from P (through a
call to the function extractMUC ) and then exploited either
in a greedy or complete version.

In the greedy version, some constraints of the MUC
will be successively relaxed until satisfiability of the MUC
is restored (through a call to the function relax ). More
precisely, a subset of layers of some constraints belonging
to the MUC will be switched from the “forbidden” status to
the “allowed” one. When constraints corresponding to the
MUC are relaxed so as to become satisfiable, the process
loops until the global satisfiability of P is reached. In this
case, a solution is returned.

In the complete version, once a MUC is identified, we
insert in a priority queue the direct successors of the current
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Figure 1. Principle of the iterative relaxation of MUCs.

front in order to break the MUC by relaxing at least one
constraint. Fronts are extracted from the priority queue,
translated to a CN, and successively solved until a satisfiable
constraint network is obtained. In this case, an optimum
solution is returned.

Interestingly, the principle described above can be gen-
eralized to take into account any kind of constraints: hard
constraints from the CSP framework, “violable ” constraints
from the Weighted Max-CSP framework and soft constraints
from the WCSP framework. When the function toCN is
called, we just need to indicate the translation process for
each kind of constraints. For a hard constraint, no transfor-
mation is required (we have only one layer with a cost equal
to 0). For a “violable” constraint, two layers are managed.
The first layer, with a cost equal to 0, corresponds to the
satisfaction of the “violable” constraint. The second one,
with a cost equal to the weight of the “violable” constraint,
corresponds to the violation of the constraint. In other words,
our approach allows us to deal easily and naturally with
these different frameworks. Due to lack of space, this is not
further described in this paper.

IV. DATA STRUCTURES AND FUNCTIONS

Fronts are exploited by the function toCN which builds a
CN from a WCN. Two versions are considered. The first one,
noted toCN =(W, f), builds a CN by selecting as allowed
tuples for a soft constraint w those belonging to the layer
f [w] ; this layer is said allowed. The second one, noted
toCN≤(W, f), builds a CN by selecting as allowed tuples
for a soft constraint w the tuples of the layers whose index
is less than or equal to f [w] ; these layers are said allowed.

In other words, for each hard constraint c built from a soft
constraint w of W , the tuples allowed in c are those having
a cost equal (or less than or equal) to the cost of the layer
f [w].

In practice, two representations of a hard constraint can be
considered. On the one hand, when the layer corresponding
to the default cost is not allowed, toCN generates a hard
positive constraint. The tuples of the hard constraint are
allowed and correspond to the tuples of the allowed layers
of the soft constraint. On the other hand, when the layer
corresponding to the default cost is allowed, toCN generates
a hard negative constraint. The tuples of the hard constraint
are forbidden and correspond to the tuples of the forbidden
layers of the soft constraint in order to avoid to enumerate
the implicit tuples having a cost equal to the default cost.

Figure 2 presents two constraints w0 and w1 with their
layers. Constraint w0 has a set of layers numbered from 0:
layer 0 of minimal cost cost0 contains the tuples τ1, τ5,
and τ7, and the next layer (layer 1) of cost cost1 contains
the tuples τ2 and τ3. In this example, f [w0] is equal to 1
and f [w1] is equal to 0. The CN returned by toCN=(W, f)
contains a constraint c0 (associated with w0) with allowed
tuples τ2 and τ3 and c1 (associated with w1) with allowed
tuples τ1 and τ4. The CN returned by toCN≤(W, f) contains
a constraint c0 (associated with w0) with allowed tuples
τ2, τ3, τ1, τ5, and τ7 and c1 (associated with w1) with
allowed tuples τ1 and τ4. Allowed layers of toCN≤(W, f)
are identified by a grey background in Figure 2.

We conclude this section by a short description of the
other functions we need. The function solveCN (P) solves
a CN given in parameter and returns either a solution or
⊥ if the CN is unsatisfiable. The function extractMUC (P)
returns a MUC from an unsatisfiable CN P given in pa-
rameter. The function cons(W, M) returns the set of soft
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Figure 2. Description of data structures.
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constraints of the WCN W which correspond to those of
the MUC M (by construction any hard constraint maps
to a soft constraint). The function restrict(W, M) returns
a WCN containing only the constraints of the WCN W

corresponding to the constraints present in the MUC M .

V. ALGORITHMS

A. Introductory Complete Version

To facilitate the understanding of our approach, we present
a first complete algorithm which does not exploit MUCs and
thus is not efficient. Function completeSearchNoMUC starts
with a first front which retains only layer 0 of each constraint
(lines 1-3). Next, while there exists a front to explore, we
extract from a priority queue the front with the minimal
cost. The cost of a front is easily computed by summing
the costs associated with the layers selected in each soft
constraint. Then, we can build with the function toCN =

a CN that we try to solve with solveCN . If a solution is
found, it is optimal and the algorithm stops. Indeed, the
algorithm enumerates fronts in increasing cost order (see
Proposition 1, later) and guarantees that each previous front
was unsatisfiable. If the tested CN was unsatisfiable, we
enumerate the direct successors of the current front (lines
11-16) and insert them in the priority queue. Obviously, we
have to check that the maximal layer for a given constraint
has not been reached. Besides, fronts having a cost equal to
k must be ignored.

Function completeSearchNoMUC(W : WCN)

1 foreach w ∈ cons(W ) do
2 f [w] ← 0

3 Q ← {f}
4 while Q �= ∅ do
5 f ← pick and delete least cost front in Q

6 P ← toCN =(W, f)
7 sol ← solveCN (P )
8 if sol �= ⊥ then
9 return sol
10 else
11 foreach w ∈ cons(W ) do
12 if f [w] �= nbLayers(w)− 1 then
13 f ′ ← f

14 f ′[w] ← f ′[w] + 1
15 if cost(f ′) �= k then
16 Q← Q ∪ f ′

The priority queue Q used in this algorithm is a variant of
the usual priority queues because it must ensure that fronts
are extracted in increasing cost order but also that a given
element is not inserted twice in the queue. For example, if
we consider a network composed of two constraints each

having at least two layers, the first front will be the array
< 0, 0 >. During the first iteration, we shall insert in Q

the neighbors < 1, 0 > and < 0, 1 >. When these fronts
are extracted from the queue, they both generate the same
neighbor < 1, 1 > that must be inserted only once in Q

to avoid redundant computations. This particular queue is
obtained by slightly modifying a classical implementation
of a priority queue with a binomial heap.

One can easily check that Algorithm
completeSearchNoMUC enumerates all possible fronts
when solveCN never finds a solution. Indeed, if we
ignore costs, this algorithm performs a breadth-first search
enumerating fronts. Proposition 1 also guarantees that
this algorithm does not loop endlessly and that fronts are
enumerated in increasing cost order.
Proposition 1: The following properties are guaranteed

by completeSearchNoMUC:
A) fronts are enumerated in increasing cost order;
B) once a front f is extracted from the priority queue, it

can never be inserted again.
Proof: Let f1 be a first front extracted from the queue

and f2 a front extracted from the queue after the extraction
of f1.

A) Two cases are possible. Either (A.1) f2 was already
present in the queue when f1 has been extracted or (A.2)
f2 has been inserted in the queue after the extraction of f1.
In case (A.1), the priority queue ensures that cost(f1) ≤
cost(f2). In case (A.2), f2 comes from a front f such
that f →∗ f2 and either f = f1 or f was present
in the queue when f1 has been extracted. In both cases,
cost(f1) ≤ cost(f). As f →∗ f2 ⇒ cost(f) < cost(f2),
we conclude that cost(f1) < cost(f2). Therefore, we obtain
that in any case cost(f1) ≤ cost(f2).

B) Let us assume that f1 = f2. As the queue ensures
that it never contains two identical fronts at a given time,
we conclude that we are necessary in case (A.2). However,
we proved that in this case, cost(f1) < cost(f2), which
contradicts f1 = f2.

It should be emphasized that in our approach, unary
constraints are considered as normal constraints. Moreover,
because only one layer of a constraint is considered at a
given time, the CN generated are typically much smaller
than the original WCN. One can expect that checking the
satisfiability will be quite simple (hence fast) in most cases.
One last observation is that this algorithm exploits a form
of abstraction considering that, from a global point of view,
there is no reason to distinguish tuples having the same cost.

To conclude this section, the drawback of this first version
is the enumeration of all possible combinations of layers. In
the worst-case, it enumerates a number of fronts equal to the
product of the number of layers of each constraint, which
corresponds to

∏
w∈cons(W ) nbLayers(w). Depending on

the number of variables and constraints, this complexity
may be much greater compared to a classical branch and
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bound approach (i.e., when
∏

w∈cons(W ) nbLayers(w) ≫∏
i |dom(xi)|). This is explained by the fact that, in our

approach, the same instantiation can be explored several
times in different tests of satisfiability. Nevertheless, even
in this case, this approach can be effective if the optimum
is low.

B. Exploiting MUCs

The complexity of the previous algorithm can be reduced
considerably in practice by noticing that it is useless to move
from a layer to the next one for a constraint which does
not participate in the unsatisfiability of the CN. The idea is
therefore to identify a MUC and to move to the next layer
only for the constraints belonging to this MUC.

In the worst-case, the MUC extracted contains all the
constraints of the problem and therefore the complexity
in the worst-case remains unchanged. However in practice,
on concrete instances, MUCs are often small. Hence, the
generated neighborhood is much smaller and the practical
complexity is significantly reduced.
1) Complete Approach: Function completeSearch (in-

spired by [8], [9], [10]) presents the algorithm modified
in order to take profit of MUCs in a complete approach.
The first steps of the algorithm are identical to those of
completeSearchNoMUC. When the current CN is unsat-
isfiable, a MUC is identified, and we shall progressively
allow the higher layers in the constraints of the MUC. More
precisely, the algorithm enumerates all the direct successors
of the current front in order to relax this MUC. For each
constraint of the MUC (obtained by a call to cons(W, M)),
the algorithm generates a successor f ′ from the current front
which differs only by the incrementation of the allowed
layer for this constraint. This new front is inserted in Q

at a position depending on the value of cost(f ′).
Proposition 2: Algorithm completeSearch is complete.
Proof: To simplify the proof, we shall use the term

“front” to refer implicitly to the CN associated with a
front f by toCN =(W, f). Let fu be the front which is
identified as unsatisfiable and M the MUC extracted from
this front. The only difference between completeSearch and
completeSearchNoMUC is that when a MUC is identified,
we restrict the search by relaxing this MUC prior to any
other operation.

If the WCN has no solution, restricting the search in this
way obviously does not cause the loss of any solution. We
can therefore only consider the case where the CN admits at
least one solution S. Let fS be the front corresponding to a
solution S. The algorithm completeSearchNoMUC ensures
that there always exists a front f in the priority queue such
that f →∗ fS . This is especially true for the first front
inserted in the queue ⊥ and when this property is satisfied
for a front extracted from the queue, it is satisfied for at least
one of its direct successors (by definition of →∗). Therefore,
by recurrence, this property is always ensured.

Function completeSearch(W : WCN)

1 foreach w ∈ cons(W ) do
2 f [w] ← 0

3 Q ← {f}
4 while Q �= ∅ do
5 f ← pick and delete least cost front in Q

6 P ← toCN =(W, f)
7 sol ← solveCN (P )
8 if sol �= ⊥ then
9 return sol
10 else
11 M ← extractMUC (P )
12 foreach w ∈ cons(W, M) do
13 if f [w] �= nbLayers(w)− 1 then
14 f ′ ← f

15 f ′[w] ← f ′[w] + 1
16 if cost(f ′) �= k then
17 Q← Q ∪ {f ′}

If fu �→∗ fs, the proposed restriction does not result in
the loss of solution S. Therefore, we can further assume that
fu →∗ fs. Hence, ∀w ∈ cons(W ), fs[w] ≥ fu[w]. More-
over, there necessarily exists a constraint wi ∈ cons(W, M)
such that fs[wi] > fu[wi], otherwise fS will still be unsat-
isfiable. Let f ′ be the front defined by f ′[wi] = fu[wi] + 1
and ∀w ∈ cons(W ) such that w �= wi, f ′[w] = fu[w].
f ′ is a front which is generated by the algorithm and by
construction f ′ →∗ fs.

cost tuples

100 {(x,c)}
10 {(x,b)}
0 {(x,a)}

(a) wx

cost tuples

100 default
5 {(x,c),(y,a)}
0 {(x,a),(y,b)}

(b) wxy

cost tuples

100 {(y,c)}
10 {(y,b)}
0 {(y,a)}

(c) wy

Figure 3. Example where it is required to enumerate all relaxations of a
MUC to reach the optimum.

Figure 3 presents an example where one cannot simply
relax a MUC in only one way, even if it was locally the
optimal relaxation, without losing the optimal solution. In
this example, a WCN is composed of three constraints
wx, wxy and wy . The first front selects the layers having
a cost equal to 0, and therefore only retains {(x, a)},
{(x, a), (y, b)} and {(y, a)} as allowed tuples. Of course,
in this case, the constraints wxy and wy constitute a MUC.
There are two ways to relax this first MUC. The first
relaxation switches to the next layer of wxy (it is locally the
best choice since it has a cost of 5) whereas the second one
switches to the next layer of wy . Considering the first case,
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Function incompleteSearch(W : WCN)

1 foreach w ∈ cons(W ) do
2 f [w] ← 0

3 repeat
4 P ← toCN≤(W, f)
5 sol ← solveCN (P )
6 if sol �= ⊥ then
7 return sol
8 else
9 M ← extractMUC (P )
10 W ′ ← restrict(W, M)
11 f ← relax (W ′, f)

12 until sol �= ⊥

the new front obtained retains {(x, a)}, {(x, c), (y, a)} and
{(y, a)} as allowed tuples. This time, the MUC contains the
constraints wx and wxy . We can either relax wxy to obtain
a solution with a cost of 100, or relax wx to obtain another
MUC that can be relaxed in two different ways to obtain
either a solution having a cost of 105, or a solution having
a cost of 110.

The second relaxation of the first MUC consists in switch-
ing to the next layer of wy . In this case, we directly obtain
a solution having a cost of 10, which is the optimum. This
clearly shows that all relaxations of a MUC are required.
2) Greedy Approach: In this part, we present an incom-

plete version of our approach based on the identification and
relaxation of MUCs in order to solve WCNs.

From a WCN W , Function incompleteSearch returns a
solution for a CN derived from W . First the structure front

is initialized to 0 which corresponds to the first layer of each
constraint of the WCN.

From a WCN W and a front f , we extract a CN and
this network is then solved. If a solution is found, then it
is returned by the function incompleteSearch (line 7). If
the network has been proved unsatisfiable, it is necessary
to relax some constraints of the WCN. To achieve this,
the algorithm extracts a WCN W ′ from a computed MUC
(lines 9 and 10). The front f is then updated by Function
relax (line 11). This procedure will relax one (or several
constraints) of W ′ in order to break the MUC associated
with W ′. This process loops until a solution is found for
the constraint network associated with W .

Function relax(W, f) updates the front f in order to
allow new layers. The idea is to increment f [w] for at
least one constraint w, in such a way as to make the MUC
satisfiable. In other words, for at least one of the constraints,
we accept an increase of cost for this constraint. In the
greedy approach used here, we keep doing this until the
MUC is broken.

Algorithm relax uses a local priority queue Qloc which is

Function relax(W : WCN, f: front): front

1 Qloc ← {f}
2 while Qloc �= ∅ do
3 f ← pick and delete least cost front in Qloc

4 P ← toCN≤(W, f)
5 if solveCN (P ) �= ⊥ then
6 return f

7 else
8 M ← extractMUC (P )
9 foreach w ∈ cons(W, M) do
10 if f [w] �= nbLayers(w)− 1 then
11 f ′ ← f

12 f ′[w] ← f ′[w] + 1
13 if cost(f ′) �= k then
14 Qloc ← Qloc ∪ {f

′}

initialized with the front f . While Qloc is not empty (line 2),
we extract from the queue the front f having the lowest cost
cost(f). Function toCN≤ builds a constraint network from
both the WCN and the front f previously selected (line 4).
If this constraint network is satisfiable, f initially given in
parameter is updated and returned by the algorithm relax.
On the contrary, if the constraint network is unsatisfiable,
it means that the relaxation is not sufficient and then the
algorithm updates the queue of fronts by generating all the
direct successors of f . For each constraint belonging to the
WCN (obtained from the MUC), we generate a new front,
different from the initial one, by incrementing the layer of
one single constraint.

Note that in the different calls to the function relax, it is
sufficient to work only on a subset of the constraints. Indeed,
the constraints that can be relaxed are those belonging to
the WCN W associated with the MUC (restrict(W, M)).
In practice, we only work with the subset of the front which
corresponds to contraints of the MUC, which saves space
(for simplicity, this is not detailed in the algorithm).

In the incomplete version, we transform a WCN into a
CN using function toCN≤ instead of toCN = which is used
in the complete version. Indeed, in the complete version,
all possible relaxations of a MUC are considered and the
fronts are enumerated in increasing cost order. Hence, when
we test the satisfiability of a CN associated with a front f ,
we know that all the CN associated with fronts f ′ such that
f ′ →∗ f have already been proved unsatisfiable. Hence, in
the complete version, toCN = extracts a CN composed of
the current layers of a front. In the incomplete version, all
possible relaxations of a MUC are not tried. Therefore, we
cannot ensure that, when we test the satisfiability of a CN
associated with a front f , all the CNs associated with fronts
f ′ such that f ′ →∗ f have been tried and already proved
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unsatisfiable. Function toCN≤ therefore extracts a CN from
both the current and inferior layers of a front.

This approach doesn’t guarantee the identification of an
optimum solution. The reason is that all the relaxations of
MUCs are not considered, contrary to the complete version
(see Example 3). Indeed, we only identify the first relaxation
which restores the satisfiablity of a MUC.

VI. EXPERIMENTAL RESULTS

In order to show the practical interest of our approach,
we have performed experiments using a computer with
processors Intel(R) Core(TM) i7-2820QM CPU 2.30GHz.
Our greedy approach, noted GMR, has been compared
with two complete approaches with cost transfer algorithms
enforcing EDAC, proposed by both our solver AbsCon

and the solver ToulBar2. A time-out of 600 seconds was
set per instance. The total CPU time necessary to solve
each instance is given as well as the upper bound found

AbsCon ToulBar2
Instances GMR EDAC EDAC

spot5-42 CPU 9.18 > 600 > 600

UB 161,050 161,050 161,050

spot5-404 CPU 4.99 > 600 217

UB 118 114 114

spot5-408 CPU 9.85 > 600 > 600

UB 6,235 8, 238 6, 240

spot5-412 CPU 18.8 > 600 > 600

UB 33,403 43, 390 37, 399

spot5-414 CPU 37.7 > 600 > 600

UB 40,500 56, 492 52, 492

spot5-503 CPU 6.33 > 600 > 600

UB 12, 125 13, 119 12,117

spot5-505 CPU 12 > 600 > 600

UB 22,266 28, 258 25, 268

spot5-507 CPU 22.3 > 600 > 600

UB 30,417 37, 429 37, 420

spot5-509 CPU 32.2 > 600 > 600

UB 37,469 48, 475 46, 477

spot5-1401 CPU 76.5 > 600 > 600

UB 483,109 513, 097 516, 095

spot5-1403 CPU 142.5 > 600 > 600

UB 481,266 517, 260 507, 265

spot5-1407 CPU 552.6 > 600 > 600

UB 492,614 517, 623 507, 633

spot5-1502 CPU 3.91 0.98 0.02

UB 28, 044 28,042 28,042

spot5-1504 CPU 67.6 > 600 > 600

UB 175,311 204, 314 198, 318

spot5-1506 CPU 338 > 600 > 600

UB 378,551 426, 551 399, 568

Table I
CPU TIME IN SECONDS AND BOUND FOUND BEFORE THE TIME-OUT

FOR INSTANCES spot5.

(UB). If the execution of the algorithm is not yet finished
before the time-out (CPU time greater than 600 seconds), the
bound found at the end of the 600 seconds is given. Table
I provides the results obtained for the serie spot5 (except
trivial instances) composed of constraints of arity less than
or equal to 3. Table II provides the results obtained for the
serie celar.

On instances of spot5, we observe that our approach
provides better bounds than those obtained by the two com-
plete approaches, except for the instances spot5-404, spot5-
503 and spot5-1502. Beyond the fact that our approach
is not complete, this can be explained by the fact that
these instances are relatively easy (involving less than 1, 400
constraints) and cost transfer algorithms reach a better bound
before the time-out. However, it is interesting to note that the
bound found by our approach is not so different from these
obtained by complete approaches, and this in a very short
time. About other instances, considered as more difficult (in
particular, more than 13, 000 constraints for the instances

AbsCon ToulBar2
Instances GMR EDAC EDAC

graph-05 CPU 16.6 > 600 0.62

UB 221 4, 645 221

scen-06 CPU 88.5 > 600 485.4

UB 3, 616 12, 013 3,389

scen-06-16 CPU 60.6 > 600 237.7

UB 4, 149 11, 286 3,277

scen-06-18 CPU 59.2 > 600 102.4

UB 3, 640 8, 723 3,263

scen-06-20 CPU 68.5 > 600 67.9

UB 3, 402 8, 594 3,163

scen-06-30 CPU 32.6 177.7 1.10

UB 2, 208 2,080 2,080

scen-07 CPU 209.9 > 600 > 600

UB 426,423 31, 230K 505, 731

scen-07 10K CPU 28.7 > 600 > 600

UB 270K 17, 000K 1, 500K

celar6-sub2 CPU 23.3 > 600 4.74

UB 2, 927 2,746 2,746

celar6-sub3 CPU 26.6 > 600 15.7

UB 3, 271 3, 279 3,079

celar6-sub4 CPU 41.5 > 600 28.7

UB 3, 704 5, 178 3,230

celar7-sub2 CPU 60.8 > 600 17.8

UB 283, 955 252, 436 173,252

celar7-sub3 CPU 48.7 > 600 93.4

UB 414, 161 1, 342K 203,460

celar7-sub4 CPU 57 > 600 221

UB 272, 945 302, 541 242,443

Table II
CPU TIME IN SECONDS AND BOUND FOUND BEFORE THE TIME-OUT

FOR INSTANCES celar.
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spot5-1403, spot5-1407 and spot5-1506), we observe that
our greedy approach provides a better bound than those of
complete approaches in a time shorter than the time-out.

One can note that GMR is not as competitive as
ToulBar2 on some instances of celar, scen and graph.
This is partly due to the fact that ToulBar2 uses a constraint
decomposition technique. Indeed, comparing GMR with a
classical cost transfer algorithm (such as in our AbsCon

solver), the approach described in this paper outperforms
the EDAC version of AbsCon. However, on the graph-05
instance, even if GMR is not so fast than ToulBar2, our
approach is able to find the optimum upper bound.

The preliminary experiments we have conducted on the
complete approach show that our current implementation is
not yet competitive. It clearly appears that MUCs must be
identified incrementally so that the computational effort for a
given front benefits to the others. We are currently exploring
the use of dynamic CSP algorithms to incrementally check
the satisfiability of CNs and identify MUCs.

VII. CONCLUSION

In this paper, we have proposed an original approach
for solving weighted constraint networks through successive
resolutions of hard constraint networks. More precisely, CNs
are obtained from WCNs by selecting tuples with a given
cost. These CNs are enumerated in increasing cost order un-
til a solution is found. To improve the complexity in practice
of our approach, we identify a minimal unsatisfiable core for
each unsatisfiable constraint network, in order to focus the
relaxation on the sole constraints of the MUC. The approach
is derived in both a complete and an incomplete, greedy
algorithm. We have shown that our method based on MUCs
extraction can be used in practice: the greedy algorithm
obtains results which are comparable with other state of the
art approaches. However, the complete algorithm is not yet
competitive but we have identified several reasons. We are
working on a new version using dynamic CSP algorithms in
order to perform incremental computations. To conclude, we
would like to emphasize that the proposed method allows
a simple and natural integration of the CSP, (weighted)
Max-CSP and WCSP frameworks. This can be done by
generalizing in a straightforward way the construction of
CNs generated during the resolution.
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