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We explore the complexity of counting solutions to conjunctive queries, a
basic class of queries from database theory. We introduce a parameter, called
the quantified star size of a query φ, which measures how the free variables
are spread in φ. As usual in database theory, we associate a hypergraph to
a query φ. We show that for classes of queries for which these associated
hypergraphs admit good decompositions, e.g. bounded width generalized
hypertree decompositions, bounded quantified star size exactly characterizes
the subclasses of queries for which counting the number of solutions is tractable.
In the case of bounded arity, this allows us to fully characterize the classes of
hypergraphs for which counting the solutions is tractable. Finally, we also
analyze the complexity of computing the quantified star size of a conjunctive
query.

1 Introduction

Conjunctive queries are a fundamental class of queries from database theory. Equivalent
to Select-Project-Join queries, they are the most basic class of database queries and at
the same time play an important role in practice. Furthermore, as Kolaitis and Vardi [26]
showed, conjunctive queries are intimitely connected to constraint satisfaction problems,
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a central area from artificial intelligence. These features make conjunctive queries the
best-studied type of database queries.

A CQ-instance (A, φ) consists of a query φ, which is a logical first-order {∃,∧}-formula,
also called primitive positive formula, and a finite structure (i.e. database) A. The query
result is

φ(A) := {a | (A,a) |= φ(x)},

that is, the set of assignments that make the query φ true.
The focus of most research on conjunctive queries has been the Boolean conjunctive

query problem (short CQ) which is, given an instance, to decide if the query result of
the instance is empty or not. This problem is well known to be NP-complete and thus
the main interest of study has been to identify tractable subclasses, so-called “islands of
tractability”, where CQ is tractable, i.e., can be solved in polynomial time.

One main direction in finding tractable classes of CQ-instances has been imposing
structural restrictions on the queries—or often more exactly on the hypergraph associated
to it—while the database is assumed to be arbitrary. In a seminal paper Yannakakis
[33] proved that ACQ, the restriction of CQ to acyclic queries, is tractable. The main
idea behind other structural restrictions is to extend this result by generalizing it to
“nearly acyclic” queries. This has lead to many different decompositions for graphs
and hypergraphs and associated width measures (see e.g. [18, 10, 30]). The common
approach for these decompositions is to group together vertices or edges (of the graphs
or hypergraphs) into clusters of some fixed constant size and to arrange these clusters
into a tree satisfying certain conditions. The resulting width measures are often sought
to have two desirable properties:

• For every k the class of queries of width k should be tractable, i.e., CQ should be
solvable in polynomial time.

• Given an instance, it should be possible to decide if there is a decomposition of
width k and construct one if it exists.

While decomposition techniques without the first property do not make any sense
in the context of conjunctive queries, the second property is sometimes relaxed. For
some decomposition techniques one does not actually need the decomposition to solve
CQ [8], a promise of the existence is enough. For other decompositions one only knows
approximation algorithms that construct decompositions of a width that is near the
optimal width, which is enough to guarantee tractability of CQ [28, 2].

More recently there has also been interest in enumerating all solutions to conjunctive
queries and in the corresponding counting question #CQ which is, given a CQ-instance,
to determine the size of the query result. For enumeration of the query answers it
turns out that the picture is less clear than for decision [3, 6, 21]. Also the situation
for counting is more subtle: For quantifier free queries—which correspond to queries
without projections in the database perspective—most commonly considered structural
restrictions yield tractable counting problems (see, e.g. [31]). While this is nice, it is not
fully satisfying, because quantifiers—which correspond to projections in database theory—
are very natural and essential in database queries. While introducing projections does
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not make any difference for the complexity of CQ, the situation for #CQ is dramatically
different. In [31] it is shown that even one single existentially quantified variable is
enough to make counting answers to CQ-instances #P-hard, even when the associated
hypergraph of the query is a tree (which implies width 1 for all commonly considered
decomposition techniques). It follows that the decomposition techniques used for CQ are
not enough to guarantee tractability for counting.

In a previous paper [15] the authors of this paper have proposed a way out of this
dilemma for counting by introducing a parameter called quantified star size for acyclic
conjunctive queries. This parameter measures how the free variables are spread in the
query. We associated to a query φ(x) the list x of free variables, thus extending the
hypergraph H = (V,E) associated to φ(x) with a set S ⊆ V . Then the quantified
star size is the size of a maximum independent set consisting of vertices from the set
S in some specified subhypergraphs of H. It turns out that, under a widely believed
assumption from parameterized complexity, this measure precisely characterizes the
tractable subclasses of acyclic conjunctive queries.

Overview of the results

Counting solutions to queries

In this paper we extend the results of [15] from acyclic queries to classes of queries
defined by commonly considered decomposition techniques. To do so we generalize the
notion of quantified star size from acyclic queries to general conjunctive queries. We
show that every class of conjunctive queries that allows efficient counting must be of
bounded quantified star size—again under the same assumption from parameterized
complexity. We then go on showing that for all decomposition techniques for conjunctive
queries commonly considered in the literature, combining them with bounded quantified
star size leads to tractable counting problems. The key feature that makes this result
work is the organization of atoms and variables into a tree of clusters that is prominent
in all decomposition methods for CQ known so far. Combining the results we get an
exact characterization of the subclasses of CQ-instances that allow tractable counting for
commonly considered classes defined by decomposition techniques. Let us illustrate these
results for the example of generalized hypertree decomposition [18], which is one of the
most general decomposition methods and one of the most studied too [18, 20, 30]. We
have that, under the assumption that FPT 6= #W[1], for any (recursively enumerable)
class C of hypergraphs of bounded generalized hypertreewidth the following statements
are equivalent:

• #CQ for instances in C can be solved in polynomial time

• C is of bounded quantified star size.

In our considerations, the arity of atoms of queries is not a priori bounded. In this
setting, there is no known ultimate measure resulting from a decomposition method that
fully characterizes tractability even for the decision problem CQ. This explains why our
characterizations are stated for each decomposition method.
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For bounded arity however, the situation is different. It is known that being of bounded
treewidth completely characterizes tractability for decision [24, 22] and counting [12]
for quantifier free instances. Combining [24, 22] and our results from above we derive a
complete characterization of tractability for #CQ in terms of tree width and quantified
star size for the bounded arity case.

Note that our results are for counting with set semantics, i.e., we count each solution
only once. Counting for bag semantics in which multiple occurences of identical tuples
are counted has already been essentially solved in [31].

Discovering quantified star size.

To exploit tractability results of the above kind it is helpful if the membership in a
tractable class can be decided efficiently, i.e., in our case if computing the quantified
star size of an instance is tractable. Therefore, we consider this “discovery problem” of
determining the quantified star size of queries in the second part of the paper.

In [15] it is shown that quantified star size of acyclic conjunctive queries can be
determined in polynomial time.

We show that computing the quantified star size of an instance is equivalent to
computing maximum independent sets in hypergraphs. Consequently, we cannot expect a
polynomial time algorithm for computing the quantified star size of general CQ-instances.
Fortunately, it turns out that for queries φ of generalized hypertree width k and thus for
all more restrictive decomposition techniques like hingetree width (see [10]) or treewidth,
there is an algorithm that computes in time |φ|O(k) the quantified star size of φ. We
show that this is in a sense optimal, because computing the quantified star size of a
given query φ is W[1]-hard parameterized by the generalized hypertree width of φ. Thus,
under the standard assumption FPT 6= W[1], there is no fixed-parameter algorithm for
this problem.

Still, if we parameterize the computation of quantified star size by more restrictive
width measures, computing the quantified star size of conjunctive queries in some
cases becomes fixed-parameter tractable. We prove that this is the case queries if we
parameterize by hingetree width. Because of the connection between quantified star size
and maximum independent set, this result provides a new parameter of hypergraphs for
which computing maximum independent sets is fixed-parameter tractable. Note that the
W[1]-hardness result from above shows that fixed-parameter tractability of computing
maximum independent sets is unlikely to hold for other hypergraph decomposition
techniques.

We then turn our attention to the approximation of quantified star size. We show that
there is a polynomial time algorithm that, given a query φ and a decomposition of φ of
width k, computes in time independent of k a k-approximation of the quantified star size
of φ.

Summing these results up, quantified star size does not only imply tractable counting
if combined with well known decomposition techniques, but in case the decomposition
is given or can be efficiently computed (treewidth, hingetree width) or approximated
(generalized hypertreewidth), then computing quantified star size is itself tractable.

4



We show that this is in a sense optimal, because under the assumption FPT 6= W[1]
there is no efficient (fixed paramater tractable in k) algorithm computing the quantified
star size for queries parameterized by generalized hypertree width.

Finally, we investigate the problem of counting solution and computing quantified
star size for queries of bounded fractional hypertree width [23, 28]. This decomposition
method is of a somewhat different nature than the ones studied before so we treat it
individually. We again prove that counting is tractable in this setting and that the
discovery problem can be decided in O(nk

O(1)
), i.e., with a slightly bigger dependency in

k than before.

2 Preliminaries

In this section, we introduce the basic definitions and the notation we will use throughout
the paper. We start off with a formal definition of conjunctive queries, introduce some
notions from parameterized complexity and then survey the graph and hypergraph
decompositions we will consider.

2.1 Conjunctive queries

We give a brief introduction to conjunctive queries. More on the subject and, in general,
on database theory and finite model theory can be found in [1, 27]

A relational vocabulary is a set of relation symbols τ := {R1,R2, . . . ,R`} where each
Ri has an arity ri which we denote by arity(Ri). A finite (relational) structure A over
τ , a τ -structure for short, is a tuple (A,RA1 , . . . ,RA` ) where A is a finite set called the
domain of A and RAi ⊆ Ari is a relation of arity ri called the interpretation of Ri.

We denote structures by calligraphic letters, e.g. A,B, . . .. For the corresponding
domains we use the corresponding roman letters, i.e., A is the domain of A, B the domain
of B and so on.

Let R ∈ τ with arity(R) = r and z̄ be a sequence z1, . . . , zr of (not necessarily distinct)
variables. Then, the expression R(z1, . . . , zr) (short R(z̄)) is called an atomic formula or
atom. The scope var(R(z̄)) of this atom is defined as the set of variables appearing in
(z1, . . . , zr).

A quantifier free conjunctive query φ over a vocabulary τ is a logical formula of the
form

φ = Ri1(z̄1) ∧ . . . ∧Ris(z̄s),

where Rij (z̄1) are atomic formulas with Rij ∈ τ . We denote the set of variables of φ by
var(φ) :=

⋃
j∈[s] var(Rij (z̄j)). The set of all atoms of φ is denoted by atom(φ).

A conjunctive query φ over τ is a formula φ = ∃x1 . . . ∃xtφ′ where φ′ is a quantifier
free conjunctive query over τ and xj ∈ var(φ) for all j ≤ t. The xj are called quantified
variables. The set of variables of φ is defined as var(φ) := var(φ′). The set of free variables
of φ is defined as free(φ) := var(φ)\{x1, . . . , xt}. We often write φ(ȳ) where {ȳ} = free(φ),
to stress the free variables.
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A conjunctive query instance over τ , short CQ-instance, is a pair Φ = (A, φ) where A
is a finite τ -structure and φ is a conjunctive query over τ . Φ is called quantifier free if
the query φ is quantifier free.

Let Φ = (A, φ) be a quantifier free CQ-instance. An assignment to Φ is a mapping
a : var(φ) → A. A partial assignment to Φ is a mapping a : X → A for a subset X
of var(φ). Let a : X → A and b : Y → A be two partial assignments. We call a and
b compatible, in symbols a ∼ b, if they agree on their common variables, i.e., for all
x ∈ X ∩ Y we have a(x) = b(x). Let R(zi1 , . . . , zir) be an atom of φ. We say that a
satisfies R(z1, . . . , zr) if (a(z1), . . . , a(zr)) ∈ RA. We say that a satisfies Φ if it satisfies
all of its atoms. In this case we write (A, a) |= φ.

An assignment to a general, not necessarily quantifer free, CQ-instance Φ = (A, φ)
is a mapping a : free(φ)→ A. An assignment a can alternatively be seen as a tuple of
dimension |free(φ)| indexed by the variables free(φ). Consequently, relations will also be
seen either as sets of tuples or as list of assignments. An assignment a : free(φ) → A
satisfies Φ if there is an assignment a′ : var(φ)→ A with a ∼ a′ such that the quantifier
free query instance (A, φ′), where we get φ′ by deleting all quantifiers from φ, is satisfied
by a′. Again we write (A, a) |= φ. Observe that a′ is in general not unique.

The query result φ(A) of a CQ-instance Φ = (A, φ) is defined as

φ(A) := {a | (A, a) |= φ(x̄)}.

The elements of the query result are called solutions of the query instance or satisfying
assignment or query answers. We call two instances Φ = (A, φ),Φ′ = (A′, φ′) solution
equivalent, if free(φ) = free(φ′) and φ(A) = φ′(A′).

Let a : X → A be an assignment and Y ⊆ X. By a|Y we denote the restriction of a
onto Y . Similarly, if R is a relation indexed by X, i.e., such that each a ∈ R is interpreted
as an assignment a : X → A then, πY (R) := {a|Y | a ∈ R denotes the projection of
R onto Y . Throughout the paper we will make use of the following classical database
operations on relations.

Definition 2.1. Let R1 and R2 be two relations indexed by the variables X and Y ,
respectively (X and Y being not necessarily disjoints). The natural join of R1 and R2 is

R1 ./ R2 := {a : X ∪ Y → A | a|X ∈ R1, b|Y ∈ R2}.

The semi-join of R1 and R2 is defined as R1 nR2 := πX(R1 ./ R2).

2.2 Model of computation and encoding of instances

The underlying model of computation for our algorithms will be the RAM model with
addition as basic operation and with unit costs measure. We assume the relations of a
finite structure A to be encoded by listing their tuples. Apart from this convention we
will not specify an encoding but only give estimates on its size in O-notation that will be
satisfied by any reasonable encoding.
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Let A be a τ -structure. For a relation RA let |RA| denote the cardinality of RA. Then
we define for RA

‖RA‖ := arity(R) · |RA|.

For the vocabulary τ let |τ | be the number of predicate symbols. Finally, let |A| be the
cardinality of a domain A. Then for a structure A over the vocabulary τ with domain A
we define

‖A‖ := |τ |+ |A|+
∑
R∈τ
‖RA‖.

Furthermore, we define for a conjunctive query

|φ| :=
∑

φ′∈atom(φ),
R relation symbol of φ′

arity(R).

Finally, for a CQ-instance Φ = (A, φ) we define

‖Φ‖ := |φ|+ ‖A‖.

Note that for any reasonable encoding, up to constant factors, ‖A‖ is the size of an
encoding of A, |φ| is the size of an encoding of φ and ‖Φ‖ is the size of an encoding of Φ.
For a detailed discussion and justification of these conventions see [16, Section 2.3].

The following lemma states that the basic database operations we considered above
can be performed efficiently.

Lemma 2.2 ([16]). Given relations R1 and R2 and Y ⊆ var(R), one can compute

• R1 ./ R2 in time O(‖R1‖+ ‖R2‖+ ‖R1 ./ R2‖),

• πY (R1) in time O(‖R1‖),

• R1 nR2 in time O(‖R1‖+ ‖R2‖).

We will use Lemma 2.2 throughout the paper, most of the time without explicitly
referencing it.

2.3 Query problems

The basic computational question on CQ-instances is the Conjunctive query answering
problem.

Conjunctive query answering problem
Input: a conjunctive query φ and a structure A.
Problem: Compute φ(A).

Clearly, ‖φ(A)‖ can be exponential in ‖Φ‖. and thus we cannot have a polynomial
time algorithm. The Boolean conjunctive query problem is defined as follows.
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CQ
Input: a conjunctive query φ and a structure A.
Problem: Decide if φ(A) is empty or not.

The main focus in this paper will be on the associated counting problem #CQ.

#CQ
Input: a conjunctive query φ and a structure A.
Problem: Compute |φ(A)|.

2.4 Parameterized complexity

This section is a very short introduction to some notions from parameterized complexity
used in the remainder of this paper. For more details see [17].

A parameterized decision problem over an alphabet Σ is a language L ⊆ Σ∗ together
with a computable parameterization κ : Σ∗ → N. The problem (L, κ) is said to be
fixed-parameter tractable, or (L, κ) ∈ FPT, if there is a computable function f : N→ N
such that there is an algorithm that decides for x ∈ Σ∗ in time f(κ(x))|x|O(1) if x is in L.

Let (L, κ) and (L′, κ′) be two parameterized decision problems over the alphabets
Σ, resp. Π. A parameterized many-one reduction from (L, κ) to (L′, κ′) is a function
r : Σ∗ → Π∗ such that for all x ∈ Σ∗:

• x ∈ L⇔ r(x) ∈ L′,

• r(x) can be computed in time f(κ(x))|x|c for a computable function f and a
constant c, and

• κ′(r(x)) ≤ g(κ(x)) for a computable function g.

It is easy to see that FPT is closed under parameterized many-one reductions.
Let p-Clique be the following parameterized problem.

p-Clique
Input: a graph G and k ∈ N.
Parameter: k.
Problem: Decide if G has a clique of size k.

Here the parameterization κ is simply defined by κ(G, k) := k. The class W[1] consists
of all parameterized problems that are parameterized many-one reducible to p-Clique. A
problem (L, κ) is called W[1]-hard, if there is a parameterized many-one reduction from
p-Clique to (L, κ).

It is widely believed that FPT 6= W[1] and thus in particular p-Clique and all
W[1]-hard problems are not fixed-parameter tractable.

Parameterized counting complexity theory is developed similarly to decision complexity.
A parameterized counting problem is a function F : Σ∗ × N→ N, for an alphabet Σ. Let
(x, k) ∈ Σ∗ × N, then we call x the input of F and k the parameter. A parameterized
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counting problem F is fixed-parameter tractable, or F ∈ FPT, if there is an algorithm
computing F (x, k) in time f(k) · |x|c for a computable function f : N→ N and a constant
c ∈ N.

Let F : Σ∗ × N→ N and G : Π∗ × N→ N be two parameterized counting problems. A
parameterized parsimonious reduction from F to G is an algorithm that computes, for
every instance (x, k) of F , an instance (y, l) of G in time f(k) · |x|c such that l ≤ g(k)
and F (x, k) = G(y, l) for computable functions f, g : N → N and a constant c ∈ N. A
parameterized T -reduction from F to G is an algorithm with an oracle for G that solves
any instance (x, k) of F in time f(k) · |x|c in such a way that for all oracle queries the
instances (y, l) satisfy l ≤ g(k) for computable functions f, g and a constant c ∈ N.

Let p-#Clique be the following problem.

p-#Clique
Input: a graph G and k ∈ N.
Parameter: k.
Problem: Compute the number of cliques of size k in G.

A parameterized problem F is in #W[1] if there is a parameterized parsimonious reduction
from F to p-#Clique. F is #W[1]-hard, if there is a parameterized T -reduction from
p-#Clique to F . As usual, F is #W[1]-complete if it is in #W[1] and hard for it, too.

Again, it is widely believed that there are problems in #W[1] (in particular the #W[1]-
complete problems) that are not fixed-parameter tractable. Thus, from showing that a
problem F is #W[1]-hard it follows that F can be assumed to be not fixed-parameter
tractable.

We will mainly deal with two parameterized problems that are versions of CQ and
#CQ parameterized by the size of the input query. This parameterization is justified
by the origins from database theory. In a typical database application the query is
usually far smaller than the database, so it makes sense to use the size of the query as a
parameter.

p-CQ
Input: a conjunctive query φ and a structure A.
Parameter: |φ|
Problem: Decide if φ(A) is empty or not.

p-#CQ
Input: a conjunctive query φ and a structure A.
Parameter: |φ|
Problem: Compute |φ(A)|.

2.5 Graphs and hypergraphs associated to queries

As remarked remarked before, CQ and #CQ are hard computational problems. One way
to isolate islands of tractability, is to analyze structural aspects of the query. A key idea
for this is to associated graphs and hypergraphs to queries.
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Figure 1: The hypergraph associated to the query φ of Example 2.3.

A (finite) hypergraph H is a pair (V,E) where V is a finite set and E ⊆ P(V ). The
arity of H is maxe∈E |e|. We associate a hypergraph H = Hφ = (V,E) to a query φ by
setting V := var(φ) and E := {var(φt) | φt ∈ atom(φ)}.

Example 2.3. Consider the query

φ := ∃u1∃u2∃u3∃u4∃u5∃u6∃u7∃u8

P1(v1, u1) ∧ P2(v2, u1, u2) ∧ P3(v2, v4, u2, u3)

∧P4(v3, v4, v5, u3, u4, u5) ∧ P5(v4, v5, v6, v8)

∧P6(v7, v8, u5, u6) ∧ P2(v6, v9, u7) ∧ P2(v8, v9, u8)

The associated hypergraph is illustrated in Figure 1.

One also associates graphs to queries as follows: Let φ be a query with the associated
hypergraph H = (V,E), then one associates to φ the so-called primal graph HP = (V,Ep)
to φ where for every u, v ∈ V we have uv ∈ Ep if and only if there is an edge e ∈ E with
u, v ∈ E.

2.6 Graph and hypergraph decompositions

We now introduce several decomposition techniques for graphs and hypergraphs that
will be used in the rest of this paper to analyze the complexity of counting solutions to
queries.

2.6.1 Treewidth

We first present some basic facts on treewidth. All proofs can be found in the survey by
Bodlaender [5] and the references therein.
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Figure 2: A graph G.

Unless stated otherwise all graphs are nonempty, finite, undirected and simple, i.e.,
they have no parallel edges or loops. In contrast, trees are always assumed to be rooted
and thus directed.

The treewidth of a graph G is a measure of how similar G is to a tree. There are several
equivalent definitions for treewidth of which we will first present the one by Robertson
and Seymour [32].

Definition 2.4. A tree decomposition of a graph G = (V,E) is a pair (T , (χt)t∈T ) where
T = (T, F ) is a rooted tree and χt ⊆ V for every t ∈ T satisfying the following properties:

1. For every v ∈ V there is a t ∈ T with v ∈ χt.

2. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

3. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

The third property is called the connectedness condition. The sets χt are called blocks or
bags of the decomposition.

We call maxt∈T (|χt|)−1 the width of the tree composition (T , (χt)t∈T ). The treewidth
tw(G) of G is the minimum width over all tree decompositions of G.

To ease notation we sometimes identify a vertex t ∈ T with the corresponding bag χt.
We remark that the class of graphs of treewidth 1 consists exactly of all forests, i.e.,

the graphs that have trees as their connected components. In particular, trees have
treewidth 1.

Example 2.5. Figure 3 shows a tree decomposition of width 2 of the graph G from
Figure 2.

Given a graph G and an integer k, it is NP-complete to decide if G has treewidth G at
most k, but if we take k as a parameter the problem becomes fixed-parameter tractable.

Theorem 2.6 ([4]). There is a polynomial p and an algorithm that, given a graph
G = (V,E), computes a tree decomposition of G of width k := tw(G) in time at most
2p(k)|V |.
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A,B,C B,C,D C,D,E C,E, F C, F,H

D,E, I C,G,H

Figure 3: A tree decomposition of width 2 of the graph G of Figure 2.

We will use the following folklore results.

Lemma 2.7 ([13], Chap. 12). Let G = (V,E) be a graph, C ⊆ V a clique in G and
(T , (χt)t∈T ) a tree decomposition of G. Then there is a bag χt such that C ⊆ χt.

Lemma 2.8 ([17], Chap. 11). Every graph G of treewidth at most k has a vertex of
degree at most k.

We will also use an alternative definition of treewidth by so-called elimination orders.

Definition 2.9. Let G = (V,E) be a graph with |V | = n. A bijection π : V → [n] is
called an elimination order. We say that u is higher-numbered than v with respect to
π if π(u) > π(v). The fill-in graph Gπ of G with respect to π is constructed iteratively:
Starting from G, for i = 1, . . . , |V | we add an edge between all pairs u,w of neighbors of
π−1(i) that are higher-numbered than π−1(i).

The width of π is the minimum integer k such that in Gπ each vertex v ∈ V has at
most k higher-numbered neighbors.

The elimination width elim-width(G) of G is the minimum width over all elimination
orders of G.

Example 2.10. We consider again the graph G of Figure 2. An elimination order π
is defined by the sequence A,B, I,H,G,C,D,E, F . The fill-in graph Gπ is shown in
Figure 4. The width of π is 2.

Elimination orders give the following characterization of treewidth which appears to
be folklore. A proof can be found e.g. in [5].

Lemma 2.11. For every graph G we have elim-width(G) = tw(G).

2.6.2 Hypergraph decomposition techniques

In this section we present some well known hypergraph decomposition techniques. For
more details on hypergraphs decomposition see e.g. [10, 18, 30]. For all decomposition
techniques defined below, the width of a CQ-instance Φ = (A, φ) is simply defined as the
width of the hypergraph associated to φ.

The simplest idea to generalize treewidth to hypergraphs is considering primal graphs
and to define the treewidth of a hypergraph H to be treewidth of its primal graph HP .
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Figure 4: The fill-in graph Gπ of Example 2.10. The edges added during the construction
of Gπ from G are represented as dotted lines.

By Lemma 2.7, classes of hypergraphs that have unbounded edge size are of unbounded
treewidth even when the hypergraphs are intuitively very simple. Consequently, treewidth
is, for some considerations on hypergraphs, not the right measure of the complexity
of a hypergraph. Thus research focussed on finding decompositions that work with
hypergraphs directly and not with their primal graphs. The base class of hypergraphs
that roughly corresponds to trees in the setting of treewidth are acyclic hypergraphs
which are defined with the help of join trees which organize the edges of a hypergraph in
a tree with a connectivity condition similar to that for treewidth.

Definition 2.12. A join tree of a hypergraph H = (V,E) is a pair (T , (λt)t∈T ) where
T = (T, F ) is a rooted tree and for each t ∈ T we have λt ∈ E such that

• for each e ∈ E there is a t ∈ T such that λt = e,

• For each v ∈ V the set {t ∈ T | v ∈ λt} induces a subtree of T .

A hypergraph is called acyclic if it has a join tree.

When there is no ambiguity, we often identify vertices t ∈ T with their edges λt.

Lemma 2.13 ([33]). There is a polynomial time algorithm that, given a hypergraph H,
decides if H is acyclic. Moreover, if H is acyclic the algorithm computes a join tree of H.

A conjunctive query φ is called acyclic if its associated hypergraph is acyclic.
Acyclic conjunctive queries play an important role in database theory, because of the

following result by Yannakakis [33].

Theorem 2.14 ([33]). ACQ can be solved in polynomial time.

Theorem 2.14 served as a starting point to finding more general classes of hypergraphs
on which CQ is tractable, by trying to identify classes of “nearly” acyclic hypergraphs.
There are lots of different decomposition techniques and associated width measures for
hypergraphs. One of the most general width measures is generalized hypertree width.
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The approach of generalized hypertree decomposition is similarly to that of tree
decompositions: We want to organize a hypergraph into clusters that form a tree with
a connectivity condition. Instead of bags that contain vertices and that must cover
all edges, the basic clusters of generalized hypertree decompositions are guarded blocks
(λt, χt) where λt contains edges while χt contains vertices. To make sure that the vertices
χt of a guarded block form a sufficiently simple set, we demand that χt is covered by
the edges in λt and that λt is small. To make sure that the decomposition represents
the hypergraph well, we require that every edge must be contained in a set χt (but not
necessarily in a λt). We now give the exact definition.

Definition 2.15. A generalized hypertree decomposition of a hypergraph H = (V,E) is
a triple (T , (λt)t∈T , (χt)t∈T ) where T = (T, F ) is a rooted tree and λt ⊆ E and χt ⊆ V
for every t ∈ T satisfying the following properties:

• For every e ∈ E there is a t ∈ T such that e ⊆ χt.

• For every t ∈ T we have χt ⊆
⋃
e∈λt e.

• For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

The third property is again called the connectedness condition. The sets χt are called
blocks or bags of the decomposition, while the sets λt are called the guards of the
decomposition. A pair (λt, χt) is called guarded block.

The width of a decomposition (T , (λt)t∈T , (χt)t∈T ) is maxt∈T (|λt|). The generalized
hypertree width of H is the minimum width over all generalized hypertree decompositions
of H.

Again, we sometimes identify a guarded block (λt, χt) with the vertex t.

Example 2.16. Figure 5 shows a generalized hypertree decomposition of width 3 for the
hypergraph from Figure 1.

We give the following very easy upper bound for generalized hypertree width.

Observation 2.17. Let H = (V,E) be a hypergraph such that there are k edges e1, . . . , ek
in E with V ⊆

⋃k
i=1 ei. Then H has generalized hypertree width at most k.

Proof. We will construct a trivial width k generalized hypertree decomposition (T , (λt)t∈T , (χt)t∈T )
of H. The tree T only consists of one single vertex t, the block of t is χt := V and the
guard is λt := {e1, . . . , ek}. It is easily seen that this satisfies all desired properties of a
hypertree decomposition. Furthermore, the decomposition has width k.

It turns out the generalized hypertree width is strictly more general than treewidth in
the following sense.

Lemma 2.18 ([18]). For every hypergraph H the generalized hypertree width is less than
or equal to 1 + tw(H). Moreover, for every ` there are hypergraphs of treewidth ` and
generalized hypertree width 1.
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{v3, v4, v5, u3, u4, u5}
{v4, v5, v6, v8},
{v7, v8, u5, u6}

v3, v4, v5, v6, v7, 
v8, u3, u4, u5, u6

{v1, u1}, {v2, u1, u2},
{v2, v4, u2, u3}

v1, v2, v4, u1, u2, u3

{v4, v5, v6, v8},
{v6, v9, u7},
{v8, v9, u8}

v4, v5, v6, v8, v9,
u7, u8

Figure 5: A generalized hypertree decomposition of width 3 for the hypergraph from
Figure 1. The boxes are the guarded blocks. In the upper parts the guards are
given while the lower parts show the blocks.

Unfortunately, deciding if a hypergraph has generalized hypertree width at most k is
NP-complete even for k = 3 [20]. This unpleasant result is amended by the fact that
there is an approximation algorithm.

Theorem 2.19 ([2, 19]). There is an algorithm that, given a hypergraph H of generalized
hypertree width k, constructs a generalized hypertree decomposition of width O(k) of H
in time |H|O(k).

A hypergraph is acyclic if and only if it has generalized hypertree width 1. With this
result the following lemma is easy to prove.

Lemma 2.20. Let (T , (λt)t∈T , (χt)t∈T ) be a generalized hypertree decomposition of a
hypergraph H. Let H′ = (V,E′) where E′ := {χt | t ∈ T}. Then H′ is acyclic and
(T , (χt)t∈T ) is a join tree of H′.

Next we state a lemma that in different forms is (implicitly) used in most papers that
deal with the application of hypergraph decomposition techniques to CQ.

Lemma 2.21. Given a CQ-instance Φ with associated hypergraph H and a generalized
hypertree decomposition of H of width k, one can compute an ACQ-instance Ψ in
time ‖Φ‖O(k) such that Φ and Ψ are solution equivalent.

Proof. Let Φ = (A, φ) and let the given generalized hypertree decomposition be (T ′, (λt)t∈T , (χt)t∈T ).
We construct Ψ = (B, ψ) with var(ψ) = var(φ) as follows: For every t ∈ T the query ψ
has an atom ψt with relation symbol Rt and var(ψt) := χt. The quantifiers are the same
as for φ. For every t ∈ T let φ1, . . . , φs be the atoms associated to the edges in λt. We
have s ≤ k. Let φ′1, . . . , φ

′
` be the atoms associated to the edges e with e ⊆ χt. Then we

define the relation RBt as

RBt := πχt(φ1(A) ./ . . . ./ φs(A)) ./ φ′1(A) ./ . . . ./ φ′`(A).
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We claim that φ and ψ are solution equivalent. First consider an assignment a that
satisfies all atoms of φ. Then we have for every subset φ′1, . . . , φ

′
r of atom(φ) that the

assignment a is compatible to an assignment in φ′1 ./ . . . ./ φ
′
r. If follows that for each t

the new atom ψt is satisfied by a. Consequently, φ(A) ⊆ ψ(B).
Let now a be an assignment that satisfies all atoms of ψ. Then a must for each t satisfy

the atoms φ′i from the construction of RB. But since each edge e of H is covered by a set
χt′ , every atom in atom(φ) contributes as a φ′i in the construction of a φt. Consequently,
a satisfies all atoms of φ and thus ψ(B) ⊆ φ(A).

We claim that this construction can be done in time ‖Φ‖O(k). To see this, observe
that the relation Aλt := πχt(φ1(A) ./ . . . ./ φs(A)) has size at most ‖A‖s ≤ ‖A‖k.
Since for the φ′i we have var(φ′i) ⊆ χt, it follows that RBt ⊆ Aλt and thus consequently
‖RBt ‖ ≤ ‖A‖k. With Lemma 2.2 it follows that we can compute RBt in time |φ|‖A‖O(k).
Thus computing the instance Ψ takes time ‖Φ‖O(k).

Finally, by Lemma 2.20 we have that Ψ is acyclic.

The combination of Theorem 2.14 and Lemma 2.21 allows to solve CQ-instances in time
‖Φ‖O(k) provided that a generalized hypertree decomposition of width k is given. Thus
the bottleneck for solving CQ-instances for many proposed decomposition techniques is
the efficient computation of a good decomposition of the instance.

Let us fix some notation: For an edge set λ ⊆ E we use the shorthand
⋃
λ :=

⋃
e∈λ e.

For a decomposition (T , (λt)t∈T , (χt)t∈T ) we write Tt for the subtree of T that has t as
its root and denotes by V (Tt) ⊆ T its vertex set. We also write χ(Tt) :=

⋃
t′∈V (Tt) χt′ .

We use these notations for tree decompositions as well.
It is sometimes helpful to consider restrictions of generalized hypertree decompositions,

because those might have better structural or algorithmic properties. A number of
them have been defined and studied in the past, among others biconnected component,
cycle-cutset, cycle-hypercutset, hingetree, hypertree decomposition (see [30] for a survey).
Hingetree decomposition will play a role in this paper and we define it formally below.

Definition 2.22. A generalized hypertree decomposition is called hingetree decomposition
if it satisfies the following conditions:

• For each pair t1, t2 ∈ T with t1 6= t2 there are edges e1 ∈ λt1 and e2 ∈ λt2 such that
χt1 ∩ χt2 ⊆ e1 ∩ e2.

• For each t ∈ T we have
⋃
λt = χt.

• For each e ∈ E there is a t ∈ T such that e ∈ λt.

The hingetree width (also called degree of cyclicity) of H is the minimum width over all
hingetree decompositions of H.

Note that this is not the original definition from [25] but an alternative, equivalent
definition from [10].

Example 2.23. The decomposition from Figure 5 is also a hingetree decomposition.
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Like treewidth, hingetree width is strictly less general than generalized hypertree width
in the following sense.

Lemma 2.24 ([18]). For every hypergraph the generalized hypertree width is less than or
equal to the hingetree width. Moreover, there are hypergraphs for which the generalized
hypertree width is strictly less than the hingetree width.

Hingetree width makes up for this lack of generality by the fact that optimal decompo-
sitions can be computed very efficiently.

Lemma 2.25 ([25]). There is an algorithm that, given a hypergraph H = (V,E), computes
a minimum width hingetree decomposition of H in time |V |O(1).

Since the presented decomposition techniques are all easy to compute, we get the
following following lemma.

Lemma 2.26 (see e.g. [10]). For all of the width measures defined above CQ restricted
to instances Φ of width k can be solved in time ‖Φ‖p(k) for a polynomial p.

3 Quantified star size

As proved in [31], even introducing one single existential quantifier in acyclic conjunctive
queries leads to #P-complete counting problems. It follows that bounding the number
of quantified variables does not yield tractable instances. In [15] we have shown a
corresponding #W[1]-hardness result for p-#ACQ: We presented a class of hard instances
for parameterized complexity which have a very simple form.

Lemma 3.1 ([15]). Let φstar,n := ∃z
∧
i∈[n]Ri(z, yi) and let Cstar := {φstar,n | n ∈ N}.

Then p-#CQ is #W[1]-hard for instances restricted to queries in Cstar.

For an alternative proof of Lemma 3.1 see [29].
A basic observation on the hard instances of Lemma 3.1 is that their associated

hypergraphs are stars whose center is the single quantified variable. Abstracting this
observation, we shall define the parameter called quantified star size which, when bounded
and combined with known decomposition techniques, leads to tractable #CQ-instances.
This parameter has been introduced in [15] for acyclic queries and we generalize it here
to the general setting. As we will see, not the number of quantified variables in a query
is crucial but how they are distributed in the associated hypergraph.

Before we introduce quantified star size, we make several other definitions.
Let H = (V,E) be a hypergraph and V ′ ⊆ V . A subhypergraph H′ = (V ′, E′) of H is a

hypergraph with E′ ⊆ {e ∩ V ′ | e ∈ E, e ∩ V ′ 6= ∅}. The induced subhypergraph H[V ′] of
H is the hypergraph H[V ′] = (V ′, E′) where, this time, E′ = {e ∩ V ′ | e ∈ E, e ∩ V ′ 6= ∅}.
Let x, y ∈ V , a path between x and y is a sequence of vertices x = v1, ..., vk = y such
that for each i ∈ [k − 1] there is an edge ei ∈ E with vi, vi+1 ∈ ei.

A (connected) component of H is an induced subhypergraph H[V ′] where V ′ is a
maximal vertex set such that for each pair x, y ∈ V ′ there is a path between x and y in
H. These definitions apply to graphs as well.

We will use the following observation on induced subgraphs of acyclic hypergraphs.
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Observation 3.2. Let β be any decomposition technique defined in Section 2.6. Let H =
(V,E) be a hypergraph of β-width k. Then for every V ′ ⊆ V the induced subhypergraph
H[V ′] has β-width at most k.

Proof. Let (T , (λt)t∈T , (χt)tinT ) be a β-decomposition of H of width k. For each guarded
block (λt, χt) compute a guarded block (λ′t, χ

′
t) with χt := χt∩V ′ and λt := {e∩V ′ | e ∈ λ}.

It is easy to check that (T , (λ′t)t∈T , (χ′t)tinT ) is a β-decomposition of width at most k.

Since acyclic hypergraphs are the hypergraphs of generalized hypertree width 1, we
get the following special case.

Observation 3.3. If H = (V,E) is an acyclic hypergraph and V ′ ⊆ V , then H[V ′] is
acyclic. More specifically, let (T , (λ)t∈T ) with T = (T, F ) be a join tree of H. Then
(T [T ′], (λt ∩ V ′)t∈T ′) where T ′ := {t ∈ T | λt ∩ V ′ 6= ∅} can be made into a join tree of
H[V ′] by connecting the components of T [T ′] arbitrarily.

Observe that there is no version of Observation 3.2 or Observation 3.3 for subhyper-
graphs instead of induced subhypergraphs. To see this consider an arbitrary hypergraph
H = (V,E). Adding the edge V to E yields an acyclic hypergraph, independent of the
generalized hypertree width of H.

Definition 3.4. An S-hypergraph is a pair (H, S) where H = (V,E) is a hypergraph
and S ⊆ V . If H is a graph, we also call (H, S) an S-graph.

The S-hypergraph associated to a CQ-instance Φ = (A, φ) consists of the hypergraph
associated to φ and S := free(φ). The primal S-graph of H is defined as (HP , S).

Definition 3.5. Let G be a class of S-hypergraphs. By #CQ on G we denote the
restriction of #CQ to instances whose associated S-hypergraph is in G . Analogously,
by p-#CQ on G we denote the restriction of p-#CQ to instances whose associated
S-hypergraph is in G .

Definition 3.6. We call an S-hypergraph S-connected if for every pair of vertices x, y
there is a path x = v1, v2, . . . , vk−1, vk = y such that vi /∈ S for i /∈ {1, k}.

Let us consider some examples of queries that have S-connected S-hypergraphs.

Example 3.7. Path queries (of arbitrary length), for example

φ(x, y) := ∃t1∃t2∃t3R(x, t1) ∧R(t1, t2) ∧R(t2, t3) ∧R(t3, y)

have as their associated S-hypergraph a path in which only the end vertices are in S.
Thus their S-hypergraph is S-connected.

Example 3.8. The associated graph of the query φstar,n of Lemma 3.1 is the star
Gn = (Vn, En) where Vn = {z, y1, . . . , yn} and En = {zy1, . . . , zyn}. Furthermore, the
free variables are Sn = {y1, . . . , yn}. Every vertex in Vn is connected to every other vertex
via z /∈ Sn. Thus (Gn, Sn) is Sn-connected.
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Definition 3.9. An independent set I in a hypergraph H = (V,E) is a set I ⊆ V such
that there are no distinct vertices x, y ∈ I that lie in a common edge e ∈ E.

Definition 3.10. The S-star size of an S-connected S-hypergraph is the maximum size
of an independent set consisting of vertices in S only. We say that such an independent
set forms an S-star.

We remark that the S-star size of an S-connected S-hypergraph can equivalently be
expressed as the the size of a maximum independent set in H[S].

Example 3.11. The S-hypergraphs associated to the path queries of Example 3.7 have
S-star size 2, because the two end vertices of the paths are independent.

Now consider the Sn-hypergraph (Gn, Sn) from Example 3.8. The vertices of Sn are
all independent. Consequently, the Sn-star size of (Gn, Sn) is n.

Note that while the quantified star size of instances whose associated hypergraph is a
path is bounded by 2, the S-star size of bounded pathwidth instances is unbounded. To
see this, observe that the graph Sn-hypergraph (Gn, Sn) from above has pathwidth 1: The
decomposition (P, (χt)t∈T ) where P is the path with vertex set [n] and χi := {z, yi}, is a
path decomposition of Gn of width 1.

We want to extend the notion of S-star size to S-hypergraphs that are not necessarily
S-connected. To this end, we consider certain S-connected subhypergraphs that we call
S-components. We make the following crucial definition.

Definition 3.12. Let H = (V,E) be a hypergraph and S ⊆ V . Let C be the vertex set of
a connected component of H[V − S]. Let EC be the set of hyperedges {e ∈ E | e∩C 6= ∅}
and V ′C :=

⋃
e∈EC

e. Then H[V ′C ] is called an S-component of H.

Example 3.13. Let us consider the S-hypergraph of the query from Example 2.3. The
associated hypergraph H was already illustrated in Figure 1. We have S = {v1, ..., v9}.
Then H[V \ S] has three components with the vertex sets C1 := {u7}, C2 := {u8} and
C3 := {u1, . . . , u6}. Thus

• EC1 =
{
{u7, v6, v9}

}
,

• EC2 =
{
{u8, v8, v9}

}
, and

• EC3 =
{
{u1, v1}, {u1, u2, v2}, {u2, u3, v2, v4},

{u3, u4, u5, v3, v4, v5}, {u5, u6, v7, v8}
}

.

Hence, the vertex sets of the components are: V ′C1
= {u7, v6, v9}, V ′C2

= {u8, v8, v9} and
V ′C3

= {u1, u2, u3, u4, u5, u6, v1, v2, v3, v4, v5, v7, v8}. The three resulting S-components are
depicted in Figure 6.

The following observations are evident from the definition.

Observation 3.14. To an S-hypergraph (H, S) one can in polynomial time compute all
its S-components.
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Figure 6: The S-components of the S-hypergraph discussed in Example 3.13.

Observation 3.15. The only S-component of an S-connected S-hypergraph (H, S) is
H. Moreover, the S-components of S-hypergraphs are S-connected.

Observation 3.15 allows to extend the definition of S-star size to not necessarily
S-connected hypergraphs.

Definition 3.16. For an S-hypergraph (H, S) we define S-star size as the maximum
S-star size of its S-components.

Example 3.17. Let us compute the S-star size of the S-hypergraph of Example 3.13. The
S-components induced by V ′C1

and V ′C2
are completely covered by the edges {u7, v6, v9},

resp., {u8, v8, v9}. It follows that the S-star size of these S-components is 1. We have
VC3 ∩ S = {v1, v2, v3, v4, v5, v7, v8}. There are several maximum independent sets of
vertices in VC3 ∩ S in the S-component induced by VC3, all of size 4. An example is
{v1, v2, v3, v7}. It follos that the S-star size of (H, S) is 4

Now we can finally come back to CQ-instances and define the promised parameter
quantified star size.

Definition 3.18. The quantified star size of a conjunctive query is defined as the S-star
size of the associated S-hypergraph. The quantified star size of a CQ-instance is that of
its query.

Example 3.19. The query from Example 2.3 has quantified starsize 4 as we have seen
in Example 3.17. From Example 3.11 we get that the queries φstar,n of Lemma 3.1 are of
quantified star size n, which is nearly the size of the query.

4 Quantified star size is sufficient and necessary for efficient
counting

In this section we analyze the effect of quantified star size on the complexity of #CQ.
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4.1 An algorithm for instances of bounded quantified star size

In this section we show that the decomposition techniques introduced in Section 2.6 lead
to efficient counting when combined with bounded quantified star size. We proceed with
the following rather technical lemma.

Lemma 4.1. There is an algorithm that, given a CQ-instance Φ = (A, φ) of quantified
starsize ` and a generalized hypertree decomposition Ξ = (T , (λt)t∈T , (χt)t∈T ) of Φ of
width k, constructs a CQ-instance Ψ = (B, ψ) in time ‖Φ‖p(k,`) for a fixed polynomial p
such that

• Φ and Ψ are solution equivalent,

• Ψ is acyclic, and

• ψ is quantifier free.

In the proof we will use the following lemma from [15]. An edge cover of a hypergraph
H = (V,E) is a set E∗ of edges of H such that V ⊆

⋃
e∈E∗ e.

Lemma 4.2. For acyclic hypergraphs the size of a maximum independent set and a
minimum edge cover coincide. Moreover, there is a polynomial time algorithm that given
an acyclic hypergraph H computes a maximum independent set I and a minimum edge
cover E∗ of H.

Proof of Lemma 4.1. Given Φ = (A, φ), we construct Ψ in several steps.
Let H = (V,E) be the hypergraph of φ. Let V1, . . . , Vm be the vertex sets of the

connected components of H[V \ S] and let V ′1 , . . . , V
′
m be the vertex sets of the corre-

sponding S-components of H. Clearly, we have Vi ⊆ V ′i and V ′i \ Vi = V ′i ∩ S =: Si.
Let Φi be the CQ-instance whose query φi is obtained by restricting all atoms of φ to
the variables in V ′i and whose structure Ai is obtained by projecting all relations of A
accordingly. The associated hypergraph of φi is H[V ′i ]. Moreover, H[V ′i ] has a generalized
hypertree decomposition Ξi of width at most k with tree a Ti that is a subtree of T (see
Observation 3.2).

Now fix i. To Φi we construct a solution equivalent ACQ-instance Φ′i = (A′i, φ′i) as in
the proof of Lemma 2.21: For each t ∈ T we construct an atom φt in the variables χt.
The associated relation is given by

πχt

 ./
φ′∈atom(φ) :
var(φ′)∈λt

φ′(Ai)

 ./

 ./
φ′∈atom(φi) :
var(φ)⊆χt

φ′(Ai)

 ,

i.e., by taking the natural join of the relations belonging to the atoms of the guard
λt projected to χt and all relations of the atoms in φi whose variables lie in χt. The
decomposition Ξi has width at most k so this construction can be done in time ‖Φ‖O(k)

as seen in the proof of Lemma 2.21. The query φ′i of Φ′i is defined as the conjunction of
the φt over all t ∈ Ti and with the same quantified variables as φ. By Lemma 2.21, Φi

and Φ′i are solution equivalent, we have ‖Φ′i‖ ≤ ‖Φi‖O(k) and φ′i is acyclic.
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Let Hi be the associated hypergraph of φ′i, then (Hi, Si) has only one single Si-
component, because all the vertices in Vi are connected in H and thus also in Hi.

We claim that the Si-star size of Hi is at most the Si-star size of H[V ′i ]. To see this,
consider two independent vertices u, v in Hi. The edges e of Hi are equal to the blocks
χt of Ξi. Because u and v are independent in Hi, they do not appear in a common block
χt in Ξi. But then u and v cannot lie in one common edge in H[Vi], because every edge
in H[V ′i ] is contained in a block χt by definition of generalized hypertree decompositions.
So u and v are independent in H[V ′i ] as well. Thus every independent set in Hi is also
independent in H[V ′i ]. So the Si-star size of Hi indeed is at most the Si-star size of H[V ′i ]
which is at most ` by assumption.

Thus by Lemma 4.2 the vertices in Si can be covered by at most ` edges e1, . . . , e` in
Hi which we can compute in polynomial time. Let α1, . . . , α` be the atoms corresponding
to the edges e1, . . . , e`.

We construct a new atomic formula φ′′i in the variables Si and an associated relation
R′′i as follows: For each combination a1, . . . , a` of compatible tuples in α1(A′i), . . . , α`(A′i)
let a be the single tuple in πSi({a1} ./ . . . ./ {a`}). We fix the free variables in φ′i
to the constants prescribed by a. The result is a CQ-instance Φa with the associated
hypergraph H[Vi]. By Observation 3.3 Φa is acyclic and can thus be solved in polynomial
time with Theorem 2.14. If Φa has a solution, add a to the relation R′′i . This completes
the construction of R′′i .

Let A′′i be the structure containing only the relation R′′i . By construction, Φ′′i :=
(A′′i , φ′′i ) is solution equivalent to Φ′i and thus also to Φi. Observe that the instances Φa

can be solved in polynomial time by Theorem 2.14. Moreover, since ‖Φ′i‖ ≤ ‖Φ‖O(k), only
‖Φ‖O(k`) tuples a need to be considered. Thus Φ′′i can be constructed in time ‖Φi‖p(k,`)
for a polynomial p.

We now return to the original instance Φ and eliminate the quantified variables in the
query φ. To do so, we add the atom φ′′i for i ∈ [m] and delete all atoms that contain any
quantified variable. Moreover, we add the relation R′′i to the structure A. We call the
resulting #CQ instance Φ′′ = (A′′, φ′′). The overall runtime of the construction is at most
‖Φ‖p(k,`). Also Φ′′ is solution equivalent to Φ, because (A′′i , φ′′i ) is solution equivalent to
Φ′i.

We claim that Φ′′ has generalized hypertree width at most k. To show this we construct
a generalized hypertree decomposition Ξ ′′ of φ′′ by doing the following: For each t ∈ T
with χt ∩ Vi 6= ∅ we construct a guarded block (λ′t, χ

′
t) by deleting all edges e with

e ∩ Vi 6= ∅ from λt and adding the edge Si for φ′′i . Furthermore we set χ′t = (χt \ Vi) ∪ Si.
It is easy to see that the result is indeed a generalized hypertree decomposition of φ′′ of
width at most k.

Finally, we construct an ACQ-instance Ψ := (B, ψ) equivalent to Φ′′ with Lemma 2.21.

We now directly get the desired counting result:

Corollary 4.3. #CQ on instances Φ of generalized hypertree width k and quantified
star size ` can be solved in time ‖Φ‖p(k,l) for a polynomial p.
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Proof. Use Theorem 2.19 to construct a generalized hypertree decomposition of width
O(`), then apply Lemma 4.1 and count with the algorithm of [31] or [15].

4.2 Bounded quantified star size is necessary

In this section we will show that bounded quantified star size is a necessary restriction for
tractable #CQ: Under the assumption FPT 6= #W[1], all classes G of S-hypergraphs
for which p-#CQ is fixed-parameter tractable must have bounded quantified star size.
As polynomial time tractability trivially implies fixed-parameter tractability, it follows
that bounded quantified star size must also be necessary for classes G of S-hypergraphs
that allow polynomial time algorithms.

Let G be a class of S-hypergraphs. Remember that by #CQ on G we denote the
restriction of #CQ to instances whose associated S-hypergraph is in G . Analogously,
by p-#CQ on G we denote the restriction of p-#CQ to instances whose associated
S-hypergraph is in G .

We will use the fact that #CQ is already hard for very restricted S-hypergraphs,
namely those of the queries from the class Cstar from Lemma 3.1.

Theorem 4.4. Assume FPT 6= #W[1], and let G be a recursively enumerable class of
S-hypergraphs. If p-#CQ is fixed-parameter tractable for G , then G is of bounded S-star
size.

Before proving Theorem 4.4, let us take some time to discuss its assumption, because
we will see this and similar assumptions throughout the rest of this paper. The reader
might feel that it would be more satisfying to prove a version of this theorem not under
the assumption FPT 6= #W[1] from parameterized complexity but instead to prove
it based on a more standard assumption like FP 6= #P. Clearly, the statement would
then have to change from “fixed-parameter tractable” to “polynomial time tractable”,
but this could still be preferable. Unfortunately, it is unlikely that such a version of
Theorem 4.4 can be proved. One can show that assuming FP 6= #P there are classes of
S-graphs on which #CQ is neither in FP nor #P-complete (see [29, Chapter 5.3]. Thus
is seems unlikely that the theory of #P-completeness suffices to identify the classes of
S-hypergraphs on which #CQ is tractable.

Furthermore, let us remark that if the reader feels uncomfortable with parameterized
complexity, he can safely exchange the assumption FPT 6= #W[1] against the so-called
exponential time hypothesis which is the following conjecture.

Conjecture 4.5 (Exponential time hypothesis). 3-SAT cannot be solved in time 2o(n)

where n is the number of variables of the input.

The exponential time hypothesis implies FPT 6= W[1] [14, Chapter 17] and thus also
FPT 6= #W[1]. Hence Theorem 4.4 and several other results of this paper could also
be formulated with the assumption that the exponential time hypothesis is true if the
reader prefers an assumption from more classical complexity theory.

We will use the following lemma to prove Theorem 4.4.
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Lemma 4.6. Let G be a recursively enumerable class of S-hypergraphs of unbounded
S-star size. Then p-#CQ on G is #W[1]-hard.

Let Gstar be the class of S-graphs (Gn, Sn) where Gn is the star with n leaves and Sn
consists of all vertices but the center of Gn. Note that the S-hypergraphs of the queries
Cstar from Lemma 3.1 are the S-graphs in Gstar (see Example 3.8). Since by Lemma 3.1
p-#CQ restricted to instances with queries in Cstar is #W[1]-hard, it follows directly
that p-#CQ on Gstar is #W[1]-hard. The idea of the proof of Lemma 4.6 is to show
that Gstar can be embedded in an appropriate way into any class G of S-hypergraphs of
unbounded S-star size to show that p-#CQ on G is #W[1]-hard.

We feel that it is more transparent to show Lemma 4.6 for the restricted case of
S-connected S-hypergraphs and to sketch afterwards how to generalize the proof to
the general case. Remember that an S-hypergraph (H, S) is called S-connected if for
every pair of vertices x, y there is a path x = v1, v2, . . . , vk−1, vk = y such that vi /∈ S for
i /∈ {1, k}.

Lemma 4.7. Let G be a recursively enumerable class of S-hypergraphs of unbounded
S-star size. Then p-#CQ on G is #W[1]-hard.

Proof of Lemma 4.7. Let G be a class of S-connected S-hypergraphs of unbounded S-star
size.

Remember Cstar := {φstar,n | n ∈ N} is defined with φstar,n = ∃z
∧
i∈[n]Ri(z, yi)

(see Lemma 3.1). We will show a parameterized parsimonious reduction from p-#CQ,
restricted to instances that have queries in Cstar, to p-#CQ on G . As p-#CQ on the
former class of instances is #W[1]-hard by Lemma 3.1, the claim will follow.

Let Φ = (A, φ) be an instance of #CQ restricted to queries in Cstar, i.e., φ has the form
φ = ∃z

∧k
i=1Ri(z, yi). Because G is recursively enumerable and of unbounded S-star

size, there is a computable function g : N → N such that for given k ∈ N one can in
time g(k) compute an S-connected S-hypergraph (H, S) ∈ G of S-star size at least k.
We will embed Φ into H = (V,E) to construct a #CQ-instance Ψ := (B, ψ) of size at
most g(k)‖Φ‖2. The instance Ψ will have the S-hypergraph (H, S) and the same domain
B := A as Φ.

For each e ∈ E let ψe be an atom with the relation symbol Ee and the set of variables
var(ψe) = e. Let

ψ′ :=
∧
e∈E

ψe,

then ψ is the query we get from ψ′ by existentially quantifying all variables in V \ S.
This completes the construction of the query ψ.

We now construct the structure B. Let Y = {y1, . . . , yk} ⊆ S be a set of independent
vertices. Such a set Y must exist, because (H, S) has S-star size at least k. Let d be an
arbitrary but fixed element of A. We define EBe depending on the vertices in e as follows:

Case 1: Let first e ∈ E be an edge that contains yi for some i ∈ [k]. Observe
that yi is uniquely determined, because no two of the vertices yi share an edge. The
atom ψe has the relation symbol Ee and as variables the vertices of e. We assume
that the order of the variables in ψe is as follows: yi is the first variable, followed
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by the other variables in e ∩ S and after those the variables in e \ S. We define
EBe := {(v2, d, . . . , d, v1, . . . , v1) | (v1, v2) ∈ RAi }, where RAi is the relation of Ri in A.
Observe that this forces all variables in (e ∩ S) \ {yi} to be equal to the value d in
satisfying assignments, while the variables in e \ S must all have a common value v1.
Furthermore, because yi is uniquely determined, the relation EBe is well defined.

Case 2: Let now e ∈ E with e ∩ Y = ∅. We assume that the variables in ψe are
ordered such that all variables in S ∩ e appear before those in e \ S. Then we define
EBe := {(d, . . . , d, v1, . . . , v1) | v1 ∈ A}. Again in the satisfying assignments all variables
in e∩ S are forced to be equal to d, while the variables in e \ S can take an arbitrary but
equal value.

This completes the construction of B and thus that of Ψ = (B, ψ).

Claim 1. |φ(A)| = |ψ(B)|.

Proof. Let φ′, resp., ψ′ be the quantifier free queries we get from φ, resp., ψ by deleting
all quantifiers.

We construct a function B that to an assignment from φ′(A) constructs an assignment
B(a) := a′ with a′ : V → B. We define

a′(x) :=


a(x), x ∈ Y,
d, x ∈ S \ Y,
a(z), x ∈ V \ Y

.

We claim that B is a bijection from φ(A) to ψ(B). It is easily seen from the construction
of ψ that a′ satisfies all atoms of ψ and thus a′ ∈ ψ′(B). Furthermore, B is obviously
injective. Thus it only remains to prove that B is surjective. To see this, consider
b′ ∈ ψ(B). By construction of Ψ, we have b′(x) = d for all x ∈ S \ Y . Because H is
S-connected, we have that H[V \ S] is connected. From the construction of Ψ it follows
by an easy induction that there is a v1 ∈ A such that b′(x) = v1 for all x ∈ V \ S.
We construct an assignment b : var(φ) → A by b(x) := b′(x) for x ∈ {y1, . . . , yk} and
b(z) := v1. Obviously, B(b) = b′. Moreover, from the construction of Ψ is follows that
b ∈ φ′(A). Thus B is a bijection from φ′(A) to ψ′(B).

We now construct a mapping B′ from φ(A) to ψ(B) as follows: For a ∈ φ′(A) we map
a|free(φ) to B(a)|free(ψ). Since B is a bijection, it follows that B′ is a bijection as well.
This proves the claim.

Obviously, the S-hypergraph associated to ψ is (H, S). Moreover, by construction we
have |ψ| ≤ g(k) and Ψ can be constructed in time at most g(k)‖Φ‖2, because H has size
at most g(k) and the size of the relations is bounded by |A|2. Thus, with Claim 1, the
construction of Ψ form Φ is a parameterized parsimonious reduction. This completes the
proof of Lemma 4.7

We now sketch how to extend Lemma 4.7 from S-connected S-hypergraphs to general
S-hypergraphs in a straightforward way.
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Proof of Lemma 4.6 (Sketch). The proof follows the same ideas as that of Lemma 4.7:
We first compute an S-hypergraph H in G of S-star size at least k. Then we choose an
S-component H′ of S-star size at least k in G . We construct the relations EBe in such a
way that in every satisfying assignment every variable not in H is forced to the value d.
For all other variables we construct the relations as in the proof of Lemma 4.7. Since H′
is S-connected by Observation 3.15, the same arguments as in the proof of Lemma 4.7
show that the construction is a parsimonious parameterized reduction.

Proof of Theorem 4.4. Assume that p-#CQ on G is fixed-parameter tractable. By
Lemma 4.6 we directly get FPT = #W[1] which contradicts the assumption.

Combining Corollary 4.3 with Theorem 4.4 yields a characterization of classes of
S-hypergraphs of bounded generalized hypertree width that allow efficient #CQ.

Theorem 4.8. Let G be a recursively enumerable class of S-hypergraphs of bounded
generalized hypertree width. Then (assuming FPT 6= #W[1]) the following statements
are equivalent:

1. #CQ on G is polynomial time tractable.

2. p-#CQ on G is fixed-parameter tractable.

3. G is of bounded S-star size.

Proof. 1→ 2 is trivial. 2→ 3 is Theorem 4.4. Finally, 3→ 1 is Corollary 4.3.

As a corollary we get that for a wide range of decomposition techniques commonly
considered in the database and artificial intelligence literature, we can characterize the
tractable classes of S-graphs by bounded quantified star size. For the decomposition
techniques not defined here see [18].

Corollary 4.9. Let β be one of the following decomposition techniques: biconnected
component, cycle-cutset, cycle-hypercutset, hingetree, hypertree, or generalized hypertree
decomposition. Let furthermore G be a recursively enumerable class of S-hypergraphs
of bounded β-width. Then (assuming FPT 6= #W[1]), the following statements are
equivalent:

1. #CQ on G is polynomial time tractable.

2. p-#CQ on G is fixed-parameter tractable.

3. G is of bounded S-star size.

Proof. 1 → 2 is trivial. 2 → 3 follows from Theorem 4.4. For 3 → 1 observe that for
every β of the claim we have that for every hypergraph H the β-width of H is bounded
from below by a function in the generalized hypertree width of H. Thus G has bounded
generalized hypertree width and the claim follows with Corollary 4.3.
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5 Queries of Bounded Arity

In this section we show that for bounded arity #CQ we can exactly characterize the classes
of S-hypergraphs that allow polynomial time counting. In this section all CQ-instances
and all S-hypergraphs are always assumed to be of bounded arity.

We will give two different characterizations of S-hypergraphs of bounded arity that
allow tractable #CQ: The first characterization is presented in Section 5.1 and uses
treewidth and S-star size, following the ideas of Section 4. In Section 5.2 we introduce a
notion of elimination width for conjunctive queries. It will allow us to characterize the
S-hypergraphs of bounded arity that allow tractable #CQ with a single parameter.

5.1 A characterization by treewidth and S-star size

In this section we characterize the S-hypergraphs of bounded arity that allow tractable
#CQ by treewidth and S-star size. The result of this section is based on a combination
of the results of Section 4 and a result by Grohe from [22] which is a followup of results
by Grohe, Schwentick and Segoufin [24]. We state the theorem in our slightly different
wording.

Theorem 5.1 ([22]). Let G be a recursively enumerable class of hypergraphs of bounded
arity. Assume FPT 6= W[1]. Then the following three statements are equivalent:

1. CQ on G can be decided in polynomial time.

2. p-CQ on G is fixed parameter tractable.

3. There is a constant c such that the hypergraphs in G have treewidth at most c.

Theorem 5.1 is originally stated even for every fixed vocabulary.
Our goal is to provide a complete characterization of classes of S-hypergraphs of

bounded arity that yield tractability for #CQ. Not too surprisingly, tractability depends
on both treewidth and star size of the underlying S-hypergraph.

Theorem 5.2. Let G be a recursively enumerable class of S-hypergraphs of bounded
arity. Assume that W[1] 6= FPT. Then the following statements are equivalent:

1. #CQ on G is solvable in polynomial time.

2. p-#CQ on G is fixed-parameter tractable.

3. There is a constant c such that for each S-hypergraph (H, S) in G the treewidth of
H and the S-star size of H are at most c.

Let us discuss how Theorem 5.2 and Theorem 4.8 relate. First, it is not hard to see
that for bounded arity hypergraphs treewidth and generalized hypertree width differ
only by a constant factor. So we could have formulated Theorem 5.2 with generalized
hypertree width instead of treewidth as well.
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The key difference between Theorem 5.2 and Theorem 4.8 is that we can show here
that bounded treewidth is not only sufficient for tractable counting but also necessary.
As we already directly get from [31], there are by Lemma 2.7 families of S-hypergraphs
of unbounded arity, and thus also unbounded treewidth, on which #CQ is tractable,
so treewidth is not the right notion for this case. It is an intriguing question if there
is a width measure that completely characterizes tractable CQ or tractable #CQ for
unbounded arity, similarly to Theorem 5.1 and Theorem 5.2 in the bounded arity case.

Before giving the proof of Theorem 5.2 we make an observation.

Observation 5.3. If there is a recursively enumerable class G of S-hypergraphs of
unbounded treewidth such that p-#CQ on G is fixed-parameter tractable, then there is
such a class G ′ that is recursive.

Proof. Fix a Turing machine M that enumerates G . Let the order in which the S-
hypergraphs of G are enumerated by M be (H1, S1), (H2, S2), . . .. Then define G ′ as
containing the S-hypergraphs (H′i, S′i) where H′i is the disjoint union of the hypergraphs
H1, . . . ,Hi and S′i :=

⋃
j∈[i] Si.

We claim that G ′ is recursive. Indeed the definition of G ′ directly gives an algorithm
that enumerates the elements of G ′ ordered by size. This yields an algorithm to decide
membership in G ′: Given an input (H, S), enumerate the elements of G ′ until (H, S) is
found or an element that has more vertices than (H, S) is enumerated. The treewidth of
G is trivially unbounded.

Finally, we claim that #CQ on G ′ is fixed-parameter tractable. Given an input
Φ := (A, φ) first check if the associated S-hypergraph (H, S) is in G ′. If not, stop. It
yes, the query φ must decompose into subqueries φ1, . . . , φi such that for each j ∈ [i] the
query φj has the S-hypergraph (Hj , Sj) and the φj have disjoint variable sets. Using the
enumerating machine M we can compute such a decomposition. Now since #CQ on G is
fixed-parameter tractable we can solve the instances Φj := (A, φj) in time g(|φj |)‖Φj‖c
for a computable function g and a constant c. If follows that |φ(A)| =

∏
j∈[i] |φj(A)|

can be computed in time
∑

j∈[i] g(|φj |)‖Φj‖c ≤ |φ|g(|φ|)‖Φ‖c and thus #CQ on G ′ is
fixed-parameter tractable.

Proof of Theorem 5.2. The direction 1→ 2 is trivial. Furthermore, 3→ 1 follows directly
from Corollary 4.9. So it remains only to show 2 → 3.

By way of contradiction, we assume that there is a recursively enumerable class G of
S-hypergraphs such that counting solutions to #CQ-instances, whose S-hypergraph are
in G , is fixed parameter tractable, but 3 is not satisfied by G . From Theorem 4.4 we
know that the S-starsize of G must be bounded, so it follows that the treewidth of G is
unbounded. With Observation 5.3 we may assume that G is recursive.

We construct a class G ′ of hypergraphs as

G ′ := {H | (H, S) ∈ G }.

Clearly G ′ is recursive and of unbounded treewidth. We will show that p-CQ on G ′ is
fixed-parameter tractable. This is a contradiction with Theorem 5.1.
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Because G is recursive, there is an algorithm that for each H in G ′ constructs an
S-hypergraph (H, S) in G . For example, one can simply try all vertex sets S and check
if (H, S) is in G . Let f(H) be the number of steps the algorithm needs on input H. The
function f(H) is well defined and computable. We then define g : N → N by setting
g(k) := maxH(f(H)), where the maximum is over all hypergraphs H of size k in G ′. The
function g is well defined and computable, because G ′ is recursive. Thus for each H in
G ′ we can compute in time g(|H|) an S-hypergraph (H, S) in G .

Now let Φ = (A, φ) be a CQ-instance with hypergraph H in G ′. To solve it we
first compute (H, S) as above and construct a CQ-instance Ψ = (A, ψ) with (H, S) as
associated S-hypergraph for ψ by adding existential quantifiers for all variables not in
S. Obviously Φ has solutions if and only if Ψ has one. But by assumption the solutions
of Ψ can be counted in time h(|ψ|)‖Ψ‖O(1) for some computable function h, so Φ can be
decided in time (g(|φ|) + h(|φ|))‖Φ‖O(1). Thus p-CQ on G ′ is fixed-parameter tractable.
This is the desired contradiction to Theorem 5.1.

Also, the result in [12] (for quantifier free #CQ) is proved under the weaker assumption
#W[1] 6= FPT. Showing the same equivalent result for general #CQ seems to be hard
since our case also contains decision problems (e.g. #CQ with no free variables).

5.2 A characterization by elimination orders

While the characterization of Theorem 5.2 is great because it completely characterizes
the tractable classes of S-hypergraphs for #CQ, it has the somewhat unpleasant property
that we have to bound two different parameters of the hypergraphs instead of just one.
Also, it is not clear how robust and natural the defined classes of hypergraphs are. In
contrast to this, treewidth is a very robust notion that has many equivalent definitions.

In this section we improve the situation by showing that there is a notion of elimination
width for S-hypergraphs that is equivalent to the combination of treewidth and S-star
size.

Recall the notion of elimination orders from Section 2.6.1.

Definition 5.4. Let (G,S) be an S-graph. We define an elimination order of an S-graph
π of an S-graph (G,S) as an elimination order of G = (V,E) such that for each pair
v ∈ S, u ∈ V \ S such that uv is an edge in the fill-in graph Gπ we have π(u) < π(v).

The elimination width of an S-graph elim-width(G,S) of (G,S) is defined as the
minimum width taken over all elimination orders of (G,S).

The elimination width elim-width(H, S) of an S-hypergraph (H, S) is defined as the
elimination width of its primal S-graph (see Definition 3.4). By HP,π we denote the
fill-in graph of the primal graph HP of H with respect to π.

Remark 5.5. Observe that for every S-graph (G,S) we have

elim-width(G,S) ≥ elim-width(G),

because every elimination order of (G,S) is an elimination order of G.
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Proposition 5.6. Let G be a class of S-hypergraphs. Then the following statements are
equivalent:

• The treewidth and the S-star size of the S-hypergraphs in G are bounded by a
constant c.

• The elimination width of the S-hypergraphs in G is bounded by a constant c′.

The proof of Proposition 5.6 is somewhat lengthy, so we prove it in two individual
lemmas.

Lemma 5.7. Let (H, S) be an S-hypergraph of elimination width k. Then the treewidth
of H is at most k and the S-star size of (H, S) is at most k + 1.

Proof. From Remark 5.5 and Lemma 2.11 it follows directly that the treewidth of H is at
most k. Thus we only have to show the bound on the S-star size of (H, S). To this end,
we define an S-path (P, S) as a path whose end vertices are in S but all other vertices
are not in S.

Claim 2. Let u, v be the end vertices of an S-path (P, S) with P = ux1 . . . x`v. Then for
every elimination order π of (P, S) we have π(v) > π(xi) and π(u) > π(xi) for all i ∈ [`].
Furthermore, uv is an edge of the fill-in graph Pπ.

Proof. We prove this by induction on `. For ` = 0 there is nothing to show.
Now let ` ≥ 1. Let xj be the vertex for which π is minimal, i.e., π(xj) ≤ π(xi) for all

i ∈ [`]. By the definition of elimination orders we have π(x1) < π(u) and π(x`) < π(v),
so π(xj) < min(π(v), π(u)). Let P ′ be the path that we get from P when deleting xj
and connecting xj−1 and xj+1 by an edge. P ′ is a subgraph of the fill-in graph Pπ and
π induces an elimination order on P ′ by π′(w) := π(w) − 1. It follows that P ′π′ is a
subgraph of Pπ. By induction π′(v) > π′(xi) and π′(u) > π′(xi) for all i ∈ [`] \ {j} and
thus π(v) > π(xi) and π(u) > π(xi) for all i ∈ [`]. Furthermore, by induction uv is an
edge of P ′π′ and thus also of Pπ. This completes the proof of the claim.

By definition of S-components, in every S-graph (G,S) every pair u, v ∈ S must be
connected by an S-path.

Let HP = (V,EP ) be the primal graph of H. Let H′ be an S-component of H with
primal S-graph H′P = (V ′, E′P ) and let S′ := S ∩ V ′.

Let π be an optimal elimination order of (H, S) of width k. Then π induces for every
subgraph H′′ an elimination order of H′′ of width at most k. To ease notation we will
not differentiate between π and these induced elimination orders and simply call π an
elimination order of all subgraphs, too.

As already remarked, all pairs u, v ∈ S′ are connected by S-paths in H′P . The fill-in
graph of every subgraph of H′P is a subgraph of the fill-in graph H′P,π of H′P . Thus by
Claim 2 we have that the vertices in S′ form a clique in H′P,π. Because π has width k, it
follows that |S′| ≤ k + 1. Hence the S-star size of H′ is at most k + 1. This completes
the proof of Lemma 5.7.
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For the other direction of Proposition 5.6 we will use the following lemma.

Lemma 5.8. Let (H, S) be an S-hypergraph of treewidth at most c and S-star size at
most k. Then every S-component of H contains at most k(c+ 1) vertices from S.

Proof. We prove this by induction on the S-star size k while keeping the treewidth fixed
to c. If the S-star size is k = 1, then in every S-component all vertices from S are
adjacent. But then they induce a clique in the primal graph of H and thus by Lemma
2.7 there may be at most c+ 1 of them.

Let now k > 1. Consider an S-component H′ of H. The graph H′P [S] has at most
treewidth c because it is an induced subgraph of H′P which has by assumption treewidth
at most c. By Lemma 2.8, there is a vertex v in H′P [S] of degree at most c. If follows
that v has at most c neighbors in S in H′. Let H′′ be the hypergraph we get from
H′ = (V ′, E′) by deleting v and all of its neighbors in S. We claim that (H′′, S ∩ V ′) has
S-star size at most k − 1.

Assuming this is false, there are k independent vertices v1, . . . , vk ∈ S in H′′. But then
v1, . . . , vk, v are k + 1 independent vertices from S in H′, so the S-star size of H is at
most k + 1 which contradicts the assumption.

So the S-star size of H′′ is indeed bounded by k − 1. By induction H′′ contains at
most (k − 1)(c+ 1) vertices from S, and since we deleted at most c+ 1 vertices during
the construction of H′′ we get that H′ contains at most k(c+ 1) vertices from S.

We now prove the second direction of Proposition 5.6

Lemma 5.9. Let (H, S) be an S-hypergraph such that the treewidth and the S-star
size of (H, S) are bounded by c ∈ N. Then the elimination width of (H, S) is at most
(c+ 1)3 + (c+ 1)2.

Proof. Let (T , (χt)t∈T ) be a tree decomposition of H = (V,E) of minimal width `. Let
S(v) for every v ∈ V \S be the set of vertices from S in the S-component of v. For every
t ∈ T we construct a new bag χ′t as

χ′t := χt ∪
⋃

v∈(V \S)∩χt

S(v).

Because the S-star size of H is at most c we get by Lemma 5.8 that |S(v)| ≤ c(`+ 1). It
follows with ` ≤ c that

|χ′t| ≤ |χt|+
∑

v∈(V \S)∩χt

|S(v)|

≤ (`+ 1) + (`+ 1)c(`+ 1)

≤ (c+ 1)3

It is easy to see that (T , (χ′t)t∈T ) is a tree decomposition. Remember that for each
t ∈ T the tree Tt is the subtree of T with t as its root. Let Vt be the set of vertices
appearing in the bags χ′t′ of Tt. For each y ∈ V let r(y) be the t ∈ T with y ∈ χ′t that is
nearest to the root of T .
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Claim 3. There exists t ∈ T such that ∅ 6= Vt \ S ⊆ χ′twith a vertex y ∈ Vt \ S with
t = r(y).

Proof. We find t and y by descending in T . Let r be the root of T . If Vr \S ⊆ χ′r we are
done. Otherwise let ti be a child of r such that Vti \ S * χ′r. Now check if Vti \ S ⊆ χ′ti
and if not go deeper in T . Let t be the first vertex on this descent with Vt \ S ⊆ χ′t.
Then χ′t must contain a vertex y that is not in χ′t′ where t′ is the parent of t in T . But
then r(y) = t as desired.

We construct an elimination order π of H inductively as follows, starting from the
empty elimination order: While any bag of the tree decomposition (T , (χ′t)t∈T ) contains
a vertex from V \S, do the following: Choose by Claim 3 t ∈ T such that ∅ 6= Vt \S ⊆ χ′t
with a vertex y ∈ Vt \ S with t = r(y), delete y from H and all bags and add y as the
next vertex to the elimination order π.

When the vertices from V \S have all been deleted, we proceed with the vertices in S in
a similar fashion: While there is a non-empty bag, choose one t ∈ T with ∅ 6= S ∩Vt ⊆ χ′t
and y ∈ S ∩ Vt with r(y) = t, delete y and add y as the next vertex in π. Again, such t
and y can always be found.

All vertices in V \ S appear before all vertices in S in π, so π is an elimination order
of (H, S). We will now bound the width of π.

Claim 4. Let x, y ∈ V with x, y ∈ V \ S or x, y ∈ S such that there exists t ∈ T with
x, y ∈ χ′t. If x is higher-numbered than y with respect to π, then x ∈ χr(y).

Proof. x and y appear in a common bag χ′t and thus x ∈ Vr(y). But x is higher-numbered,
so y was deleted before x. Hence, when y was chosen to be deleted the vertex x was
still in Vr(y). But then x ∈ χr(y) because otherwise y would not have been chosen for
deletion.

Claim 5. a) For every vertex y ∈ V \ S the neighbors of y in HP,π are vertices of the
same S-component as y.

b) When a vertex y ∈ V \ S is deleted, the bag χ′r(y) contains all higher-numbered

neighbors of y in the fill-in graph HP,π that are in V \ S.

c) When a vertex y ∈ S is deleted, the bag χ′r(y) contains all higher-numbered neighbors
of y in the fill-in graph HP,π.

Proof. We first prove a) and b) by induction along the elimination order π. So let first
y be the vertex with π(y) = 1. We claim that the higher-numbered neighbors of y in
HP,π are simply the neighbors of y in HP . Certainly, these are all higher-numbered.
Also, in the construction of HP,π from HP edges incident to y may only be added by
lower-numbered vertices. As there are none for y, all neighbors of y in HP,π are already
neighbors in HP . This proves the induction start for a). For b) consider a neighbor
x ∈ V \ S of y in H. By the definition of tree decompositions x and y must be in one
common bag χ′t. With Claim 4 it follows that x ∈ χr(y).

32



Consider now y ∈ V \ S with π(y) > 1. All neighbors x ∈ V \ S of y in HP,π are either
already neighbors of y in H and thus in the same S-component as y or they are neighbors
that originate from edges added in the construction of HP,π from HP . In the latter case
the edge xy must have been added because of a common lower-numbered neighbor v of y
and x. Because v is lower-numbered than y it follows that v ∈ V \ S. By induction all
higher-numbered neighbors of v in HP,π are in the same S-component as v in H, so y, x
and v are all vertices of the same S-component which completes the proof of a).

Now let x ∈ V \ S be a higher-numbered neighbor of y ∈ V \ S in HP,π. Consider first
the case that xy is already an edge in HP . Then there is a bag χ′t such that x, y ∈ χ′t.
With Claim 4 we get x ∈ χr(y) as desired. If x and y are not neighbors in HP , then there
is a lower-numbered vertex v of x and y in HP,π that led to the introduction of the edge
xy. By induction x, y ∈ χr(v). We conclude with Claim 4 that x ∈ χr(y). This completes
the proof of b).

To prove c) consider a vertex y ∈ S. Let x be a higher-numbered neighbor of y in
HP,π. By construction x ∈ S. Assume first that x and y are in a common S-component.
Let v ∈ V \ S be a vertex of this S-component, then, by construction of (T , (χ′t)t∈T ), the
vertices x and y both appear in any bag χ′t that contains v. We conclude with Claim 4
that x ∈ χr(y). If x and y are not in a common S-component, then the vertex v that leads
to the introduction of the edge xy must be in S by a). Because v is a lower-numbered
neighbor of x and y, we have by induction that x, y ∈ χr(v). By Claim 4 we get x ∈ χr(y)

which completes the proof of Claim 5.

We claim that the width of π is at most (c+ 1)3 + (c+ 1)2. As the bags χ′t have size at
most (c+ 1)3 + 1, every vertex y ∈ V \S has at most (c+ 1)3 higher-numbered neighbors
in V \ S in HP,π by Claim 5. Furthermore, y ∈ V \ S has by Claim 5 and Lemma 5.8 at
most (c+1)2 neighbors in S in HP,π. Finally, y ∈ S has at most (c+1)3 higher-numbered
neighbors by Claim 5 and the bound on the size of the bags. This completes the proof of
Lemma 5.9.

From Proposition 5.6 and Theorem 5.2 we get the following alternative characterization
of S-hypergraphs of bounded arity that allow tractable #CQ.

Theorem 5.10. Let G be a recursively enumerable class of S-hypergraphs of bounded
arity. Assume that W[1] 6= FPT. Then the following statements are equivalent:

1. #CQ on G is solvable in polynomial time.

2. p-#CQ on G is fixed-parameter tractable.

3. There is a constant c such that all S-hypergraphs in G have elimination width at
most c.

Let us remark that there is a similar notion of elimination width for quantified constraint
satisfaction (QCSP) which is a version of CQ in which also universal quantification is
allowed. Chen and Dalmau [9] introduced this measure and showed that it characterizes
the tractable classes of graphs for QCSP. We consider it as likely that an equivalent
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characterization of the same classes of graphs could be given by treewidth and an
adapted notion of S-star size. This would probably also make it possible to get a better
understanding of tractable classes of hypergraphs of unbounded arity for QCSP by
exchanging treewidth for e.g. generalized hypertree width.

6 Computing star size

In this section we consider the problem of computing the quantified star size of hypergraphs
that have small width for the decomposition techniques defined in Section 2.6. Note that
the computation of quantified star size is not strictly necessary for tractable counting.
The algorithm of Section 4 does not need to compute the S-star size for graphs of width
k but only for acyclic hypergraphs which can be done with the help of Lemma 4.2 (see
[15] for the details). Still it is of course desirable to know the quantified star size of
an instance before applying the counting algorithm, because quantified star size has an
exponential influence on the runtime.

We show that for all decomposition techniques considered in this paper the quantified
star size can be computed rather efficiently, in time roughly |V |O(k) where k is the width
of the input. For small values of k, this bound is reasonable. We then proceed by
showing that, on the one hand, for some decomposition measures such as treewidth or
hingetree width, the computation of quantified star size is even fixed parameter tractable
parameterized by the width. On the other hand, we show that for decomposition measures
above hypertree width it is unlikely that fixed parameter tractability can be obtained
(under standard assumptions).

Instead of tackling quantified star size directly, we consider the combinatorially less
complicated notion of independent sets. This is justified by the following observation:

Observation 6.1. Let β be any decomposition technique considered in this paper. Then,
for every k ∈ N, computing the S-star size of S-hypergraphs of β-width at most k
polynomial time Turing-reduces to computing the size of a maximum independent set
for hypergraphs of β-width at most k. Furthermore, there is a polynomial time many
one reduction from computing the size of a maximum independent set in hypergraphs of
β-width at most k to computing the S-star size of hypergraphs of β-width at most k + 1.

Proof. By definition computing S-starsize reduces to the computation of independent
sets of S-components. S-components are induced subhypergraphs, so we get the first
direction from Observation 3.2.

For the other direction let H = (V,E) be a hypergraph for which we want to compute
the size of a maximum independent set. Let x 6∈ V . We construct the hypergraph H′
of vertex set V ′ = V ∪ {x} and edge set E′ = {e ∪ {x} | e ∈ E} and set S := V . The
hypergraph is one single S-component, because x is in every edge. Furthermore, the
S-starsize of H′ is obviously the size of a maximum independent set in H. It is easy to
see that the construction increases the treewidth of the hypergraph by at most 1 and
does not increase the β-width for all other decomposition considered here at all.
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Because of Observation 6.1 we will not talk about S-star size in this section anymore
but instead formulate everything with independent sets.

6.1 Exact computation

Proposition 6.2. There is an algorithm that, given a hypergraph H = (V,E) and a
generalized hypertree decomposition (T , (λt)t∈T , (χt)t∈T ) of width k of H, computes a
maximum independent set of H in time k|V |O(k).

Proof. We apply dynamic programming along the decomposition. Let b = (λ, χ) be a
guarded block of T . Let Tb be the subtree of T with b as its root. We set Vb := χ(Tb).
Observe that I ⊆ Vb is independent in H if and only if it is independent in H[Vb] so
we do not differentiate between the two notions. For each independent set σ ⊆ χ we
will compute an independent set Ib,σ ⊆ Vb that is maximum under the independent sets
containing exactly the vertices σ from χ. Observe that because λ contains at most k
edges that cover χ we have to compute at most knk independent sets Ib,σ for each b.

If b is a leaf of T , the construction of the Ib,σ is straightforward and can certainly be
done in time k|V |O(k).

Let now b = (λ, χ) be an inner vertex of T with children b1, . . . , br and let bi = (λi, χi).
For each independent set σ ⊆ χ we do the following: For each i, let σi be an independent
set of χi such that σ ∩ χ∩ χi = σi ∩ χ∩ χi and |Ibi,σi | is maximal. We claim that we can
set Ib,σ := σ ∪ Ib1,σ1 ∪ . . . ∪ Ibr,σr .

We first show that Ib,σ defined this way is independent. Assume this is not true, then
Ib,σ contains x, y that are in one common edge e in H[Vb]. But then x, y do not lie
both in χ, because Ib,σ ∩ χ = σ and σ is independent. By induction x, y do not lie in
one Vbi either. Assume that x ∈ χ and y ∈ Vbi for some i. Then certainly x /∈ Vbi and
y /∈ χ. But the edge e must lie in one block χ′. Because of the connectivity condition
for y, the guarded block (λ′, χ′) must lie in the subtree with root bi, which contradicts
x ∈ e. Finally, assume that x ∈ Vbi and y ∈ Vbj for i 6= j and x, y /∈ χ. Then x and y
cannot be adjacent because of the connectivity condition. This shows that Ib,σ is indeed
independent.

Now assume that Ib,σ is not of maximum size and let J ⊆ Vb be an independent set
with |J | > |Ib,σ| and J ∩ χ = σ. Because J and Ib,σ are fixed to σ on χ there must be
a bi such that |J ∩ Vbi | > |Ibi,σi |. This contradicts the choice of σi. So Ib,σ is indeed of
maximum size.

Because each block has at most k|V |k independent sets, all computations can be done
in time k|V |O(k).

6.2 Parameterized complexity

While the algorithm in the last section is nice in that it is a polynomial time algorithm
for fixed k, it is somewhat unsatisfying for some decomposition techniques: If we can
compute the decomposition quickly, we would ideally want to be able to compute the
S-star size efficiently, too. Naturally we cannot expect a polynomial time algorithm
independent of the width k for any of the decomposition techniques we consider, because
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Figure 7: We illustrate the construction for Lemma 6.3 by an example. A graph G on
the left with the associated hypergraph H for k = 4 on the right. To keep the
illustration more transparent the edge sets Eij are not shown except for E1,2

and E2,1.

computing maximum independent sets is NP-hard. Instead, we can hope for independent
set to be at least fixed-parameter tractable with respect to k. We will show that for
general hypertree width even this is unlikely, because independent set parameterized by
generalized hypertree width is W[1]-hard. More positively, we will show that computing
maximum independent sets is fixed-parameter tractable for some other decomposition
techniques, in particular tree decompositions and hingetree decompositions.

Lemma 6.3. Computing maximum independent sets on hypergraphs is W[1]-hard pa-
rameterized by generalized hypertree width.

Proof. We will show a parameterized many-one reduction from the problem p-IndependentSet
defined as follows:
p-IndependentSet
Input: a graph G, k ∈ N.
Parameter: k.
Problem: Decide if G has an independent set of size k.

Because p-IndependentSet is well known to be W[1]-hard, this suffices to establish
W[1]-hardness of independent sets on hypergraphs parameterized by generalized hypertree
width.

So let G = (V,E) be a graph and let k be a positive integer. We construct a hypergraph
H = (V ′, E′) in the following way: For each vertex v the hypergraph H has k vertices
v1, . . . , vk. For i = 1, . . . , k we have an edge Vi := {vi | v ∈ V } in E′. Furthermore,
for each v ∈ V we add an edge Hv := {vi | i ∈ [k]}. Finally we add the edge sets
Eij := {viuj | uv ∈ E} for i, j ∈ [k]. H has no other vertices or edges. The construction
is illustrated in Figure 7.

We claim that G has an independent set of size k if and only if H has an independent
set of size k. Indeed, if G has an independent set v1, . . . , vk, then v1

1, . . . v
k
k is easily seen

to be an independent set of size k in H. Now assume that H has an independent set
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I of size k. Then for each v ∈ I we can choose a vertex π(v) ∈ V such that v ∈ Hπ(v).
Furthermore for distinct v, u ∈ I the corresponding vertices π(v), π(u) have to be distinct,
too, so π(I) ⊆ V has size k. Finally, we claim that π(I) is independent in G. Assume
this is not true, then there are vertices π(v), π(u) such that π(v)π(u) ∈ E. But then
vu ∈ E′ by construction which is a contradiction. So, indeed G has an independent set
of size k if and only if H has one.

From Observation 2.17 we get that H has generalized hypertreewidth at most k,
because V1, . . . , Vk cover V ′.

Observing that the construction of H from G can be done in time polynomial in |V |
and k completes the proof.

We start our fixed-parameter tractability results with an easy observation.

Proposition 6.4. Given a hypergraph H computing a maximum independent set in H
is fixed parameter tractable parameterized by the treewidth of H.

This can be seen either by applying an optimization version of Courcelle’s Theorem
[11] or by straightforward dynamic programming. Interestingly, one can show the same
result also for bounded hingetree width. For this decomposition technique blocks are of
unbounded size which makes the dynamic programming in the proof far more involved
than for treewidth.

Proposition 6.5. Given a hypergraph H = (V,E) of hingetree width k, a maximum
independent set in H can be computed in time k2k

2 |V |O(1). It follows that independent
set is fixed parameter tractable parameterized by hingetree width.

Proof. First observe that minimum width hingetree decompositions can be computed in
polynomial time by Lemma 2.25, so we simply assume that a decomposition is given in
the rest of the proof.

The proof has some similarity with that of Proposition 6.2, so we use some notation
from there. For guarded block (λ, χ) we will again compute maximum independent
sets containing prescribed vertices. The difference is, that we can take these prescribed
sets to be of size 1: because of the hingetree condition, only one vertex of a block may
be reused in any independent set in the parent. The second idea is that we can use
equivalence classes of vertices in the computation of independent sets in the considered
guarded blocks, which limits the number of independent sets we have to consider. We
now describe the computation in detail.

Let Ξ = (T , (λt)t∈T , (χt)t∈T ) be a hingetree decomposition of H of width k. Let
b = (λ, χ) be a guarded block of Ξ and let b′ = (λ′, χ′) be its parent. As before, let Tb be
the subtree of T with b as its root and Vb := χ(Tb). Set Hb := (Vb, Eb) with Eb :=

⋃
λ∗

with the union being over all guarded blocks in Tb. The main idea is to iteratively
compute, for all vertices v ∈ χ′ ∩ χ, a maximum independent set Jv,b in Hb = (Vb, Eb)
containing v. Furthermore, we also compute an independent set J∅,b that contains no
vertices of χ′ ∩ χ. Note that, since χ ⊆

⋃
e∈λ e, there are no isolated vertices in χ and

the size of a maximum independent set is bounded by k in each block.
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For a node b = (λ, χ), we organize the vertices in χ into at most 2k equivalence classes
by defining v and u to be equivalent if they lie in the same subset of edges of λ. The
equivalence class of v is denoted by c(v). For each class, a representant is fixed. We
denote by v̄, the representant of the equivalence class of v and by χ̄ ⊆ χ, the restriction
of χ on these at most 2k representants.

Let first b be a leaf. We first compute independent sets on χ̄. Observe that the
independent sets are invariant under the choice of representants. For each equivalence
class c(v), we compute Jv̄,b ⊆ χ̄ as a maximum independent set containing v̄. Computing
the classes and a choice of maximum independent sets containing each v̄ can be done in
time k2k

2
because independent sets cannot be bigger than k. Clearly, Jv,b, a maximum

independent set containing v, can be easily computed from the set Jv̄,b. Thus, one can

compute all the Jv,b in time k2k
2
n. The computation of J∅,b can be done on representants,

too, by simply excluding the vertices from χ′ ∩ χ.
Let b now be an inner vertex and b1, b2, ..., bm be its children with bi = (λi, χi), i ∈ [m].

We again consider equivalence classes on χ. Fix v ∈ χ and compute the list Lv̄,b of all
independent sets σ ⊆ χ̄ containing v̄. Fix now σ ∈ Lv̄,b. We first compute a set Jσv,b
as a maximum independent set of Hb containing v and whose vertices in χ have the
representants σ. We will distinguish for a given vertex ū ∈ σ if it is the representant of a
vertex belonging to the block of some (or several) children of b or if it represents vertices
of χ\(

⋃m
i=1 χi) only. Therefore we partition σ into σ′, σ′′ accordingly:

• σ := σ′ ∪ σ′′

• σ′ := χ̄ ∩ {ū | u ∈
⋃m
i=1 χi}.

• σ′′ := χ̄\{ū | u ∈
⋃m
i=1 χi}

Set σ′ := {ū1, ..., ūh} with h ≤ m. Let us examine the consequences of T being a
hingetree decomposition. We have that, for all i ∈ [m], there exists ei ∈ λ, such that
χ ∩ χi ⊆ ei. Thus, since σ is an independent set in χ̄ ⊆ χ, at most one vertex in σ′ is a
representant of a vertex in χi. Thus

∀u 6= u′ ∈ σ : χi ∩ c(u) = ∅ ∨ χi ∩ c(u′) = ∅. (1)

We denote by Si = {j | c(ui) ∩ χj 6= ∅} and by S = [m]\
⋃
Si. By (1) the sets

S1, ..., Sh, S form a partition of [m]. To construct Jσv,b, we now determine for each i ≤ h,
which vertex u of c(ui) can contribute the most, by taking the union of all the maximum
independent sets Ju,bj , j ∈ Si, it induces at the level of the children of b.

For each fixed u ∈ c(ui), let

Ii,u = {u} ∪
⋃
j∈Si

Ju,bj ,

where we set Ju,bj := J∅,bj if u /∈ χj . Let then Ii = Ii,u for some u ∈ c(ui) for which the
size of Ii,u is maximal.
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The set Jσv,b is now obtained as follows depending on whether v̄ ∈ σ′′ or v̄ ∈ σ′. If
v̄ ∈ σ′′, we claim that Jσv,b can be chosen as

Jσv,b := {v} ∪ (σ′′\{v̄}) ∪
h⋃
i=1

Ii ∪
⋃
i∈S

J∅,bi .

If v̄ ∈ σ′, say v̄ = u1, we claim that Jσv,b can be chosen as

Jσv,b := σ′′ ∪
⋃

j∈S1:v∈χj

Jv,bj ∪
⋃

j∈S1:v/∈χj

J∅,bj ∪
h⋃
i=2

Ii ∪
⋃
i∈S

J∅,bi .

The set Jv,b is taken as one of the sets Jσv,b of maximal size for a σ ∈ Lv,b. To compute
J∅,b, the arguments are similar.

We first show that all Jv,b are indeed independent sets in Hb. Clearly, it is enough to
prove this for any Jσv,b. There will be no reason to distinguish whether v̄ ∈ σ′′ or v̄ ∈ σ′,
because our arguments will apply to all Jσv,b independent of the choice of a distinguished
element v. We will make extensive use of the two following facts.

• Let j, j′ ∈ [m] and I ⊆ Vbj , I ′ ⊆ Vbj′ independent sets of Hbj and Hb′j respectively.

By the connectivity condition for tree decomposition we have

I ∩ I ′ ⊆ χj ∩ χj′ ∩ χ.

This permits to investigate the intersection of two independent sets I, I ′ by looking
at their restriction on χ.

• Let now I ⊆ Vbj be an independent set ofHbj . Then, I remains an independent set in
Hb. Indeed, suppose there is a e ∈ Eb\Ebj containing two vertices y1, y2 ∈ I. Since
all edges must belong to a guard, there exists a node b∗ = (λ∗, χ∗) such that e ∈ λ∗.
Then, since in a hingetree decomposition we have χ∗ =

⋃
λ∗, then {y1, y2} ⊆ e ⊆ χ∗.

But then, by the connectivity condition it follows that {y1, y2} ⊆ χ. Hence, by the
intersection property of hingetree decomposition, there exists ej ∈ χj such that

{y1, y2} ⊆ χ ∩ χj ∩ ej

which implies that y1 and y2 are adjacent in Hbj . Contradiction.

We now start the proof that Jσv,b is independent incrementally. Let i ∈ [h], u ∈ c(ui)
and j ∈ Si and consider the set I := Ju,bj . By induction, the set I is independent in
Hbj . By the hingetree condition, there exists ej ∈ λj such that χ ∩ χj ⊆ ej . By the
connectivity condition, this implies χ ∩ I ⊆ ej . Then, since I is an independent set, no
two vertices of χ can belong to I, i.e., |χ∩ I| ≤ 1. The connectivity condition also implies
that, for j′ 6= j, Vbj′ ∩ I ⊆ χ ∩ χj , hence |Vbj′ ∩ I| ≤ 1 and I is an independent set of Hb.
Finally, the set Ii =

⋃
j∈Si

Ju,bj is also an independent set of Hb, since for any distinct
j, j′ ∈ Si:

Ju,bj ∩ Ju,bj′ ⊆ χj ∩ χj′ ∩ χ ⊆ ej .
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Hence Ju,bj ∩ Ju,bj′ contains at most one vertex (which is in χ and could then only be
u).

Let now i, i′ ∈ [m] be distinct. By the arguments above, Ii (resp. Ii′) contains at most
one element u (resp. u′) such that u ∈ c(ui) (resp. u′ ∈ c(ui′)). By Equation 1, we have
that the two classes are distinct and that ui 6= ui′ . But ui, ui′ ∈ σ and σ is independent
in χ. Hence, ui, ui′ cannot be adjacent in Hb. Consequently,

h⋃
i=1

Ii

is an independent set in Hb.
Let j ∈ S. J∅,bj is independent in Hbj and J∅,bj ⊆ Vbj\χ. Hence, J∅,bj is independent

in Hb. This also implies that, given j′ ∈ [m] distinct from j, J∅,bj ∩ Vbj′ = ∅. Thus,

h⋃
i=1

Ii ∪
⋃
i∈S

J∅,bi .

is independent in Hb.
Finally, by construction, for all i ∈ [h], Ii ∩χ = {u} with ū = ūi ∈ σ′. Also σ = σ′ ∪σ′′

is independent in χ hence in Hb. No vertices y1 ∈ Ii and y2 ∈ σ′′ can be adjacent
because, again, this would imply that {y1, y2} ⊆ χ and contradict the fact that ȳ1, ȳ2 are
independent in σ. Thus Jσv,b is independent.

We now prove that Jv,b is of maximum size. Observe that it suffices to show this again
for each Jσv,b. Each maximum independent set J of Hb that contains v and whose vertices
in χ have exactly the representants σ can be expressed as τ ∪J1∪J2∪ ...∪Jm. Here τ ⊆ χ
is an independent set of b containing v and whose representants are σ. Furthermore, Ji is
an independent set of Hb that contains only vertices of Vbi . The set Ji may only contain
one vertex ui from χ∩χi. But then exchanging Ji for Jui,bi may only increase the size of
the independent set, so we can assume that I has the form τ ∪Ju1,bi ∪Ju2,b2 ∪ . . .∪Jum,bm
where ui may also stand for ∅.

Assume now that Jσv,b is not maximum, i.e., there is an independent set J containing v
whose vertices in χ have the representants σ and J is bigger than Jσv,b. Then one of four
following things must happen:

• There is an i such that v ∈ χi and J ∩ Vbi is bigger than Jv,bi . But this case cannot
occur by induction.

• v = u1 and there is a j ∈ S1 such that v /∈ χj and |J ∩ Vbj | > |J∅,bj |. By induction
we know that J∅,bj is optimal under all independent sets of Hbj not containing any
vertex of χj ∩χ, so there must be a vertex u ∈ J ∩χ∩χj . Since J is independent, v
and u share no edge in λ and then v̄ 6= ū. Since j ∈ S1, it holds that c(v) ∩ χj 6= ∅
and by Equation 1, c(u) ∩ χj = ∅. Contradiction.

• There is an i ∈ S such that J ∩ Vbi is bigger than J∅,bi . But from i ∈ S it follows
by definition that χ ∩ χi ∩ J = ∅, so this case can not occur by induction, either.
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• There is an i ∈ [h] such that |J∩(
⋃
j∈Si

Vj)| > |Ii|. We claim that (
⋃
j∈Si

χj)∩χ∩J
contains only one vertex. Assume there are two such vertices x and y. By definition,
x̄, ȳ ∈ τ̄ . Since J is independent, x̄ and ȳ are not adjacent in χ̄ and x̄ 6= ȳ. At least
one of these, say y, must be in c(ui), because ūi ∈ τ̄ by definition. Let x ∈ Vj′ with
j′ ∈ Si, then there is a vertex w ∈ c(ui) = c(y) in χj′ ∩ χ ⊆ ej by definition of Si.
But then x̄ and ȳ are adjacent in χ̄ which is a contradiction.

So there is exactly one vertex u in (
⋃
j∈Si

χj)∩χ∩J . But then |J∩(
⋃
j∈Si

Vj)| > Ii,u.
Thus either there must be a j ∈ Si with u ∈ Vj such that |J ∩ Vj | > |Ju,bj | or
there must be a j ∈ Si with u /∈ Vj such that |J ∩ Vj | > |J∅,bj |. The former
clearly contradicts the optimality of Ju,bj , while the latter leads to a contradiction
completely analogously to the second item above.

Because only k2k
2
n2 sets have to be considered for each guarded block, this results in

an algorithm with runtime k2k
2 |V |O(1).

6.3 Approximation

We have seen that computing maximum independent sets of hypergraphs with decom-
positions of width k can be done in polynomial time for fixed width k and that for
some decompositions it is even fixed parameter tractable with respect to k. Still, the
exponential influence of k is troubling. In this section we will show that we can get rid
of it if we are willing to sacrifice the optimality of the solution. We give a polynomial
time k-approximation algorithm for computing maximum independent sets of graphs
with generalized hypertree width k assuming that a decomposition is given. We start by
formulating a lemma.

Lemma 6.6. Let H = (V,E) be a hypergraph with a generalized hypertree decomposition
Ξ = (T , (λt)t∈T , (χt)t∈T ) of width k. Let H′ = (V,E′) where E′ := {χt | t ∈ T}. Let
` be the size of a maximum independent set in H and let `′ be the size of a maximum
independent set in H′. Then

`

k
≤ `′ ≤ `.

Before we prove Lemma 6.6 we will show how to get the approximation algorithm from
it.

Observation 6.7. Every independent set of H′ is also an independent set of H.

Proof. Each pair of independent vertices x, y in H′ is by definition in different blocks χt in
H. For each edge e ∈ E there must (by definition of generalized hypertree decompositions)
be a block χ such than e ⊆ χ. Thus no edge e ∈ E can contain both x and y, so x and y
are independent in H as well.

Corollary 6.8. There is a polynomial time algorithm that, given a hypergraph H and a
generalized hypertree decomposition of width k, computes an independent set I of H such
that |I| ≥ `

k where ` is the size of a maximum independent set of H.
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Proof. Observe that H′ is acyclic by Lemma 2.20. By Lemma 4.2, we compute in
polynomial time a maximum independent set I of H′ whose size by Lemma 6.6 only
differs by a factor 1

k from `. By Observation 6.7, we know that I is also an independent
set of H.

Proof of Lemma 6.6. The second inequality follows directly from Observation 6.7.
For the first inequality consider a maximum independent set I of H. Observe that a

set I ′ is an independent set of H′ if and only if it is an independent set of its primal
graph H′P , so it suffices to show the same result for H′P .

Claim 6. The graph H′P [I] has treewidth at most k − 1.

Proof. First observe that vertices v that appear in no edge e ∈ E change neither the
treewidth nor the generalized hypertree width of a graph or hypergraph. Thus we assume
that every vertex v ∈ V is in at least one edge e ∈ E.

We construct a tree decomposition (T ′, (χ′t)t∈T ′) of H′P [I] from Ξ as follows: We set
T ′ := T [T ′] where T ′ := {t ∈ T | χt ∩ I 6= ∅}. Furthermore, χ′t := χt ∩ I for t ∈ T ′. For
every v ∈ I there is an edge e ∈ E and t ∈ T such that v ∈ e ⊆ χt and thus v ∈ χ′t. It
follows that the bags χ′t cover I. Moreover, the connectivity condition for I is satisfied,
because it is satisfied for Ξ. Finally, for each edge uv in H′P [I] there is a guarded block
(λt, χt) such that u, v ∈ χt and thus u, v ∈ χ′t. Hence, (T ′, (χ′t)t∈T ′) is indeed a tree
decomposition.

Thus we only have to show |χ′t| ≤ k. To see this, observe that for each t the bag
χ′t ⊆ χt is covered by λt. But the vertices in χ′t ⊆ I are independent in H and thus each
e ∈ λt can contain only a single vertex from χ′t. Thus |χ′t| ≤ |λt| ≤ k.

Claim 7. The graph H′P [I] has an independent set I ′ of size at least |I|k .

Proof. From Claim 6 it follows with Lemma 2.8 that H′[I] and all of its induced subgraphs
have a vertex of degree at most k. We construct I ′ iteratively by choosing a vertex of
minimum degree and deleting it and its neighbors from the graph. In each round we
delete at most k vertices, so we can choose a vertex in at least |I|k rounds. Obviously the
chosen vertices are independent.

Every independent set of H′P [I] is also an independent set of H′P which completes the
proof of Lemma 6.6.

7 Fractional hypertree width

In this section we extend the main results of the paper to fractional hypertree width,
which is the most general notion known so far that leads to tractable CQ [23]. In
particular it is strictly more general than generalized hypertree width.

Definition 7.1. Let H = (V,E) be a hypergraph. A fractional edge cover of a vertex set
S ⊆ V is a mapping ψ : E → [0, 1] such that for every v ∈ S we have

∑
e∈E:v∈e ψ(e) ≥ 1.
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The weight of ψ is
∑

e∈E ψ(e). The fractional edge cover number of S, denoted by ρ∗H(S)
is the minimum weight taken over all fractional edge covers of S.

A fractional hypertree decomposition of H is a triple (T , (χt)t∈T , (ψt)t∈T ) where
T = (T, F ) is a tree, and χt ⊆ V and ψt is a fractional edge cover of χt for every t ∈ T
satisfying the following properties:

1. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

2. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

The width of a fractional hypertree decomposition (T , (χt)t∈T , (ψt)tinT ) is defined as
maxt∈T (ρ∗H(χt)). The fractional hypertree width of H is the minimum width over all
fractional hypertree decompositions of H.

Together with the previous results of this paper, the two following Theorems will serve
as key ingredients to prove the main results of this section.

Theorem 7.2 ([23]). The solutions of a CQ-instance Φ with hypergraph H can be
enumerated in time ‖Φ‖ρ∗(H)+O(1).

Theorem 7.3 ([28]). Given a hypergraph H and a rational number w ≥ 1, it is possible
in time ‖H‖O(w3) to either

• compute a fractional hypertree decomposition of H with width at most 7w3 +31w+7,
or

• correctly conclude that fhw(H) ≥ w.

7.1 Tractable counting

We start of with the quantifier free case which we will use as a building block for the
more general result later.

Lemma 7.4. The solutions of a quantifier free CQ-instance Φ with hypergraph H can
be counted in time ‖Φ‖fhw(H)O(1)

.

Proof. With Theorem 7.3 we can compute a fractional hypertree decomposition (T , (χt)t∈T , (ψt)t∈T )
of width at most k := O(fhw(H)3). For each bag χt we can with Theorem 7.2 in time
‖Φ‖k compute all solutions to the CQ-instance Φ[χt] that is induced by the variables
in χt. Let these solutions form a new relation Rt belonging to a new atom φ′t. Then∧
t∈T φ

′
t gives a solution equivalent, acyclic, quantifier free #CQ instance of size ‖Φ‖O(k).

Now we can count the solutions with the algorithm [31] or [15].

We can now prove a version of Corollary 4.3 for fractional hypertree width.

Theorem 7.5. There is an algorithm that given a #CQ-instance Φ of quantified starsize
` and fractional hypertree width k counts the solutions of Φ in time ‖Φ‖p(k,`) for a
polynomial p.
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Proof. This is a minor modification of the proof of Lemma 4.1.
Let H = (V,E) be the hypergraph of Φ. Because of Theorem 7.3 we may assume

that we have a fractional hypertree decomposition Ξ := (T , (χt)t∈T , (ψt)t∈T ) of width
k′ := kO(1) of H. For each edge e ∈ E we let ϕ(e) be the atom of Φ that induces e.

Let V1, . . . , Vm be the vertex sets of the components of H[V \S] and let V ′1 , . . . , V
′
m be

the vertex sets of the S-components of H. Clearly, Vi ⊆ V ′i and V ′i − Vi = V ′i ∩ S =: Si.
Let Φi be the restriction of Φ to the variables in V ′i and let Ξi be the corresponding
fractional hypertree decomposition. Then Ξi has a tree Ti that is a subtree of T .

For each Φi we construct a new #CQ-instance Φ′i by computing for each bag t ∈ T
an atom φt in the variables χt that contains the solutions of Φi[χt] that is induced by
the variables of χt. The decomposition Ξ has width at most k′ so this can be done in
time ‖Φ‖O(k′) by Theorem 7.2. Obviously Φi and Φ′i are solution equivalent and Φ′i is
acyclic. Furthermore, Φ′i has only one single Si-component, because all the vertices in Vi
are connected in Φ and thus also in Φ′i. Let Hi be the hypergraph of Φ′i, then Hi has
Si-star size at most `. Thus the vertices in Si can be covered by at most ` edges in Hi
by Lemma 4.2.

Now we construct a CQ-instance (A′′i , φ′′i ) such that φ′′i is an atomic formula in the
variables Si exactly as in the proof of Lemma 4.1.

We now eliminate all quantified variables in Φ. To do so we add the atom φ′′i for
i ∈ [m] and delete all atoms that contain any quantified variable, i.e., we delete all Φ′i.
Call the resulting CQ-instance Φ′′. Because (A′′i , φ′′i ) is solution equivalent to Φ′i, we have
that Φ and Φ′′ are solution equivalent, too.

We now construct a fractional hypertree decomposition of Φ′′ by doing the following:
we set χ′t = (χt \

⋃
i∈It Vi) ∪

⋃
i∈It Si for each bag χt where It := {i | χt ∩ Vi 6= 0}. For

each bag χt we construct a fractional edge cover ψ′t of χ′t by setting ψ′t(e) := ψt(e) for
all old edges and setting ψt(Si) = 1 for i ∈ It where Si corresponds to the newly added
constraint φi with χt ∩ Vi 6= 0. The result is indeed a fractional edge cover, because each
variable not in any Si is still covered as before and the variables in Si are covered by
definition of ψt. Furthermore, we claim that the width of the cover is at most k′. Indeed,
for each i ∈ I we had for each v ∈ Vi,

∑
e∈E:v∈e ψ(e) ≥ 1. None of these edges appears

in the new decomposition anymore. Thus adding the edge Si with weight 1 does not
increase the total weight of the cover. It is now easy to see that doing this construction
for all χt leads to a fractional hypertree decomposition of Φ′ of width at most k′.

Applying Lemma 7.4 concludes the proof.

7.2 Computing independents sets

Also S-star size or equivalently independent sets of bounded fractional hypertree width
hypergraphs can be computed efficiently.

Lemma 7.6. There is an algorithm that given a hypergraph H = (V,E) of fractional

hypertree width at most k computes a maximum independent set of H in time |H|kO(1)
.

In the proof of Lemma 7.6 we will use the following lemma.
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Lemma 7.7. The independent sets of a hypergraph H = (V,E) can be enumerated in
time |H|O(ρ∗H(V )).

Proof. Let H = (V,E). We construct a quantifier free CQ-instance Φ = (A, φ) with the
hypergraph H. Let V be the variables of Φ, {0, 1} the domain and add an atom φe with
relation symbol Re and scope e for each e ∈ E. The relation RAe contains all tuples that
contain at most one 1 entry. Finally, φ :=

∧
e∈E φe.

Clearly, Φ has indeed the hypergraph H. Furthermore the solutions of Φ are exactly the
characteristic vectors of independent sets of H. Thus we can enumerate all independent
sets of H in time |H|O(ρ∗) with Theorem 7.2.

Proof of Lemma 7.6 (Sketch). We proceed by dynamic programming along a fractional
hypertree decomposition.

In a first step we compute a fractional hypertree decomposition (T , (χt)t∈T , (ψt)t∈T )
of width k′ = kO(1) of H with Theorem 7.3. For each bag χt we then compute all all
independent sets of H[χt] by Lemma 7.7; call this set It.

By dynamic programming similar to the proof of Lemma 6.2 we then compute a
maximum independent set of H.

8 Conclusion

The results of this paper give a clear picture of tractability for counting solutions of
conjunctive queries for structural classes that are known to have tractable decision
problems. Essentially counting is tractable if and only if these classes are combined
with quantified star size. So to find more general structural classes that allow tractable
counting, progress for the corresponding decision question appears to be necessary.

Note that our characterizations of tractable classes of queries rely only on the underlying
hypergraphs of the queries and do not use any other information. For the case of bounded
arity, it is known that analyzing classes of queries directly instead of their hypergraphs
allows to completely characterize the classes of queries for which the decision problem
CQ is tractable [22, 12]. In particular, this includes tractable classes whose tractability
is not witnessed by the hypergraph perspective alone. A refinement of our results in this
style in the case of bounded arity can be found in [29]. These results will also appear in
an upcoming paper by Hubie Chen and the second author.

Another way of generalizing the results of this paper would be extending the logic that
the queries can be formulated in. Just recently Chen and Dalmau [9] have characterized
the tractable classes of bounded arity QCSP which is essentially a version of CQ in
which also universal quantifiers are allowed. They do this by introducing a new width
measure for first order {∀,∃,∧}-formulas. We conjecture that their width measure also
characterizes the tractable cases for #QCSP, i.e., tractable decision and counting coincide
here. It would be interesting to see how far this can be pushed for the case of unbounded
arity.

Another extension of conjunctive queries appears in a recent paper by Chen [7] where
he considers existential formulas that may use conjunction and disjunction. This is
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particularly interesting, because it corresponds to the classical select-project-join queries
with union that play an important role in database theory (see e.g. the textbook [1]).
One may wonder if techniques used in this paper may help to understand the complexity
of this class of queries better.
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