Solving WCSP
by Extraction of Minimal Unsatisfiable Cores

Nicolas Paris (student)
Christophe Lecoutre, Olivier Roussel, and Sébastien Tabary (supervisors)

CRIL - CNRS, UMR 8188,
Université Lille Nord de France, Artois
rue de I’université, 62307 Lens cedex, France
{paris,lecoutre,roussel,tabary } @cril fr

Abstract. Usual techniques to solve WCSP are based on cost transfer operations
coupled with a branch and bound algorithm. In this paper, we propose an incom-
plete approach based on the extraction and relaxation of Minimal Unsatisfiable
Cores.

1 Introduction

The goal of the Constraint Satisfaction Problem (CSP) is to find a solution to a Con-
straint Network (CN). Sometimes, preferences among solutions need to be expressed.
This is possible through the introduction of soft constraints. The framework called
WCSP (Weighted CSP) allows us to handle such constraints: each soft constraint is
defined by a cost function that associates a violation degree, called cost, with every
possible instantiation of a subset of variables. The WCSP goal is to find a complete
instantiation with a minimal combined cost of the soft constraints. Most of the current
methods to solve Weighted CNs (WCNs) are based on branch and bound tree search
combined with the use of soft local consistencies for estimating minimal costs of sub-
problems during search.

Because they must combine costs, algorithms establishing soft local consistencies
are often more complex than their CSP counterparts. In this paper, we propose an orig-
inal approach for WCSP that consists in solving a WCN by iteratively generating and
solving classical CNs in order to benefit from efficient CSP solvers developed for more
than two decades. The principle is to enumerate a sequence of CNs according to an
increasing cost order related to the WCN. When a CN is proved to be unsatisfiable, a
Minimal Unsatisfiable Core (MUC) is extracted in order to identify the soft constraints
whose costs must be increased (relaxation), so as to finally obtain a solution. Note that
our approach is inspired by MaxSAT techniques based on MUS extraction [1, 8].

2 Technical Background

2.1 Generalities

A constraint network (CN) P involves a finite set of variables and a finite set of con-
straints. Each variable x has an associated domain which contains the finite set of values

that can be assigned to x. Each constraint c involves an ordered set of variables, denoted
scp(c) and called scope of ¢, and is defined by a relation containing the set of tuples
allowed for the variables of scp(c). A solution is a complete instantiation (i.e., the as-
signment of a value to each variable) such that all the constraints are satisfied. A CN is
satisfiable iff it admits at least one solution. For more information on CNs, see [10].
An unsatisfiable core of a CN P is an unsatisfiable subset of constraints of P. A core
C is a MUC iff each strict subset of constraints of C' is satisfiable. Several methods to
extract MUCs of CNs are presented in [4—-6]. Among the different versions presented
in [5], we have chosen for our implementation the dichotomic version, called deMUC.
A Weighted Constraint Network (WCN) W involves a finite set of variables, a finite
set of soft constraints denoted by cons(W), and has an associated value k£ > 0 which
is either a natural integer or +oco. Each soft constraint w € cons(WW) has a scope
sep(w) and is defined as a cost function from {(sep(w)) to {0, . . ., k}, where I(scp(w))
is the Cartesian product of the domains of the variables involved in w (labeling). An
instantiation which is given the cost k is forbidden. Otherwise, it is permitted with
the corresponding cost. Costs are combined with the bounded addition & defined as:
Va,b € {0,...,k},a ®b = min(k,a + b). The objective of WCSP is, for a given
WCN, to find a complete instantiation with a minimal cost. Different variations of soft
arc consistency for WCSP have been proposed during the last decade like AC* [7]
and existential arc consistency (EDAC) [3]. All the algorithms proposed to enforce
these different levels of consistency use cost transfer operations based on the concept
of equivalence-preserving transformations. For more information on WCN:ss, see [9].

2.2 Layers and Fronts

In this paper, we focus on extensional soft constraints, but the method can be easily ex-
tended to other kinds of constraints. These are soft table constraints where some tuples
are explicitly listed with their costs in a table, and a default cost gives the cost of all
implicit tuples (i.e., those not present in the table). All tuples of a soft table constraint
having the same cost can be grouped to form a subset called layer (see Figure 1). A par-
ticular layer corresponds to the default cost: this layer contains no tuple, but implicitly
represents all tuples that do not explicitly appear in the table. Within a constraint, layers
are increasingly ordered according to their costs.

Ty z
Tola |a|b |1
L3 T1 T3 3
T|b |la|la]l3
Lo T4 2
@ b |b |a]|l -
L1 T0 To 1
default cost T3 blc|b |3 N
Lo| default |0
T4 blcla]? table costs
table costs
soft table constraint layered soft table constraint

Fig. 1. Tuples of soft table constraints are grouped into layers.

A front f is a function that maps each constraint of a WCN to one of its layers. A
front represents a kind of border between the layers that will be considered (allowed) at
a given moment, and the layers that will be discarded (forbidden). We shall use an array
notation for the fronts. So, f[w] will represent the layer associated with the constraint w
in the front f. The cost of a front f, cost(f), is obtained by summing up all costs of the
constraint layers corresponding to the front f. A front f” is the direct successor of a front
f iff there exists a constraint w; such that f'[w;] = flw;] + 1 and Vj # i, f'[w,] =
flw;]. Because the layers of any constraint are increasingly ordered following their
costs, we deduce that cost(f) < cost(f’).

3 General Principle

W :WCN

toC'N_ (V)

solveC'N (P)

asolution

-
.}
Return extract MUC(P) S
2
N

M:MUC

from relaxed constraints

—{(_relaz(M)

M is UnSat M is Sat

Fig. 2. Principle of the iterative relaxation of MUCs.

Figure 2 illustrates the main idea of our approach for solving weighted constraint
networks. First, from a WCN W, an initial constraint network P is built as follows:
for each constraint of W, the tuples occurring in the layer of minimal cost are consid-
ered as allowed in P, while other tuples are considered as forbidden (function toCN <).
This process is similar to that proposed in [2]. Next, the CN P is solved using a con-
straint solver (through a call to the function solveCN). If P is satisfiable, then a solu-
tion is returned. Otherwise a MUC is extracted from P (through a call to the function
extractMUC') and then exploited. Indeed, some constraints of the MUC will be succes-
sively relaxed until satisfiability of the MUC is restored (through a call to the function

relax). Some constraints belonging to the MUC will be relaxed (some layers will be
switched from the “forbidden” status to the “allowed” one). When constraints corre-
sponding to the MUC are relaxed so as to become satisfiable, the process loops until the
global satisfiability of P is reached. In this case, a solution is returned.

4 Algorithm

The function cons(W) returns the set of soft constraints of the WCN W. Fronts are
exploited by the function toCN <(W, f) which builds a CN by selecting as allowed
tuples for a soft constraint w the tuples of the layers below f[w], i.e., with an index
less than or equal to f[w] ; these layers are said allowed. In other words, for each hard
constraint ¢ built from a soft constraint w of W, the tuples allowed in c are those having
a cost less than or equal to the cost of the layer f[w]. The function solveCN (P) solves
a CN given in parameter and returns either a solution or L if the CN is unsatisfiable.
The function extractMUC(P) returns a MUC from an unsatisfiable CN P given in
parameter. The function restrict(W, M) returns a WCN containing only the constraints
of the WCN W corresponding to the constraints present in the MUC M.

From a WCN W, Function incompleteSearch returns a solution for a CN derived
from W. It starts with a first front which retains only the least cost layer of each con-
straint (lines 1-2). From a WCN W and a front f, Function toCN < builds a constraint
network from both the WCN and the front f previously selected (line 4). This network
is then solved. If a solution is found, then it is returned (line 7). If the network has been
proved unsatisfiable, it is necessary to relax some constraints of the WCN. To achieve
this, the algorithm extracts a WCN W' from a computed MUC (lines 9-10). The front
f is then updated by Function relax (line 11). This procedure will relax one (or several
constraints) of W’ in order to break the MUC associated with W'. This process loops
until a solution is found for the constraint network associated with 1.

Function relaz (W, f) updates the front f in order to allow new layers. The idea is
to relax constraints of the MUC in a greedy way such as to make the MUC satisfiable.
A local priority queue is used and initialized with the front f. While this queue is not
empty and the MUC not broken, we extract the front f having the lowest cost. Succes-
sors of f are generated by Function relaxz which generates new fronts by incrementing
f[w] for one of the constraints w. Note that in the different calls to the function relaz, it
is sufficient to work only on a subset of the constraints belonging to the WCN W' asso-
ciated with the MUC (restrict(W, M)). Moreover, because only constraints belonging
to the WCN associated with the MUC are considered at a given time, the CNs generated
are typically much smaller than the original WCN. One can expect that checking the
satisfiability will be quite simple (hence fast) in most cases.

This approach doesn’t guarantee the identification of an optimum solution. The rea-
son is that all the relaxations of MUCs are not considered. Indeed, we only identify the
first relaxation which restores satisfiablity of a MUC.

Function incompleteSearch(WW: WCN)
1 foreach w € cons(W) do

| flw] <0
repeat
P — toCN<(W, f)
sol «— solveCN (P)
if sol # | then

| return sol
else

M — extractMUC (P)

10 W'« restrict(W, M)
1 f — relax(W', f)

2 until sol # L

N}

NI CREEN B Y I NN

—

5 Experimental Results

In order to show the viability of our approach, we have performed some experiments
using a computer with processors Intel(R) Core(TM) 17-2820QM 2.30GHz. Our greedy
approach, noted GMR, has been compared with two complete approaches enforcing
EDAC, proposed by both our solver AbsCon and the solver T'oul Bar2. A time-out of
600 seconds was set per instance. The total CPU time necessary to solve each instance
is given as well as the upper bound found (UB). If the execution of the algorithm is not
yet finished before the time-out, the bound found at the end of the 600 seconds is given.
Table 1 provides the results obtained for some instances spot5 and celar.

AbsCon ToulBar2
Instances GMR EDAC EDAC

spotb / spot5-404 CPU 4.99 > 600 217
UB 118 114 114

spotb/spot5-412 CPU 18.8 > 600 > 600
UB 33,403 43,390 37,399

spotb /spot5-505 CPU 12 > 600 > 600
UB 22,266 28,258 25,268

celar /graph-05 CPU 16.6 > 600 0.62
UB 221 4,645 221

celar /scen-06-20 CPU 68.5 > 600 67.9
UB 3,402 8,594 3,163

celar [scen-07 CPU 209.9 > 600 > 600

UB 426,423 31,230K 505,731

Table 1. CPU time in seconds and bound found before the time-out for instances spot5 and celar.

We observe that GMR provides better or equal bounds than those obtained by the
two complete approaches, except for the instance spot5-404 and scen-06-20. Beyond
the fact that GMR is not complete, this can be explained by the fact that these instances
are relatively easy and cost transfer algorithms reach a better UB before the time-out.
However, it is interesting to note that the bound found by GMR is not so different from
the one obtained by complete approaches, and this within an acceptable time. On the
other instances, we observe that our approach provides a better or equal UB than those
of complete approaches in a time shorter than the time-out. Indeed, on the graph-05
instance, even if it is not so fast than ToulBar2, GMR is able to find the optimum UB.

6 Conclusion

In this paper, we have proposed an original greedy approach for solving weighted con-
straint networks through successive resolutions of hard constraint networks. We identify
a minimal unsatisfiable core for each unsatisfiable constraint network, in order to focus
the cost increase on the sole constraints of the MUC. We have shown that our algorithm
obtains results which are comparable with other state of the art approaches. Currently,
we are working on a complete version of our greedy approach.

Acknowledgments

This work has been supported by both CNRS and OSEO within the ISI project "Pajero’.

References

1. C. Ansotegui, M.L. Bonet, and J. Levy. A new algorithm for weighted partial MaxSAT. In
Proceedings of AAAI’ 10, pages 3-8, 2010.

2. M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki. Virtual arc consistency for
weighted CSP. In Proceedings of AAAI’O8, pages 253-258, 2008.

3. S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Existential arc consistency: Getting closer
to full arc consistency in weighted CSPs. In Proceedings of IJCAI’05, pages 84—89, 2005.

4. J.L. de Siqueira and J.F. Puget. Explanation-based generalisation of failures. In Proceedings
of ECAI’S8, pages 339-344, 1988.

5. F. Hemery, C. Lecoutre, L. Sais, and F. Boussemart. Extracting MUCs from constraint net-
works. In Proceedings of ECAI’06, pages 113—-117, 2006.

6. U. Junker. QuickXplain: preferred explanations and relaxations for over-constrained prob-
lems. In Proceedings of AAAI’04, pages 167-172, 2004.

7. J. Larrosa and T. Schiex. Solving weighted CSP by maintaining arc consistency. Artificial
Intelligence, 159(1-2):1-26, 2004.

8. J.P. Marques-Silva and J. Planes. Algorithms for maximum satisfiability using unsatisfiable
cores. In DATE’08, pages 408—413, 2008.

9. P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. In Handbook of Constraint Program-
ming, chapter 9, pages 281-328. Elsevier, 2006.

10. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,

2006.

