
A Lattice Algorithm for Data Mining

Huaiguo Fu, Engelbert Mephu Nguifo

CRIL-CNRS FRE2499, Université d’Artois-IUT de Lens
Rue de l’université SP 16, 62307 Lens cedex. France
{fu,mephu}@cril.univ-artois.fr

ABSTRACT. Concept lattice is an effective tool and platform for data analysis and knowledge dis-
covery such as classification or association rules mining. The lattice algorithm to build formal
concepts and concept lattice plays an essential role in the application of concept lattice. In fact,
more than ten algorithms for generating concept lattices were published. As real data sets for
data mining are very large, concept lattice structure suffers from its complexity issues on such
data. The efficiency and performance of concept lattices algorithms are very different from one
to another.In order to increase the efficiency of concept lattice-based algorithms in data mining,
it is necessary to make use of an efficient algorithm to build concept lattices.So we need to com-
pare the existing lattice algorithms and develop more efficient algorithm. We implemented the
four first algorithms in Java environment and compared these algorithms on about 30 datasets
of the UCI repository that are well established to be used to compare ML algorithms. Prelimi-
nary results give preference to Ganter’s algorithm, and then to Bordat’s algorithm, nevertheless
these algorithms still suffers when dealing with huge datasets. We analyzed the duality of the
lattice-based algorithms. Furthermore, we propose a new efficient scalable lattice-based algo-
rithm: ScalingNextClosure to decompose the search space of any huge data in some partitions,
and then generate independently concepts in each partition. The experimental results show the
efficiency of this algorithm.

RÉSUMÉ.

KEYWORDS: Concept lattice, data mining, lattice algorithm

MOTS-CLÉS :

1. Introduction

Concept is an important and basic means of knowledge representation, since it
represents abstraction and generalization of objects. A concept defines a subset of
objects which shares some common attributes or properties. Concept lattice structure
[BIR 67, BAR 70, GAN 99] has shown to be an effective tool for data analysis, knowl-
edge discovery, and information retrieval, etc [Mep 02]. It shows how objects can be
hierarchically grouped together according to their common attributes. Researchers
of different domains study it in theory and application of data analysis and formal
knowledge representation etc.

Several algorithms are proposed to build concepts or concept lattices of a con-
text : Bordat [BOR 86], Ganter (NextClosure) [GAN 84], Chein [CHE 69], Norris
[NOR 78], Godin [GOD 95], Nourine [NOU 99], Carpineto [CAR 96], and Valtchev
[VAL 02], etc. Some algorithms can generate also diagram graphs of concept lattices.
The performance of the lattice algorithm is very important for its application to data
mining (DM). In fact real data sets for DM are very large, e.g. the customer data of
a company. In the worst case, the generation of lattice nodes increases exponentially.
The efficiency of concept lattice algorithms are different from one to another. So we
need to compare the existing lattice algorithms with large data and make use of an ef-
ficient algorithm to satisfy the mining and learning task and to increase the efficiency
of concept lattice-based algorithms in real applications.

Different works on comparison of lattice algorithms have been done. Guénoche
[GU9̃0] reviewed four algorithms: Chein, Norris, Ganter and Bordat. This is the first
review of lattice algorithms, he pointed out theoretical complexity, but there is no
experimental test for these algorithms. Godin et al. [GOD 98] presented incremen-
tal algorithms for updating the concept lattice and corresponding graph. Results of
empirical tests were given in order to compare the performance of the incremental al-
gorithms to three other batch algorithms: Bordat, Ganter, Chein. The test data is small
and randomly generated. Kuznetsov et al. [KUZ 02] compared, both theoretically and
experimentally, performance of ten well-known algorithms for constructing concept
lattices. The authors considered that Godin was suitable for small and sparse context,
Bordat should be used for contexts of average density, and Norris, CBO and Ganter
should be used for dense contexts. The algorithms were compared on different ran-
domly generated contexts using the density/sparness, and on one real dataset (SPECT
heart database) of the UCI repository. The test data is small and randomly generated,
only one real dataset is used.

If the experimental datasets are too small or random, it’s not easy to appraise the
performance of these algorithms for DM. So in order to analyze and compare concept
lattices algorithms, we use a publicly available database [BLA 98] which are often
used in order to compare machine learning (ML) algorithms. Even if it is not demon-
strated that this database which contains more than forty datasets is representative
of practical applications, it is well established that these testbeds should be used to
measure efficiency issues of a new ML algorithm. So it’s necessary to show how con-

2

cept lattice algorithms fits in such data. Conclusions could help to build efficient ML
algorithm based on concept lattice.

When generating concepts, lattice algorithm focusses on objects or attributes. So
if the number of objects is greater than the number of attributes, it might be inter-
esting to build the concept node based on the minimum number between objects and
attributes [FU 03a, RIO 03]. We propose a new definition: dual algorithm, which con-
sists of applying an algorithm to the same context by inverting rows and columns. The
duality of lattice algorithm is considered in our comparison of lattice algorithms. The
difference between algorithm and its dual algorithm is described.

We implemented the four first published algorithms (Chein, Norris, Ganter and
Bordat) and their dual algorithms for generating concept lattices in Java environment.
The other algorithms are very often extension of these 4 algorithms. We compared
these algorithms on about 30 datasets of the UCI repository that are well established
to be used to compare machine learning algorithms. We test also these algorithms in
the worst case. Preliminary results give preference to Ganter’s algorithm, and then to
Bordat’s algorithm.

Although the experimental comparisons of performance of existing algorithms
show that NextClosure algorithm is the best for large and dense data [KUZ 02, FU 03a],
it still takes expensive time cost to deal with huge data. So in this paper, we propose a
new efficient lattice-based algorithm ScalingNextClosure that decomposes the search
space of any huge data in some partitions, and then generates independently concepts
or closed itemsets in each partition.

The new algorithm is a kind of decomposition algorithm of concept lattice. All
existing decomposition algorithms [VAL 02] for generating concept lattices use an
approach of context decomposition, that are different from ours. Our new algorithm
uses a new method to decompose the search space. It can freely decompose the search
space in any set of partitions if there are concepts in each partition, and then generate
them independently in each partition. So this algorithm can be used to analyze huge
data and to generate formal concepts. Moreover for this algorithm, each partition only
shares the same source data (data context) with other partitions. ScalingNextClosure
algorithm shows good scalability and can be easily used for parallel, distributed net-
work and partial computing [FU 04].

The experimental comparison with NextClosure algorithm shows that our algo-
rithm (only sequential computing) is better for large data. Our algorithm succeeds
in computing some large data in worst case that are impossible to be computed with
another algorithm.

The rest of this paper is organized as follows : we introduce the notion of con-
cept lattice in section 2. In section 3, experimental comparisons of the four lattice
algorithms are discussed. The new algorithm ScalingNextClosure will be presented
in section 4. In section 5, the performance of the new algorithm will be shown. The
paper ends with a short conclusion in section 6.

3

2. Concept lattice

The theoretical foundation of concept lattice relies on the mathematical lattice the-
ory [BIR 67]. Concept lattice is used to represent the order relation of concepts.

Definition 2.1 A context is defined by a triple
���������	��

, where
�

and M are two
sets, and R is a relation between

�
and
�

. The elements of G are called objects,
while the elements of M are called attributes.

For example, Figure 1 represents a context.
����������	�������������������	��

is the object
set, and

� �"!�#$��!�%&�	!�'��	!�(���!�)��	!�*&��!�+&�	!�,-

is the attribute set. The crosses in the table

describe the relation
�

between
�

and
�

, which means that an object verifies an
attribute.

.�/ .-0 .-1 .-2 .$3 .54 .-6 .-7
1 8 8 8
2 8 8 8 8
3 8 8 8 8 8
4 8 8 8 8
5 8 8 8 8
6 8 8 8 8 8
7 8 8 8 8
8 8 8 8 8

Figure 1. An example of context
�"�����9�	��

.

Definition 2.2 Given a subset :<; � of objects from a context
���������	��

, we define
an operator that produces the set :>= of their common attributes for every set :?; �
of objects to know which attributes from M are common to all these objects:

:@=BADC9E5FHG �JI-K�� F for all
K GL:�M .

Dually, we define N�= for subset of attributes N ; � , NO= denotes the set consisting
of those objects in

�
that have all the attributes from N :

NO=BADC9E K G � I-K�� F for all FPGQN�M .
These two operators are called the Galois connection of

���������	��

. These oper-

ators are used to determine a formal concept.

So if N is an attribute subset, then NR= is an object subset, and then
� NR=
 = is an

attribute subset. We have: NS; �UT NR= =V; � . Correspondingly, for object subset: , we have: :W; �<T :@= =B; � .

Definition 2.3 A formal concept of the context
�"�����9�	��

is a pair
� : � N
 with :W;�

, N ; �9� :XCYNO= and NZC[:@= . A is called extent, B is called intent.

4

Definition 2.4 If
� : # , N #
 and

� : % , N %
 are concepts, : # ; : % � or N % ; N #
 , then
we say that there is a hierarchical order between

� : # , N #
 and
� : % , N %5
 .

All concepts with the hierarchical order of concepts form a complete lattice called
concept lattice.

3. Comparison of concept lattice algorithms

Concept lattice algorithm plays an essential role for the application of concept
lattice. More than ten algorithms for generating concept lattices were published. Gen-
erally, concept lattice algorithms are divided into two types: batch algorithms and in-
cremental algorithms. Batch algorithms construct completely the lattice from scratch
when adding a new object or attribute, while incremental ones update lattice structure
when adding a new object.

For example, algorithms of Bordat, Ganter, Chein, Lindig and Nourine are batch
algorithms. There are three ways to generate concepts with batch algorithms :

– Descending: such as Bordat’s algorithm, from the top concept, we build the
maximal rectangles. The algorithm repeats the same process to generate the other
subnodes.

– Ascending: We can generate concepts below, and then spread super-node, such
as Chein algorithm.

– Enumeration: algorithm enumerates all the nodes of the lattice according to a
certain order. For example, Ganter’s algorithm uses lexicographical order to enumer-
ate the nodes.

There are some incremental algorithms such as the algorithms of Norris, Godin,
Capineto, Dowling and Valtchev. The idea of these algorithms is that the new object
makes intersection with all the concepts in the lattice to update lattice structure.

The algorithms of Chein, Norris, Ganter and Bordat are four first published algo-
rithms. They belong to 4 typical lattice algorithms (descending, ascending, enumer-
ation batch algorithms and incremental algorithms). The other algorithms are very
often improvements or extensions of one of these four algorithms. Therefore we se-
lect the four algorithms to compare and analyze them on different aspects.

3.1. The algorithms principle

3.1.1. Chein’s algorithm

Chein’s algorithm [CHE 69] builds concepts in a bottom-up manner. It repeats the
following iterative method at every stage k.

For each object
K � , � K � , � K =�
) is considered as first layer

� #
.
���

is the set of the
rectangles of layer k. An arbitrary element of

���
is
��� � , � =�
 . From

���
, we build the

5

layer
� � � # . For every two elements of

���
:
��� � , � =�
 and

�����
,
� =�
 , if

� =��� � =���G � � � # ,
then
�"� �	� � � , � =� � � =�
 is an element of

� � � # . Otherwise, merge all pairs that have
the same

� =� � � =� as an element of
� � � # .

At the end we delete
� �

’s element whose attribute set is the same as
� � � # ’s ele-

ment.

3.1.2. Norris’ algorithm

Norris’ algorithm [NOR 78] is an incremental algorithm. For the context (G, M,
R), when we add each objects

K �
, the concepts set of this level

��

is generated from��
� #

in the same way. For the first object,
� #

contains only (
K #

,
K =#).

Adding one object
K � � # to

��

, we can build

��� � # . � �"� � , � =�
 G ��
 . If
� =���K =� � # , then (

� � � � K � � #
 �	� =�
 G � � � # .
Otherwise, (

� � �	� =�
 G ��� � # , and furthermore we add (
� � � � K � � #
 , � =� � � K =� � #
�

to
� � � # if

�"� � , � K =� � #
 � � =�
 is maximum.

After examination of all the rectangles, if
K =� � # is maximum, we add the

� K � � # ,K =� � #
 in
� � � # .

3.1.3. Ganter’s algorithm (NextClosure algorithm)

The principle of NextClosure algorithm [GAN 84] uses the characteristic vector
which represents arbitrary subsets : of

�
, to enumerate all concepts of

���������	��

.

Given : ; � ,
� CZE ! # ��! % ������� ��! � ������� �	!�� # ��!�� M , :�� :@= = is the closure opera-

tor. The lectically smallest attribute subset is � = = . The NextClosure algorithm proved
that if we know an arbitrary attribute subset : , the next concept (the smallest one of
all concepts that is larger than :) with respect to the lexicographical order is :�� ! � ,
where � is defined by

:�� ! � C � : � ��! # ��! % �������5�	! � #
 � E ! � M
 = =
: ; � and

! � G � ,
! � being the largest element of

�
with :�� :�� ! � by

lexicographical order.

In other words, for
! � G �! : , from the largest element to smaller one of

�! : ,
we calculate :"� ! � , until we find the first time :#�X:$� ! � , then :$� ! � is the next
concept.

3.1.4. Bordat’s algorithm

The Bordat’s algorithm [BOR 86] searches all concepts hierarchically and builds
the concept lattices (Hasse diagram). It uses a top-down strategy, and is a level-wise
algorithm. Its principle is first to find all the maximal object subsets of

�
, then to

build the corresponding concepts, and finally to find the maximal object subsets of
the object subsets found above. So there are clear hierarchical relations within all
concepts of a context, so that we can generate concept lattices.

6

Bordat’s algorithm doesn’t only generate all concepts but also it builds links be-
tween these nodes. This procedure increases the time cost. So it needs large memory.

3.2. Dual algorithm

Analyzing the four algorithms, we find that one algorithm can focuss on objects or
attributes. The performances of an algorithm can be different according to the number
of objects and attributes. So every lattice algorithm can be described or implemented
by focussing either on objects or on attributes. We propose a new definition: dual
algorithm.

Definition 3.1 A dual algorithm of concept lattice is an algorithm which can be ap-
plied to the same context by focussing either on objects or on attributes.

In other words: we can use the same algorithm from two directions (objects (set)
or attributes (set)) to generate the concept lattice. Two dual algorithms are usually
considered to be the same, and we can get the same concept lattice with two dual al-
gorithms. In fact, the idea of the algorithms is the same, but the time cost of algorithm
isn’t frequently identical.

Proposition 3.1 The time cost of a dual algorithm for a context is equivalent to the
time cost of original algorithm for dual context.

A dual context of a context is obtained by inverting rows and columns. This is also
called transposed matrix or context [RIO 03].

3.3. Experimental comparison

The four algorithms and their corresponding dual ones are implemented in Java
environment and are available through request. These algorithms are tested on a Pen-
tium III 450, 128 MB RAM. In our experiment, we compared these algorithms on
about 30 datasets of the UCI repository and on the worst cases.

3.3.1. Test on ML benchmarks

Benchmark databases

Real data for our experiment come from ML benchmarks: UCI repository. We
have got about 30 databases to build binary contexts (see table 1). The biggest context
has 67557 objects and 126 attributes. This is not as huge as on real databases. However
it’s larger than datasets used by Kuznetsov et al. [KUZ 02] and Godin et al. [GOD 98]
in their experiments.

7

DataSet ID Objects Attributes Concepts
shuttle-landing-control d03 15 24 52
adult-stretch d01 20 10 89
lenses d02 24 12 128
zoo d07 101 28 377
hayes-roth d06 132 18 380
servo d09 167 19 432
SPECT_train d04 80 23 909
post-operative d05 90 25 1521
balance-scale d18 625 23 2104
flare1 d17 323 32 2608
flare2 d21 1066 32 2987
soybean-small d10 47 79 3253
monks-3 d14 432 19 3959
monks-1 d16 432 19 4463
monks-2 d15 432 19 5427
car d22 1728 21 7999
breast-cancer-wisconsin d25 699 110 9860
house-votes-84 d13 435 18 10642
SPECT_test d11 187 23 14532
SPECT_two d30 267 23 21548
audiology.standardized d08 26 110 30401
tic-tac-toe d20 958 29 59503
nursery d27 12960 31 147577
lung-cancer d12 32 228 186092
agaricus-lepiota d28 8124 124 227594
promoters d19 106 228 304385
soybean-large d23 307 133 806030
dermatogogy d24 366 130 1484088
kr-vs-kp d26 3196 75 /
connect-4 d29 67557 126 /

Table 1. The datasets of UCI repository ordered by the number of concepts. / means
that the programs fail to generate all concepts.

These datasets are ordered by the number of concepts. For two datasets (kr-vs-kp
and connect-4), we didn’t get the number of concepts with these algorithms in our
computer, as they fail due to the lack of memory.

Running time of the 4 first algorithms

We tested every context with the four first algorithms. Figure 2 shows the running
time results. Analyzing the experimental results, Ganter and Bordat algorithms are
faster than others. Bordat’s algorithm not only generates the nodes of the lattice but
also it builds links between these nodes. So if we want really to compare the three
others to Bordat’s algorithm, it would be necessary to build their links between nodes.

Running time of the 4 dual algorithms

We consider that the performance is different between one algorithm and its dual
algorithm. So we implement each algorithm and its dual algorithm to focus respec-
tively on objects or attributes. The experimental results (see table 2) show that the
performance of two dual algorithms are very different. For example, we have tested
Ganter’s algorithm and its dual algorithm for the dataset Flare2, and time cost can

8

Figure 2. Performance (in ms) of the
�

first lattice algorithms on UCI datasets.

be 100 times different. So the difference between algorithm and its dual algorithm is
marked, to show that we must consider duality when comparing lattice algorithms.

Figure 3. Performance of lattice algorithms and their dual algorithms.

9

ID Ganter G-dual Bordat B-dual Chein C-dual Norris N-dual
d03 29 37 116 167 99 194 83 119
d01 24 43 118 224 167 183 101 123
d02 28 83 128 204 198 232 122 140
d07 140 589 376 754 17607 14652 1255 1787
d06 69 707 359 660 3724 1462 1070 543
d09 133 1120 633 968 1681 1061 1713 478
d04 108 507 378 646 54283 80217 3467 3297
d05 132 1084 957 1554 243564 146154 13457 6620
d18 845 54825 18986 37388 211849 63231 168423 9986
d17 916 26149 17798 31592 6146858 3562383 214944 46890
d21 4000 395911 154984 778299 26633173 12807020 1002709 147099
d10 1819 1924 4027 7143 19392256 12515300 271203 58280
d14 737 41453 34005 18126 4457627 1272022 721953 34865
d16 734 45055 38153 20997 6583877 1376935 853978 48280
d15 975 50789 44152 24404 10623849 1904268 1190532 66662
d22 4516 1229305 623112 483612 16677919 2555755 8566689 145633
d25 44748 560389 177929 713596 55932215 34140525 2485251 703593
d13 2450 131862 121844 69740 375882938 154525507 3461533 463109
d11 3382 28432 28459 19540 / / 1982204 1059784
d30 24144 102877 132799 41304 / / 21695260 /
d08 15922 5288 59384 161548 10672 / 59192 10914983
d20 45681 1767983 2211559 472985 / / 294433666 8667683
d27 4627030 / / / / / / /
d12 196487 75805 / 496263 / / / /
d28 77183183 / / / / / / /
d19 663052 552271 1774334 1469483 / / / /
d23 2676454 14959171 / / / / / /
d24 6367387 / / / / / / /
d26 / / / / / / / /
d29 / / / / / / / /

Table 2. The results of running time (in milliseconds) of lattice algorithms for real
data. / means that the programs fails to generate all concepts.

Figure 3 shows performance of the four algorithms and their dual algorithms. We
can see that Ganter’s algorithm runs faster than others. Figure 4 shows an impor-
tant conclusion: Ganter’s algorithm has the best performance when it focusses on
the smallest number of objects or attributes. For example, for dataset d08, it has 26
objects and 110 attributes, the number of objects is smaller than attributes, so dual
algorithm that focusses on objects is faster than that focussing on attributes. With the
real database, the number of attributes is often smaller than that of objects. Ganter’s
algorithm works faster than others in this case. Ganter’s algorithm should search all
closures using the smallest number between attributes or objects. This is the con-
sequence of Ganter’s algorithm since it explores almost all the subsets of the set of
attributes or objects.

This is not the case with the three other algorithms. Norris’ algorithm and its dual
algorithm have the most difference. But Bordat’s algorithm have little difference with
its dual algorithm. It is not possible to infer from the analysis of the code of the

�
other

algorithms that they should be used by focussing on the smallest number of attributes
or objects. And the experiment seems to confirm that.

10

Figure 4. Performance of comparison on UCI datasets with Ganter algorithms.

� # � % � ' � (�) � * � + � ,
1 � � � � � � �
2 � � � � � � �
3 � � � � � � �
4 � � � � � � �
5 � � � � � � �
6 � � � � � � �
7 � � � � � � �
8 � � � � � � �

Figure 5. An example of worst case data context.

3.3.2. Test in the worst case

Definition 3.2 A context in the worst case is the case where the sizes of
�

and
�

are equal to � , and each attribute is verified by ���

different objects, each object
possesses ���

different attributes.

Figure 5 is an example of worst case with the size of data context equal to
�
.

We have tested four algorithms in the worst case. This particular case generates
with context of size n (number of lines and number of columns):

���
nodes for concept

lattice. The results (see figure 6) show that Ganter’s algorithm is the best in worst
case. It succeeds in computing some large data that were impossible to be computed

11

with other algorithms. For example: the worst case with 20 attributes (
� %��

concepts)
is very hard to compute with other algorithms, but Ganter’s algorithm can build the
concept lattice for this context. However each algorithm fails in building lattice nodes
for context with more than 22 attributes.

Figure 6. Performance of comparison on worst case data.

Although the experimental results show that NextClosure algorithm is the best for
large and dense data, it still takes expensive time cost to deal with huge data. Large
data is one big challenge for data mining algorithms. The one of the most effective
solution is divide-and-conquer. So we try to decompose the search space of large data
in some partitions, and then generates independently concepts in each partition.

4. ScalingNextClosure algorithm

Analyzing all concepts of a data context and their search space, we define the
Ordered data context, and analyze the property of the ordered data context in order to
decompose the search space.

Definition 4.1 A data context is called ordered data context if the attributes are
ordered by number of objects of each attribute from the smallest to the biggest one (In
other words: the smallest attribute is in first column, and the biggest one is in the last
column), and the attributes with the same objects are merged as one attribute.

Proposition 4.1 An ordered data context has the same concept lattice as the data
context.

12

Proof : By the definition of ordered data context, G, M and R aren’t changed, so the
data context does not change by the preprocessing step. There is a unique concept
lattice for any given context[GAN 99].

It’s the precondition of ScalingNextClosure algorithm to transform a data context to
the ordered data context. It is easy to generate the ordered data context.

We propose a new method to divide the search space of concepts into partitions.
For each partition, we can find all concepts in it. This is the principle of our Scal-
ingNextClosure algorithm. In following section, we will present the main idea of
ScalingNextClosure algorithm and explain why and how we can divide the search
space into partitions and then generate concepts in each partition.

4.1. The search space for concepts

Intent and extent of a concept are bijection, so we can only study the search space
of intent or extent of concepts instead of search space for concepts. In fact, any concept
intent is a attribute subset of

�
, so all subsets of

�
are elements of the search space.

So the size of search space for enumeration of all concept intents is
� �

. This search
space can be considered as the fold of some attribute subsets of

�
. For example, we

consider that the search space is formed by
���������

, where
�����	� � is all subsets of {

! � ,
. . . ,
!�� '

,
!�� %

,
! � #

,
!��

} that include
! � . Each

�������
is a search sub-space. The

whole search space will be decomposed according to the situations of such
�����	�
�

.
Here we define Folding set and Folding search sub-space in order to decompose the
search space.

Definition 4.2 The attribute set
�

of a data context
������������

is {
! #

, . . . ,
! � , . . . ,! � %

,
! � #

,
! �

}, an attribute
! � G � , the set ���� is called folding set of

! � , where

���� A C<E ! � G � I for all
! � G �9��� ����� F M

In other words, the folding set of
! � is the set of E ! � � # ��! � � % ������� ��!�� # ��! � M .

For example, the folding set of
! �

is � . For attribute
! � '

, its folding set isE !�� % ��! � # �	!�� M .
Definition 4.3 An attribute joins respectively with all subsets of its folding set to gen-
erate the new attribute subsets, these new attribute subsets form a search sub-space of
concepts that is called folding search sub-space of an attribute(F3S).

For example, F3S of
! � #

is: {
!�� #

}; {
!�� #

,
! �

}. F3S of
! � is: all subsets of

{
! � ,. . . ,

!�� %
,
! � #

,
!��

} that include
! � .

Proposition 4.2 For a data context
�"�������	��

, � ! � G � , the number of attributes of
M is F , if the number of objects of attribute

! � is � , then the folding search sub-space�
for concepts

of
! � is the minimum of

� �
and
� � �

.

13

Proof : � ! � G � . The folding set of
! � is {

! � � # , ! � � % , ����� , !�� % , ! � # , !�� }, it
has F � �

attributes. So the size of subset of the folding set of
! � is
� � �

,
! � can be

assembled with
� � �

attribute subsets to form new attribute subsets.

On the other hand, if the number of objects of attribute
! � is n, we have

� �
object

subsets corresponding to
! � . For any concept, it’s a bijection between concept and

corresponding object set. So there are at most
� �

concepts that include attribute
! � .

Thus the folding search sub-space of
! � is the minimum of

� �
and
� � �

.

According to this proposition, we order the data context with the number of objects
of each attribute. In practice, this arrangement can remarkably reduce the search space
for real data.

In the definition of ordered data context, we need to merge the attributes with
exactly the same objects as one attribute. The important reason for this is that we
need to completely ensure that there are concepts in the folding search sub-space of
an attribute. It’s one important precondition of the following proposition.

Proposition 4.3 For an ordered data context, it exists concepts in the folding search
sub-space of an attribute.

Proof : For an ordered data context
�"�������	��

, � ! � G � and
! � G � �� � � � �

, we have E ! � M = �; E ! � M = , so E ! � M = = is in the folding search sub-space of attribute
! � ,

otherwise � ! � �� � � � �
�� E ! � M = ;XE ! � M = .
This property of ordered data context allows us to find partitions that include some

search sub-space.

4.2. A scalable algorithm: ScalingNextClosure

We propose a new algorithm ScalingNextClosure which decomposes the search
space and builds all concepts of each search sub-space. For each search sub-space,
we use the same method (NextClosure algorithm) to generate the concepts. So we can
generate all concepts of each search sub-space in parallel, as the search sub-spaces are
independent.

ScalingNextClosure algorithm has two steps: determining the partitions (see Al-
gorithm 1) and generating all concepts of each partition (see Algorithm 2).

For the first step of the algorithm (determining the partitions), we can decide the
size of partition by a parameter ��� of our algorithm according to the size of data and
our needs. For the real data, we can give a value of ��� (� ����� �). ��� is used
to determine the position of the beginning and the end of each partition.

We choose some attributes of ordered data context to form an order set � . If the
number of the elements of � is 	 , we have

!�
� � !
�� � ����� � !�
� � ����� � !�
�� .

14

Algorithm 1 The first step of ScalingNextClosure algorithm: determining the parti-
tions

1: input a parameter ��� � � � ��� � -

2: generate the ordered data context (saving the order of attributes for ordered data

context in an array)
3: output the order of attributes of the ordered data context
4: F = cardinal of the attribute set of the ordered data context
5: F � � A CYF
6:

� A C �
7: while

� F � ���@C $
 do {determining partition}
8:

�����
9: � � A C[F � �

10: output � �
11: F � � ADC �

��� � F � �
	 ���

12: end while
13: 	 ADC �

// 	 is the number of the partitions

we denote [
!�
��

,
!�
���� �

[is the search space from attribute
!
�

to attribute
!�
�� �

for
ordered data context. From {

!
��
} ({
!�
��

} is the first subset of [
!
��

,
!�
�� �

[), we
generate the next concepts until {

!
���� �
}, so we can find all concepts between [

!�
��
,!
�� �

[.

All concepts (non-empty) of data context are included in

�
#�� � ����� !�
���	!�
���� � � � � !�
��B

We use all � � to form the partitions [
!
��

,
!
�� �

[and [
!�
��

), where
 � � � 	 .

Here � � means the position of an attribute of the ordered data context, and we use it
to represent the attribute

!�
�
of the ordered data context;

!
��
doesn’t represent the

attribute of data context. When we search the concepts, Ø isn’t considered.

Algorithm 2 The ScalingNextClosure algorithm to find all concepts in each partition
1: input the order of attributes of the ordered data context
2: input � � and � � � # //input the partition
3: :�� E !�
� M
4: ��� ��� !�
���� �
5:

� � ��� A C � ! �	���
6: while

� � � � ���
 do
7: :�� generate the next closure of : for the ordered data context
8: if ��� �SGL: when searching the next closure then
9:

� � ��� A C!�#"%$ �
10: end if
11: end while

15

For each partition, we compute the next concepts from {
!
��

} to {
!�
��� �

}. There is
no relation between each partition. The partitions only share the same source data. We
can deal with any partition independently. So we can apply this algorithm for parallel,
distributed and network computing.

Here we show an example of using ScalingNextClosure algorithm to find all con-
cepts: First, we need not to generate a data file for ordered data context, the order
of attributes is only stored in the main memory. The ordered attribute set of the or-
dered data context for this example is:

! # ! % ! ' ! (!) ! * ! + ! ,
. And then, we give a value

of the parameter to determine the partitions, for example, ��� C � � � . We use Scal-
ingNextClosure algorithm to get 4 partitions: [

! ,
,
! (

[, [
! (

,
! %

[, [
! %

,
! #

[and [
! #

). In
the end, we find all concept intents in each partition.

Ordered attributes:
! # ! % ! ' ! (!) ! * ! + ! ,

.
���<C � � � !�#

�������
�
	��
#
!�%

� �
� �
�
��
%
!�' !�(

� �
� �
�
�
�
(

!�)Y!�* !�+ !�,

� ��� �
�
�
�
,

� # � !�, , � % � !�(, � ' � !�% , � (� !�#
The partitions and their search space:
[
!�,

,
!�(

[:
!�,

,
!�+

,
!�+-!�,

,
!�*

,
!�* !�,

,
!�*5!�+

,
!�*-!�+5!�,

, . . . ,
!�)-!�* !�+ !�,

.
[
! (

,
! %

[:
! (

,
! (! ,

,
! (! +

,
! (! + ! ,

, . . . ,
! '

,
! ' ! ,

, . . . ,
! ' ! (!) ! * ! + ! ,

.
[
! %

,
! #

[:
! %

,
! % ! ,

,
! % ! +

, . . . ,
! % ! ' ! (!) ! * ! + ! ,

.
[
! #

) :
! #

,
! # ! ,

,
! # ! +

,
! # ! + ! ,

,. . . ,
! # ! % ! ' ! (!) ! * ! + ! ,

.

4.3. ScalingNextClosure for worst case data

For the worst case, a different technique can be used to generate partitions in order
to avoid a great unbalance of partitions in terms of number of concepts. We can
redecompose the search sub-space of an attribute into partitions so that it’s easy to
deal with for each partition according to the number of concepts per partition. The
aim is to decrease the complexity of each partition.

5. The performance of ScalingNextClosure

We have implemented our algorithm in Java. Preliminary results of our implemen-
tation on a PIII450 computer with 128Mo RAM show that our algorithm has efficient
performance. It can deal with huge data, and the total time of computing all partitions
for large data is lower than that of NextClosure algorithm.

We have tested our algorithm with the datasets of the UCI repository. The compari-
son with NextClosure algorithm shows that our algorithm (only sequential computing)

16

is better for large and dense data. The experimental results show that the algorithm has
high performance for very large data. The total time cost of all partitions is remarkably
lower than that of NextClosure algorithm. For example (see Figure 1), for the large
data of UCI agaricus with 8124 objects and 124 attributes, NextClosure’s time cost is
60 times higher than that of ScalingNextClosure. Some data have a large amount of
attributes, and it’s very hard to treat them with NextClosure, but ScalingNextClosure
is very efficient in this case.

The 11 data contexts (
�����

):
1: soybean-small (47,79), 2: SPECT (187,23), 3: flare2
(1066,32), 4: audiology(26,110), 5: breast (699,110), 6:
lung-cancer (32,228), 7: promoters (106,228), 8: soybean-
large (307,133), 9: dermatology (366,130), 10: nursery
(12960,31), 11: agaricus (8124,124)

Figure 7. Performance of comparison for Next Closure and ScalingNextClosure algo-
rithms on UCI data. The time cost (in milliseconds) is represented by LN(Time).

For our experiments, we have used ScalingNextClosure algorithm to generate var-
ious different partitions for some datasets. For example, we can build different par-
titions according to the size of data. Figure 2 shows the results of comparisons with
different values of parameter ��� . Given a bigger value, we can build more partitions.
Varying different values of ��� can affect the result of our algorithm, as it is the case
with Agaricus dataset. How many partitions and what partition should we create for
the best performance? We will try to find an answer to this question in our future
work.

We have tested our algorithm in the worst case, and it succeeds in computing some
large data that were impossible to be computed with other algorithms. For exam-

17

Figure 8. Performance comparison on different values of parameter ��� with 4
datasets.

ple: the worst case with 30 attributes is very hard to compute with other algorithms
[FU 03a].

Using ScalingNextClosure algorithm, we have generated all concepts for worst
case data sets with 24, 25, 30, 35 and 50 attributes.

6. Conclusion

The concept lattice algorithm to generate concepts or diagram graph is considered
important in theory and for its application. We need algorithms of high level perfor-
mance to satisfy the mining and learning task. Four algorithms are analyzed and are
compared in this paper, of course, this work will be extended to other lattice algo-
rithms. We use real dataset and worst cases datasets to test four algorithms in Java
environment, the analysis shows that algorithms of Ganter and then Bordat are faster
than others. Ganter’s algorithm is the best for large and dense data. Bordat’s algorithm
can be used to generate the line diagram if the computer has enough memory.

In this paper we discuss for the first time dual algorithm for concept lattices. The
difference between algorithm and its dual algorithm is presented. We should consider
duality when comparing lattice algorithms.

Even if this work shows performance of concept lattices algorithm in ML bench-
marks, and Ganter’s algorithm is the best for large and dense data, the existing lattice
algorithms are still difficult to deal with large data. In fact, The search space of con-
cepts is very large for large data. It’s a hard problem to determine all the concepts of
large data. We need to develop faster algorithm, or to improve existing algorithms, to
raise the efficiency of concept lattice for data mining [FU 03b, VAL 02].

18

So furthermore we study the search space of concepts in order to partition the
search space to scale up lattice algorithm. A new efficient scalable lattice-based algo-
rithm, ScalingNextClosure is proposed for creating the partitions of the search space
and building concepts in each partition. ScalingNextClosure is different from other
existing decomposition algorithms that generate concept lattice using the approach of
context decomposition [VAL 02], which is based on an incremental approach.

The experimental results show that ScalingNextClosure algorithm is very suitable
and scalable to deal with large data. For the ongoing research, we will parallelize
ScalingNextClosure in order to improve its performance. Futhermore, we will extend
our method to classification and association rules mining.

7. References

[BAR 70] BARBUT M., MONJARDET B., Ordre et classification — Algèbre et combinatoire
(2 tomes), Hachette, 1970.

[BIR 67] BIRKHOFF G., Lattice Theory, American Mathematical Society, Providence, RI, 3rd
edition, 1967.

[BLA 98] BLAKE C., KEOGH E., MERZ C., “UCI Repository of machine learning databases”,
1998, http://www.ics.uci.edu/ � mlearn/MLRepository.html.

[BOR 86] BORDAT J., “Calcul pratique du treillis de galois d’une correspondance”, Mathé-
matiques, Informatiques et Sciences Humaines, vol. 24, num. 94, 1986, p. 31-47.

[CAR 96] CARPINETO C., ROMANO G., “A Lattice Conceptual Clustering System and its
Application to Browsing Retrieval”, Machine Learning, vol. 24, 1996, p. 95-122.

[CHE 69] CHEIN M., “Algorithme de recherche des sous-matrice premières d’une matrice”,
Bulletin Math. de la Soc. Sci. de la R.S. de Roumanie, vol. 61, num. 1, 1969, Tome 13.

[FU 03a] FU H., MEPHU NGUIFO E., “How well go Lattice Algorithms on currently used
Machine Learning TestBeds?”, ICFCA 2003, First International Conference on Formal
Concept Analysis, 2003.

[FU 03b] FU H., MEPHU NGUIFO E., “Partitioning large data to scale up lattice-based al-
gorithm”, Proceedings of ICTAI03, Sacramento, CA, November 2003, IEEE Computer
Press.

[FU 04] FU H., MEPHU NGUIFO E., “A parallel algorithm to generate formal concepts for
large data”, ICFCA 2004, Second International Conference on Formal Concept Analysis,
2004.

[GAN 84] GANTER B., “Two basic algorithms in Concept Analysis”, report num. 831, 1984,
Technische Hochschule, Darmstadt, Germany, preprint.

[GAN 99] GANTER B., WILLE R., Formal Concept Analysis. Mathematical Foundations,
Springer, 1999.

[GOD 95] GODIN R., MINEAU G., MISSAOUI R., MILI H., “Méthodes de classification con-
ceptuelle basées sur les treillis de Galois et applications”, Revue d’intelligence artificielle,
vol. 9, num. 2, 1995, p. 105-137.

[GOD 98] GODIN R., CHAU T.-T., “Comparaison d’algorithmes de construction de hiérar-
chies de classes”, report , 1998, Université de Québec.

19

[GU9̃0] GUÉNOCHE A., “Construction du treillis de Galois d’une relation binaire”, Mathéma-
tiques et sciences humaines, vol. 109, 1990.

[KUZ 02] KUZNETSOV S., OBIEDKOV S., “Comparing Performance of Algorithms for Gen-
erating Concept Lattices”, JETAI Special Issue on Concept Lattice for KDD, vol. 14,
num. 2/3, 2002, p. 189-216, Talor & Francis Group.

[Mep 02] MEPHU NGUIFO E., LIQUIERE M., DUQUENNE V., JETAI Special Issue on Con-
cept Lattice for KDD, Taylor and Francis, 2002.

[NOR 78] NORRIS E., “An algorithm for computing the maximal rectangles in a binary rela-
tion”, Revue Roumaine Math. Pures et Appl., vol. XXIII, num. 2, 1978, p. 243-250.

[NOU 99] NOURINE L., RAYNAUD O., “A Fast Algorithm for Building Lattices”, Information
Processing Letters, vol. 71, 1999, p. 199-204.

[RIO 03] RIOULT F., BOULICAUT J.-F., CRÉMILLEUX B., BESSON J., “Using transposi-
tion for pattern discovery from microarray data”, Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, ACM Press, 2003,
p. 73–79.

[VAL 02] VALTCHEV P., MISSAOUI R., LEBRUN P., “A partition-based approach towards
constructing Galois (concept) lattices”, Discrete Mathematics, vol. 256, num. 3, 2002,
p. 801-829.

20

