
C O N J U N C T I V E Q U E R I E S , A R I T H M E T I C C I R C U I T S A N D
C O U N T I N G C O M P L E X I T Y

Dissertation

zur Erlangung des Doktorgrades
der Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

vorgelegt von

Stefan Mengel

Paderborn, 21. Mai 2013

Stefan Mengel: Conjunctive Queries, Arithmetic Circuits and Counting
Complexity, © May 21, 2012

"We can only see a short distance ahead,
but we can see plenty there that needs to be done."

—Alan Turing [Tur50]

A B S T R A C T

This thesis deals with several subjects from counting complexity and
arithmetic circuit complexity.

The first part explores the complexity of counting solutions to con-
junctive queries, which are a basic class of queries from database
theory. We introduce a parameter, called the quantified star size of a
query φ, which measures how the free variables are spread in φ. As
usual in database theory, we associate a hypergraph to a query φ.
We show that for classes of queries for which these associated hyper-
graphs have bounded generalized hypertree width, bounded quanti-
fied star size exactly characterizes the subclasses of queries for which
counting the number of solutions is tractable. In the case of bounded
arity, this allows us to fully characterize the classes of conjunctive
queries for which counting the solutions is tractable. Finally, we also
analyze the complexity of computing the quantified star size of a con-
junctive query.

In the second part we characterize different classes from arithmetic
circuit complexity by different means, including conjunctive queries
and constraint satisfaction problems, graph polynomials on bounded
treewidth graphs, and an extension of the classical arithmetic branch-
ing program model by stack memory. In particular, this yields new
characterizations of the arithmetic circuit class VP, a class that is cen-
tral to the area but arguably not well understood.

Finally, the third part studies the complexity of two questions on
polynomials given by arithmetic circuits: testing whether a monomial
is present and counting the number of its monomials. We show that
these problems are complete for different levels of the counting hier-
archy, which had few or no known natural complete problems before.

Z U S A M M E N FA S S U N G

In dieser Arbeit geht es um verschiedene Themen aus der Zählkom-
plexität und der arithmetischen Schaltkreiskomplexität.

Der erst Teil untersucht die Komplexität des Zählens der Antworten
auf Conjunctive Queries, eine grundlegende Klasse von Anfragen aus
der Datenbanktheorie. Wir führen den Parameter quantified star size
einer Query φ ein, der misst, wie die freien Variablen in φ verteilt
sind. Wir ordnen der Query φ einen Hypergraphen zu und zeigen,
dass für Klassen von Queries mit beschränkter generalized hyper-
tree width der Parameter quantified star size genau die Unterklassen
charakterisiert, für die das Zählen von Antworten effizient möglich

v

ist. Dies erlaubt uns, im Fall beschränkter Arität die Klassen von Con-
junctive Queries, für die effizientes Zählen von Antworten möglich
ist, vollständig zu charakterisieren. Weiterhin betrachten wir auch die
Kompexität der Berechnung der quantified star size von Conjunctive
Queries.

Im zweiten Teil der Arbeit charakterisieren wir unterschiedliche
Klassen aus der arithmetischen Schaltkreiskomplexität auf verschie-
dene Arten, und zwar durch Conjunctive Queries and Constraint Sat-
isfaction Probleme, durch Graphpolynome auf Graphen beschränk-
ter Baumweite und durch eine Erweiterung des klassischen Modells
der arithmetischen Branchingprogramme durch Stack-Speicher. Ins-
besondere zeigen wir neue Charakterisierungen der arithmetischen
Schaltkreisklasse VP, einer Klasse, die zentral für den Bereich ist aber
dennoch nicht gut verstanden.

Der dritte Teil schließlich beschäftigt sich mit zwei Entscheidung-
problemen zu Polynomen gegeben durch arithmetische Schaltkreise:
Testen ob ein gegebenens Monom vorkommt und Zählen der vork-
ommenden Monomen. Wir zeigen, dass diese Probleme vollständig
sind für unterschiedliche Levels der sogenannten counting hierarchy,
für die bisher wenige oder keine natürlichen vollständigen Probleme
bekannt waren.

vi

A C K N O W L E D G M E N T S

After more than four years of work on this thesis there are many
people I would like to thank.

First and most of all I would like to thank my wife Hilke for letting
me do this although it was not always easy for her.

I am grateful to my advisor Peter Bürgisser for, on the hand, giving
me the freedom to pursue my own research and, one the other hand,
being supportive when I needed his opinion or help. In particular, I
would also like to thank him for giving me the opportunity to meet
many other people in the community. Also, I am thankful to him
for relentlessly making me improve the presentation of this thesis (of
course I take full responsibility for all shortcomings and mistakes still
in it).

I would like to thank Friedhelm Meyer auf der Heide and Luc
Segoufin who kindly agreed to act as reviewers of this thesis.

Arnaud Durand has played a crucial role in the creation of this
thesis. He patiently explained to me everything I know about logic,
introduced me to several areas of computer science, and made key
contributions to my research. He also gave me professional and per-
sonal advice whenever I needed it. Finally, he made my stays in Paris
possible by getting the necessary funding for me. I am very thankful
for all of his support and I hope to pay back his kindness one day.

I am very grateful to Guillaume Malod for several reasons. First,
without his invitation to Paris to work together this thesis would not
be what it is now. Also, he let me share some of his deep understand-
ing of arithmetic circuit complexity. Last but not least I am grateful
for his support in my (often hopeless) struggles with French bureau-
cracy.

I value also a lot the support on a professional and personal level
that I received from Hervé Fournier during my several stays in Paris.

My colleagues Dennis Amelunxen, Jesko Hüttenhain and Christian
Ikenmeyer have been great companions during the last four years.
Our discussions on math, computer science and life in general have
sometimes been heated, but I value their support, their friendship and
their opinions a lot. Moreover, I am thankful for the TikZ-support by
Dennis and the LATEX-support by Jesko.

I would like to thank the numerous people who I have shared of-
fices with during the last few years for making my time at work so
enjoyable. In particular, I will miss Maik Ringkamp’s cheerful com-
pany when our common time is over.

I am thankful to Sandra Pelster and Inga Gill for their support and
their friendliness.

vii

I would like to thank Yann Strozecki for getting me and my fam-
ily an apartment in Paris for one of my stays there. Moreover, I am
grateful to Yanis Langeraert for letting me stay at his place for several
months.

I would like to thank the members of the Équipe de Logique Math-
ématique of the Institut de Mathématiques de Jussieu at Université
Paris 7 and the numerous people associated to this group for making
me feel very welcome during my several stays in Paris.

I would like to thank Hubie Chen for his hospitality during my
short stay in San Sebastián.

My stays in Paris would have been far less enjoyable if I had not
learnt French before. I would like to thank my French teacher Sigrid
Behrent for making this such a pleasure.

I am also grateful to Barbara and Jens-Peter Kempkes for taking
care of our son Jakob on several days during the final phase of writing
this thesis.

I would like to thank the organizers of the Dagstuhl Seminars 10481

and 13031 on Computational Counting. Some of the results in this
thesis were conceived during these workshops. Moreover, meeting
several people there has proved invaluable.

Sébastien Tavenas pointed out an error in an earlier version of the
proof of Lemma 12.3.7. Later, he and Pascal Koiran helped me find
the proof presented in this thesis. I would like to thank both of them
for their contribution.

I would like to thank Friedhelm Meyer auf der Heide and his work-
ing group for their hospitality during the first phase of my doctoral
studies.

The research in this thesis would not have been possible without
the generous financial support by the Research Training Group GK-
693 of the Paderborn Institute for Scientific Computation (PaSCo) and
by the Deutsche Forschungsgemeinschaft (DFG-grants BU 1371/2-2
and BU 1371/3-1). Furthermore, the research leading to the results
presented in this thesis has received funding from the [European
Community’s] Seventh Framework Programme [FP7/2007-2013] un-
der grant agreement n° 238381. I am very grateful for this support.

viii

C O N T E N T S

1 introduction 1

1.1 Part i: Counting solutions to conjunctive queries 2

1.1.1 Structural restrictions for tractable #CQ 5

1.2 Part ii: Understanding arithmetic circuit classes 7

1.2.1 Conjunctive queries and arithmetic circuits 10

1.2.2 Graph polynomials on bounded treewidth graphs 10

1.2.3 Modifying arithmetic branching programs 11

1.3 Part iii: Monomials in arithmetic circuits 11

1.4 Overview over the thesis 12

i counting solutions to conjunctive queries 15

2 preliminaries 17

2.1 Conjunctive queries 17

2.1.1 Model of computation and encoding of instances 20

2.1.2 Query problems 21

2.2 Parameterized complexity 22

2.3 Graph and hypergraph decompositions 24

2.3.1 Treewidth 24

2.3.2 Hypergraph decomposition techniques 27

3 the complexity of #CQ and quantified star size 37

3.1 The complexity of #CQ 37

3.2 Quantified star size 39

3.3 Formulation of main results 44

3.4 Digression: Unions of acyclic queries 46

4 computing S-star size 53

4.1 Acyclic hypergraphs 53

4.2 General hypergraphs 55

4.2.1 Exact computation 56

4.2.2 Parameterized complexity 57

4.2.3 Approximation 63

5 quantified star size is sufficient and necessary

for efficient counting 65

5.1 Bounded quantified star size is necessary 65

5.2 The complexity of counting 69

5.3 A #P-intermediate class of counting problems 72

5.4 Fractional Hypertree width 76

6 queries of bounded arity 79

6.1 A characterization by treewidth and S-star size 79

6.2 A characterization by elimination orders 81

7 tractable conjunctive queries and cores 89

7.1 Warmup: An improved hardness result for #CQ on star-
shaped queries 89

ix

x contents

7.2 Homomorphisms between structures and cores 91

7.3 Tractable conjunctive queries and cores 95

8 conclusion 105

ii understanding arithmetic circuit classes 107

9 introduction and preliminaries 109

9.1 Introduction 109

9.2 Some background on arithmetic circuit complexity 110

9.3 Digression: Reduction notions in arithmetic circuit com-
plexity 114

10 constraint satisfaction problems , conjunctive

queries and arithmetic circuit classes 117

10.1 Polynomials defined by conjunctive queries 118

10.2 Main results 122

10.3 Characterizations of VNP 123

10.3.1 Instances of unrestricted structure 123

10.3.2 Acyclic instances with quantification 124

10.3.3 Unions and intersections of ACQ-instances 127

10.4 Lower bounds for instances of bounded width 128

10.5 Constructing circuits for conjunctive queries 133

10.5.1 The relation bounded case 138

11 graph polynomials on bounded treewidth graphs 145

11.1 Introduction 145

11.2 Monadic second order logic, generating functions and
universality 145

11.2.1 Monadic second order logic on graphs 145

11.2.2 Generating functions 148

11.2.3 Treewidth preserving reductions and universal-
ity 150

11.3 Cliques are not universal 151

11.4 VPe-universality for bounded treewidth 152

11.4.1 Formulation of the results and outline 152

11.4.2 Reduction: φCC ≤BW φPCC 153

11.4.3 φCC and φPCC on bounded degree graphs 154

11.4.4 The lower bound for φIS 154

11.4.5 Reduction: φIS ≤BW φVC 155

11.4.6 Reduction: φVC ≤BW φDS 156

11.4.7 The upper bounds 157

11.5 Conclusion 159

12 arithmetic branching programs with memory 161

12.1 Introduction 161

12.2 Arithmetic branching programs 162

12.3 Stack branching programs 163

12.3.1 Definition 163

12.3.2 Characterizing VP 164

contents xi

12.3.3 Stack branching programs with few stack sym-
bol 168

12.3.4 Width reduction 169

12.3.5 Depth reduction 172

12.4 Random access memory 173

12.4.1 Definition 173

12.4.2 Characterizing VNP 174

iii monomials in arithmetic circuits 177

13 introduction and preliminaries 179

13.1 Introduction 179

13.2 Preliminaries 181

14 monomials in arithmetic circuits 185

14.1 Zero monomial coefficient 185

14.2 Counting monomials 188

14.3 Multilinearity 192

14.4 Univariate circuits 194

14.5 Conclusion 198

iv appendix 201

a the proofs for fractional hypertree width 203

a.1 Tractable counting 203

a.2 Computing independents sets 204

bibliography 207

index 219

1
I N T R O D U C T I O N

Computational complexity theory is a subfield of theoretical com-
puter science that aims to determine the amount of resources nec-
essary to solve different computational problems. Which specific re-
sources are considered depends on the computational model and
the considered problem; typical examples include computation time,
memory or the number of arithmetic operations needed to solve a
problem.

The research in computational complexity can be roughly divided
into two directions: In the first direction one tries to prove uncondi-
tional lower bounds for specific problems. For example there is a long
line of research that tries to find lower bounds on the number of arith-
metic operations necessary to multiply two (n× n)-matrices. Unfortu-
nately, proving strong lower bounds appears to be very hard. Despite
considerable efforts in the last decades, known lower bounds are in
most cases either much lower than the conjectured lower bounds or
are only true for restricted computational models.

The second direction of computational complexity offers a way to
still assess the hardness of specific problems in spite of the absence
of unconditional good lower bounds. Instead of trying to show un-
conditional lower bounds, one compares the relative complexity of
computational problems and computational models, typically by or-
ganization into different complexity classes. The most prominent and
arguably most successful part of this direction is certainly the the-
ory of NP-completeness, which essentially says that all NP-complete
problems are roughly equally hard. Since we know several thousand
NP-complete problems, and there is no known polynomial time al-
gorithm for any of them, the commonly accepted conjecture is that
all of these problems are intractable, i.e., cannot be solved in polyno-
mial time. Computational complexity offers several other models that
try to explain the hardness of problems by showing completeness for
different complexity classes.

This thesis only deals with this second direction of computational
complexity theory. Roughly half of the thesis is devoted to the under-
standing of so-called conjunctive queries, a subject originating from
database theory. The other half deals with arithmetic circuit complex-
ity, a classic subarea of computational complexity theory. While these
directions at first sight appear to be very different, we will see that
they are in fact closely connected.

In the following sections of this introduction we will briefly de-
scribe the considered areas and sketch aims and results of this thesis.

1

2 introduction

1.1 part i : counting solutions to conjunctive queries

Part i of this thesis aims at understanding the (counting) complex-
ity of so-called conjunctive queries [CM77]. Conjunctive queries (CQs
for short) are a fundamental class of queries from database theory.
Equivalent to Select-Project-Join queries, they are the most basic class
of database queries and at the same time play an important role in
practice. Furthermore, as Kolaitis and Vardi [KV00] showed, conjunc-
tive queries are intimitely connected to constraint satisfaction prob-
lems, a central area from artificial intelligence. These features make
conjunctive queries the best-studied type of database queries.

A CQ-instance (A, φ) consists of a query φ, which is a logical first-
order {∃,∧}-formula, also called primitive positive formula, and a
finite structure A. The structure A takes the role of the database in
database theory, the relations of A are the tables of the database. The
query result is

φ(A) := {a | (A, a) |= φ(x)},

that is, the set of assignments that make the query φ true.
When computational problems about CQ-instances are considered,

the structure A is most of the time assumed to be encoded in the so-
called explicit encoding by explicitly listing all tuples of all relations.
This is justified because of the origin in database theory: Databases
are usually stored by storing all tuples in all tables explicitly, which
corresponds to the explicit encoding of CQ-instances.

Mainly three computational problems on conjunctive queries have
been studied in the literature:

• The most widely considered problem is the so-called Boolean
conjunctive query problem, denoted CQ, which is to decide for
an instance (A, φ) if φ(A) is non-empty, i.e., if the query φ has
satisfying assignments with respect to A. CQ in particular is
very important in query minimization [CM77], where the task
is, given a query φ, to compute a query φ′ as small as possible
such that φ and φ′ yield the same query result on all databases.

• The problem of computing the complete query result is of great
practical interest. As the query result can be of exponential size
in the size of the input, it is clear that there can be no poly-
nomial time algorithm in the input size. To remedy this, one
considers output-polynomial algorithms, i.e., algorithms whose
runtime is polynomial in the size of the input and the size of the
output. A more restrictive setting are enumeration algorithms
with polynomial delay. These algorithms print out the elements
of the query result one after the other without repetitions, with
only a polynomial delay in the size of the input between print-
ing out two elements.

1.1 part i : counting solutions to conjunctive queries 3

• The third computational problem on CQ-instances is computing
the size of the query result. Since most practical database query
languages like SQL have a counting operator, this is also a very
natural question. This counting problem, denoted #CQ, is in the
center of Part i of this thesis.

When the query φ is not allowed to have existential quantifiers—so
all variables are free—, the problems above are also known as differ-
ent versions of the constraint satisfaction problem (CSP). Constraint
satisfaction is an important problem from artificial intelligence and
has been extensively studied in that area. Observe that for CQ, exis-
tential quantification does not make a difference, so the names CSP
and CQ are used almost synonymously. For enumeration and count-
ing though, existential quantification makes a critical difference in the
complexity (see e.g. [BDG07, PS13]). We denote the counting problem
for CSP by #CSP.

By reduction from 3-SAT, it is straightforward to show that CQ
is NP-complete, and thus all problems discussed above are in gen-
eral considered as intractable. Because of their great practical im-
portance, research has concentrated on working around this general
hardness result by searching for tractable subclasses, which are pri-
marily found in two directions:

The first approach is restricting the relations of the finite struc-
ture A. This was pioneered by Schaefer in a seminal paper [Sch78],
where he showed a dichotomy theorem for CQ with Boolean domain,
i.e., all relations are subsets of {0, 1}∗. Schaefer showed that there is
a set S of relations such that if instances may only be built from re-
lations in S, then CQ for this class of instances is polynomial time
decidable. Furthermore, if even a single relation not in S is allowed
as a building block for instances, the resulting class is NP-complete.
This result has spawned a huge amount of followup work in which
similar results were shown for different settings, recently also using
tools from universal algebra (see e.g. [Bul11]).

While the results of the last paragraph are very strong, they are
not fully satisfying from a database perspective. Remember that the
relations in CQ-instances correspond to database tables. But in a typ-
ical database setting one does not have control over the data. Also,
the tractable classes of relations are typically very small, so one is un-
likely to be in a tractable class of CQ-instances of the above type in
a database setting. This has lead the database theory community to
isolate so-called “islands of tractability” by restricting the queries of
CQ-instances. To this end, one assigns a hypergraphH to the query φ,

4 introduction

u5

u1

u2

u3

u4 u6

u7

u8

v1

v2

v3

v4 v5

v6

v7

v8

v9

Figure 1: The hypergraph associated to the query φ.

in which the variables of φ are the vertices and the edges are the vari-
ables scopes of the atoms of φ. Consider for example the query

φ := ∃u1∃u2∃u3∃u4∃u5∃u6∃u7∃u8

P1(v1, u1) ∧ P2(v2, u1, u2) ∧ P3(v2, v4, u2, u3)

∧P4(v3, v4, v5, u3, u4, u5) ∧ P5(v4, v5, v6, v8)

∧P6(v7, v8, u5, u6) ∧ P2(v6, v9, u7) ∧ P2(v8, v9, u8).

The associated hypergraph is illustrated in Figure 1.
The general approach is to restrict the hypergraphs associated to

the queries to isolate tractable subclasses. More formally, for a class G
of hypergraphs, we say that the decision problem CQ on G is tractable
if CQ restricted to instances whose queries have hypergraphs in G is
tractable. For #CQ and #CSP an analogous wording is used. The aim
is to find classes C as big as possible on which CQ, resp. #CQ, are
tractable.

The basic observation is that CQ and #CSP are tractable on the
class Ctree that consists of all trees. Most research has aimed at ex-
tending this result to graphs and hypergraphs that are “nearly” trees.
To this end, many different decomposition techniques for graphs and
hypergraphs have been proposed. The general idea is to organize ver-
tices and/or edges into clusters and to organize these clusters into a
tree, satisfying properties whose exact formulation defines the decom-
position technique. The most well-known decomposition technique is
certainly the notion tree decompositions of graphs:

A tree decomposition of a graph G = (V, E) is a pair (T , (χt)t∈T)

where T = (T, F) is a rooted tree and χt ⊆ V for every t ∈ T satisfy-
ing the following properties:

1. For every v ∈ V there is a t ∈ T with v ∈ χt.

2. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

1.1 part i : counting solutions to conjunctive queries 5

3. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

We define maxt∈T(|χt|)− 1 to be the width of the tree decomposition
(T , (χt)t∈T). The treewidth of G is defined as the minimum width over
all tree decompositions of G.

The treewidth of a hypergraph H = (V, E) defined to be that of its
primal graph, i.e., the graph HP = (V, E′) with E′ := {uv | ∃e ∈ E :
{u, v} ∈ e}.

It turns out that CQ on graphs of bounded treewidth is tractable,
but unfortunately, this result is only helpful if the arity of the rela-
tions symbols in the considered queries are bounded by a constant.
To capture tractable classes of queries with unbounded arity, one has
to consider hypergraphs: the study of their primal graphs is not suf-
ficient. To this end, numerous decomposition techniques for hyper-
graphs were proposed. Most of them mimic treewidth by organizing
vertices and edges into clusters and then organizing these clusters
in a tree with certain properties. How the clusters are formed and
how they are organized in a tree then defines the specific decomposi-
tion technique. Let us illustrate this basic idea with the fairly general
notion of generalized hypertree decompositions.

A generalized hypertree decomposition of a hypergraph H = (V, E)
consists of a triple (T , (λt)t∈T, (χt)t∈T) where T = (T, F) is a rooted
tree and λt ⊆ E and χt ⊆ V for every t ∈ T satisfying the following
properties:

1. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

2. For every t ∈ T we have χt ⊆
⋃

e∈λt
e.

3. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

The width of a decomposition (T , (λt)t∈T, (χt)t∈T) is defined to be
maxt∈T(|λt|). The generalized hypertree width of H is defined as the
minimum width over all generalized hypertree decompositions of H.
A generalized hypertree decomposition of the graph from Figure 1 is
illustrated in Figure 2.

Given a query φ, whose associated hypergraph has generalized
hypertreewidth k, CQ on input (A, φ) can be solved in time (|φ| +
|A|)O(k) and thus in polynomial time for fixed k [CD05]. Similar re-
sults hold true for many other decomposition techniques (see e.g.
[GLS00, CJG08]).

1.1.1 Structural restrictions for tractable #CQ

While the decision complexity of conjunctive queries has been stud-
ied extensively and huge effort has been invested in finding and un-
derstanding more and more general decomposition techniques and
associated width measures, the complexity of the associated counting

6 introduction

{v3, v4, v5, u3, u4, u5}
{v4, v5, v6, v8},
{v7, v8, u5, u6}

v3, v4, v5, v6, v7,
v8, u3, u4, u5, u6

{v1, u1}, {v2, u1, u2},
{v2, v4, u2, u3}

v1, v2, v4, u1, u2, u3

{v4, v5, v6, v8},
{v6, v9, u7},
{v8, v9, u8}

v4, v5, v6, v8, v9,
u7, u8

Figure 2: A generalized hypertree decomposition of width 3 for the hyper-
graph from Figure 8. The boxes are the guarded blocks. In the
upper parts the guards are given while the lower parts show the
blocks.

problem #CQ was not well understood prior to the research presented
in this thesis. This is somewhat surprising, because a counting opera-
tor is standard in all practical database query languages like SQL. The
complexity of #CSP is comparatively better understood: The general
observation here is that structural classes that allow efficient decision
in most cases also allow efficient counting for constraint satisfaction,
i.e., for quantifier free queries [PS13].

While this is nice, it is not fully satisfying, because quantifiers—
which correspond to projections in database theory—are very natu-
ral and essential in database queries. While introducing projections
does not make any difference for the complexity of CQ, the situation
for #CQ is dramatically different. In [PS13] it is shown that even one
single existentially quantified variable is enough to make counting
answers to CQ-instances #P-hard, even when the associated hyper-
graph of the query is a tree (which implies width 1 for all commonly
considered decomposition techniques). It follows that the decomposi-
tion techniques used for CQ are not enough to guarantee tractability
for counting.

In Part i of this thesis we will see a way out of this dilemma for
counting, by introducing a parameter called quantified star size for con-
junctive queries. This parameter measures how the free variables are
spread in the query. We associate to a query φ not only its hyper-
graph H = (V, E) as described before, but additionally include the
set S ⊆ V of its free variables into our analysis. The quantified star size
of φ is defined as the size of a maximum independent set consisting
of vertices from the set S in some specified subhypergraphs of H.

We will see that quantified star size is the appropriate parame-
ter when considering #CQ. On the one hand, bounded quantified
star size allows tractable #CQ, when combined with decomposition

1.2 part ii : understanding arithmetic circuit classes 7

techniques such as treewidth or generalized hypertree width. On the
other hand, we will prove that unbounded quantified star size yields
intractable counting problems (under suitable assumptions from com-
plexity theory, of course). Thus quantified star size is necessary and
sufficient for tractable #CQ.

For queries whose arity is bounded by a constant, we will then
refine these results. Instead of considering hypergraphs associated to
conjunctive queries, we directly consider classes of queries. We call
two queries φ and φ′ equivalent, if for all finite structures A we have
φ(A) = φ′(A). Our considerations are based on the fundamental
observation made by Chandra and Merlin in a seminal paper [CM77]
that conjunctive queries may have much smaller subqueries that are
equivalent to them. For example consider the query

φ :=
∧

i,j∈[n]
E(xi, yj).

It is easy to see that for each structure A the query result φ(A) is
nonempty if for φ′ := E(x1, y1) we have that φ′(A) is non-empty. So
CQ for φ and φ′ are equivalent. Generalizing this observation leads
to the notion of the core φ′ of a query φ, which is a unique (up to
isomorphism) subquery that is equivalent φ. As the core φ′ is equiva-
lent but may be much smaller and structurally simpler, it is of course
preferable to work with φ′ instead of φ. Unfortunately, this is in gen-
eral not possible, because computing cores of conjunctive queries is
intractable.

Somewhat surprisingly, cores can still help to guarantee tractabil-
ity of CQ. Dalmau, Kolaitis and Vardi [DKV02] showed that if φ

is assumed to have a core of bounded treewidth, then CQ can be
solved efficiently—even without computing the core! Grohe [Gro07]
showed that this result is optimal: Assuming a widely believed as-
sumption from parameterized complexity, for every class C of con-
junctive queries, we have that CQ restricted to queries from C is
tractable if and only if the cores of C are of bounded treewidth.

We will analyse the role of cores for #CQ and use them to fully char-
acterize the classes of queries of bounded arity that allow tractable
counting of solutions to CQ-instances.

1.2 part ii : understanding arithmetic circuit classes

Part ii and Part iii of this thesis deal with different aspects of arith-
metic circuit complexity, a very classical but at the same time active
subarea of complexity theory. The main difference between arithmetic
circuit complexity and the more common Boolean circuit complexity
is that instead of considering operations on bits, one considers arith-
metic operations over fields or sometimes other algebraic structures
like rings or algebras. This is motivated by two facts: On the one

8 introduction

hand, when solving computational problems from e.g. linear algebra
or algebra, using arithmetic operations directly in the formulation of
algorithms instead of translating into the Boolean setting is a very
natural abstraction. On the other hand, computation over fields in-
stead of bits allows to use techniques from rich areas of mathemat-
ics like linear algebra, representation theory and algebraic geometry.
This additional machinery makes showing lower bounds on the com-
plexity of some computational problems more approachable for arith-
metic circuits than for other models. This is also the general idea be-
hind the geometric complexity theory program, an approach that is
generally seen as one most promising to proving lower bounds (see
e.g. [BLMW11, Mul12] for two recent surveys).

An arithmetic circuit over a field F is a labeled directed acyclic graph
(DAG) consisting of vertices or gates with indegree or fanin 0 or 2.
The gates with fanin 0 are called input gates and are labeled with
constants from F or variables X1, X2, . . . , Xn. The gates with fanin 2
are called computation gates and are labeled with × or +. The poly-
nomial computed by an arithmetic circuit is defined in the obvious
way: An input gate computes the value of its label, a computation
gate computes the product or the sum of its children’s values, respec-
tively. We assume that a circuit has only one sink which we call output
gate. We say that the polynomial computed by the circuit is the poly-
nomial computed by the output gate. The size of an arithmetic circuit
is the number of gates. A circuit is called multiplicatively disjoint if, for
each ×-gate, its two input subcircuits are disjoint. Figure 3 gives an
example of an arithmetic circuit.

Clearly, all polynomials can be computed by arithmetic circuits,
so the basic question of arithmetic circuit complexity is determining
how many arithmetic operations are necessary to compute specific
polynomials. As usual in complexity theory, the focus is on asymp-
totic behaviour, so instead of individual polynomials one considers
families or sequences of polynomials, e.g. (detn)n∈N, where detn =

∑σ∈Sn
sgn(σ)∏n

i=1 Xiσ(i) is the determinant of an (n × n)-matrix of
variables Xij.

Efficient computation in the arithmetic circuit setting is captured
by the complexity class VP, which consists of families of polynomi-
als of polynomial degree that are computed by arithmetic circuits
of polynomial size. For example, the family (detn)n∈N lies in VP. In
the definition of VP, the condition on the degree is made, because
natural polynomial families like the determinant, the permanent or
graph polynomials in general have polynomial degree. Thus, the de-
gree condition makes sure that the actual interesting polynomials are
captured by the definitions in arithmetic circuit complexity. Unfortu-
nately, the degree bound is a semantic condition that made working
with VP cumbersome for many years, until the situation was reme-
died by Malod and Portier [MP08]. They showed that VP consists

1.2 part ii : understanding arithmetic circuit classes 9

X1 X2

× +

−2

+

X1

×

+

Figure 3: An arithmetic circuit computing the polynomial X1X2 + X2 − 2 +
(X + 2− 2)X1.

exactly of those polynomial families that can be computed by multi-
plicatively disjoint arithmetic circuits of polynomial size. Since mul-
tiplicative disjointness is a syntactical property, this has caused an
upswing in the understanding of VP.

An arithmetic circuit is called skew, if for each of its multiplication
gates, one of its inputs is a variable or a constant. A circuit is called
a formula if its underlying graph is a tree. By VPws, respectively VPe,
we denote the families of polynomials computed by polynomial size
skew circuits, respectively formulas1. Finally, a family (fn) of polyno-
mials is in VNP, if there is a family (gn) ∈ VNP and a polynomial p
such that fn(X) = ∑e∈{0,1}p(n) gn(e, X) for all n where X denotes the
vector (X1, . . . , Xq(n)) for some polynomial q.

We have
VPe ⊆ VPws ⊆ VP ⊆ VNP,

where all containments are commonly conjectured—but none of them
proved—to be strict.

The complexity class VP is, in contrast to its Boolean counterpart P,
arguably not very well understood. There are no known natural com-
plete problems and before the work presented in this thesis, there
had been very few characterizations of VP that were not slight mod-
ifications of the original circuit definition. In my opinion, this lack
of different perspectives on VP severely hampered progress on its
understanding. Thus the general aim of Part ii to find new natural
characterizations of VP and other classes. Let us sketch the results of

1 The “ws” in VPws stands for “weakly skew”. The reason for this notation is that
VPws can also be defined by weakly skew circuits which, in contrast to what their
name suggests, are equivalent to skew circuits. Since we will not consider weakly
skew circuits in this thesis, we will not introduce them but nevertheless stick to the
usual notation VPws for the complexity class.

10 introduction

the different chapters individually. More detailed introductions can
be found in the respective chapters.

1.2.1 Conjunctive queries and arithmetic circuits

In Chapter 10 we will apply the findings of Part i to arithmetic circuit
complexity: To a word a = a1 . . . an over a domain A one can in a
natural way assign a monomial m(a). To do so, we introduce a set of
variables {Xd | d ∈ A} and define m(a) := ∏n

i=1 Xai . Now, given a
CQ-instance (A, φ), this induces a polynomial

Q(A, φ) := ∑
a∈φ(A)

m(a).

To {0, 1}-words e = e1 . . . en one can assign another monomial
m′(e) := Xe1

1 . . . Xen
n in the variables X1 . . . Xn. Given a CQ-instance

(φ,A) with domain {0, 1}, this yields the polynomial

P(A, φ) := ∑
e∈φ(A)

m′(e).

While at first these definitions look quite arbitrary, they in fact give
an interesting perspective: When one considers the restrictions on
conjunctive queries presented in Part i, it turns out that the resulting
polynomials characterize different arithmetic circuit classes like VP.
For example, VP can be characterized by the polynomials Q(A, φ) of
polynomial size families of CQ-instances (An, φn) of bounded quanti-
fied star size and bounded treewidth. If we consider families (An, φn)

of CQ-instances of bounded pathwidth and bounded quantified star
size, the resulting polynomials Q(An, φn) characterize the subclass
VPws of VP. Finally, families (An, φn) of polynomial size CQ-instances
of bounded generalized hypertree width with the additional condi-
tion that every relation in every An is bounded by a constant `, yield
a characterization of VPe. This gives a connection between constraint
satisfaction and conjunctives queries and arithmetic circuit classes.

These results were the first characterizations of some arithmetic cir-
cuit classes that did not in one way or the other depend on arithmetic
circuits themselves. As conjunctive queries are a very flexible tool to
encode different combinatorial problems, this shift in perspective may
give one a new intuition.

1.2.2 Graph polynomials on bounded treewidth graphs

In Chapter 11 we consider graph polynomials of graphs of bounded
treewidth, a subject already consider by Courcelle et al. [CMR01] and
Flarup et al. [FKL07]. The former authors showed that a huge class
of graph polynomials that are hard in general—those definable in
monadic second order logic—become tractable on bounded treewidth

1.3 part iii : monomials in arithmetic circuits 11

graphs. The latter authors then proved that some specific polyno-
mials, in particular the permanent, characterize the class VPe when
restricted to such graphs. Lyaudet [Lya07] then conjectured that all
monadic second order definable graph polynomials, that are VNP-
complete for a general family of graphs, capture VPe on bounded
treewidth graphs. We show that this conjecture is false by exhibiting
graph polynomials that fail to be expressive enough to capture VPe on
the restricted graphs. Despite this, we show that many graph polyno-
mials characterize VPe on bounded treewidth graphs by using a new
notion of reductions tailored specifically to this application.

1.2.3 Modifying arithmetic branching programs

Arithmetic branching programs (ABPs) are one of the most widely
studied computational models in arithmetic circuit complexity. An
ABP is a directed acyclic graph G = (V, E) with an edge weight
function w : E→ F∪ {X1, X2, . . . , Xn} and two distinguished vertices
s, t ∈ V. The weight of a path P = e1e2 . . . ek from s to t in G is
w(P) := ∏k

i=1 w(ei). The polynomial computed by the ABP is defined
as ∑P w(P) where the sum is over all paths P from s to t in G.

The weights of paths through ABPs can be easily computed by iter-
ated matrix multiplication and thus polynomials computed by poly-
nomial size ABPs can also be computed by polynomial size arithmetic
circuits. It is equivalent to the standard conjecture VPws 6= VP that the
other direction is not true, i.e., there are families of polynomials that
can be computed by polynomial size arithmetic circuits but not by
polynomial size ABPs. Nevertheless, ABPs are an important compu-
tational model that has contributed greatly to progress in arithmetic
circuit complexity (see e.g. [MP08, Koi12]).

In Chapter 12 we will modify ABPs by giving them memory during
their computations. We will see that this yields robust new models of
computation that characterize different arithmetic circuit classes for
different types of memory. In particular, we get a new, natural charac-
terization of VP by branching programs with stacks. This also allows
to adapt techniques from the so-called NAuxPDA-characterization of
LOGCFL to the arithmetic circuit setting.

1.3 part iii : monomials in arithmetic circuits

In Part iii we take a different perspective on arithmetic circuits. We
do not see them as a computational model anymore, but view them
as inputs for different computational problems. Arithmetic circuits
are a very succinct way of describing polynomials, that can be much
more efficient than giving the list of monomials. Unfortunately, this
succinctness comes at the price that properties of the computed poly-
nomials become harder to decide. Consider for example the widely

12 introduction

studied polynomial identity testing problem that consists of deciding
if a given polynomial f is zero. This problem is trivial if f is given
as a list of monomials, but if f is given as an arithmetic circuit, it is
not known if f ≡ 0 can be decided in deterministic polynomial time.
Several other natural decision problems on arithmetic circuits have
been considered in the literature, see e.g. [ABKPM09, KP07].

In Part iii we will mainly analyze the complexity of two fundamen-
tal problems: The first one, called ZMC for zero monomial coefficient,
is to decide whether a given monomial m appears in the polynomial
given by an arithmetic circuit. The second problem considered is to
count the number of monomials in the polynomial computed by a cir-
cuit. We show that these two problems on different restricted classes
of arithmetic circuits are complete for different levels of the counting
hierarchy, a hierarchy of complexity classes that was introduced by
Wagner [Wag86] and recently played a prominent role in several pa-
pers in arithmetic circuit complexity [Bür09, JS11, KP11]. Although
the counting hierarchy was introduced for classifying the complex-
ity of combinatorial problems, there are very few problems known to
be complete for its levels, and thus our results can also be seen as a
contribution to the study of the counting hierarchy.

1.4 overview over the thesis

Part i is devoted to the counting complexity of conjunctive queries.
Chapter 2 gives the necessary preliminaries on conjunctive queries,
parameterized complexity, and graph and hypergraph decomposition
techniques in a rather condensed form. Chapter 3 presents some ba-
sic results on on the complexity of counting solutions to conjunctive
queries, introduces the parameter quantified star size and states the
main results of Chapter 4 and Chapter 5. In Chapter 4 we deal with
the complexity of computing the quantified star size of conjunctive
queries. In Chapter 5 we consider the impact of quantified star size
on the complexity of #CQ. The Chapters 3-5 are a combined and more
coherent presentation of the results of [DM11] and [DM13]. The Chap-
ters 6 and 7 deal with conjunctive queries of bounded arity, a case in
which a finer understanding of tractable #CQ-instances is possible.
The results of Chapter 6 are partly joint work with Arnaud Durand
[DM13]. The results of Chapter 7 are unpublished joint work with
Hubie Chen. Chapter 8 concludes Part i and outlines some possible
directions for future research.

Part ii presents different characterizations of complexity classes
commonly considered in arithmetic circuit complexity. We begin with
a presentation of the necessary background on arithmetic circuit com-
plexity in Chapter 9. In Chapter 10 we connect the findings of Part i to
arithmetic circuit complexity to characterize complexity classes of the
arithmetic circuit model by conjunctive queries and constraint satis-

1.4 overview over the thesis 13

faction problems. This chapter is a largely extended version of the
results that appeared in [Men11], some of it depending on the joint
work with Arnaud Durand [DM11, DM13]. Chapter 11 deals with
the expressivity of graph polynomials on bounded treewidth graphs.
Chapter 12 presents the results of [Men13] on arithmetic branching
programs with memory. In contrast to Part i, the chapters of Part ii
are largely independent from each other and can also be read indi-
vidually.

The comparatively short Part iii presents joint work with Hervé
Fournier and Guillaume Malod [FMM12], which deals with the com-
plexity of some decision problems on arithmetic circuits and the con-
nection to the counting hierarchy.

Part I

C O U N T I N G S O L U T I O N S T O C O N J U N C T I V E
Q U E R I E S

2
P R E L I M I N A R I E S

In this chapter we introduce the basic definitions and the notation we
will use in Part i of this thesis. We start off with a formal definition
of conjunctive queries, introduce some notions from parameterized
complexity and then survey the graph and hypergraph decomposi-
tions we will consider.

2.1 conjunctive queries

In this section we give a very brief introduction into conjunctive
queries. Conjunctive queries lie in the intersection of database the-
ory, artificial intelligence and finite model theory, a subarea of logic.
Thus terms and notation differ greatly depending on the background
of different authors. In this thesis, we mainly follow a notation that is
based on logic. Our presentation can only give a very small impres-
sion of the basics of database theory and finite model theory. Much
more on these rich fields can be found in [AHV95, Lib04].

A relational vocabulary is defined to be a set of relation symbols
τ := {R1,R2, . . . ,R`} where each Ri has an arity ri which we denote
by arity(Ri). A relational structure A over τ is a tuple (A,RA1 , . . . ,RA`)
where A is a set called the domain of A and RAi ⊆ Ari is a relation of
arity ri. We call a structure A′ = (A′,RA′1 , . . . ,RA′`) over τ a substruc-
ture of A if A′ ⊆ A and RA′i ⊆ RAi for i ∈ [`]. We call A′ a proper
substructure of A if A′ is a substructure of A and A′ 6= A.

All vocabularies and structures in this thesis are assumed to be rela-
tional, so we mostly drop the adjective “relational” and only speak of
vocabularies and structures. Furthermore, all structures in this thesis
have finite domains. This implies that all relations and all structures
are finite as well. We denote structures by calligraphic letters, e.g.
A,B, For the corresponding domains we use the corresponding
roman letters, i.e., A is the domain of A, B the domain of B and
so on.

Example 2.1.1. One type of finite structures appearing several times
in this thesis are graphs. Here the vocabulary consists of only one
binary symbol E . A graph G = (V, E) is then a structure A = (A, EA)
where domain A := V is the vertex set of G and EA := E is the
edge relation of G. The graph G is undirected if and only if EA is
symmetric. Otherwise G is directed. Note that there are other ways
to encode graphs as structures which we will discuss in Chapter 11.�

If R is a relation symbol of arity r and (zi1 , . . . , zir) is a sequence of
(not necessarily distinct) variables, then the expression R(zi1 , . . . , zir)

17

18 preliminaries

is called an atomic formula or atom for short. Furthermore, the scope
var(R(zi1 , . . . , zir)) of the atom R(zi1 , . . . , zir) is defined as the set of
variables appearing in (zi1 , . . . , zir).

A quantifier free conjunctive query φ over a vocabulary τ is a logical
formula of the form

φ = Ri1(z̄1) ∧ . . . ∧Ris(z̄s),

where Rij(z̄1) are atomic formulas and the Rij are relation symbols
of τ of the matching arity. We denote the set of variables of φ by
var(φ) :=

⋃
j∈[s] var(Rij(z̄j)).

A conjunctive query φ over τ is a formula φ = ∃zi1 . . . ∃zit φ
′ where φ′

is a quantifier free conjunctive query over τ and xij ∈ var(φ) for all
j ∈ t. The xij are called quantified variables. The set of variables of φ

is defined as var(φ) := var(φ′). The set of free variables of φ is defined
as free(φ) := var(φ) \ {xi1 , . . . , xit}. We sometimes write φ(x) where
x = free(φ), to stress the free variables. The set of all atoms of φ is
denoted by atom(φ). All queries in this thesis will be conjunctive, so
we often drop the adjective “conjunctive”.

A conjunctive query instance over τ, short CQ-instance, is a pair Φ =

(A, φ) whereA is a finite structure over τ and φ is a conjunctive query
over τ. Φ is called quantifier free if the query φ is quantifier free. We
call a CQ-instance Φ = (A, φ) binary if all atoms of φ have arity at
most 2.

Let Φ = (A, φ) be a quantifier free CQ-instance. An assignment to Φ
is a mapping a : var(φ)→ A. A partial assignment to Φ is a mapping
a : X → A for a subset X of var(φ). Let a : X → A and b : Y → A be
two partial assignments. We call a and b compatible, in symbols a ∼ b,
if they agree on their common variables, i.e., for all x ∈ X∩Y we have
a(x) = b(x). Let R(zi1 , . . . , zir) be an atom of φ. We say that a satisfies
R(zi1 , . . . , zir) if (a(zi1), . . . , a(zir)) ∈ RA. We say that a satisfies Φ if
it satisfies all of its atoms. In this case we write (A, a) |= φ.

An assignment to a general, not necessarily quantifer free, CQ-
instance Φ = (A, φ) is a mapping a : free(φ) → A. An assignment a
will alternatively also be seen as a tuple of dimension |free(φ)| in-
dexed by the variables free(φ). Consequently, relations will also be
seen either as sets of tuples or as list of assignments. An assignment
a : free(φ) → A satisfies Φ if there is an assignment a′ : var(φ) → A
with a ∼ a′ such that the quantifier free query instance (A, φ′), where
we get φ′ by deleting all quantifiers from φ, is satisfied by a′. Again
we write (A, a) |= φ. Observe that a′ is in general not unique.

The query result φ(A) of a CQ-instance Φ = (A, φ) is defined as

φ(A) := {a | (A, a) |= φ(x)}.

The elements of the query result are called solutions of the query
instance or satisfying assignments or query answers. Observe that the
query result φ(A) is a relation and that for an atomic subformula φ′

of φ with relation symbol R we have φ′(A) := RA.

2.1 conjunctive queries 19

Example 2.1.2. We consider again graphs as discussed in Example
2.1.1. Consider the query

∧
i,j∈[k],i 6=j E(vi, vj). If A is the structure of a

graph G, then φ(A) contains all maps a : {v1, . . . , vk} → V such that
the image of a is the vertex set of a k-clique of G.

For φ = ∃wE(v, w) ∧ E(u, w) the query result φ(A) contains the
(ordered) pairs of vertices (v1, v2) that have a common neighbor w.�

We call two instances Φ = (A, φ), Φ′ = (A′, φ′) solution equivalent,
if free(φ) = free(φ′) and φ(A) = φ′(A′).

It is often helpful to interpret relations as tables (indeed, they rep-
resent database tables in database theory). The rows of the tables are
tuples of the relation and the columns are indexed by the variables of
the atoms that the relations belong to.

Throughout this thesis we will make use of the following classical
database operations on relations.

Definition 2.1.3. Let R1 and R2 be two relations indexed by the vari-
ables (x1, . . . , xn, y1, . . . , ym) and (y1, . . . , ym, z1, . . . , z`), respectively, with
{x1, . . . , xn} ∩ {z1, . . . , z`} = ∅. The natural join of R1 and R2 is

R1 ./ R2 := {(a1, . . . , an, b1, . . . , bm,c1, . . . , c`) |
(a1, . . . , an, b1, . . . , bm) ∈ R1,

(b1, . . . , bm, c1, . . . , c`) ∈ R2}

. �

Let a be an assignment and Y ⊆ free(φ). By a|Y we denote the
restriction of a onto Y.

Definition 2.1.4. Let R be a relation indexed by the set X of variables
where each a ∈ R is interpreted as an assignment a : X → A. Let Y ⊆ X,
then the projection of R onto Y, denoted by πY(R) is defined as

πY := {a|Y | a ∈ R}.

In the tuple view this corresponds to deleting all entries from the tuples of
R that correspond to variables not in Y and then deleting duplicate tuples
from the relation. �

Definition 2.1.5. Let R1 and R2 be two relations. Let R1 be indexed by
the variable set Y. The semi-join of R1 and R2 is defined as

R1 nR2 := πY(R1 ./ R2). �

20 preliminaries

2.1.1 Model of computation and encoding of instances

The underlying model of computation for our algorithms will be the
RAM model with unit costs. We assume the relations of a finite struc-
ture A to be encoded by listing their tuples. Apart from this conven-
tion we will not specify an encoding but only give estimates on its
size in O-notation that will be satisfied by any reasonable encoding.

Let A be a structure over a vocabulary τ. For a relationRA let |RA|
denote the cardinality of RA. Then we define for RA

‖RA‖ := arity(R) · |RA|.

For the vocabulary τ let |τ| be the number of predicate symbols. Fi-
nally, let |A| be the cardinality of a domain A. Then for a structure A
over the vocabulary τ with domain A we define

‖A‖ := |τ|+ |A|+ ∑
R∈τ

‖RA‖.

Furthermore, we define for a conjunctive query

|φ| := ∑
φ′∈atom(φ),

R relation symbol of φ′

arity(R).

Finally, for a CQ-instance Φ = (A, φ) we define

‖Φ‖ := |φ|+ ‖A‖.

Note that for any reasonable encoding, up to constant factors, ‖A‖
is the size of an encoding of A, |φ| is the size of an encoding of φ and
‖Φ‖ is the size of an encoding of Φ. For a detailed discussion and
justification of these conventions see [FFG02, Section 2.3].

The following lemma states that the basic database operations we
considered above can be performed efficiently.

Lemma 2.1.6. Given relations R1 and R2 and Y ⊆ var(R), one can com-
pute

• R1 ./ R2 in time

O(‖R1‖ log(‖R1‖) + ‖R2‖ log(‖R2‖) + ‖R1‖‖R2‖),

• πY(R1) in time
O(‖R1‖ log(‖R1‖)),

• R1 nR2 in time

O(‖R1‖ log(‖R1‖) + ‖R2‖ log(‖R2‖)).

2.1 conjunctive queries 21

Proof. To compute R1 ./ R2, first sort both relations lexicographi-
cally by the entries of the rows indexed by var(R1) ∩ var(R2) in time
O(‖R1‖ log(‖R1‖) + ‖R2‖ log(‖R2‖)). Then traverse both ordered
relations in parallel to construct the up to ‖R1‖ · ‖R2‖ tuples of
R1 ./ R2.

To compute πY(R1), sort R1 lexicographically by the columns in-
dexed by Y in time O(‖R1‖ log(‖R1‖)). Then traverse the ordered
relation, saving for each tuple t the projection πY(R1) skipping po-
tential double occurences.

To compute R1 nR2, we again sort both relations lexicographi-
cally by the entries of the rows indexed by var(R1) ∩ var(R2) in time
O(‖R1‖ log(‖R1‖) + ‖R2‖ log(‖R2‖)). Then traverse both ordered
relations in parallel and save the tuples t ∈ R1 that are compatible
with a tuple in R2. �

We will use Lemma 2.1.6 throughout this thesis, most of the time
without explicitly referencing it. A finer analysis with slightly better
runtime bounds can be found in the appendix of [FFG02].

2.1.2 Query problems

The basic computational question on CQ-instances is the Conjunctive
query answering problem.

Conjunctive query answering problem

Input: a conjunctive query φ and a structure A.
Problem: Compute φ(A).

Clearly, ‖φ(A)‖ can be exponential in ‖Φ‖ and thus we cannot have
a polynomial time algorithm. Thus much research has concentrated
on the Boolean conjunctive query problem.

CQ
Input: a conjunctive query φ and a structure A.
Problem: Decide if φ(A) is empty or not.

The main focus in this thesis will be on the associated counting
problem #CQ.

#CQ
Input: a conjunctive query φ and a structure A.
Problem: Compute |φ(A)|.

When the queries of CQ and #CQ are assumed to be quantifier
free, the resulting problems are also called constraint satisfaction prob-
lems CSP, resp. #CSP, and have attracted huge interest in the artificial
intelligence community. It is easy to see that CQ and CSP are actually
the same problem, an observation first made by Kolaitis and Vardi

22 preliminaries

[KV00] that has lead to a very fruitful exchange of results and tech-
niques between the database and artificial intelligence communities.

Note that all results in this thesis are for counting with set seman-
tics, i.e., we count each solution only once. Counting for bag seman-
tics in which multiple occurences of identical tuples are counted is
considerable simpler to analyze has already been essentially solved
in [PS13].

2.2 parameterized complexity

This section is a very short introduction to some notions from param-
eterized complexity used in the remainder of this thesis. For more
details see [FG06].

A parameterized decision problem over an alphabet Σ is a language
L ⊆ Σ∗ together with a computable parameterization κ : Σ∗ → N.
The problem (L, κ) is said to be fixed-parameter tractable, or (L, κ) ∈
FPT, if there is a computable function f : N → N such that there is
an algorithm that decides for x ∈ Σ∗ in time f (κ(x))|x|O(1) if x is in L.

Let (L, κ) and (L′, κ′) be two parameterized decision problems over
the alphabets Σ, resp. Π. A parameterized many-one reduction from
(L, κ) to (L′, κ′) is a function r : Σ∗ → Π∗ such that for all x ∈ Σ∗:

• x ∈ L⇔ r(x) ∈ L′,

• r(x) can be computed in time f (κ(x))|x|c for a computable func-
tion f and a constant c, and

• κ′(r(x)) ≤ g(κ(x)) for a computable function g.

It is easy to see that FPT is closed under parameterized many-one
reductions.

Let p-Clique be the following parameterized problem.

p-Clique

Input: a graph G and k ∈N.
Parameter: k.
Problem: Decide if G has a clique of size k.

Here the parameterization κ is simply defined by κ(G, k) := k. The
class W[1] consists of all parameterized problems that are parameter-
ized many-one reducible to p-Clique. A problem (L, κ) is called W[1]-
hard, if there is a parameterized many-one reduction from p-Clique

to (L, κ).
It is widely believed that FPT 6= W[1] and thus in particular p-

Clique and all W[1]-hard problems are not fixed-parameter tractable.
Parameterized counting complexity theory is developed similarly

to decision complexity. A parameterized counting problem is a function
F : Σ∗ ×N → N, for an alphabet Σ. Let (x, k) ∈ Σ∗ ×N, then we
call x the input of F and k the parameter. A parameterized counting

2.2 parameterized complexity 23

problem F is fixed-parameter tractable, or F ∈ FPT, if there is an algo-
rithm computing F(x, k) in time f (k) · |x|c for a computable function
f : N→N and a constant c ∈N.

Let F : Σ∗ ×N → N and G : Π∗ ×N → N be two parameter-
ized counting problems. A parameterized parsimonious reduction from
F to G is an algorithm that computes, for every instance (x, k) of
F, an instance (y, l) of G in time f (k) · |x|c such that l ≤ g(k) and
F(x, k) = G(y, l) for computable functions f , g : N → N and a
constant c ∈ N. A parameterized T-reduction from F to G is an algo-
rithm with an oracle for G that solves any instance (x, k) of F in time
f (k) · |x|c in such a way that for all oracle queries the instances (y, l)
satisfy l ≤ g(k) for computable functions f , g and a constant c ∈N.

Let p-#Clique be the following problem.
p-#Clique

Input: a graph G and k ∈N.
Parameter: k.
Problem: Compute the number of cliques of size k in
G.

A parameterized problem F is in #W[1] if there is a parameterized
parsimonious reduction from F to p-#Clique1. F is #W[1]-hard, if there
is a parameterized T-reduction from p-#Clique to F. As usual, F is
#W[1]-complete if it is in #W[1] and hard for it, too.

Again, it is widely believed that there are problems in #W[1] (in
particular the #W[1]-complete problems) that are not fixed-parameter
tractable. Thus, from showing that a problem F is #W[1]-hard it fol-
lows that F can be assumed to be not fixed-parameter tractable.

We will mainly deal with two parameterized problems that are ver-
sions of CQ and #CQ parameterized by the size of the input query.
This parameterization is justified by the origins from database the-
ory. In a typical database application the query is usually far smaller
than the database, so it makes sense to use the size of the query as a
parameter.

p-CQ
Input: a conjunctive query φ and a structure A.
Parameter: |φ|
Problem: Decide if φ(A) is empty or not.

1 Let us remark that Thurley [Thu06] gives good arguments for defining #W[1] not
with parsimonious reductions. He instead defines #W[1] with parameterized T-
reductions with only one oracle call. We keep the definition of [FG04, FG06], because
we will show no #W[1] upper bounds and thus can avoid these subtleties. We remark
though that finding the right reduction notions for counting problems is notoriously
tricky to get right (see e.g. [KPZ99, DHK05]).

24 preliminaries

p-#CQ
Input: a conjunctive query φ and a structure A.
Parameter: |φ|
Problem: Compute |φ(A)|.

2.3 graph and hypergraph decompositions

In this section we will introduce several decomposition techniques
for graphs and hypergraphs. We treat tree decompositions indepen-
dently from the other decompositions, because we will use them
again in Part ii and will thus introduce more details on them.

2.3.1 Treewidth

We first present some basic facts on treewidth. All proofs can be
found in the survey by Bodlaender [Bod98] and the references therein.

Unless stated otherwise all graphs in this thesis are nonempty, fi-
nite, undirected and simple, i.e., they have no parallel edges or loops.
In contrast, trees are always assumed to be rooted and thus directed.

The treewidth of a graph G is a measure of how similar G is to a
tree. There are several equivalent definitions for treewidth of which
we will first present the one by Robertson and Seymour [RS86].

Definition 2.3.1. A tree decomposition of a graph G = (V, E) is a pair
(T , (χt)t∈T) where T = (T, F) is a rooted tree and χt ⊆ V for every t ∈ T
satisfying the following properties:

1. For every v ∈ V there is a t ∈ T with v ∈ χt.

2. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

3. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

The third property is called the connectedness condition. The sets χt are
called blocks or bags of the decomposition.

We call maxt∈T(|χt|)− 1 the width of the tree composition (T , (χt)t∈T).
The treewidth tw(G) of G is the minimum width over all tree decomposi-
tions of G. �

To ease notation we sometimes identify a vertex t ∈ T with the
corresponding bag χt.

We remark that the class of graphs of treewidth 1 consists exactly
of all forests, i.e., the graphs that have trees as their connected com-
ponents. In particular, trees have treewidth 1.

Example 2.3.2. Figure 5 shows a tree decomposition of width 2 of
the graph G from Figure 4. Since G is not a forests, it follows that the
treewidth of G is 2. �

2.3 graph and hypergraph decompositions 25

A

B

C

D F

E

G

I

H

Figure 4: The graph G of Example 2.3.2 and Example 2.3.8.

A, B, C B, C, D C, D, E C, E, F C, F, H

D, E, I C, G, H

Figure 5: A tree decomposition of width 2 of the graph G of Figure 4.

Given a graph G and an integer k, it is NP-complete to decide if G
has treewidth G at most k, but if we take k as a parameter the problem
becomes fixed-parameter tractable.

Theorem 2.3.3 ([Bod93]). There is a polynomial p and an algorithm that,
given a graph G = (V, E), computes a tree decomposition of G of width
k := tw(G) in time at most 2p(k)|V|.

We will use the following folklore results. A proof can e.g. be found
in [Die05, Chapter 12]

Lemma 2.3.4. Let G = (V, E) be a graph, C ⊆ V a clique in G and
(T , (χt)t∈T) a tree decomposition of G. Then there is a bag χt such that
C ⊆ χt.

Remark 2.3.5. Note that from Lemma 2.3.4 we get that the complete
graph Kn on n vertices has treewidth n − 1 which is the maximum
treewidth any graph on n vertices can have. The corresponding tree
decomposition puts all vertices of Kn into a single bag. �

We will also use the following result whose proof can be found e.g.
in [FG06, Chapter 11].

Lemma 2.3.6. Every graph G of treewidth at most k has a vertex of degree
at most k.

We will also use an alternative definition of treewidth by so-called
elimination orders.

26 preliminaries

A

B

C

D F

EI

G H

Figure 6: The fill-in graph Gπ of Example 2.3.8. The edges added during the
construction of Gπ from G are represented as dotted lines.

Definition 2.3.7. Let G = (V, E) be a graph with |V| = n. A bijection
π : V → [n] is called an elimination order. We say that u is higher-
numbered than v with respect to π if π(u) > π(v). The fill-in graph
Gπ of G with respect to π is constructed iteratively: Starting from G, for
i = 1, . . . , |V| we add an edge between all pairs u, w of neighbors of π−1(i)
that are higher-numbered than π−1(i).

The width of π is the minimum integer k such that in Gπ each vertex
v ∈ V has at most k higher-numbered neighbors.

The elimination width elim-width(G) of G is the minimum width over
all elimination orders of G. �

Example 2.3.8. We consider again the graph G of Figure 4. The se-
quence A, B, I, H, G, C, D, E, F defines an elimination order π in the
obvious way. The fill-in graph Gπ is shown in Figure 6. The width
of π is 2. �

Elimination orders give the following characterization of treewidth
which appears to be folklore. A proof can be found e.g. in [Bod98].

Lemma 2.3.9. For every graph G we have elim-width(G) = tw(G).

Finally, we give a lemma that lets us construct small depth tree
decompositions of binary trees.

Lemma 2.3.10 ([Bod88]). For every binary tree G = (V, E) one can in
polynomial time construct a tree decomposition (T , (χt)t∈T) of width at
most 3 such that the depth of T is O(log(|V|)) and T is binary.

In Chapter 10 we will also consider path decompositions, a re-
stricted version of tree decompositions.

Definition 2.3.11. A tree decomposition (T , (χt)t∈T) is called a path de-
composition if T is a path.

The pathwidth pw(G) of a graph is defined as the minimum width over
all path decompositions of G. �

2.3 graph and hypergraph decompositions 27

x1

x2

x3

x4

x5

x6

x7

x8

y1
y2

y3

y4
y5

y6

y7

Figure 7: The hypergraph associated to the query from Example 2.3.12.

Note that for every graph G we have tw(G) ≤ pw(G). Paths have
pathwidth 1, but contrary to what one might guess graphs of path-
width 1 do not have to be disjoint unions of paths. In fact the star
G = (V, E), V = (z, v1, . . . , vn), E = {zvi | i ∈ [n]} has pathwidth 1.
A path decomposition of G is (P , (χt)t∈T) where P is a path with the
vertices u1, . . . , un and χui = {z, vi}.

2.3.2 Hypergraph decomposition techniques

In this section we present some well known hypergraph decompo-
sitions techniques. For more details and more decomposition tech-
niques see e.g. [CJG08, GLS00, Mik08].

A (finite) hypergraph H is a pair (V, E) where V is a finite set and
E ⊆ P(V). The arity of H is maxe∈E |e|. We associate a hypergraph
H = Hφ = (V, E) to a query φ by setting V := var(φ) and E :=
{var(φt) | φt ∈ atom(φ)}.

Example 2.3.12. The query

φ(y1, . . . y7) := ∃x1 . . . ∃x8R(x1, x2, y1, y2) ∧ T(x8, y5)

∧ S(x3, x4, x6, x7, y1, y2, y3, y4) ∧ T(x4, y6)

∧ T(x5, y6) ∧ T(x5, y7) ∧ P(x7, x8, y5)

�

has the associated hypergraph illustrated in Figure 7.

Example 2.3.13. Consider the query

φ := ∃u1∃u2∃u3∃u4∃u5∃u6∃u7∃u8

P1(v1, u1) ∧ P2(v2, u1, u2) ∧ P3(v2, v4, u2, u3)

∧P4(v3, v4, v5, u3, u4, u5) ∧ P5(v4, v5, v6, v8)

∧P6(v7, v8, u5, u6) ∧ P2(v6, v9, u7) ∧ P2(v8, v9, u8)

28 preliminaries

u5

u1

u2

u3

u4 u6

u7

u8

v1

v2

v3

v4 v5

v6

v7

v8

v9

Figure 8: The hypergraph associated to the query φ of Example 2.3.13.

The associated hypergraph is illustrated in Figure 8. �

For all decomposition techniques defined below, the width of a
CQ-instance Φ = (A, φ) is defined to be the width of the hypergraph
associated to φ.

The simplest idea to generalize treewidth to hypergraphs is consid-
ering primal graphs.

Definition 2.3.14. The primal graph of a hypergraph H = (V, E) is de-
fined as the graph HP = (V, Ep) with

Ep := {uv ∈
(

V
2

)
| ∃e ∈ E : u, v ∈ E}.

�

Definition 2.3.15. The treewidth of a hypergraph H is the treewidth of its
primal graph HP. �

By Lemma 2.3.4, classes of hypergraphs that have unbounded edge
size are of unbounded treewidth even when the hypergraphs are in-
tuitively very simple. Consequently, treewidth is, for some consider-
ations on hypergraphs, not the right measure of the complexity of a
hypergraph. Thus research focussed on finding decompositions that
work with hypergraphs directly and not with their primal graphs.
The base class of hypergraphs that roughly corresponds to trees in
the setting of treewidth are acyclic hypergraphs which are defined with
the help of join trees which organize the edges of a hypergraph in a
tree with a connectivity condition similar to that for treewidth.

Definition 2.3.16. A join tree of a hypergraph H = (V, E) is a pair
(T , (λt)t∈T) where T = (T, F) is a rooted tree and for each t ∈ T we
have λt ∈ E such that

• for each e ∈ E there is a t ∈ T such that λt = e,

2.3 graph and hypergraph decompositions 29

S(x3,x4,x6,x7,y1,y2,y3,y4)

R(x1,x2,y1,y2) P(x7,x8,y5)

T(x8,y5)

T(x5,y7)

T(x5,y6)

T(x4,y6)

Figure 9: A join tree for the hypergraph of Figure 7.

• For each v ∈ V the set {t ∈ T | v ∈ λt} induces a subtree of T.

A hypergraph is called acyclic if it has a join tree. �

When there is no ambiguity, we often identify vertices t ∈ T with
their edges λt.

Lemma 2.3.17 ([Yan81]). There is a polynomial time algorithm that, given
a hypergraph H, decides if H is acyclic. Moreover, if H is acyclic the algo-
rithm computes a join tree of H.

A conjunctive query φ is called acyclic if its associated hypergraph
is acyclic.

Example 2.3.18. The query φ(y1, . . . , y7) that we considered in Exam-
ple 2.3.12 is acyclic. Its join tree is depicted in Figure 9. We have
free(ϕ) = {y1, . . . y7} and var(ϕ) = {x1, . . . , x8, y1, . . . y7}.

The Boolean acyclic conjunctive query problem denoted ACQ is the
Boolean conjunctive query problem restricted to acyclic instances. We
denote by #ACQ the corresponding counting problem.

Acyclic conjunctive queries play an important role in database the-
ory, because of the following result by Yannakakis [Yan81].

Theorem 2.3.19 ([Yan81]). ACQ can be solved in polynomial time.

To give the reader a first impression of how decompositions are
used algorithmically, we present a proof.

Proof of Theorem 2.3.19. Let Φ = (A, φ) be an ACQ-instance with as-
sociated acyclic hypergraphH. W.l.o.g. we assume that φ is quantifier
free. Let (T , (λt)t∈T) be a join tree ofH computed with Lemma 2.3.17.

In a slight abuse of notation we identify the λt with the atoms in φ

they represent and denote by λt(A) the relation of the atom λt. For
each t ∈ T we define a relation At inductively: If t is a leaf we set

30 preliminaries

At := λt(A). If t has children t1, . . . tk we set (see Definition 2.1.5 for
the definition of the semi-join n)

At := (. . . ((λt(A)n At1)n At2) . . . n Atk(A)).

For t ∈ T let Tt be the subtree of T with root t and let Tt the vertex
set of Tt. Let furthermore φt be the subquery of φ defined as φt :=∧

t′∈Tt
λt′ .

Claim 2.3.20. For every vertex t ∈ T we have At = πvar(λt)(φt(A)).

Proof. If t is a leaf, then the proof is immediate.
Consider now t ∈ T with children t1, . . . tk. We first show At ⊆

πvar(λt)(φt(A)). So consider a ∈ At. By definition of At we have for
every i ∈ [k] a tuple ai ∈ Ati with a ∼ ai. By induction we have
Ati = πvar(λti)

(φti(A)) for i ∈ [k] and thus there is an assignment
bi ∈ φti(A) with bi|var(λti)

= ai. For i 6= j we have by the connectivity
condition var(φti) ∩ var(φtj) ⊆ var(λt) and thus the bi are all compat-
ible. It follows that we can combine a and the bi to an assignment
b ∈ φt(A) with b|var(λt) = a which completes the first direction of the
proof.

For the other direction, consider b ∈ φt(A). Obviously, b|var(λt) ∈
λt(A). Moreover, for every i ∈ [k] we have b|var(φti)

∈ φti(A). Thus
by induction b|var(λti)

∈ Ati . It follows with the definition of At that
b|var(λt) ∈ At which completes the proof of the claim. �

Let r be the root of T . Then φ(A) 6= ∅ if and only if Ar 6=
∅. Observing that Ar can be computed in polynomial time with
Lemma 2.1.6 completes the proof. �

Theorem 2.3.19 served as a starting point to finding more general
classes of hypergraphs on which CQ is tractable, by trying to identify
classes of “nearly” acyclic hypergraphs. There are lots of different
decomposition techniques and associated width measures for hyper-
graphs. One of the most general width measures is generalized hyper-
tree width.

The approach of generalized hypertree decomposition is similarly
to that of tree decompositions: We want to organize a hypergraph into
clusters that form a tree with a connectivity condition. Instead of bags
that contain vertices and that must cover all edges, the basic clusters
of generalized hypertree decompositions are guarded blocks (λt, χt)

where λt contains edges while χt contains vertices. To make sure that
the vertices χt of a guarded block form a sufficiently simple set, we
demand that χt is covered by the edges in λt and that λt is small.
To make sure that the decomposition represents the hypergraph well,
we require that every edge must be contained in a set χt (but not
necessarily in a λt). We now give the exact definition.

2.3 graph and hypergraph decompositions 31

{v3, v4, v5, u3, u4, u5}
{v4, v5, v6, v8},
{v7, v8, u5, u6}

v3, v4, v5, v6, v7,
v8, u3, u4, u5, u6

{v1, u1}, {v2, u1, u2},
{v2, v4, u2, u3}

v1, v2, v4, u1, u2, u3

{v4, v5, v6, v8},
{v6, v9, u7},
{v8, v9, u8}

v4, v5, v6, v8, v9,
u7, u8

Figure 10: A generalized hypertree decomposition of width 3 for the hyper-
graph from Figure 8. The boxes are the guarded blocks. In the
upper parts the guards are given while the lower parts show the
blocks.

Definition 2.3.21. A generalized hypertree decomposition of a hyper-
graph H = (V, E) is a triple (T , (λt)t∈T, (χt)t∈T) where T = (T, F) is a
rooted tree and λt ⊆ E and χt ⊆ V for every t ∈ T satisfying the following
properties:

• For every e ∈ E there is a t ∈ T such that e ⊆ χt.

• For every t ∈ T we have χt ⊆
⋃

e∈λt
e.

• For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

The third property is again called the connectedness condition. The sets χt

are called blocks or bags of the decomposition, while the sets λt are called
the guards of the decomposition. A pair (λt, χt) is called guarded block.

The width of a decomposition (T , (λt)t∈T, (χt)t∈T) is maxt∈T(|λt|). The
generalized hypertree width of H is the minimum width over all general-
ized hypertree decompositions of H. �

Again, we sometimes identify a guarded block (λt, χt) with the
vertex t.

Example 2.3.22. Figure 10 shows a generalized hypertree decomposi-
tion of width 3 for the hypergraph from Figure 8. �

We give the following very easy upper bound for generalized hy-
pertree width.

Observation 2.3.23. LetH = (V, E) be a hypergraph such that there are k
edges e1, . . . , ek ∈ E with V ⊆ ⋃k

i=1 ei. Then H has generalized hypertree
width at most k.

32 preliminaries

Proof. We will construct a trivial generalized hypertree decomposi-
tion (T , (λt)t∈T, (χt)t∈T) of H of width k. The tree T only consists
of one single vertex t, the block of t is χt := V and the guard is
λt := {e1, . . . , ek}. It is easily seen that this satisfies all desired prop-
erties of a hypertree decomposition. Furthermore, the decomposition
has width k. �

It turns out the generalized hypertree width is strictly more general
than treewidth in the following sense.

Lemma 2.3.24 ([GLS00]). For every hypergraph H the generalized hyper-
tree width is less than or equal to 1 + tw(H). Moreover, for every ` there
are hypergraphs of treewidth ` and generalized hypertree width 1.

To get an idea of the different decomposition techniques, we feel
that it is instructional to give a proof.

Proof. For the first claim consider a hypergraph H = (V, E). It is
easy to see that isolated vertices change neither the treewidth nor the
generalized hypertree width of H, so we assume w.l.o.g. that there
are no isolated vertices. It follows that for each v ∈ V we can choose
an edge ev with v ∈ ev. Let (T , (χt)t∈T) be a tree decomposition of
width k − 1 of the primal graph HP of H. We define for each t ∈ T
the guard λt := {ev | v ∈ χt}.

We claim that (T , (λt)t∈T, (χt)t∈T) is a generalized hypertree de-
composition of H. Each edge e ∈ E induces a clique in HP which by
Lemma 2.3.4 lies in a bag χt. It follows that e ⊆ χt which proves the
first first property of generalized hypertree decompositions. By defi-
nition of ev, we have for each t ∈ T that χt ⊆

⋃
v∈χt

ev =
⋃

e∈λt
e which

proves the second property of generalized hypertree decompositions.
Finally, the connectivity condition is clear because (T , (χt)t∈T) is a
tree decomposition. Thus (T , (λt)t∈T, (χt)t∈T) is a generalized hyper-
tree decomposition of H. Clearly, the decomposition is of width at
most k which completes the proof of the first claim.

For the second claim consider G = (V, E) with V := [` + 1] and
E := {V}. By Observation 2.3.23 the hypergraph H has generalized
hypertree width 1. But HP is a clique with ` + 1 vertices which by
Lemma 2.3.4 has treewidth `. �

Unfortunately, deciding if a hypergraph has generalized hypertree
width at most k is NP-complete even for k = 3 [GMS09]. This un-
pleasant result is amended by the fact that there is an approximation
algorithm.

Theorem 2.3.25 ([AGG07, GLS02]). There is an algorithm that, given a
hypergraph H of generalized hypertree width k, constructs a generalized
hypertree decomposition of width O(k) of H in time |H|O(k).

2.3 graph and hypergraph decompositions 33

The connection between generalized hypertree width and acyclic
hypergraphs is given by the following lemma proved by Gottlob et
al. [GLS01]:

Lemma 2.3.26 ([GLS01]). A hypergraph is acyclic if and only if it has gen-
eralized hypertree width 1.

Note that Gottlob et al. state Lemma 2.3.26 for the slightly more
restrictive notion of hypertree width instead of generalized hypertree
width. It is easily verified that their proof works for generalized hy-
pertree decompositions without any changes. To acquaint the reader
with the definitions, we present this proof from [GLS01].

Proof of Lemma 2.3.26. LetH first be an acyclic hypergraph with a join
tree (T , (λt)t∈T). For each t ∈ T set λ′t := {λt} and χ′t := λt. Then
it is easy to check that (T , (λ′t)t∈T, (χ′t)t∈T) is a generalized hypertree
decomposition of H of width 1. It follows that H has generalized
hypertree width 1.

Let now H = (V, E) be a hypergraph with a generalized hypertree
decomposition (T , (λt)t∈T, (χt)t∈T) of width 1. We claim that we may
w.l.o.g. assume that the decomposition is such that for each edge e ∈
E there is a te ∈ T with λte = {e} and χte = e. Assume this is not
the case. By definition there is a t ∈ T such that e ⊆ χt. We add
a new leaf te to T that we connect to t by an edge. Moreover, we
set λte := {e} and χte := e. It is easy to see that the result is still a
generalized hypertree decomposition of width 1. Doing this for all
edges e ∈ E, for which it is necessary, yields a decomposition of the
desired form.

We now transform (T , (λt)t∈T, (χt)t∈T) into into another decompo-
sition. For each edge e such that there are vertices t1, . . . , tk distinct
from te with λti = {e}, i ∈ [k] we do the following: For i = 1, . . . , k
we delete ti and connect all children of ti in T to te. Observe that this
operation preserves the connectivity condition, because λti = {e} and
thus χti ⊆ e.

The result of the above construction is a generalized hypertree de-
composition (T ′, (λ′t)t∈T′ , (χ′t)t∈T′) of width 1 with T ′ = (T′, F′). Each
edge e ∈ E appears in exactly one guard λ′te

and for the correspond-
ing block we have χ′te

= e. It is easy to see that (T ′, (λ′′t)t∈T′) with
λ′′t := χ′t is a join tree of H. Thus H is acyclic. �

Using Lemma 2.3.26 it is very easy to prove the following lemma.

Lemma 2.3.27. Let H be a hypergraph with a generalized hypertree decom-
position (T , (λt)t∈T, (χt)t∈T). Let H′ = (V, E′) where E′ := {χt | t ∈ T}.
Then H′ is acyclic and (T , (χt)t∈T) is a join tree of H.

Proof. We have that (T , (λ′t)t∈T, (χ′t)t∈T) with λ′t := {χt} and χ′t := χt

is a generalized hypertree decomposition of H′ of width 1 and thus
H′ is acyclic with Lemma 2.3.26. �

34 preliminaries

Next we state a lemma that in different forms is (often implicitly)
used in most papers that deal with the application of hypergraph
decomposition techniques to CQ.

Lemma 2.3.28. Given a CQ-instance Φ with associated hypergraph H and
a generalized hypertree decomposition of H of width k, one can compute an
ACQ-instance Ψ in time ‖Φ‖O(k) such that Φ and Ψ are solution equiva-
lent.

Proof. Let Φ = (A, φ) and let the given generalized hypertree de-
composition be (T ′, (λt)t∈T, (χt)t∈T). We construct Ψ = (B, ψ) with
var(ψ) = var(φ) as follows: For every t ∈ T the query ψ has an atom ψt

with relation symbol Rt and var(ψt) := χt. The quantifiers are the
same as for φ. For every t ∈ T let φ1, . . . , φs be the atoms associated to
the edges in λt. We have s ≤ k. Let φ′1, . . . , φ′` be the atoms associated
to the edges e with e ⊆ χt. Then we define the relation RBt as

RBt := πχt(φ1(A) .// φs(A)) ./ φ′1(A) .// φ′`(A).

We claim that φ and ψ are solution equivalent. First consider an
assignment a that satisfies all atoms of φ. Then we have for every
subset φ′1, . . . , φ′r of atom(φ) that the assignment b is compatible to an
assignment in φ′1 .// φ′r. If follows that for each t the new atom
ψt is satisfied by a. Consequently, φ(A) ⊆ ψ(B).

Let now a be an assignment that satisfies all atoms of ψ. Then a
must for each t satisfy the atoms φ′i from the construction of RB .
But since each edge e of H is covered by a set χt′ , every φ′ ∈ atom(φ)

contributes as a φ′i in the construction of a φt. Consequently, a satisfies
all atoms of φ and thus ψ(B) ⊆ φ(A).

We claim that this construction can be done in time ‖Φ‖O(k). To see
this, observe that the relation Aλt := πχt(φ1(A) .// φs(A)) has
size at most ‖A‖s ≤ ‖A‖k. Since for the φ′i we have var(φ′i) ⊆ χt, it
follows that RBt ⊆ Aλt and thus consequently ‖RBt ‖ ≤ ‖A‖k. With
Lemma 2.1.6 it follows that we can compute RBt in time |φ|‖A‖O(k).
Thus computing the instance Ψ takes time ‖Φ‖O(k).

Finally, by Lemma 2.3.27 we have that Ψ is acyclic. �

The combination of Theorem 2.3.19 and Lemma 2.3.28 allows to
solve CQ-instances in time ‖Φ‖O(k) provided that a generalized hy-
pertree decomposition of width k is given. Thus the bottleneck for
solving CQ-instances for many proposed decomposition techniques
is the efficient computation of a good decomposition of the instance.

Let us fix some notation: For an edge set λ ⊆ E we use the short-
hand

⋃
λ :=

⋃
e∈λ e. For a decomposition (T , (λt)t∈T, (χt)t∈T) we

write Tt for the subtree of T that has t as its root. We also write
χ(Tt) :=

⋃
t′∈V(Tt) χt′ . We use these notations for tree decompositions

as well.
It is sometimes helpful to consider restrictions of generalized hy-

pertree decompositions, because those might have better structural

2.3 graph and hypergraph decompositions 35

or algorithmic properties. One such restriction are hingetree decom-
positions.

Definition 2.3.29. A generalized hypertree decomposition is called hinge-
tree decomposition if it satisfies the following conditions:

• For each pair t1, t2 ∈ T with t1 6= t2 there are edges e1 ∈ λt1 and
e2 ∈ λt2 such that χt1 ∩ χt2 ⊆ e1 ∩ e2.

• For each t ∈ T we have
⋃

λt = χt.

• For each e ∈ E there is a t ∈ T such that e ∈ λt.

The hingetree width (also called degree of cyclicity) ofH is the minimum
width over all hingetree decompositions of H. �

Note that this is not the original definition from [GJC94] but an
alternative, equivalent definition from [CJG08].

Example 2.3.30. The decomposition from Figure 10 is also a hingetree
decomposition. �

Like treewidth, hingetree width is strictly less general than gener-
alized hypertree width in the following sense.

Lemma 2.3.31 ([GLS00]). For every hypergraph the generalized hypertree
width is less than or equal to the hingetree width. Moreover, there are hy-
pergraphs for which the generalized hypertree width is strictly less than the
hingetree width.

Hingetree width makes up for this lack of generality by the fact
that optimal decompositions can be computed very efficiently.

Lemma 2.3.32 ([GJC94]). There is an algorithm that, given a hypergraph
H = (V, E), computes a minimum width hingetree decomposition of H in
time |V|O(1).

As a consequence of the results presented above we get the follow-
ing lemma.

Lemma 2.3.33 (see e.g. [CJG08]). For all of the width measures defined
above CQ restricted to instances Φ of width k can be solved in time ‖Φ‖p(k)

for a polynomial p.

3
T H E C O M P L E X I T Y O F # C Q A N D Q U A N T I F I E D
S TA R S I Z E

3.1 the complexity of #CQ

In this section we quickly survey some known results on the com-
plexity of #CQ and prove a parameterized hardness result that we
will use later.

From Example 2.1.2 it is easily seen that CQ is NP-complete in
general [CM77], but as discussed in Chapter 2 there are structural
restrictions of the associated hypergraphs like acyclicity or bounded
generalized hypertree width that make CQ tractable. The situation
for #CQ is more complicated.

Theorem 3.1.1 ([BCC+05]). #CQ is #P-complete for quantier free queries
and # ·NP-complete in general.

Thus, for quantifier free queries the situation is as expected, but
adding quantifiers makes the problem complete for the somewhat
obscure class # · NP. It follows that #CQ is likely not in #P. Pichler
and Skritek [PS13] considered the acyclic case and found that the
quantifier free case is tractable.

Theorem 3.1.2 ([PS13]). #ACQ restricted to quantifier free instances can
be solved in polynomial time.

We will get a proof of Theorem 3.1.2 as a corollary in Chapter 10.
As in Theorem 3.1.1, unlike for decision the counting problem gets

harder when allowing quantification.

Theorem 3.1.3 ([PS13]). #ACQ is #P-complete. It is #P-hard even for in-
stances that have only one single existential quantifier.

To keep this thesis self-contained we give an alternative proof of
Theorem 3.1.3. Also we give a parameterized version of it which we
will use later. To this end, we state a more detailed lemma.

Lemma 3.1.4. Let φstar,n := ∃z
∧

i∈[n]Ri(z, yi) and let Cstar := {φstar,n |
n ∈N}.

a) #CQ is #P-hard for instances restricted to queries in Cstar.

b) p-#CQ is #W[1]-hard for instances restricted to queries in Cstar.

37

38 the complexity of #cq and quantified star size

Proof. We show hardness by a polynomial time, parameterized T-
reduction from p-#Clique. It is well-known that #Clique, the prob-
lem of counting all clicques in a graphs is #P-complete [PB83]. Tech-
nically this paper only proves #P-completeness for counting indepen-
dent sets of a graph but #P-completeness for counting cliques follows
easily by considering complement graphs. It follows easily that the
following problem is #P-complete as well.

#Cliquek
Input: Graph G, k ∈N.
Problem: Compute the number of k-cliques in G.

Thus a polynomial-time reduction from p-#Clique suffices to show
both hardness results (cf. Section 2.2).

The basic idea of the reduction is that instead of counting k-cliques
in a graph, we can also count the k-tuples of vertices that are not a
clique.

So let G = (V, E) be a simple, undirected graph and k ∈N. A tuple
(v1, . . . , vk) ∈ Vk is not a clique if and only if it there are i, j ∈ [k], i 6= j
such that vivj is not an edge. Observe that because G is loopless this is
necessarily true if (v1, . . . , vk) contains a double vertex. We will show
how to check if a tuple (v1, . . . vk) is not a clique with a CQ-instance
of the prescribed form.

More concretely, we construct a #CQ-instance Φ = (A, φ) with φ :=
∃z
∧

i∈[k]Ri(z, yi). Clearly the query is of the right form. The domain
of A is A := V ∪ (V ×V × [k]× [k]). For each i ∈ [k] the structure A
has the following relation associated with Ri

RAi :=
{
((v, w, i, j), v), ((v, w, j, i), w) | v, w ∈ V

v 6= w, vw /∈ E, i, j ∈ [k], j 6= i
}

∪
(
V ×V × ([k] \ {i})× ([k] \ {i})

)
×V.

This completes the construction of Φ.
First, observe that Φ can be constructed in time polynomial in |G|

and k, so if we can compute the number of k-cliques of G from |φ(A)|
sufficiently quickly, the construction is indeed a polynomial-time pa-
rameterized T-reduction.

Furthermore, observe that for each satisfying assignment of Φ the
variables y1, . . . , yk take only values in V. We claim that an assignment
a : {y1, . . . , yk} → A satisfies φ if and only if a(y1), . . . , a(yk) is not a
clique of size k in G. Essentially, the quantified variable z here guesses
the edge that is missing between a(yi) and a(yj).

Indeed, if a(y1), . . . , a(yk) is a tuple of vertices such that two ver-
tices in it are not adjacent, say a(yi) = vi, a(yj) = vj, vivj /∈ E, then
assigning (vi, vj, i, j) to z satisfies all atoms.

Let on the other hand a(y1), . . . , a(yk) be a clique of size k in G. We
claim that there is no assignment to z that satisfies all atoms. Clearly
in a satisfying assignment z can take no value in V. So z must take a

3.2 quantified star size 39

value in V×V× [k]× [k], say (v, w, i, j). But then in particularRi(z, yi)

andRj(z, yj) are satisfied. It follows that a(yi) = v, a(yj) = w, vw /∈ E,
which is a contradiction. So indeed, a(y1), . . . , a(yk) is a clique of size
k in G if and only if a is a satisfying assignment.

It follows that the number of cliques in G is 1
k! (|V|k \ |φ(A)|). But

|V|k and k! can be easily computed in time (k|V|)O(1) and thus one
can compute the number of k-cliques of G from |φ(A)|, G and k in
time (k|V||φ|)O(1). Observing that we may safely assume that k ≤
|V|—otherwise G does not contain any k-Cliques trivially—completes
the reduction. �

Remark 3.1.5. Observe that the instance Φ constructed in the proof
of Lemma 3.1.4 has the following property: If we substitute in φ one
Rj(z, xj) by Ri(z, xj) for a pair i, j ∈ [k] with i 6= j, then every assign-
ment a : free(φ) → V is in φ(A). This is because setting z to (v, v, j, j)
satisfies all atoms. We will use this observation later in Chapter 6. �

We now get Theorem 3.1.3 as a corollary.

Proof of Theorem 3.1.3. Containment in #P is straightforward: Given
an instance (A, φ), nondeterministically guess an assignment to the
variables in free(φ) and solve the resulting CQ-instance with Theorem
2.3.19 (observe that by Observation 3.2.2 this instance is still acyclic).

#P-hardness follows directly from Lemma 3.1.4 �

The remainder of this and the following chapters will mostly be de-
voted to a better understanding of the hardness result of Lemma 3.1.4.
We will analyse exactly what makes the instances in Theorem 3.1.3
hard and use this to define a parameter that makes #CQ tractable.

3.2 quantified star size

As proved in Lemma 3.1.4, even introducing one single existential
quantifier in acyclic conjunctive queries leads to #P-complete count-
ing problems. It follows that bounding the number of quantified
variables does not yield tractable instances. In this section, we will
introduce a new parameter for #CQ-instances, called quantified star
size, that makes #CQ tractable when combined with known decom-
position techniques. This shows that not the number of quantified
variables is crucial but how they are distributed in the associated hy-
pergraph. A basic observation on the hard instances in the proof of
Lemma 3.1.4 is that their associated hypergraphs are stars whose cen-
ter is the single quantified variable. Abstracting this observation, we
shall introduce the parameter quantified star size that, when bounded,
leads to tractable #CQ instances.

Before we introduce quantified star size, we make several other
definitions.

40 the complexity of #cq and quantified star size

Let H = (V, E) be a hypergraph and V ′ ⊆ V. The induced sub-
hypergraph H[V ′] of H is the hypergraph H[V ′] = (V ′, E′) where
E′ := {e ∩ V ′ | e ∈ E, e ∩ V ′ 6= ∅}. The induced subhypergraph of
an edge set E′ ⊆ E is H[E′] = (

⋃
e∈E′ e, E′). Let x, y ∈ V, a path be-

tween x and y is a sequence of vertices x = v1, ..., vk = y such that for
each i ∈ [k− 1] there is an edge ei ∈ E with vi, vi+1 ∈ ei.

A (connected) component of H is an induced subhypergraph H[V ′]
where V ′ is a maximal vertex set such that for each pair x, y ∈ V ′ there
is a path between x and y in H. These definitions apply to graphs as
well.

An edge-path between two vertices x, y ∈ V is a sequence of edges
e1, ..., ek ∈ E such that x ∈ e1, y ∈ ek, and for all i ≤ k− 1, ei ∩ ei+1 6= ∅.
One could define components of a hypergraph based on edge paths
instead of paths in the obvious way. Fortunately, it is easy to see that
both definitions coincide.

We will use the following observation on induced subgraphs of
acyclic hypergraphs.

Observation 3.2.1. If H = (V, E) is an acyclic hypergraph and V ′ ⊆ V,
then H[V ′] is acyclic. More specifically, let (T , (λ)t∈T) with T = (T, F)
be a join tree of H. Then (T [T′], (λt ∩ V ′)t∈T′) where T′ := {t ∈ T |
λt ∩ V ′ 6= ∅} can be made into a join tree of H[V ′] by connecting the
components of T [T′] arbitrarily.

Proof. Immediate. T [T′] is a subforest of T . The connectedness con-
dition of the set {t ∈ T′ | v ∈ λ(t)}, for all v ∈ V ′ follows directly
from the connectedness condition of (T , (λt)t∈T). �

An analogous statement is also true for the more general classes of
hypergraphs we consider.

Observation 3.2.2. Let β be any decomposition technique defined in this
section. Let H = (V, E) be a hypergraph of β-width k. Then for every
V ′ ⊆ V the induced subhypergraph H[V ′] has β-width at most k.

Proof. Let (T , (λt)t∈T, (χt)tinT) be a β-decomposition of H of width k.
For each guarded block (λt, χt) compute a guarded block (λ′t, χ′t) with
χt := χt ∩ V ′ and λt := {e ∩ V ′ | e ∈ λ}. It is easy to check that
(T , (λ′t)t∈T, (χ′t)tinT) is a β-decomposition of width at most k. �

A subhypergraph H′ = (V ′, E′) of H = (V, E) is a hypergraph with
V ′ ⊆ V and E′ ⊆ {e∩V ′ | e ∈ E, e∩V ′ 6= ∅}. Observe that there is no
version of Observation 3.2.1 or Observation 3.2.2 for subhypergraphs
instead of induced subhypergraphs. To see this consider an arbitrary
hypergraph H = (V, E). Adding the edge V to E yields an acyclic
hypergraph, independent of the generalized hypertree width of H.

Definition 3.2.3. An S-hypergraph is a pair (H, S) whereH = (V, E) is
a hypergraph and S ⊆ V. If H is a graph, we also call (H, S) an S-graph.

3.2 quantified star size 41

The S-hypergraph associated to a CQ-instance Φ = (A, φ) consists of the
hypergraph associated to φ and S := free(φ). The primal S-graph of H is
defined as (HP, S). �

Definition 3.2.4. Let G be a class of S-hypergraphs. By #CQ on G we
denote the restriction of #CQ to instances whose associated S-hypergraph is
in G. Analogously, by p-#CQ on G we denote the restriction of p-#CQ to
instances whose associated S-hypergraph is in G. �

Definition 3.2.5. We call an S-hypergraph S-connected if for every pair
of vertices x, y there is a path x = v1, v2, . . . , vk−1, vk = y such that vi /∈ S
for i /∈ {1, k}. �

Let us consider some examples of queries that have S-connected
S-hypergraphs.

Example 3.2.6. Path queries (of arbitrary length), for example

φ(x, y) := ∃t1∃t2∃t3R(x, t1) ∧R(t1, t2) ∧R(t2, t3) ∧R(t3, y)

have as their associated S-hypergraph a path in which only the end
vertices are in S. Thus their S-hypergraph is S-connected. �

Example 3.2.7. The associated graph of the query φstar,n of Lemma
3.1.4 is the star Gn = (Vn, En) where Vn = {z, y1, . . . , yn} and En =

{zy1, . . . , zyn}. Furthermore, the free variables are Sn = {y1, . . . , yn}.
Every vertex in Vn is connected to every other vertex via z /∈ Sn. Thus
(Gn, Sn) is Sn-connected. �

Definition 3.2.8. An independent set I in a hypergraph H = (V, E) is
a set I ⊆ V such that there are no distinct vertices x, y ∈ I that lie in a
common edge e ∈ E. �

Definition 3.2.9. The S-star size of an S-connected S-hypergraph is the
maximum size of an independent set consisting of vertices in S only. We say
that such an independent set forms an S-star. �

We remark that the S-star size of an S-connected S-hypergraph can
equivalently be expressed as the the size of a maximum independent
set in H[S].

Example 3.2.10. The S-hypergraphs associated to the path queries of
Example 3.2.6 have S-star size 2, because the two end vertices of the
paths are independent.

Now consider the Sn-hypergraph (Gn, Sn) from Example 3.2.7. The
vertices of Sn are all independent. Consequently, the Sn-star size of
(Gn, Sn) is n.

Note that while the quantified star size of instances whose associ-
ated hypergraph is a path is bounded by 2, the S-star size of bounded

42 the complexity of #cq and quantified star size

x1

x2
x3

x4

x6

x7

x8

y1
y2

y3

y4
y5

y6

x5y7

y6

y2
y1

Figure 11: The S-components of the query from Example 2.3.12.

pathwidth instances is unbounded. To see this, observe that the graph
Sn-hypergraph (Gn, Sn) from above has pathwidth 1: The decompo-
sition (P , (χt)t∈T) where P is the path with vertex set [n] and χi :=
{z, yi}, is a path decomposition of Gn of width 1. �

We want to extend the notion of S-star size to S-hypergraphs that
are not S-connected. To this end, we consider certain S-connected
subhypergraphs that we call S-components. We make the following
definition which will be crucial during the remainder of Part i.

Definition 3.2.11. Let H = (V, E) be a hypergraph and S ⊆ V. Let C be
the vertex set of a connected component of H[V − S]. Let EC be the set of
hyperedges {e ∈ E | e ∩ C 6= ∅} and V ′C :=

⋃
e∈EC

e. Then H[V ′C] is called
an S-component of H. �

Since the definition of S-components is somewhat involved, let us
consider several examples.

Example 3.2.12. We claim that the S-hypergraph (H, S) associated to
the query φ(y1, . . . , y7) of Example 2.3.12 (see also Figure 7) has the
three S-components that are depicted in Figure 11. To see this, ob-
serve first that S = {y1, . . . , y7}. It follows that the vertex sets of the
components of H[V \ S] are C1 := {x1, x2}, C2 := {x3, x4, x6, x7, x8}
and C3 := {x5}. Consequently,

• EC1 =
{
{x1, x2, y1, y2}

}
,

• EC2 =
{
{x3, x4, x6, x7, y1, y2, y3, y4}, {x4, y6}, {x7, x8, y5},

{x8, y5}
}

,

• EC3 =
{
{x5, y7}, {x5, y6}

}
.

Thus V ′C1
= {x1, x2, y1, y2}, V ′C2

= {x3, x4, x6, x7, x8, y1, y2, y3, y4, y5, y6}
and V ′C3

= {x5, y6, y7}. The resulting S-components are depicted in
Figure 11. �

Example 3.2.13. Let us consider the S-hypergraph of the query from
Example 2.3.13. The associated hypergraph H was already illustrated
in Figure 8. We have S = {v1, ..., v9}. Then H[V \ S] has three com-
ponents with the vertex sets C1 := {u7}, C2 := {u8} and C3 :=
{u1, . . . , u6}. Thus

3.2 quantified star size 43

u5

u1

u2

u3

u4 u6

v1

v2

v3

v4 v5

v7

v8
u7

v6

v9

u8

v8

v9

Figure 12: The S-components of the S-hypergraph discussed in Exam-
ple 3.2.13.

• EC1 =
{
{u7, v6, v9}

}
,

• EC2 =
{
{u8, v8, v9}

}
, and

• EC3 =
{
{u1, v1}, {u1, u2, v2}, {u2, u3, v2, v4},

{u3, u4, u5, v3, v4, v5}, {u5, u6, v7, v8}
}

.

Hence, V ′C1
= {u7, v6, v9}, V ′C2

= {u8, v8, v9} and V ′C3
= {u1, u2, u3, u4,

u5, u6, v1, v2, v3, v4, v5, v7, v8}. The three resulting S-components are
depicted in Figure 12. �

The following observation is evident from the definition.

Observation 3.2.14. To an S-hypergraph (H, S) one can in polynomial
time compute all its S-components.

Observation 3.2.15. Let H = (V, E) be a hypergraph, S ⊆ V and H′ be
an S-component of H. Then, if H is acyclic, H′ is acyclic.

Proof. By definition H′ is an induced subgraph. By Observation 3.2.1
it follows that it is acyclic. �

The definitions directly yields the following observation.

Observation 3.2.16. The only S-component of an S-connected S-hyper-
graph (H, S) is H. Moreover, the S-components of S-hypergraphs are S-
connected.

Observation 3.2.16 allows to extend the definition of S-star size to
not necessarily S-connected hypergraphs.

Definition 3.2.17. For an S-hypergraph (H, S) we define S-star size as
the maximum S-star size of its S-components. �

Example 3.2.18. Let us continue the discussion from Example 3.2.12

(see also Figures 7 and 11). The S-component induced by V ′C1
has no

44 the complexity of #cq and quantified star size

independent set of size greater than 1, because the only two vertices
y1, y2 from V ′C1

appear in a common edge. Thus the S-star size of this
component is 1.

We have VC2 ∩ S = {y1, y2, y3, y4, y5, y6}. A maximum independent
set of these vertices in the S-component induced by V ′C2

is for example
{y1, y5, y6}. Thus the S-star size of this S-component is 3.

Finally, V ′C3
∩ S = {y6, y7} and these vertices are independent. Thus

the S-component induced by V ′C3
has S-star size 2

It follows that the S-star size of (H, S) is 3. �

Example 3.2.19. Let us compute the S-star size of the S-hypergraph
of Example 3.2.13. The S-components induced by V ′C1

and V ′C2
are

completely covered by the edges {u7, v6, v9}, resp., {u8, v8, v9}. It fol-
lows that the S-star size of these S-components is 1. We have VC3 ∩S =

{v1, v2, v3, v4, v5, v7, v8}. There are several maximum independent sets
of vertices in VC3 ∩ S in the S-component induced by VC3 , all of size 4.
An example is {v1, v2, v3, v7}. It follos that the S-star size of (H, S)
is 4 �

Now we can finally come back to CQ-instances and define the
promised parameter quantified star size.

Definition 3.2.20. The quantified star size of a conjunctive query is de-
fined as the S-star size of the associated S-hypergraph. The quantified star
size of a CQ-instance is that of its query. �

Example 3.2.21. The query from Example 2.3.12 has quantified star-
size 3 as we have seen in Example 3.2.18.

The query from Example 2.3.13 has quantified starsize 4 as we have
seen in Example 3.2.19.

From Example 3.2.10 we get that the queries φstar,n of Lemma 3.1.4
are of quantified star size n, which is nearly the size of the query. �

3.3 formulation of main results

We have now introduced all necessary preliminaries to formulate the
main results of Part i of this thesis.

counting solutions to queries In Chapter 5 we justify our
definition of quantified star size. We show that every class G of S-
hypergraphs such that #CQ on G is tractable must be of bounded
quantified star size—under the assumption FPT 6= #W[1] from pa-
rameterized complexity. We then go on showing that for all decom-
position techniques for CQ-instances commonly considered in the lit-
erature combining them with bounded quantified star size leads to
tractable counting problems. Combining the results we get an exact
characterization of the subclasses of CQ-instances that allow tractable

3.3 formulation of main results 45

counting for commonly considered classes defined by decomposition
techniques.

Let us illustrate this for the example of generalized hypertree de-
compositions. We will show that, under the assumption that FPT 6=
#W[1], for any (recursively enumerable) class G of S-hypergraphs of
bounded generalized hypertreewidth the following statements are
equivalent:

• #CQ on G is tractable.

• p-#CQ on G is fixed-parameter tractable.

• G is of bounded quantified star size.

In our considerations, the arity of atoms of queries is not a pri-
ori bounded. For this setting, there is no known characterization of
classes G of graphs that yield tractable instances for the decision prob-
lem CQ. This explains why our characterizations are stated for each
decomposition method individually.

For bounded arity however, the situation is different as we will
discuss in Chapter 6. It is known that the classes of hypergraphs of
bounded arity that lead to tractable CQ are exactly the classes of
bounded treewidth [GSS01, Gro07]. The same result is true for count-
ing of quantifier free instances [DJ04], i.e., #CSP. In Chapter 6 we shall
combine [GSS01, Gro07] and our results from Chapter 5 to derive a
complete characterization of the classes G of S-hypergraphs such that
#CQ is tractable on G. These classes are exactly the classes of bounded
treewidth and bounded quantified star size.

In the bounded arity case we arrive at a more finegrained analysis
of tractable #CQ: In Chapter 7 we give a characterization of tractable
classes of queries instead of associated S-hypergraphs, using the no-
tion of the core of a conjunctive quer φ [CM77] which is a certain
“minimal” equivalent subquery of φ. We show that #CQ restricted to
a class C of queries is tractable if and only if the treewidth and the
quantified star size of the cores of C is bounded. This result allows to
isolate larger classes of tractable #CQ-instances which we do not get
from the S-hypergraph perspective alone.

discovering quantified star size To exploit tractability re-
sults of the above kind it is helpful if the membership in a tractable
class can be decided efficiently, i.e., in our case if computing the quan-
tified star size of an instance is tractable. Therefore, we consider this
“discovery problem” of determining the quantified star size of queries
in Chapter 4.

We first show that the quantified star size of ACQ-instances can
be determined in polynomial time. This result will also be used in
the counting algorithms of Chapter 5 which explains the order of the
presentation.

46 the complexity of #cq and quantified star size

We show that computing the S-star size of S-hypergraphs is equiv-
alent to computing maximum independent sets in hypergraphs. Con-
sequently, we cannot expect a polynomial time algorithm for com-
puting the quantified star size of general CQ-instances. Fortunately,
it turns out that for queries φ of generalized hypertree width k and
thus for all more restrictive decomposition techniques like hingetree
width or treewidth, there is an algorithm that computes in time |φ|O(k)

the quantified star size of φ. We show that this is in a sense opti-
mal, because computing the quantified star size of a given query φ

is W[1]-hard parameterized by the generalized hypertree width of φ.
Thus, under the standard assumption FPT 6= W[1], there is no fixed-
parameter algorithm for this problem.

Still, if we parameterize the computation of quantified star size
by more restrictive width measures, computing the quantified star
size of conjunctive queries in some cases becomes fixed-parameter
tractable. We prove that this is the case queries if we parameter-
ize by hingetree width. Because of the connection between S-star
size and maximum independent set, this result provides a new pa-
rameter of hypergraphs for which computing maximum indepen-
dent sets is fixed-parameter tractable. Note that the W[1]-hardness re-
sult from above shows that fixed-parameter tractability of computing
maximum independent sets is unlikely to hold for other hypergraph
decomposition techniques.

We then turn our attention to the approximation of quantified star
size. We show that there is a polynomial time algorithm that, given
a query φ and a decomposition of φ of width k, computes in time
independent of k a k-approximation of the quantified star size of φ.

Summing these results up, quantified star size does not only im-
ply tractable counting if combined with well known decomposition
techniques, but in case the decomposition is given or can be effi-
ciently computed (treewidth, hingetree width) or approximated (gen-
eralized hypertreewidth), then computing quantified star size is itself
tractable.

3.4 digression : unions of acyclic queries

For two CQ-instances Φ1 = (A1, φ1) and Φ2 = (A2, φ2) define the
union as (Φ1 ∨ Φ2) := (A1 ∪ A2, φ1 ∨ φ2). The intersection of Φ1 and
Φ2 is (Φ1 ∧Φ2) := (A1 ∪A2, φ1 ∧ φ2). Both notions naturally extend
to more than two instances. Observe that the queries of unions of
CQ-instances are not CQ-instances anymore but intersections are.

For deciding if the query result is empty, it is clear that taking
unions of acyclic queries does not change the complexity—one can
simply solve one instance after the other. Thus unions of ACQ-in-
stances stay tractable.

3.4 digression : unions of acyclic queries 47

For counting the situation is different: From Theorem 3.1.3, Pichler
and Skritek directly get the following corollary.

Corollary 3.4.1 ([PS13]). Counting solutions to unions of quantifier free
ACQ-instances is #P-complete.

Proof. Containment in #P is clear, because deciding emptyness of the
query result of unions of ACQ-instances is in P as discussed above.

For hardness we reduce from CQ on Cstar from Lemma 3.1.4. So
let Φ = (A, φ) be such an with φ ∈ Cstar. Remember that φ has only
one free variable z. For each d ∈ A let Φd be the CQ-instance that we
get from Φ by fixing z to d. Clearly, the union of all Φd has the same
satisfying assignments as Φ. �

In this Chapter we will strengthen the hardness result of Corollary
3.4.1 in several directions: We show that already counting solutions
for the union of two ACQ-instances is hard even when those are as-
sumed to be of bounded domain size.

Proposition 3.4.2. Counting solutions to the union and the intersection of
two quantifier free #ACQ-instances are both #P-complete. This remains true
for #ACQ on Boolean domain and arity at most 3.

Remark 3.4.3. In [GSS01], it is proved that the (bi-)colored grid homo-
morphism problem is NP-complete. This result implies part of Propo-
sition 3.4.2, i.e., that counting the solutions of the conjunction of two
ACQ-instances is #P-complete (the fact that this hardness result is
still true on Boolean domain does not follow, however). �

An (n×m)-grid is a graph isomorphic to Gn,m = (Vn,m, En,m) where
Vn,m := [n]× [m] and (i, j)(i′, j′) ∈ En,m if and only if |i− i′|+ |j− j′| =
1. A graph is a grid if and only if it is an (n × m)-grid for a pair
n, m ∈N.

For the proof of Proposition 3.4.2 we will use the following lemma.

Lemma 3.4.4. Counting solutions to quantifier free CQ-instances whose
primal graph is a grid is #P-complete even for domains of size 4.

We will show the hardness part of Lemma 3.4.4 by reducing a re-
stricted version of #circuitSAT to #CQ with the desired grid struc-
ture. From the #P-completeness of our #circuitSAT version we will
get #P-hardness for counting solutions of conjunctive queries with
grid structure.

We now define the version of #circuitSAT that we call #(∧-¬-grid)-
circuitSAT: An instance of #(∧-¬-grid)-circuitSAT is a Boolean cir-
cuit which only contains ∧- and ¬-gates and in which all gates are
vertices of a 2-dimensional grid. Furthermore, the edges of the circuit
are non-intersecting paths along the edges of the grid.

48 the complexity of #cq and quantified star size

Lemma 3.4.5. #(∧-¬-grid)-circuitSAT is #P-complete under parsimo-
nious reductions.

Proof. We make a parsimonious reduction from #circuitSAT. Let C
be a #circuitSAT instance, i.e., a Boolean circuit. In a first step we
substitute all ∨-gates x ∨ y by ¬(¬x ∧ ¬y). We then make sure that
every gate has at most degree 3 and that all input gates and the out-
put gate has at most degree 2 by adding double negations. Call the
resulting circuit C′.

We now embed C′ into a grid. To do so we take a three step ap-
proach that starts with a coarse grid that is then refined. Let n be the
size of C′. We first distribute the gates of C′ into a (n × n)-grid G1

such that each gate of C′ of depth i has the coordinates (i, j) for some
j. Furthermore, each edge of the circuit is a sequence of straight lines
where each straight line goes from a vertex in one row to another ver-
tex in the next row. Note that these stright lines are not edges of the
grid G1. we require that in each vertex of G1 at most two lines start
and end. For vertices on which no gate of C′ lies, we assume that at
most one edge starts and ends. It is clear that such an embedding can
be constructed easily.

In a second step we make sure that the edges of the circuit follow
the edges of a grid without congestion. We do this for each row of
the coarse grid G1 individually. We construct a new grid G2 by adding
2n− 1 new rows before each row in G1 and one new column before
each column. Observe that each vertex (i, j) in G1 has the coordinates
(2ni, 2j) in G2. Each vertex v of G1 in row i has a most 2 outgoing
straight lines l1, l2 representing edges of the circuit C′ which both end
in a vertex of row i + 1. Let l1 end in (i + 1, j) and l2 end in (i + 1, j′)
with j < j′, then we call l1 be the low output and l2 the high output.
If there is only one output, we define it to be high. We also make the
equivalent definition for high and low inputs.

Now we substitute the lines representing edges of C′ by paths in
G2. Let l be a line that starts in G1 in (i, j′) and ends in (i + 1, j). We
construct a path Pl from (2ni, 2j) to (2n(i + 1), 2j′):

• If l is a low output and a low input the path is the piecewise
linear curve through the vertices (2ni, 2j), (2ni, 2j − 1), (2ni +
2j, 2j− 1), (2ni + 2j, 2j′), (2n(i + 1), 2j′).

• If l is a high output and a low input the path is through (2ni, 2j),
(2ni + 2j + 1, 2j), (2ni + 2j + 1, 2j′), (2n(i + 1), 2j′).

• If l is a low output and a high input the path is through (2ni, 2j),
(2ni, 2j− 1), (2ni + 2j, 2j− 1), (2ni + 2j, 2j′ + 1), (2n(i + 1), 2j′ +
1), (2n(i + 1), 2j′).

• If l is a high output and a high input the path is through
(2ni, 2j), (2ni + 2j + 1, 2j), (2ni + 2j + 1, 2j′ + 1), (2n(i + 1), 2j′ +
1), (2n(i + 1), 2j′).

3.4 digression : unions of acyclic queries 49

a

b b

a

x

x⊕ y

y

⊕

⊕

⊕

¬ ∧ ∨

∨ ∧

¬

Figure 13: The crossing paths in the left are substituted by a gadget without
crossings in the middle that uses ⊕-gates which compute xor of
its inputs. It is easily checked that the outputs compute (a⊕ b)⊕ a
and (a ⊕ b) ⊕ b which simplify to b and a respectively. On the
right we show how the ⊕-gates can be simulated over the basis
∧,∨,¬ without losing planarity. Degree 4 gates, splitting of edges
and ∨-gates can be avoided by introducing some more ¬-gates
and using De Morgan’s law.

The result is an embedding of C′ into a grid such that the gates are
on vertices of G2 and the edges of C′ are paths in the grid. Observe
that the paths were constructed in such a way that two paths between
gates never share edges, so they only intersect in single vertices.

In the final step of the reduction we get rid of these intersections on
non-gate vertices by adding additional gates. Each crossing in G2 is
substituted by the gadget illustrated in Figure 13. To do so we make
the grid finer again by a constant factor. The result is a circuit C′′

that is embedded into a grid. Furthermore C′′ has the same satisfying
assignments as C′. This completes the proof of Lemma 3.4.5. �

Remark 3.4.6. We could also have given a proof of Lemma 3.4.5 with
results on embedding general planar graphs into grids in the way we
need it (see e.g. [Val81]). We have chosen to present an ad-hoc proof
instead to keep the presentation self-contained. �

Proof of Lemma 3.4.4. By Theorem 3.1.1, counting solutions to general
quantifier free CQ-instances is in #P, so we only need to show hard-
ness.

To this end, we will now reduce #(∧-¬-grid)-circuitSAT to #CQ
instances of grid structure. So let (C, G) be an instance of #(∧-¬-grid)-
circuitSAT, i.e., a circuit C that is embedded into a grid G. Let G be
of size n× n. W.l.o.g. we may assume that no gates are on neighboring
vertices in G and that the output gate is not a ∧-gate. For each ∧-gate
of C we arbitrarily fix one input as the first input while the other
one is the second one. We construct a binary CQ-instance Φ whose
associated hypergraph is G. The domain is A := {0, 1, 2, 3} where 0
and 1 represent the usual boolean values while 2 and 3 are used in a
gadget construction for ∧-gates. For each edge e = uv in G we add
an atom φe(u, v) with the following satisfying assignments:

50 the complexity of #cq and quantified star size

• If e is not an edge of C, φe has the satisfying assignments {ab |
a, b ∈ {0, 1, 2, 3}}.

• If e is an edge of C directed from u to v and v is not a gate and
u is not a ∧-gate, φe has the satisfying assignments {00, 11}.

• If e is an edge of C directed from u to v and v is a ¬-gate, φe has
the satisfying assignments {01, 10}.

• If e is an edge of C directed from u to v and v is a ∧-gate and the
path to v over u is from the first input of v, φe has the satisfying
assignment {00, 02, 11, 13}.

• If e is an edge of C directed from u to v and v is a ∧-gate and
the path to v over u is from the second input of v, φe has the
satisfying assignment {00, 01, 12, 13}.

• If e is an edge of C directed from u to v and v is not a gate and
u is a ∧-gate, φe has the satisfying assignments {00, 10, 20, 31}.

Observe that the construction near the ∧-gates is possible, because
no two gates are neighbors. So the relations of the φe are all well
defined. Now each vertex that is not part of C gets a unary atom that
has only the single satisfying assignment 1. Also the output gate of C
gets such a unary atom.

We claim that if we fix an assignment a to the variables representing
the inputs of C, there is an satisfying extension to the other variables
if and only if a satisfies C. Furthermore, this extension is unique. It is
clear that the constraints along the paths and on the ¬-gates propa-
gate the correct values along the grid. In a satisfying assignment, the
variable representing an ∧-gate has to take the value representing the
values of its inputs in binary. The gates after the ∧-gates then calcu-
late the conjunction value for these inputs. This completes the proof
of Lemma 3.4.4 �

Proof of Proposition 3.4.2. Again, we only need to show hardness. By
the inclusion-exclusion principle counting for unions and intersec-
tions is equally hard, so it suffices to show hardness for intersections.
The reduction is straightforward with Lemma 3.4.4. Let Φ be a con-
junctive query whose primal graph is a grid. We separate the atoms
into two new CQ-instances: Φ1 gets all the atoms that correspond
to edges on rows of the grid, Φ2 gets those that correspond to the
columns. Clearly we have Φ = Φ1 ∧Φ2 and the Φi are acyclic. Thus
the first part of the lemma follows.

To show that the result is true for queries on boolean domain, we
sketch a different encoding of (∧-¬-grid)-#circuitSAT into conjunc-
tive queries. Roughly speaking, the structure of the encoding is ba-
sically the same but non-Boolean elements are mapped to sequences
of boolean variables (that represent their binary encodings). To do so
we need ternary relations. For completeness, details are given below.

3.4 digression : unions of acyclic queries 51

Again, let G be the (n× n)-grid and suppose no gates are on neigh-
boring vertices in G and that the output gate is not a ∧-gate. For each
∧-gate v, we introduce a second vertex/variable v1. We construct a
ternary CQ instance Φ as follows. For each edge e = uv in G we add
an atom φe in the following way:

• If e is not edge of C , φe has the satisfying assignments {00, 01,
10, 11}.

• If e is an edge of C directed from u to v and v is not a gate and
u is not a ∧-gate, φe has the satisfying assignments {00, 11}.

• If e is an edge of C directed from u to v and v is a ¬-gate, φe has
the satisfying assignments {01, 10}.

• If e is an edge of C directed from u to v and v is a ∧-gate
and the path to v over u is from the first input of v, φe is the
ternary atom on variables u, v, v1 with the satisfying assignment
set {000, 010, 101, 111}.

• If e is an edge of C directed from u to v and v is a ∧-gate and the
path to v over u is from the second input of v, φe is the ternary
atom on variables u, v, v1 which has the satisfying assignment
{000, 001, 110, 111}.

• If e is an edge of C directed from u to v and v is not a gate and
u is a ∧-gate, φe is the atom on variables u1, u, v which has the
satisfying assignments {000, 010, 100, 111}.

The atoms are then distributed into two CQ-instances Φ1 and Φ2 as
above, grouping atoms with horizontal and vertical edges separately.
Note that, connection at ∧ gates v between hyperedges is now on
two vertices v and v1. But the resulting hypergraphs for Φ1 and Φ2

are still easily seen to be acyclic. �

The reductions of this section are all parsimonious, so we directly
get the following corollary 1:

Corollary 3.4.7. Deciding if the query result of the intersection of two
quantifier free acyclic conjunctive queries is nonempty is NP-complete even
for bounded arity and domain.

Observe that as discussed above it is well-known that deciding the
union of ACQ-instances can be done in time polynomial time in ‖Φ‖.

1 We state this corollary for completeness. Although we found no references, it is
certainly already known

4
C O M P U T I N G S - S TA R S I Z E

In this chapter we show how S-star size can be computed for different
classes of S-hypergraphs. We start with acyclic S-hypergraphs before
turning to more general classes.

4.1 acyclic hypergraphs

In this section we show that the S-star size of acyclic S-hypergraphs
can be computed in polynomial time.

Let H = (V , E) be a hypergraph and S ⊆ V . We say that E ∗ ⊆
E covers S if S ⊆ ⋃

e∈ E ∗ e . We call E ∗ an edge cover of S . When
S = V we call E ∗ an edge cover of H .

Lemma 4.1.1. For acyclic hypergraphs the size of a maximum independent
set and a minimum edge cover coincide. Moreover, there is a polynomial-
time algorithm that, given an acyclic hypergraph H, computes a maximum
independent set I and a minimum edge cover E∗ of H.

The first sentence in Lemma 4.1.1 can be seen as an adaptation of
Kőnig’s theorem for bipartite graphs (see e.g. [Bol98]) to acyclic hyper-
graphs. The proof uses a minimally modified version of an algorithm
that Guo and Niedermeier [GN06] describe to compute minimum
(unweighted) edge covers of acyclic hypergraphs. We show here that
their techniques cannot only be used to compute minimum edge cov-
ers but also maximum independent sets of acyclic hypergraphs.

Proof of Lemma 4.1.1. Clearly the size of any independent set is not
greater than that of any edge cover, simply because no edge can cover
two vertices in an independent set. So if we present an algorithm that
computes an independent set I and an edge cover E∗ of a given acyclic
hypergraph H = (V, E) such that |I| = |E∗|, we are done.

So let us now describe an algorithm that computes I and E∗ of the
same size: Let T = (T, F) be a join tree of H with root r. We start
with initially empty sets I and E∗ and iteratively delete leaves of T in
a bottom-up manner from the leaves to the root. For each leaf t ∈ T,
either λt ⊆ λt′ , where t′ is the parent of t, or there exists y ∈ λt such
that y 6∈ λt′ . In the latter case, we will say that y is unique for t. If t = r
is a leaf of T , i.e., r is the only vertex in T , we say by convention that
if λt contains any vertices, they are all unique for t.

We do the following until T is empty. First, choose a leaf t of T . If
there is no vertex unique for t, we simply delete t from T. If there are
vertices that are unique for t, choose one vertex y among them and
add it to I. Furthermore, add λt to E∗, delete all vertices in λt from H

53

54 computing s-star size

and delete t from T. When T is empty, I and E∗ are the result of the
algorithm.

It is instructive to execute this algorithm for the join tree in Figure 9.
Remember that for a vertex t ∈ T we denote by Tt the subtree of T

with the root t. Let furthermore Vt be defined as the set of vertices
in V that appear only in {λt∗ | t∗ ∈ V(Tt)} ⊆ E and in no other edge
in E.

Claim 4.1.2. Whenever the algorithm deletes t ∈ T, the edge set E∗ covers
the vertices Vt.

Proof. Assume that the claim is false, then there is a first vertex t ∈ T
met during the execution of the algorithm for which after t is deleted
some vertex y ∈ Vt is not covered by E∗. For all children t∗ of t
the vertices in Vt∗ are covered by E∗, so y must lie in λt. But then y
is unique for t before t is deleted. Thus λt is added to E∗ and y is
covered by λt ∈ E∗ after t is deleted which is a contradiction. �

From Claim 4.1.2 it follows directly that E∗ is an edge cover of H
at the end of the algorithm.

Claim 4.1.3. At each point in time during the algorithm, I is an indepen-
dent set in H.

Proof. Assume the claim is wrong. Then, there is a first vertex y that
is added to I such that y is adjacent to x already in I. The vertex x
was added to I, so there was t ∈ T such that x was unique for t when
t was considered by the algorithm. Thus x is in Vt, and consequently
x /∈ λt′ for any vertex t′ ∈ T \ V(Tt). As x and y are adjacent, there
must be a vertex t∗ ∈ V(Tt) such that {x, y} ⊆ λt∗ . But y is added to I
after x and thus it must appear in λt′ for a vertex t′ ∈ T \V(Tt). Then
because of the connectedness condition and the fact that T is a tree, y
must also be in λt and thus is deleted from H when t is deleted. But
then y cannot be added later which is a contradiction. �

With Claim 4.1.2 and Claim 4.1.3 we have that at the end of the
algorithm E∗ is an edge cover of G and I is an independent set in G.
From the algorithm it is obvious that |E∗| = |I|. This completes the
proof. �

Corollary 4.1.4. Let H = (V, E) be an acyclic hypergraph and S ⊆ V.
Then the following statements are true:

a) The S-star size of H can be computed in polynomial time.

b) LetH′ = (V ′, E′) be an S-component ofH and let k be the S-star size
of H′. There is a polynomial time algorithm that computes an edge set
E∗ ⊆ E′ that covers S ∩V ′ and |E∗| = k.

4.2 general hypergraphs 55

Proof. a) LetH1, . . . ,Hm be the S-components ofH which can be com-
pute in polynomial time by Observation 3.2.14. By Observation 3.2.15,
each Hi = (Vi, Ei), i ∈ {1, . . . , m}, is acyclic and hence by Observa-
tion 3.2.1,Hi[S] is acyclic too. By Lemma 4.1.1, for each i ∈ {1, . . . , m},
one can determine the size of a maximum independent set Ii of Hi[S].
The Ii of maximum size gives us the S-star size of H.

b) We compute an edge cover Ẽ of size k for H′[S] with Lemma
4.1.1. Then for each edge ẽ ∈ Ẽ one can easily find an edge e ∈ E′

with ẽ ⊆ e. �

4.2 general hypergraphs

In this section we consider the problem of computing the quantified
star size of hypergraphs that have small width for the decomposi-
tion techniques defined in Section 2.3. Note that the computation of
quantified star size is not strictly necessary for tractable counting. The
algorithm of Chapter 5 does not need to compute the S-star size for
graphs of width k but only for acyclic hypergraphs which we con-
sidered in the previous section. Still it is of course desirable to know
the quantified star size of an instance before applying the counting
algorithm, because quantified star size has an exponential influence
on the runtime.

We show that for all decomposition techniques considered in this
thesis the quantified star size can be computed rather efficiently, in
time roughly |V|O(k) where k is the width of the input. For small
values of k, this bound is reasonable. We then proceed by showing
that, on the one hand, for some decomposition measures such as
treewidth or hingetree width, the computation of quantified star size
is even fixed parameter tractable parameterized by the width. On
the other hand, we show that for decomposition measures above hy-
pertree width it is unlikely that fixed parameter tractability can be
obtained (under standard assumptions).

Instead of tackling quantified star size directly, we consider the
combinatorially less complicated notion of independent sets as we
did in Section 4.1. This is justified by the following observation:

Observation 4.2.1. Let β be any decomposition technique considered in
this thesis. Then, for every k ∈ N, computing the S-star size of S-hyper-
graphs of β-width at most k polynomial time Turing-reduces to computing
the size of a maximum independent set for hypergraphs of β-width at most k.
Furthermore, there is a polynomial time many one reduction from computing
the size of a maximum independent set in hypergraphs of β-width at most k
to computing the S-star size of hypergraphs of β-width at most k + 1.

Proof. By definition computing S-starsize reduces to the computation
of independent sets of S-components. S-components are induced sub-
hypergraphs, so we get the first direction from Observation 3.2.2.

56 computing s-star size

For the other direction let H = (V, E) be a hypergraph for which
we want to compute the size of a maximum independent set. Let
x 6∈ V. We construct the hypergraph H′ of vertex set V ′ = V ∪ {x}
and edge set E′ = {e ∪ {x} | e ∈ E} and set S := V. The hypergraph
is one single S-component, because x is in every edge. Furthermore,
the S-starsize of H′ is obviously the size of a maximum independent
set in H. It is easy to see that the construction increases the treewidth
of the hypergraph by at most 1 and does not increase the β-width for
all other decomposition considered here at all. �

Because of Observation 4.2.1 we will not talk about S-star size in
this section anymore but instead formulate everything with indepen-
dent sets.

4.2.1 Exact computation

Proposition 4.2.2. There is an algorithm that, given a hypergraph H =

(V, E) and a generalized hypertree decomposition (T , (λt)t∈T, (χt)t∈T) of
width k of H, computes a maximum independent set of H in time k|V|O(k).

Proof. We apply dynamic programming along the decomposition. Let
b = (λ, χ) be a guarded block of T . Let Tb be the subtree of T with
b as its root. We set Vb := χ(Tb). Observe that I ⊆ Vb is independent
in H if and only if it is independent in H[Vb] so we do not differenti-
ate between the two notions. For each independent set σ ⊆ χ we will
compute an independent set Ib,σ ⊆ Vb that is maximum under the in-
dependent sets containing exactly the vertices σ from χ. Observe that
because λ contains at most k edges that cover χ we have to compute
at most knk independent sets Ib,σ for each b.

If b is a leaf of T , the construction of the Ib,σ is straightforward and
can certainly be done in time k|V|O(k).

Let now b = (λ, χ) be an inner vertex of T with children b1, . . . , br

and let bi = (λi, χi). For each independent set σ ⊆ χ we do the
following: For each i, let σi be an independent set of χi such that
σ ∩ χ ∩ χi = σi ∩ χ ∩ χi and |Ibi ,σi | is maximal. We claim that we can
set Ib,σ := σ ∪ Ib1,σ1 ∪ . . . ∪ Ibr ,σr .

We first show that Ib,σ defined this way is independent. Assume
this is not true, then Ib,σ contains x, y that are in one common edge
e in H[Vb]. But then x, y do not lie both in χ, because Ib,σ ∩ χ = σ

and σ is independent. By induction x, y do not lie in one Vbi either.
Assume that x ∈ χ and y ∈ Vbi for some i. Then certainly x /∈ Vbi

and y /∈ χ. But the edge e must lie in one block χ′. Because of the
connectivity condition for y, the guarded block (λ′, χ′) must lie in
the subtree with root bi, which contradicts x ∈ e. Finally, assume that
x ∈ Vbi and y ∈ Vbj for i 6= j and x, y /∈ χ. Then x and y cannot be
adjacent because of the connectivity condition. This shows that Ib,σ is
indeed independent.

4.2 general hypergraphs 57

Now assume that Ib,σ is not of maximum size and let J ⊆ Vb be an
independent set with |J| > |Ib,σ| and J ∩ χ = σ. Because J and Ib,σ
are fixed to σ on χ there must be a bi such that |J ∩Vbi | > |Ibi ,σi |. This
contradicts the choice of σi. So Ib,σ is indeed of maximum size.

Because each block has at most k|V|k independent sets, all compu-
tations can be done in time k|V|O(k). �

4.2.2 Parameterized complexity

While the algorithm in the last section is nice in that it is a poly-
nomial time algorithm for fixed k, it is somewhat unsatisfying for
some decomposition techniques: If we can compute the decomposi-
tion quickly, we would ideally want to be able to compute the S-star
size efficiently, too. Naturally we cannot expect a polynomial time
algorithm independent of the width k for any of the decomposition
techniques we consider, because computing maximum independent
sets is NP-hard. Instead, we can hope for independent set to be at
least fixed-parameter tractable with respect to k. We will show that
for general hypertree width even this is unlikely, because indepen-
dent set parameterized by generalized hypertree width is W[1]-hard.
More positively, we will show that computing maximum indepen-
dent sets is fixed-parameter tractable for some other decomposition
techniques, in particular tree decompositions and hingetree decom-
positions.

Lemma 4.2.3. Computing maximum independent sets on hypergraphs is
W[1]-hard parameterized by generalized hypertree width.

Proof. We will show a parameterized many-one reduction from the
problem p-IndependentSet defined as follows:
p-IndependentSet

Input: a graph G, k ∈N.
Parameter: k.
Problem: Decide if G has an independent set of size k.

Because p-IndependentSet is well known to be W[1]-hard, this suf-
fices to establish W[1]-hardness of independent sets on hypergraphs
parameterized by generalized hypertree width.

So let G = (V, E) be a graph and let k be a positive integer. We
construct a hypergraph H = (V ′, E′) in the following way: For each
vertex v the hypergraphH has k vertices v1, . . . , vk. For i = 1, . . . , k we
have an edge Vi := {vi | v ∈ V} in E′. Furthermore, for each v ∈ V
we add an edge Hv := {vi | i ∈ [k]}. Finally we add the edge sets
Eij := {viuj | uv ∈ E} for i, j ∈ [k]. H has no other vertices or edges.
The construction is illustrated in Figure 14.

We claim that G has an independent set of size k if and only if
H has an independent set of size k. Indeed, if G has an indepen-
dent set v1, . . . , vk, then v1

1, . . . vk
k is easily seen to be an independent

58 computing s-star size

Ha Hb Hc Hd He Hf

V1

V2

V3

V4

b

c d

ef

a

Figure 14: We illustrate the construction for Lemma 4.2.3 by an example. A
graph G on the left with the associated hypergraph H for k = 4
on the right. To keep the illustration more transparent the edge
sets Eij are not shown except for E1,2 and E2,1.

set of size k in H. Now assume that H has an independent set I of
size k. Then for each v ∈ I we can choose a vertex π(v) ∈ V such
that v ∈ Hπ(v). Furthermore for distinct v, u ∈ I the corresponding
vertices π(v), π(u) have to be distinct, too, so π(I) ⊆ V has size k.
Finally, we claim that π(I) is independent in G. Assume this is not
true, then there are vertices π(v), π(u) such that π(v)π(u) ∈ E. But
then vu ∈ E′ by construction which is a contradiction. So, indeed G
has an independent set of size k if and only if H has one.

From Observation 2.3.23 we get that H has generalized hypertree-
width at most k, because V1, . . . , Vk cover V ′.

Observing that the construction of H from G can be done in time
polynomial in |V| and k completes the proof. �

We start our fixed-parameter tractability results with an easy obser-
vation.

Proposition 4.2.4. Given a hypergraphH computing a maximum indepen-
dent set in H is fixed parameter tractable parameterized by the treewidth
of H.

This can be seen either by applying an optimization version of
Courcelle’s Theorem (see Section 11.2) or by straightforward dynamic
programming. Interestingly, one can show the same result also for
bounded hingetree width, which is a decomposition technique in
which the blocks are of unbounded size. This unbounded size makes
the dynamic programming in the proof far more involved than for
treewidth.

Proposition 4.2.5. Given a hypergraph H = (V, E) of hingetree width k,
a maximum independent set in H can be computed in time k2k2 |V|O(1). It
follows that independent set is fixed parameter tractable parameterized by
hingetree width.

4.2 general hypergraphs 59

Proof. First observe that minimum width hingetree decompositions
can be computed in polynomial time by Lemma 2.3.32, so we simply
assume that a decomposition is given in the rest of the proof.

The proof has some similarity with that of Proposition 4.2.2, so we
use some notation from there. For guarded block (λ, χ) we will again
compute maximum independent sets containing prescribed vertices.
The difference is, that we can take these prescribed sets to be of size 1:
because of the hingetree condition, only one vertex of a block may
be reused in any independent set in the parent. The second idea is
that we can use equivalence classes of vertices in the computation of
independent sets in the considered guarded blocks, which limits the
number of independent sets we have to consider. We now describe
the computation in detail.

Let Ξ = (T , (λt)t∈T, (χt)t∈T) be a hingetree decomposition of H of
width k. Let b = (λ, χ) be a guarded block of Ξ and let b′ = (λ′, χ′)

be its parent. As before, let Tb be the subtree of T with b as its root
and Vb := χ(Tb). Set Hb := (Vb, Eb) with Eb :=

⋃
λ∗ with the union

being over all guarded blocks in Tb. The main idea is to iteratively
compute, for all vertices v ∈ χ′ ∩ χ, a maximum independent set
Jv,b in Hb = (Vb, Eb) containing v. Furthermore, we also compute an
independent set J∅,b that contains no vertices of χ′ ∩ χ. Note that,
since χ ⊆ ⋃

e∈λ e, there are no isolated vertices in χ and the size of a
maximum independent set is bounded by k in each block.

For a node b = (λ, χ), we organize the vertices in χ into at most 2k

equivalence classes by defining v and u to be equivalent if they lie in
the same subset of edges of λ. The equivalence class of v is denoted
by c(v). For each class, a representant is fixed. We denote by v̄, the
representant of the equivalence class of v and by χ̄ ⊆ χ, the restriction
of χ on these at most 2k representants.

Let first b be a leaf. We first compute independent sets on χ̄. Ob-
serve that the independent sets are invariant under the choice of rep-
resentants. For each equivalence class c(v), we compute Jv̄,b ⊆ χ̄ as a
maximum independent set containing v̄. Computing the classes and
a choice of maximum independent sets containing each v̄ can be done
in time k2k2

because independent sets cannot be bigger than k. Clearly,
Jv,b, a maximum independent set containing v, can be easily com-
puted from the set Jv̄,b. Thus, one can compute all the Jv,b in time
k2k2

n. The computation of J∅,b can be done on representants, too, by
simply excluding the vertices from χ′ ∩ χ.

Let b now be an inner vertex and b1, b2, ..., bm be its children with
bi = (λi, χi), i ∈ [m]. We again consider equivalence classes on χ. Fix
v ∈ χ and compute the list Lv̄,b of all independent sets σ ⊆ χ̄ con-
taining v̄. Fix now σ ∈ Lv̄,b. We first compute a set Jσ

v,b as a maximum
independent set of Hb containing v and whose vertices in χ have the
representants σ. We will distinguish for a given vertex ū ∈ σ if it is the
representant of a vertex belonging to the block of some (or several)

60 computing s-star size

children of b or if it represents vertices of χ\(⋃m
i=1 χi) only. Therefore

we partition σ into σ′, σ′′ accordingly:

• σ := σ′ ∪ σ′′

• σ′ := χ̄ ∩ {ū | u ∈ ⋃m
i=1 χi}.

• σ′′ := χ̄\{ū | u ∈ ⋃m
i=1 χi}

Set σ′ := {ū1, ..., ūh} with h ≤ m. Let us examine the consequences
of T being a hingetree decomposition. We have that, for all i ∈ [m],
there exists ei ∈ λ, such that χ ∩ χi ⊆ ei. Thus, since σ is an indepen-
dent set in χ̄ ⊆ χ, at most one vertex in σ′ is a representant of a vertex
in χi. Thus

∀u 6= u′ ∈ σ : χi ∩ c(u) = ∅ ∨ χi ∩ c(u′) = ∅. (1)

We denote by Si = {j | c(ui)∩ χj 6= ∅} and by S = [m]\⋃ Si. By (1)
the sets S1, ..., Sh, S form a partition of [m]. To construct Jσ

v,b, we now
determine for each i ≤ h, which vertex u of c(ui) can contribute the
most, by taking the union of all the maximum independent sets Ju,bj ,
j ∈ Si, it induces at the level of the children of b.

For each fixed u ∈ c(ui), let

Ii,u = {u} ∪
⋃
j∈Si

Ju,bj ,

where we set Ju,bj := J∅,bj if u /∈ χj. Let then Ii = Ii,u for some u ∈ c(ui)

for which the size of Ii,u is maximal.
The set Jσ

v,b is now obtained as follows depending on whether v̄ ∈
σ′′ or v̄ ∈ σ′. If v̄ ∈ σ′′, we claim that Jσ

v,b can be chosen as

Jσ
v,b := {v} ∪ (σ′′\{v̄}) ∪

h⋃
i=1

Ii ∪
⋃
i∈S

J∅,bi .

If v̄ ∈ σ′, say v̄ = u1, we claim that Jσ
v,b can be chosen as

Jσ
v,b := σ′′ ∪

⋃
j∈S1:v∈χj

Jv,bj ∪
⋃

j∈S1:v/∈χj

J∅,bj ∪
h⋃

i=2

Ii ∪
⋃
i∈S

J∅,bi .

The set Jv,b is taken as one of the sets Jσ
v,b of maximal size for a

σ ∈ Lv,b. To compute J∅,b, the arguments are similar.
We first show that all Jv,b are indeed independent sets inHb. Clearly,

it is enough to prove this for any Jσ
v,b. There will be no reason to

distinguish whether v̄ ∈ σ′′ or v̄ ∈ σ′, because our arguments will
apply to all Jσ

v,b independent of the choice of a distinguished element
v. We will make extensive use of the two following facts.

4.2 general hypergraphs 61

• Let j, j′ ∈ [m] and I ⊆ Vbj , I′ ⊆ Vbj′
independent sets of Hbj and

Hb′j
respectively. By the connectivity condition for tree decom-

position we have
I ∩ I′ ⊆ χj ∩ χj′ ∩ χ.

This permits to investigate the intersection of two independent
sets I, I′ by looking at their restriction on χ.

• Let now I ⊆ Vbj be an independent set of Hbj . Then, I remains
an independent set in Hb. Indeed, suppose there is a e ∈ Eb\Ebj

containing two vertices y1, y2 ∈ I. Since all edges must belong
to a guard, there exists a node b∗ = (λ∗, χ∗) such that e ∈ λ∗.
Then, since in a hingetree decomposition we have χ∗ =

⋃
λ∗,

then {y1, y2} ⊆ e ⊆ χ∗. But then, by the connectivity condition
it follows that {y1, y2} ⊆ χ. Hence, by the intersection property
of hingetree decomposition, there exists ej ∈ χj such that

{y1, y2} ⊆ χ ∩ χj ∩ ej

which implies that y1 and y2 are adjacent in Hbj . Contradiction.

We now start the proof that Jσ
v,b is independent incrementally. Let

i ∈ [h], u ∈ c(ui) and j ∈ Si and consider the set I := Ju,bj . By induc-
tion, the set I is independent in Hbj . By the hingetree condition, there
exists ej ∈ λj such that χ∩ χj ⊆ ej. By the connectivity condition, this
implies χ∩ I ⊆ ej. Then, since I is an independent set, no two vertices
of χ can belong to I i.e., |χ ∩ I| ≤ 1. The connectivity condition also
implies that, for j′ 6= j, Vbj′

∩ I ⊆ χ ∩ χj, hence |Vbj′
∩ I| ≤ 1 and I

is an independent set of Hb. Finally, the set Ii =
⋃

j∈Si
Ju,bj is also an

independent set of Hb, since for any distinct j, j′ ∈ Si:

Ju,bj ∩ Ju,bj′
⊆ χj ∩ χj′ ∩ χ ⊆ ej.

Hence Ju,bj ∩ Ju,bj′
contains at most one vertex (which is in χ and

could then only be u).
Let now i, i′ ∈ [m] be distinct. By the arguments above, Ii (resp. Ii′)

contains at most one element u (resp. u′) such that u ∈ c(ui) (resp.
u′ ∈ c(ui′)). By Equation 1, we have that the two classes are distinct
and that ui 6= ui′ . But ui, ui′ ∈ σ and σ is independent in χ. Hence,
ui, ui′ cannot be adjacent in Hb. Consequently,

h⋃
i=1

Ii

is an independent set in Hb.
Let j ∈ S. J∅,bj is independent in Hbj and J∅,bj ⊆ Vbj\χ. Hence, J∅,bj

is independent in Hb. This also implies that, given j′ ∈ [m] distinct
from j, J∅,bj ∩Vbj′

= ∅. Thus,

h⋃
i=1

Ii ∪
⋃
i∈S

J∅,bi .

62 computing s-star size

is independent in Hb.
Finally, by construction, for all i ∈ [h], Ii ∩χ = {u}with ū = ūi ∈ σ′.

Also σ = σ′ ∪ σ′′ is independent in χ hence in Hb. No vertices y1 ∈ Ii
and y2 ∈ σ′′ can be adjacent because, again, this would imply that
{y1, y2} ⊆ χ and contradict the fact that ȳ1, ȳ2 are independent in σ.
Thus Jσ

v,b is independent.

We now prove that Jv,b is of maximum size. Observe that it suffices
to show this again for each Jσ

v,b. Each maximum independent set J
of Hb that contains v and whose vertices in χ have exactly the repre-
sentants σ can be expressed as τ ∪ J1 ∪ J2 ∪ ... ∪ Jm. Here τ ⊆ χ is an
independent set of b containing v and whose representants are σ. Fur-
thermore, Ji is an independent set of Hb that contains only vertices
of Vbi . The set Ji may only contain one vertex ui from χ ∩ χi. But then
exchanging Ji for Jui ,bi may only increase the size of the independent
set, so we can assume that I has the form τ ∪ Ju1,bi ∪ Ju2,b2 ∪ . . .∪ Jum,bm

where ui may also stand for ∅.
Assume now that Jσ

v,b is not maximum, i.e., there is an independent
set J containing v whose vertices in χ have the representants σ and J
is bigger than Jσ

v,b. Then one of four following things must happen:

• There is an i such that v ∈ χi and J ∩Vbi is bigger than Jv,bi . But
this case cannot occur by induction.

• v = u1 and there is a j ∈ S1 such that v /∈ χj and |J ∩ Vbj | >
|J∅,bj |. By induction we know that J∅,bj is optimal under all inde-
pendent sets of Hbj not containing any vertex of χj ∩ χ, so there
must be a vertex u ∈ J ∩ χ ∩ χj. Since J is independent, v and
u share no edge in λ and then v̄ 6= ū. Since j ∈ S1, it holds that
c(v) ∩ χj 6= ∅ and by Equation 1, c(u) ∩ χj = ∅. Contradiction.

• There is an i ∈ S such that J ∩ Vbi is bigger than J∅,bi . But from
i ∈ S it follows by definition that χ∩ χi ∩ J = ∅, so this case can
not occur by induction, either.

• There is an i ∈ [h] such that |J ∩ (
⋃

j∈Si
Vj)| > |Ii|. We claim

that (
⋃

j∈Si
χj) ∩ χ ∩ J contains only one vertex. Assume there

are two such vertices x and y. By definition, x̄, ȳ ∈ τ̄. Since J is
independent, x̄ and ȳ are not adjacent in χ̄ and x̄ 6= ȳ. At least
one of these, say y, must be in c(ui), because ūi ∈ τ̄ by definition.
Let x ∈ Vj′ with j′ ∈ Si, then there is a vertex w ∈ c(ui) = c(y)
in χj′ ∩ χ ⊆ ej by definition of Si. But then x̄ and ȳ are adjacent
in χ̄ which is a contradiction.

So there is exactly one vertex u in (
⋃

j∈Si
χj) ∩ χ ∩ J. But then

|J ∩ (
⋃

j∈Si
Vj)| > Ii,u. Thus either there must be a j ∈ Si with

u ∈ Vj such that |J ∩ Vj| > |Ju,bj | or there must be a j ∈ Si with
u /∈ Vj such that |J ∩Vj| > |J∅,bj |. The former clearly contradicts
the optimality of Ju,bj , while the latter leads to a contradiction
completely analogously to the second item above.

4.2 general hypergraphs 63

Because only k2k2
n2 sets have to be considered for each guarded

block, this results in an algorithm with runtime k2k2 |V|O(1). �

4.2.3 Approximation

We have seen that computing maximum independent sets of hyper-
graphs with decompositions of width k can be done in polynomial
time for fixed width k and that for some decompositions it is even
fixed parameter tractable with respect to k. Still, the exponential in-
fluence of k is troubling. In this section we will show that we can get
rid of it if we are willing to sacrifice the optimality of the solution.
We give a polynomial time k-approximation algorithm for comput-
ing maximum independent sets of graphs with generalized hypertree
width k assuming that a decomposition is given. We start by formu-
lating a lemma.

Lemma 4.2.6. Let H = (V, E) be a hypergraph with a generalized hyper-
tree decomposition Ξ = (T , (λt)t∈T, (χt)t∈T) of width k. Let H′ = (V, E′)
where E′ := {χt | t ∈ T}. Let ` be the size of a maximum independent set
in H and let `′ be the size of a maximum independent set in H′. Then

`

k
≤ `′ ≤ `.

Before we prove Lemma 4.2.6 we will show how to get the approx-
imation algorithm from it.

Observation 4.2.7. Every independent set of H′ is also an independent set
of H.

Proof. Each pair of independent vertices x, y in H′ is by definition in
different blocks χt inH. For each edge e ∈ E there must (by definition
of generalized hypertree decompositions) be a block χ such than e ⊆
χ. Thus no edge e ∈ E can contain both x and y, so x and y are
independent in H as well. �

Corollary 4.2.8. There is a polynomial time algorithm that given a hyper-
graph H and a generalized hypertree decomposition of width k computes an
independent set of size ` of H such that |I| ≥ `

k where ` is the size of a
maximum independent set of H.

Proof. Observe that H′ is acyclic by Lemma 2.3.27. By Lemma 4.1.1,
we compute in polynomial time a maximum independent set I of
H′ whose size by Lemma 4.2.6 only differs by a factor 1

k from `. By
Observation 4.2.7, we know that I is also an independent set of H. �

Proof of Lemma 4.2.6. The second inequality follows directly from Ob-
servation 4.2.7.

64 computing s-star size

For the first inequality consider a maximum independent set I ofH.
Observe that a set I′ is an independent set of H′ if and only if it is
an independent set of its primal graph H′P, so it suffices to show the
same result for H′P.

Claim 4.2.9. The graph H′P[I] has treewidth at most k− 1.

Proof. First observe that vertices v that appear in no edge e ∈ E
change neither the treewidth nor the generalized hypertree width of
a graph or hypergraph. Thus we assume that every vertex v ∈ V is in
at least one edge e ∈ E.

We construct a tree decomposition (T ′, (χ′t)t∈T′) of H′P[I] from Ξ

as follows: We set T ′ := T [T′] where T′ := {t ∈ T | χt ∩ I 6= ∅}.
Furthermore, χ′t := χt ∩ I for t ∈ T′. For every v ∈ I there is an edge
e ∈ E and t ∈ T such that v ∈ e ⊆ χt and thus v ∈ χ′t. It follows
that the bags χ′t cover I. Moreover, the connectivity condition for I
is satisfied, because it is satisfied for Ξ. Finally, for each edge uv in
H′P[I] there is a guarded block (λt, χt) such that u, v ∈ χt and thus
u, v ∈ χ′t. Hence, (T ′, (χ′t)t∈T′) is indeed a tree decomposition.

Thus we only have to show |χ′t| ≤ k. To see this, observe that for
each t the bag χ′t ⊆ χt is covered by λt. But the vertices in χ′t ⊆ I
are independent in H and thus each e ∈ λt can contain only a single
vertex from χ′t. Thus |χ′t| ≤ |λt| ≤ k. �

Claim 4.2.10. The graphH′P[I] has an independent set I′ of size at least |I|k .

Proof. From Claim 4.2.9 it follows with Lemma 2.3.6 that H′[I] and
all of its induced subgraphs have a vertex of degree at most k. We
construct I′ iteratively by choosing a vertex of minimum degree and
deleting it and its neighbors from the graph. In each round we delete
at most k vertices, so we can choose a vertex in at least |I|k rounds.
Obviously the chosen vertices are independent. �

Every independent set of H′P[I] is also an independent set of H′P
which completes the proof of Lemma 4.2.6. �

5
Q U A N T I F I E D S TA R S I Z E I S S U F F I C I E N T A N D
N E C E S S A RY F O R E F F I C I E N T C O U N T I N G

5.1 bounded quantified star size is necessary

In this section we will show that bounded quantified star size is a
necessary restriction for tractable #CQ: Under the assumption FPT 6=
#W[1], all classes G of S-hypergraphs for which p-#CQ is fixed-para-
meter tractable must have bounded quantified star size. As polyno-
mial time tractability trivially implies fixed-parameter tractability, it
follows that bounded quantified star size must also be necessary for
classes G of S-hypergraphs that allow polynomial time algorithms.

Let G be a class of S-hypergraphs. Remember that by #CQ on G
we denote the restriction of #CQ to instances whose associated S-
hypergraph is in G. Analogously, by p-#CQ on G we denote the restric-
tion of p-#CQ to instances whose associated S-hypergraph is in G.

We will use the fact that #CQ is already hard for very restricted
S-hypergraphs, namely those of the queries from the class Cstar from
Lemma 3.1.4.

Theorem 5.1.1. Assume FPT 6= #W[1], and let G be a recursively enu-
merable class of S-hypergraphs. If p-#CQ is fixed-parameter tractable for G,
then G is of bounded S-star size.

Before proving Theorem 5.1.1, let us take some time to discuss
its assumptions, because we will see these and similar assumptions
throughout the rest of this thesis. First of all, the reader might feel
that it would be more satisfying to prove a version of this theorem
not under the assumption FPT 6= #W[1] from parameterized com-
plexity but instead to prove it based on a more standard assumption
like FP 6= #P. Clearly, the statement would then have to change from
“fixed-parameter tractable” to “polynomial time tractable”, but this
could still be preferable. Unfortunately, it is unlikely that such a ver-
sion of Theorem 5.1.1 can be proved. We will see in Section 5.3 that
assuming FP 6= #P there are classes of S-graphs on which #CQ is nei-
ther in FP nor #P-complete. Thus is seems unlikely that the theory of
#P-completeness suffices to identify the classes of S-hypergraphs on
which #CQ is tractable.

Furthermore, let us remark that if the reader feels uncomfortable
with parameterized complexity, he can safely exchange the assump-
tion FPT 6= #W[1] against the so-called exponential time hypothesis
which is the following conjecture.

65

66 quantified star size is sufficient and necessary

Conjecture 1 (Exponential time hypothesis). 3-SAT cannot be solved
in time 2o(n) where n is the number of variables of the input.

The exponential time hypothesis implies FPT 6= W[1] [DF99, Chap-
ter 17] and thus also FPT 6= #W[1]. Hence Theorem 5.1.1 and several
other results of this thesis could also be formulated with the assump-
tion that the exponential time hypothesis is true if the reader prefers
an assumption from more classical complexity theory.

The other assumption that the reader might feel uncomfortable
with is the recursive enumerability of G. We will see that in the proof
it will play an important role, but still in the formulation of the theo-
rem it looks slightly out of place. One way of getting rid of this con-
dition is assuming a non-uniform version of FPT 6= #W[1] in the for-
mulation of the theorem. Also we argue that recursive enumerability
is not a strong restriction of G. After all, from a practical perspective
non-recursively enumerable classes of hypergraphs (and thus queries)
are not interesting at all. Assume that there is such a class G that al-
lows fixed-parameter tractable counting but has unbounded S-star
size. Then each recursively enumerable class G ′ of G would by Theo-
rem 5.1.1 be of bounded S-star size. Thus, the unbounded S-star size
of G would crucially depend on the uncomputability, so it can safely
be considered as a degenerate case of no practical interest.

We will use the following lemma to prove Theorem 5.1.1.

Lemma 5.1.2. Let G be a recursively enumerable class of S-hypergraphs of
unbounded S-star size. Then p-#CQ on G is #W[1]-hard.

Let Gstar be the class of S-graphs (Gn, Sn) where Gn is the star with n
leaves and Sn consists of all vertices but the center of Gn. Note that the
S-hypergraphs of the queries Cstar from Lemma 3.1.4 are the S-graphs
in Gstar (see Example 3.2.7). Since by Lemma 3.1.4 #CQ restricted to
instances with queries in Cstar is #W[1]-hard, it follows directly that
#CQ on Gstar is #W[1]-hard. The idea of the proof of Lemma 5.1.2 is
to show that Gstar can be embedded in an appropriate way into any
class G of S-hypergraphs of unbounded S-star size to show that #CQ
on G is #W[1]-hard.

We feel that it is more transparent to show Lemma 5.1.2 for the re-
stricted case of S-connected S-hypergraphs and to sketch afterwards
how to generalize the proof to the general case. Remember that an
S-hypergraph (H, S) is called S-connected if for every pair of vertices
x, y there is a path x = v1, v2, . . . , vk−1, vk = y such that vi /∈ S for
i /∈ {1, k}.

Lemma 5.1.3. Let G be a recursively enumerable class of S-hypergraphs of
unbounded S-star size. Then p-#CQ on G is #W[1]-hard.

Proof of Lemma 5.1.3. Let G be a class of S-connected S-hypergraphs
of unbounded S-star size.

5.1 bounded quantified star size is necessary 67

Remember that we defined Cstar := {φstar,n | n ∈ N} with φstar,n =

∃z
∧

i∈[n]Ri(z, yi) (see Lemma 3.1.4). We will show a parameterized
parsimonious reduction from p-#CQ, restricted to instances that have
queries in Cstar, to p-#CQ on G. As p-#CQ on the former class of
instances is #W[1]-hard by Lemma 3.1.4, the claim will follow.

Let Φ = (A, φ) be an instance of #CQ restricted to queries in Cstar,
i.e., φ has the form φ = ∃z

∧k
i=1Ri(z, yi). Because G is recursively enu-

merable and of unbounded S-star size, there is a computable function
g : N→N such that for given k ∈N one can in time g(k) compute an
S-connected S-hypergraph (H, S) ∈ G of S-star size at least k. We will
embed Φ into H = (V, E) to construct a #CQ-instance Ψ := (B, ψ)

of size at most g(k)‖Φ‖2. The instance Ψ will have the S-hypergraph
(H, S) and the same domain B := A as Φ.

For each e ∈ E let ψe be an atom with the relation symbol Ee and
the set of variables var(ψe) = e. Let

ψ′ :=
∧
e∈E

ψe,

then ψ is the query we get from ψ′ by existentially quantifying all
variables in V \ S. This completes the construction of the query ψ.

We now construct the structure B. Let Y = {y1, . . . , yk} ⊆ S be a set
of independent vertices. Such a set Y must exist, because (H, S) has
S-star size at least k. Let d be an arbitrary but fixed element of A. We
define EBe depending on the vertices in e as follows:

Case 1: Let first e ∈ E be an edge that contains yi for some i ∈ [k].
Observe that yi is uniquely determined, because no two of the ver-
tices yi share an edge. The atom ψe has the relation symbol Ee and
as variables the vertices of e. We assume that the order of the vari-
ables in ψe is as follows: yi is the first variable, followed by the other
variables in e ∩ S and after those the variables in e \ S. We define
EBe := {(v2, d, . . . , d, v1, . . . , v1) | (v1, v2) ∈ RAi }, where RAi is the rela-
tion of Ri in A. Observe that this forces all variables in (e ∩ S) \ {yi}
to be equal to the value d in satisfying assignments, while the vari-
ables in e \ S must all have a common value v1. Furthermore, because
yi is uniquely determined, the relation EBe is well defined.

Case 2: Let now e ∈ E with e∩Y = ∅. We assume that the variables
in ψe are ordered such that all variables in S ∩ e appear before those
in e \ S. Then we define EBe := {(d, . . . , d, v1, . . . , v1) | v1 ∈ A}. Again
in the satisfying assignments all variables in e ∩ S are forced to be
equal to d, while the variables in e \ S can take an arbitrary but equal
value.

This completes the construction of B and thus that of Ψ = (B, ψ).

Claim 5.1.4. |φ(A)| = |ψ(B)|.

Proof. Let φ′, resp., ψ′ be the quantifier free queries we get from φ,
resp., ψ by deleting all quantifiers.

68 quantified star size is sufficient and necessary

We construct a function B that to an assignment from φ′(A) con-
structs an assignment B(a) := a′ with a′ : V → B. We define

a′(x) :=


a(x), x ∈ Y,

d, x ∈ S \Y,

a(z), x ∈ V \Y

.

We claim that B is a bijection from φ(A) to ψ(B). It is easily seen
from the construction of ψ that a′ satisfies all atoms of ψ and thus
a′ ∈ ψ′(B). Furthermore, B is obviously injective. Thus it only re-
mains to prove that B is surjective. To see this, consider b′ ∈ ψ(B).
By construction of Ψ, we have b′(x) = d for all x ∈ S \ Y. Because H
is S-connected, we have that H[V \ S] is connected. From the con-
struction of Ψ it follows by an easy induction that there is a v1 ∈ A
such that b′(x) = v1 for all x ∈ V \ S. We construct an assignment
b : var(φ) → A by b(x) := b′(x) for x ∈ {y1, . . . , yk} and b(z) := v1.
Obviously, B(b) = b′. Moreover, from the construction of Ψ is follows
that b ∈ φ′(A). Thus B is a bijection from φ′(A) to ψ′(B).

We now construct a mapping B′ from φ(A) to ψ(B) as follows: For
a ∈ φ′(A) we map a|free(φ) to B(a)|free(ψ). Since B is a bijection, it
follows that B′ is a bijection as well. This proves the claim. �

Obviously, the S-hypergraph associated to ψ is (H, S). Moreover,
by construction we have |ψ| ≤ g(k) and Ψ can be constructed in time
at most g(k)‖Φ‖2, because H has size at most g(k) and the size of
the relations is bounded by |A|2. Thus, with Claim 5.1.4, the construc-
tion of Ψ form Φ is a parameterized parsimonious reduction. This
completes the proof of Lemma 5.1.3 �

We now sketch how to extend Lemma 5.1.3 from S-connected S-
hypergraphs to general S-hypergraphs in a straightforward way.

Proof of Lemma 5.1.2 (Sketch). The proof follows the same ideas as that
of Lemma 5.1.3: We first compute an S-hypergraph H in G of S-star
size at least k. Then we choose an S-component H′ of S-star size at
least k in G. We construct the relations EBe in such a way that in every
satisfying assignment every variable not in H is forced to the value d.
For all other variables we construct the relations as in the proof of
Lemma 5.1.3. SinceH′ is S-connected by Observation 3.2.16, the same
arguments as in the proof of Lemma 5.1.3 show that the construction
is a parsimonious parameterized reduction. �

Proof of Theorem 5.1.1. Assume that p-#CQ on G is fixed-parameter
tractable. By Lemma 5.1.2 we directly get FPT = #W[1] which con-
tradicts the assumption. �

5.2 the complexity of counting 69

5.2 the complexity of counting

In this section we show that the decomposition techniques introduced
in Section 2.3 lead to efficient counting when combined with bounded
quantified star size. We proceed with the following rather technical
lemma.

Lemma 5.2.1. There is an algorithm that, given a CQ-instance Φ = (A, φ)

of quantified starsize ` and a generalized hypertree decomposition Ξ = (T ,
(λt)t∈T, (χt)t∈T) of Φ of width k, constructs a CQ-instance Ψ = (B, ψ) in
time ‖Φ‖p(k,`) for a fixed polynomial p such that

• Φ and Ψ are solution equivalent,

• Ψ is acyclic, and

• ψ is quantifier free.

Proof. Given Φ = (A, φ), we construct Ψ in several steps.
Let H = (V, E) be the hypergraph of φ. Let V1, . . . , Vm be the vertex

sets of the connected components ofH[V \ S] and let V ′1, . . . , V ′m be the
vertex sets of the corresponding S-components of H. Clearly, we have
Vi ⊆ V ′i and V ′i \Vi = V ′i ∩ S =: Si. Let Φi be the CQ-instance whose
query φi is obtained by restricting all atoms of φ to the variables in
V ′i and whose structure Ai is obtained by projecting all relations of
A accordingly. The associated hypergraph of φi is H[V ′i]. Moreover,
H[V ′i] has a generalized hypertree decomposition Ξi of width at most
k with tree a Ti that is a subtree of T (see Observation 3.2.2).

Now fix i. To Φi we construct a solution equivalent ACQ-instance
Φ′i = (A′i, φ′i) as in the proof of Lemma 2.3.28: For each t ∈ T we
construct an atom φt in the variables χt. The associated relation is
given by

πχt

 ./
φ′∈atom(φ) :
var(φ′)∈λt

φ′(Ai)

 ./

 ./
φ′∈atom(φi) :

var(φ)⊆χt

φ′(Ai)

 ,

i.e., by taking the natural join of the relations belonging to the atoms
of the guard λt projected to χt and all relations of the atoms in φi
whose variables lie in χt. The decomposition Ξi has width at most k
so this construction can be done in time ‖Φ‖O(k) as seen in the proof
of Lemma 2.3.28. The query φ′i of Φ′i is defined as the conjunction of
the φt over all t ∈ T and with the same quantified variables as φ. By
Lemma 2.3.28, Φi and Φ′i are solution equivalent, we have ‖Φ′i‖ ≤
‖Φi‖O(k) and φ′i is acyclic.

Let Hi be the associated hypergraph of φ′i , then (Hi, Si) has only
one single Si-component, because all the vertices in Vi are connected
in H and thus also in Hi.

70 quantified star size is sufficient and necessary

We claim that the Si-star size of Hi is at most the Si-star size of
H[V ′i]. To see this, consider two independent vertices u, v in Hi. The
edges e of Hi are equal to the blocks χt of Ξi. Because u and v are in-
dependent in Hi, they do not appear in a common block χt in Ξi. But
then u and v cannot lie in one common edge in H[Vi], because every
edge in H[V ′i] is contained in a block χt by definition of generalized
hypertree decompositions. So u and v are independent in H[V ′i] as
well. Thus every independent set in Hi is also independent in H[V ′i].
So the Si-star size of Hi indeed is at most the Si-star size of H[V ′i]
which is at most ` by assumption.

Thus by Lemma 4.1.1 the vertices in Si can be covered by at most `
edges e1, . . . , e` in Hi which we can compute in polynomial time. Let
α1, . . . , α` be the atoms corresponding to the edges e1, . . . , e`.

We construct a new atomic formula φ′′i in the variables Si and an
associated relation R′′i as follows: For each combination t1, . . . , t` of
compatible tuples in α1(A′i), . . . , α`(A′i) let t be the single tuple in
πSi({t1} .// {t`}). We fix the free variables in φ′i to the constants
prescribed by t. The result is a CQ-instance Φt with the associated
hypergraph H[Vi]. By Observation 3.2.1 Φt is acyclic and can thus be
solved in polynomial time with Theorem 2.3.19. If Φt has a solution,
add t to the relation R′′i . This completes the construction of R′′i .

Let A′′i be the structure containing only the relation R′′i . By con-
struction, (A′′i , ϕ′′i) is solution equivalent to Φ′i and and thus also
to Φi. Observe that the instances Φt can be solved in polynomial time
by Theorem 2.3.19. Moreover, since ‖Φ′i‖ ≤ ‖Φ‖O(k), only ‖Φ‖O(k`)

tuples t need to be considered. Thus Φ′′i can be constructed in time
‖Φi‖p(k,`) for a polynomial p.

We now return to the original instance Φ and eliminate the quanti-
fied variables in the query φ. To do so, we add the atom φ′′i for i ∈ [m]

and delete all atoms that contain any quantified variable. Moreover,
we add the relation R′′i to the structure A. We call the resulting #CQ
instance Φ′′ = (A′′, φ′′). The overall runtime of the construction is at
most ‖Φ‖p(k,`). Also Φ′′ is solution equivalent to Φ, because (A′′i , φ′′i)

is solution equivalent to Φ′i.
We claim that Φ′′ has generalized hypertree width at most k. To

show this we construct a generalized hypertree decomposition Ξ′′

of φ′′ by doing the following: For each t ∈ T with χt ∩ Vi 6= ∅ we
construct a guarded block (λ′t, χ′t) by deleting all edges e with e∩Vi 6=
∅ from λt and adding the edge Si for φ′′i . Furthermore we set χ′t =

(χt \ Vi) ∪ Si. It is easy to see that the result is indeed a generalized
hypertree decomposition of φ′′ of width at most k.

Finally, we construct an ACQ-instance Ψ := (B, ψ) equivalent to Φ′′

with Lemma 2.3.28. �

We now directly get the desired counting result:

Corollary 5.2.2. #CQ on instances Φ of generalized hypertree width k and
quantified star size ` can be solved in time ‖Φ‖p(k,l) for a polynomial p.

5.2 the complexity of counting 71

Proof. Use Theorem 2.3.25 to construct a generalized hypertree de-
composition of width O(`), then apply Lemma 5.2.1 and count with
Theorem 3.1.2. �

We state also a path version of Lemma 5.2.1 which we will use in
Chapter 10.

Lemma 5.2.3. There is an algorithm that, given a CQ-instance Φ = (A, φ)

of quantified starsize ` and a path decomposition Ξ = (T , (χt)t∈T) of Φ of
width k, constructs a CQ-instance Ψ = (B, ψ) in time ‖Φ‖p(k,`) for a fixed
polynomial p such that

• Φ and Ψ are solution equivalent,

• Ψ is acyclic,

• ψ is quantifier free.

Furthermore, the algorithm constructs a join tree (T , (λt)t∈T) of Ψ such
that T is a path.

Proof (sketch). The approach is the same as for Lemma 5.2.1: We con-
struct instances (A′′i , φ′′i) where φ′′i is a single atom as before. Then
we substitute all atoms that contain a quantified variable by the corre-
sponding φ′′i . This yields a solution equivalent instance whose path-
width is at most k`. Finally, we turn this instance into an acyclic in-
stance whose join tree is a path as in Lemma 2.3.28. �

Combining Corollary 5.2.2 with Theorem 5.1.1 yields a characteri-
zation of classes of S-hypergraphs of bounded generalized hypertree
width that allow efficient #CQ.

Corollary 5.2.4. Let G be a recursively enumerable class of S-hypergraphs
of bounded generalized hypertree width. Then (assuming FPT 6= #W[1]) the
following statements are equivalent:

1. #CQ on G is polynomial time tractable.

2. p-#CQ on G is fixed-parameter tractable.

3. G is of bounded S-star size.

Proof. 1 → 2 is trivial. 2 → 3 is Theorem 5.1.1. Finally, 3 → 1 is
Corollary 5.2.2. �

As another corollary we get that for a wide range of decomposition
techniques commonly considered in the database and artificial intelli-
gence literature, we can characterize the tractable classes of S-graphs
by bounded quantified star size. For the decomposition techniques
not defined here see [GLS00].

72 quantified star size is sufficient and necessary

Corollary 5.2.5. Let β be one of the following decomposition techniques:
biconnected component, cycle-cutset, cycle-hypercutset, hingetree, hypertree,
or generalized hypertree decomposition. Let furthermore G be a recursively
enumerable class of S-hypergraphs of bounded β-width. Then (assuming
FPT 6= #W[1]), the following statements are equivalent:

1. #CQ on G is polynomial time tractable.

2. p-#CQ on G is fixed-parameter tractable.

3. G is of bounded S-star size.

Proof. 1 → 2 is trivial. 2 → 3 follows from Theorem 5.1.1. For 3 → 1
observe that for every β of the claim we have that for every hyper-
graph H the β-width of H bounded from below by a function in the
generalized hypertree width of H. Thus G has bounded generalized
hypertree width and the claim follows with Corollary 5.2.2. �

5.3 a #P-intermediate class of counting problems

Let us reformulate the results for p-#CQ of the last sections as a corol-
lary.

Corollary 5.3.1. Let G be a recursively enumerable class of S-hypergraphs
of bounded generalized hypertree width. Then p-#CQ on G is either in FPT

or #W[1]-hard.

Corollary 5.3.1 is an example of what is commonly called a di-
chotomy result. These are results in which a class of problems is ei-
ther tractable in the considered sense or hard for a class commonly
considered intractable. It is well-known that the class of problems in
NP does not allow a P-NP-dichotomy in general. Ladner’s Theorem
[Lad75] states that if P 6= NP, then there are problems that are nei-
ther in P nor NP-complete. Still, restricted classes of problems in NP

do allow a dichotomy. An easy example are the k-coloring problems:
k-coloring is in P if k ≤ 2, otherwise it is NP-hard.

Right-hand-side restriction of CSP, i.e., such in which the relations
of the instances are restricted but the structure of the queries is unre-
stricted, are a source for many dichotomy results. The starting point
for this is the seminal result of Schaefer [Sch78] that gives a P-NP-
dichotomy for right-hand-side restrictions of CSP restricted to the
domain {0, 1}. Feder and Vardi [FV98] conjectured that there is a di-
chotomy for CSP in general. This conjecture is still open, but it has
spurred a huge amount of research in the area with many partial re-
sults (see [Bul11] for a survey). For #CSP a general FP-#P-dichotomy
has been proven recently even for weighted counting [CC12].

For restrictions on the queries of the type we are considering in
this thesis, the situation is less clear. For general CQ it is unknown if

5.3 a #P-intermediate class of counting problems 73

there is any type of dichotomy (there is however a characterization of
the classes of hypergraphs allowing fixed-parameter tractable p-CQ
assuming the exponential time hypothesis [Mar10]). For bounded ar-
ity, Grohe [Gro07] showed an FPT-W[1]-dichotomy of p-CQ; Dalmau
and Jonsson [DJ04] modified Grohe’s techniques to give a FPT-#W[1]-
dichotomy of p-#CQ restricted to quantifier free instances (see also
Chapter 7). However, there is no P-NP-dichotomy for CQ [BG08].
We will show that similarly, there is no FP-#P-dichotomy version of
Corollary 5.3.1 for #CQ.

Let Gstar be the class of S-graphs (Gn, Sn) where Gn is the star with
n leaves and Sn consists of all vertices but the center of Gn. Note that
the S-hypergraphs of the queries Cstar from Lemma 3.1.4 are in Gstar

(see Example 3.2.7).

Theorem 5.3.2. There is a subclass G0 of Gstar such that #CQ on G0 is
neither in FP nor #P-complete unless FP 6= #P.

The proof is similar to the diagonalization proof of Ladner’s Theo-
rem [Lad75] as presented in [Pap94]. We follow an adaption of these
techniques by Bodirsky and Grohe [BG08].

The class G0 is defined by a function f : N → N which we define
below. G0 contains exactly those S-hypergraphs from Gstar for which
f (|G|) is even.

Let M1, M2, . . . be an enumeration of all polynomial-time bounded
Turing-machines computing functions h : N → N and let R1, R2, . . .
be an enumeration of all polynomial-time bounded oracle Turing-
machines computing a function g : N→ N given an oracle h′ : N→
N. Furthermore, we assume that we have an enumeration Φ1, Φ2, . . .
of all CQ-instances Φi = (Ai, φi) where the S-hypergraph of φi is
in Gstar.

The function f is defined by a polynomial time Turing machine F
that computes f . The machine F is given its input n in unary and
works in two phases. In the first phase F simulates itself on inputs
1, 2, . . . and thus computes f (1), f (2), . . . until the total number of
steps done in this phase exceeds n. Let ` be the last value for which
this simulation was finished. We set k := f (`). If F did not finish the
simulation on the input 1, we set k := 0. The value computed by f on
the input n will either be k or k + 1, depending on the outcome of the
second phase.

This second phase of F depends on whether k is even or odd. If
k = 2i is even then F tries to find an instance Φj for which Mi(Φj) 6=
|φj(Aj)|. To do so it enumerates Φ1, Φ2, . . . and simulates Mi on each
instance Φj and computes |φj(Aj)| and f (|Gj|) where Gj is the asso-
ciated graph of φ. If Mi(Φj) 6= |φj(Aj)| and f (|G|) is even, i.e., the
S-hypergraph of φ is in G0, then F stops and outputs k + 1. Otherwise
it proceeds with the next instance Φj+1. When the overall number of
steps in this phase exceeds n and F has not stopped yet, it stops and
outputs k.

74 quantified star size is sufficient and necessary

If k = 2i − 1 is odd, then F tries to find an instance Φj such that
Ri, given a correct oracle for #CQ, does not compute |φj(Aj)|. To
do so F again enumerates instances Φ1, Φ2, . . ., simulates Ri on each
instance Φj where the oracle calls are answered correctly by brute
force computations and computes |φj(Aj)|. During these simulations
F also computes f (|G|) for each oracle question (A, φ) where G is
the associated hypergraph of φ. If Ri(Φj) 6= |φi(A)| or for one of the
oracle questions (A, φ) we have that f (|G|) is odd, then F stops and
outputs k + 1. Otherwise it proceeds with the next instance. When
the overall number of steps in this phase exceeds n and F has not
stopped yet, it stops and outputs k.

Proposition 5.3.3. For every n0 and every k∗ with 0 ≤ k∗ ≤ f (n0) there
is an n′ such that f (n′) = k∗.

Proof. On input n = 0 the machine F does not finish any simulations
in either of its phases, so f (0) = 0.

For n > 0, the value k after the first phase is either k = f (n) or
k = f (n) − 1. On input n the machine F only simulates itself for
overall n steps in the first phase, so F only simulates itself on inputs
` < n. Thus when n′ is the smallest integer for which F outputs f (n),
the the value of k after the first phase on input n′ must have been
f (n) − 1. It follows that there must be a n′′ with f (n′′) = k − 1 by
construction. Now the result follows by induction. �

Proposition 5.3.4. The function f is non-decreasing.

Proof. We make an induction on n. Assume that f (n′ − 1) ≤ f (n′)
for all n′ ≤ n. In the first phase F cannot simulate itself on more
than n values on input n. Furthermore, on input n + 1 the machine
can simulate itself on no less inputs than on input n, so if F computes
the value k on input n in the first phase, then F computes at least the
value k in the first phase on input n + 1.

After the second phase the output on n can only be k or k + 1. If
it is k, then f (n) = k ≤ f (n + 1), because the second phase does
not decrease output value and the output of the first phase of F on
n + 1 is at least k. If f (n) = k + 1 and F computed k + 1 in the first
phase on n + 1, then f (n) = k + 1 ≤ f (n + 1). This is again because
the second phase never decreases the output. If f (n) = k + 1 and F
computed k in the first phase on n + 1, then F simulates the same
machine Mi, resp. Ri on input n and n + 1. Furthermore, there must
be a CQ-instance Φj that lead to increasing the output f (n) to k + 1.
But as F on input n + 1 has more time for simulations, it finds Φj
then, too. Thus f (n + 1) = k + 1 = f (n). �

Proposition 5.3.5. The function f is unbounded unless FP 6= #P.

Proof. Assume that f is bounded. With Proposition 5.3.4 we know
that f actually becomes constant starting from an integer n0. Let k :=

5.3 a #P-intermediate class of counting problems 75

f (n0). Combining Proposition 5.3.3 and Proposition 5.3.4 we get that
there is an integer n1 such that for every input n > n1 the first phase
of F computes k.

If k = 2i is even, then only finitely many of the S-graphs in Gstar are
not in G0 by definition. Furthermore, for every input n > n1 the ma-
chine F in the second phase simulates the machine Mi. Since f never
increases to any value k′ > k all computations of Mi must give the
correct value on the inputs Φj. But as Mi is eventually run on every
input Φj, the machine Mi solves #CQ in G0 in polynomial time and it
follows that #CQ on G0 is in FP. We give a polynomial time algorithm
for #CQ on Gstar: On input (A, φ) check if the associated hypergraph
of φ is in G0. If yes, use Mi to compute |φ(A)|. Otherwise, compute
|φ(A)| by brute force in time ‖A‖O(|free(φ)|). This is polynomial time
as |free(φ)| is bounded because Gstar \ G0 is finite. If follows that #CQ
on Gstar is in FP and with Lemma 3.1.4 we get FP = #P.

If k = 2i− 1 is odd, then G0 is finite. Furthermore, for each n > n1

the machine F simulates the oracle machine Ri. Since F does never
increase, the computations of Ri with a correct oracle produce the
correct result. Furthermore, all oracle questions (A, φ) have their as-
sociated S-hypergraph in G0 because f (|G|) is even for all oracle
questions. It follows that Ri computes a Turing-reduction from #CQ
on Gstar to #CQ on G0. Hence, by Lemma 3.1.4 #CQ on G0 is #P-
hard. But the brute force algorithm for this problem takes again time
‖A‖O(|free(φ)|) which is polynomial, because |free(φ)| is bounded. It
follows that FP = #P. �

Proof of Theorem 5.3.2. Obviously, #CQ on G0 is in #P, because #CQ on
the class Gstar is in #P.

Assume first that #CQ on G0 is in FP and FP 6= #P. Then there
is a machine Mi that solves #CQ on G. Combining the propositions
from above, there is an integer n0 such that f (n0) = 2i. Again com-
bining the three propositions from above there is then also an n1 > n0

such that the first phase of F computes k = 2i. Since Mi always com-
putes the correct value |φj(A)| on instances that have their associ-
ated S-hypergraph in G0, the output of F on input n1 is also k. Thus
by Proposition 5.3.4 f (n′) = k for all n′ between n0 and n1. Now a
straighforward induction shows that F never computes a value bigger
than k which contradicts FP 6= #P by Proposition 5.3.5.

Now assume that #CQ on G0 is #P-complete. Then there is an oracle
machine Ri reducing #CQ on Gstar to #CQ on G0. We again combine
the three propositions and get that there is an integer n0 such that
f (n0) = 2i− 1. Furthermore there is an n1 such that the first phase of
F computes k = 2i− 1. Thus F simulates the oracle machine Ri in the
second phase. But Ri reduces correctly and the oracle questions are
answered correctly as well. Thus all simulations compute |φj(Aj)| for
each instance Φj. Furthermore, all oracle questions (A, φ) have their
associated S-hypergraph in G0 and thus f (|G|) is even where G is the

76 quantified star size is sufficient and necessary

associated hypergraph of φ. It follows that the output f (n1) is k. As
before, using Proposition 5.3.4 shows f (n′) = k for all n′ between n0

and n1 and a straightforward induction shows that f is bounded by
k. This again implies FP = #P with Proposition 5.3.5. �

5.4 fractional hypertree width

In this section we extend the main results of this chapter to fractional
hypertree width, which is the most general notion known that leads to
tractable CQ [GM06]. In particular it is strictly more general than gen-
eralized hypertree width. The proofs can be found in the appendix.

Definition 5.4.1. Let H = (V, E) be a hypergraph. A fractional edge
cover of a vertex set S ⊆ V is a mapping ψ : E → [0, 1] such that for
every v ∈ V we have ∑e∈E:v∈e ψ(e) ≥ 1. The weight of ψ is ∑e∈E ψ(e). The
fractional edge cover number of S, denoted by ρ∗H(S), is the minimum
weight taken over all fractional edge covers of S.

We define a fractional hypertree decomposition of H to be a triple
(T , (χt)t∈T, (ψt)t∈T) where T = (T, F) is a tree, χt ⊆ V and ψt is a frac-
tional edge cover of χt for every t ∈ T, satisfying the following properties:

1. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a subtree of T .

2. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

The width of a fractional hypertree decomposition (T , (χt)t∈T, (ψt)t∈T) is
maxt∈T(ρ

∗
H(χt)). The fractional hypertree width fhw(H) of H is the

minimum width over all fractional hypertree decompositions of H. �

Fractional hypertree width is more general that generalized hyper-
tree width in the following sense:

Lemma 5.4.2 ([GM06]). The fractional hypertree width of a hypergraphH
is at most the generalized hypertree width of H. Moreover, there are families
of hypergraphs of bounded fractional hypertree width but unbounded gener-
alized hypertree width.

We first formulate a version of Corollary 5.2.2 for fractional hyper-
tree width.

Theorem 5.4.3. There is an algorithm that, given a #CQ-instance Φ of
quantified starsize ` and fractional hypertree width k, counts the solutions
of Φ in time ‖Φ‖p(k,`) for a polynomial p.

Furthermore, we will show that the S-star size, or equivalently in-
dependent sets, of bounded fractional hypertree width hypergraphs
can be computed efficiently.

Lemma 5.4.4. There is an algorithm that given a hypergraph H = (V, E)
of fractional hypertree width at most k computes a maximum independent
set of H in time |H|kO(1)

.

5.4 fractional hypertree width 77

As a corollary we get a version of Corollary 5.2.5.

Corollary 5.4.5. Let G be a recursively enumerable class of S-hypergraphs
of bounded fractional hypertree width. Then (assuming FPT 6= #W[1]) the
following statements are equivalent:

• #CQ on G is polynomial time tractable.

• p-#CQ on G is fixed-parameter tractable.

• G is of bounded S-star size.

6
Q U E R I E S O F B O U N D E D A R I T Y

In this chapter we show that for bounded arity #CQ we can exactly
characterize the classes of S-hypergraphs that allow polynomial time
counting. In this chapter all CQ-instances and all S-hypergraphs are
always assumed to be of bounded arity.

We will give two different characterizations of S-hypergraphs of
bounded arity that allow tractable #CQ: The first characterization is
presented in Section 6.1 and uses treewidth and S-star size, following
the ideas of Chapter 5. In Section 6.2 we introduce a notion of elimi-
nation width for conjunctive queries. It will allow us to characterize
the S-hypergraphs of bounded arity that allow tractable #CQ with a
single parameter.

6.1 a characterization by treewidth and S-star size

In this section we characterize the S-hypergraphs of bounded arity
that allow tractable #CQ by treewidth and S-star size. The result of
this section is based on a combination of the results of Chapter 5

and a result by Grohe from [Gro07] which is a followup of results
by Grohe, Schwentick and Segoufin [GSS01]. We state the theorem in
our slightly different wording.

For a class G of hypergraphs we denote by CQ on G the decision
problem CQ restricted to instances whose associated hypergraph is
in G.

Theorem 6.1.1 ([Gro07]). Let G be a recursively enumerable class of hy-
pergraphs of bounded arity. Assume FPT 6= W[1]. Then the following three
statements are equivalent:

1. CQ on G can be decided in polynomial time.

2. p-CQ on G is fixed parameter tractable.

3. There is a constant c such that the hypergraphs in G have treewidth at
most c.

Theorem 6.1.1 is originally stated even for every fixed vocabulary.
In Section 7 we will see a refinement of it.

Our goal is to provide a complete characterization of classes of S-
hypergraphs of bounded arity that yield tractability for #CQ. Not too
surprisingly, tractability depends on both treewidth and star size of
the underlying S-hypergraph.

79

80 queries of bounded arity

Theorem 6.1.2. Let G be a recursively enumerable class of S-hypergraphs
of bounded arity. Assume that W[1] 6= FPT. Then the following statements
are equivalent:

1. #CQ on G is solvable in polynomial time.

2. p-#CQ on G is fixed-parameter tractable.

3. There is a constant c such that for each S-hypergraph (H, S) in G the
treewidth of H and the S-star size of H are at most c.

Let us discuss how Theorem 6.1.2 and Corollary 5.2.4 relate. First,
it is not hard to see that for bounded arity hypergraphs treewidth
and generalized hypertree width differ only by a constant factor. So
we could have formulated Theorem 6.1.2 with generalized hypertree
width instead of treewidth as well.

The key difference between Theorem 6.1.2 and Corollary 5.2.4 is
that we can show here that bounded treewidth is not only suffi-
cient for tractable counting but also necessary. As we already di-
rectly get from Theorem 3.1.2, there are by Lemma 2.3.4 families of S-
hypergraphs of unbounded arity, and thus also unbounded treewidth,
on which #CQ is tractable, so treewidth is not the right notion for
this case. It is an intriguing question if there is a width measure that
completely characterizes tractable CQ or tractable #CQ on graphs of
unbounded arity, similarly to Theorem 6.1.1 and Theorem 6.1.2 in the
bounded arity case.

Before giving the proof of Theorem 6.1.2 we make an observation.

Observation 6.1.3. If there is a recursively enumerable class G of S-hyper-
graphs of unbounded treewidth such that p-#CQ on G is fixed-parameter
tractable, then there is such a class G ′ that is recursive.

Proof. Fix a Turing machine M that enumerates G. Let the order in
which the S-hypergraphs of G are enumerated by M be (H1, S1),
(H2, S2), Then define G ′ as containing the S-hypergraphs (H′i , S′i)
where H′i is the disjoint union of the hypergraphs H1, . . . ,Hi and
S′i :=

⋃
j∈[i] Si.

We claim that G ′ is recursive. Indeed the definition of G ′ directly
gives an algorithm that enumerates the elements of G ′ ordered by
size. This yields an algorithm to decide membership in G ′: Given an
input (H, S), enumerate the elements of G ′ until (H, S) is found or an
element that has more vertices than (H, S) is enumerated.

The treewidth of G is trivially unbounded.
Finally, we claim that #CQ on G ′ is fixed-parameter tractable. Given

an input Φ := (A, φ) first check if the associated S-hypergraph (H, S)
is in G ′. If not, stop. It yes, the query φ must decompose into sub-
queries φ1, . . . , φi such that for each j ∈ [i] the query φj has the S-
hypergraph (Hj, Sj) and the φj have disjoint variable sets. Using the
enumerating machine M we can compute such a decomposition. Now

6.2 a characterization by elimination orders 81

since #CQ on G is fixed-parameter tractable we can solve the instances
Φj := (A, φj) in time g(|φj|)‖Φj‖c for a computable function g and
a constant c. If follows that |φ(A)| = ∏j∈[i] |φj(A)| can be computed
in time ∑j∈[i] g(|φj|)‖Φj‖c ≤ |φ|g(|φ|)‖Φ‖c and thus #CQ on G ′ is
fixed-parameter tractable. �

Proof of Theorem 6.1.2. The direction 1 → 2 is trivial. Furthermore, 3

→ 1 follows directly from Corollary 5.2.5. So it remains only to show
2→ 3.

By way of contradiction, we assume that there is a recursively
enumerable class G of S-hypergraphs such that counting solutions
to #CQ-instances, whose S-hypergraph are in G, is fixed parameter
tractable, but 3 is not satisfied by G. From Theorem 5.1.1 we know that
the S-starsize of G must be bounded, so it follows that the treewidth
of G is unbounded. With Observation 6.1.3 we may assume that G is
recursive.

We construct a class G ′ of hypergraphs as

G ′ := {H | (H, S) ∈ G}.

Clearly G ′ is recursive and of unbounded treewidth. We will show
that p-CQ on G ′ is fixed-parameter tractable. This is a contradiction
with Theorem 6.1.1.

Because G is recursive, there is an algorithm that for each H in G ′
constructs an S-hypergraph (H, S) in G. For example, one can simply
try all vertex sets S and check if (H, S) is in G. Let f (H) be the num-
ber of steps the algorithm needs on input H. The function f (H) is
well defined and computable. We then define g : N → N by setting
g(k) := maxH(f (H)), where the maximum is over all hypergraphs H
of size k in G ′. The function g is well defined and computable, be-
cause G ′ is recursive. Thus for each H in G ′ we can compute in time
g(|H|) an S-hypergraph (H, S) in G.

Now let Φ = (A, φ) be a CQ-instance with hypergraph H in G ′. To
solve it we first compute (H, S) as above and construct a CQ-instance
Ψ = (A, ψ) with (H, S) as associated S-hypergraph for ψ by adding
existential quantifiers for all variables not in S. Obviously Φ has so-
lutions if and only if Ψ has one. But by assumption the solutions
of Ψ can be counted in time h(|ψ|)‖Ψ‖O(1) for some computable func-
tion h, so Φ can be decided in time (g(|φ|) + h(|φ|))‖Φ‖O(1). Thus
p-CQ on G ′ is fixed-parameter tractable. This is the desired contradic-
tion to Theorem 6.1.1. �

6.2 a characterization by elimination orders

While the characterization of Theorem 6.1.2 is great because it com-
pletely characterizes the tractable classes of S-hypergraphs for #CQ,
it has the somewhat unpleasant property that we have to bound two

82 queries of bounded arity

different parameters of the hypergraphs instead of just one. Also, it is
not clear how robust and natural the defined classes of hypergraphs
are. In contrast to this, treewidth is a very robust notion that has
many equivalent definitions.

In this section we improve the situation by showing that there is a
notion of elimination width for S-hypergraphs that is equivalent to
the combination of treewidth and S-star size.

Recall the notion of elimination orders from Section 2.3.1.

Definition 6.2.1. Let (G, S) be an S-graph. We define an elimination or-
der π of an S-graph (G, S) as an elimination order of G = (V, E) such that
for each pair v ∈ S, u ∈ V \ S such that uv is an edge in the fill-in graph
Gπ we have π(u) < π(v).

The elimination width elim-width(G, S) of (G, S) is defined as the
minimum width taken over all elimination orders of (G, S).

The elimination width elim-width(H, S) of an S-hypergraph (H, S) is
defined that the elimination width of its primal S-graph. By HP,π we denote
the fill-in graph of the primal graph HP of H with respect to π. �

Remark 6.2.2. Observe that for every S-graph (G, S) we have

elim-width(G, S) ≥ elim-width(G),

because every elimination order of (G, S) is an elimination order
of G. �

Proposition 6.2.3. Let G be a class of S-hypergraphs. Then the following
statements are equivalent:

• The treewidth and the S-star size of the S-hypergraphs in G are bound-
ed by a constant c.

• The elimination width of the S-hypergraphs in G is bounded by a
constant c′.

The proof of Proposition 6.2.3 is somewhat lengthy, so we prove it
in two individual lemmas.

Lemma 6.2.4. Let (H, S) be an S-hypergraph of elimination width k. Then
the treewidth of H is at most k and the S-star size of (H, S) is at most k + 1.

Proof. From Remark 6.2.2 and Lemma 2.3.9 it follows directly that the
treewidth of H is at most k. Thus we only have to show the bound on
the S-star size of (H, S). To this end, we define an S-path (P, S) as a
path whose end vertices are in S but all other vertices are not in S.

Claim 6.2.5. Let u, v be the end vertices of an S-path (P, S) with P =

ux1 . . . x`v. Then for every elimination order π of (P, S) we have π(v) >

π(xi) and π(u) > π(xi) for all i ∈ [`]. Furthermore, uv is an edge of the
fill-in graph Pπ.

6.2 a characterization by elimination orders 83

Proof. We prove this by induction on `. For ` = 0 there is nothing to
show.

Now let ` ≥ 1. Let xj = argmini∈`(π(xi)). By the definition of
elimination orders we have π(x1) < π(u) and π(x`) < π(v), so
π(xj) < min(π(v), π(u)). Let P′ be the path that we get from P when
deleting xj and connecting xj−1 and xj+1 by an edge. P′ is a subgraph
of the fill-in graph Pπ and π induces an elimination order on P′ by
π′(w) := π(w)− 1. It follows that P′π′ is a subgraph of Pπ. By induc-
tion π′(v) > π′(xi) and π′(u) > π′(xi) for all i ∈ [`] \ {j} and thus
π(v) > π(xi) and π(u) > π(xi) for all i ∈ [`]. Furthermore, by induc-
tion uv is an edge of P′π′ and thus also of Pπ. This completes the proof
of the claim. �

By definition of S-components, in every S-graph (G, S) every pair
u, v ∈ S must be connected by an S-path.

Let HP = (V, EP) be the primal graph of H. Let H′ be an S-
component of H with primal S-graph H′P = (V ′, E′P) and let S′ :=
S ∩V ′.

Let π be an optimal elimination order of (H, S) of width k. Then π

induces for every subgraph H′′ an elimination order of H′′ of width
at most k. To ease notation we will not differentiate between π and
these induced elimination orders and simply call π an elimination
order of all subgraphs, too.

As already remarked, all pairs u, v ∈ S′ are connected by S-paths
in H′P. The fill-in graph of every subgraph of H′P is a subgraph of
the fill-in graph H′P,π of H′P. Thus by Claim 6.2.5 we have that the
vertices in S′ form a clique in H′P,π. Because π has width k, it follows
that |S′| ≤ k + 1. Hence the S-star size of H′ is at most k + 1. This
completes the proof of Lemma 6.2.4.

For the other direction of Proposition 6.2.3 we will use the follow-
ing lemma.

Lemma 6.2.6. Let (H, S) be an S-hypergraph of treewidth at most c and S-
star size at most k. Then every S-component of H contains at most k(c + 1)
vertices from S.

Proof. We prove this by induction on the S-star size k while keeping
the treewidth fixed to c. If the S-star size is k = 1, then in every S-
component all vertices from S are adjacent. But then they induce a
clique in the primal graph of H and thus by Lemma 2.3.4 there may
be at most c + 1 of them.

Let now k > 1. Consider an S-componentH′ ofH. The graphH′P[S]
has at most treewidth c because it is an induced subgraph of H′P
which has by assumption treewidth at most c. By Lemma 2.3.6, there
is a vertex v in H′P[S] of degree at most c. If follows that v has at
most c neighbors in S in H′. Let H′′ be the hypergraph we get from

84 queries of bounded arity

H′ = (V ′, E′) by deleting v and all of its neighbors in S. We claim that
(H′′, S ∩V ′) has S-star size at most k− 1.

Assuming this is false, there are k independent vertices v1, . . . , vk ∈
S in H′′. But then v1, . . . , vk, v are k + 1 independent vertices from S
in H′, so the S-star size of H is at most k + 1 which contradicts the
assumption.

So the S-star size of H′′ is indeed bounded by k − 1. By induc-
tion H′′ contains at most (k− 1)(c + 1) vertices from S, and since we
deleted at most c + 1 vertices during the construction of H′′ we get
that H′ contains at most k(c + 1) vertices from S. �

We now prove the second direction of Proposition 6.2.3

Lemma 6.2.7. Let (H, S) be an S-hypergraph such that the treewidth and
the S-star size of (H, S) are bounded by c ∈N. Then the elimination width
of (H, S) is at most (c + 1)3 + (c + 1)2.

Proof. Let (T , (χt)t∈T) be a tree decomposition of H = (V, E) of min-
imal width `. Let S(v) for every v ∈ V \ S be the set of vertices from
S in the S-component of v. For every t ∈ T we construct a new bag χ′t
as

χ′t := χt ∪
⋃

v∈(V\S)∩χt

S(v).

Because the S-star size of H is at most c we get by Lemma 6.2.6 that
|S(v)| ≤ c(`+ 1). It follows with ` ≤ c that

|χ′t| ≤ |χt|+ ∑
v∈(V\S)∩χt

|S(v)|

≤ (`+ 1) + (`+ 1)c(`+ 1)

≤ (c + 1)3

It is easy to see that (T , (χ′t)t∈T) is a tree decomposition. Remember
that for each t ∈ T the tree Tt is the subtree of T with t as its root.
Let Vt be the set of vertices appearing in the bags χ′t′ of Tt. For each
y ∈ V let r(y) be the t ∈ T with y ∈ χ′t that is nearest to the root of T .

Claim 6.2.8. There exists t ∈ T such that ∅ 6= Vt ∩ (V \ S) ⊆ χ′t with a
vertex y ∈ Vt ∩ (V \ S) with t = r(y).

Proof. We find t and y by descending in T . Let r be the root of T .
If Vr ∩ (V \ S) ⊆ χ′r we are done. Otherwise let ti be a child of r
such that Vti ∩ (V \ S) * χ′r. Now check if Vti ∩ (V \ S) ⊆ χ′ti

and
if not go deeper in T . Let t be the first vertex on this descent with
Vt ∩ (V \ S) ⊆ χ′t. Then χ′t must contain a vertex y that is not in χ′t′
where t′ is the parent of t in T . But then r(y) = t as desired. �

We construct an elimination order π of H inductively as follows,
starting from the empty elimination order: While any bag of the tree

6.2 a characterization by elimination orders 85

decomposition (T , (χ′t)t∈T) contains a vertex from V \ S, do the fol-
lowing: Choose by Claim 6.2.8 t ∈ T such that ∅ 6= Vt ∩ (V \ S) ⊆ χ′t
with a vertex y ∈ Vt ∩ (V \ S) with t = r(y), delete y from H and all
bags and add y as the next vertex to the elimination order π.

When the vertices from V \ S have all been deleted, we proceed
with the vertices in S in a similar fashion: While there is a non-empty
bag, choose one t ∈ T with ∅ 6= S ∩ Vt ⊆ χ′t and y ∈ S ∩ Vt with
r(y) = t, delete y and add y as the next vertex in π. Again, such t
and y can always be found.

All vertices in V \ S appear before all vertices in S in π, so π is an
elimination order of (H, S). We will now bound the width of π.

Claim 6.2.9. Let x, y ∈ V with x, y ∈ V \ S or x, y ∈ S such that there
exists t ∈ T with x, y ∈ χ′t. If x is higher-numbered than y with respect to
π, then x ∈ χr(y).

Proof. x and y appear in a common bag χ′t and thus x ∈ Vr(y). But x
is higher-numbered, so y was deleted before x. Hence, when y was
chosen to be deleted the vertex x was still in Vr(y). But then x ∈ χr(y)
because otherwise y would not have been chosen for deletion. �

Claim 6.2.10. a) For every vertex y ∈ V \ S the neighbors of y in HP,π

are vertices of the same S-component as y.

b) When a vertex y ∈ V \ S is deleted, the bag χ′r(y) contains all higher-
numbered neighbors of y in the fill-in graph HP,π that are in V \ S.

c) When a vertex y ∈ S is deleted, the bag χ′r(y) contains all higher-
numbered neighbors of y in the fill-in graph HP,π.

Proof. We first prove a) and b) by induction along the elimination or-
der π. So let first y be the vertex with π(y) = 1. We claim that the
higher-numbered neighbors of y in HP,π are simply the neighbors
of y in HP. Certainly, these are all higher-numbered. Also, in the con-
struction of HP,π from HP edges incident to y may only be added by
lower-numbered vertices. As there are none for y, all neighbors of y
in HP,π are already neighbors in HP. This proves the induction start
for a). For b) consider a neighbor x ∈ V \ S of y inH. By the definition
of tree decompositions x and y must be in one common bag χ′t. With
Claim 6.2.9 it follows that x ∈ χr(y).

Consider now y ∈ V \ S with π(t) > 1. All neighbors x ∈ V \ S
of y in HP,π are either already neighbors of y in H and thus in the
same S-component as y or they are neighbors that originate from
edges added in the construction of HP,π from HP. In the latter case
the edge xy must have been added because of a common lower-
numbered neighbor v of y and x. Because v is lower-numbered than y
it follows that v ∈ V \ S. By induction all higher-numbered neighbors
of v in HP,π are in the same S-component as v in H, so y, x and v are
all vertices of the same S-component which completes the proof of a).

86 queries of bounded arity

Now let x ∈ V \ S be a higher-numbered neighbor of y ∈ V \ S in
HP,π. Consider first the case that xy is already an edge in HP. Then
there is a bag χ′t such that x, y ∈ χ′t. With Claim 6.2.9 we get x ∈ χr(y)
as desired. If x and y are not neighbors in HP, then there is a lower-
numbered vertex v of x and y in HP,π that led to the introduction of
the edge xy. By induction x, y ∈ χr(v). We conclude with Claim 6.2.9
that x ∈ χr(y). This completes the proof of b).

To prove c) consider a vertex y ∈ S. Let x be a higher-numbered
neighbor of y in HP,π. By construction x ∈ S. Assume first that x and
y are in a common S-component. Let v ∈ V \ S be a vertex of this
S-component, then, by construction of (T , (χ′t)t∈T), the vertices x and
y both appear in any bag χ′t that contains v. We conclude with Claim
6.2.9 that x ∈ χr(y). If x and y are not in a common S-component, then
the vertex v that leads to the introduction of the edge xy must be in
S by a). Because v is a lower-numbered neighbor of x and y, we have
by induction that x, y ∈ χr(v). By Claim 6.2.9 we get x ∈ χr(y) which
completes the proof of Claim 6.2.10. �

We claim that the width of π is at most (c + 1)3 + (c + 1)2. As the
bags χ′t have size at most (c + 1)3 + 1, every vertex y ∈ V \ S has at
most (c + 1)3 higher-numbered neighbors in V \ S in HP,π by Claim
6.2.10. Furthermore, y ∈ V \ S has by Claim 6.2.10 and Lemma 6.2.6
at most (c + 1)2 neighbors in S in HP,π. Finally, y ∈ S has at most
(c + 1)3 higher-numbered neighbors by Claim 6.2.10 and the bound
on the size of the bags. This completes the proof of Lemma 6.2.7. �

From Proposition 6.2.3 and Theorem 6.1.2 we get the following al-
ternative characterization of S-hypergraphs of bounded arity that al-
low tractable #CQ.

Theorem 6.2.11. Let G be a recursively enumerable class of S-hypergraphs
of bounded arity. Assume that W[1] 6= FPT. Then the following statements
are equivalent:

1. #CQ on G is solvable in polynomial time.

2. p-#CQ on G is fixed-parameter tractable.

3. There is a constant c such that all S-hypergraphs in G have elimination
width at most c.

Let us remark that there is a similar notion of elimination width
for quantified constraint satisfaction (QCSP) which is a version of CQ
in which also universal quantification is allowed. Chen and Dalmau
[CD12] introduced this measure and showed that it characterizes the
tractable classes of graphs for QCSP. We consider it as likely that
an equivalent characterization of the same classes of graphs could
be given by treewidth and an adapted notion of S-star size. This
would probably also make it possible to get a better understanding

6.2 a characterization by elimination orders 87

of tractable classes of hypergraphs of unbounded arity for QCSP by
exchanging treewidth for e.g. generalized hypertree width.

7
T R A C TA B L E C O N J U N C T I V E Q U E R I E S A N D C O R E S

In this section we will give a more fine-grained analysis of tractable
bounded arity #CQ by not considering the underlying hypergraphs
as in Chapter 6 but analyzing the queries themselves. It turns out that
using certain subqueries called cores of conjunctive queries that have
essentially already been considered in [CM77], lets us find tractable
classes of queries that we do not get from Theorem 6.1.2. Furthermore,
we can completely characterize the classes of queries of bounded arity
that allow tractable #CQ.

It will be convenient to present the results of this chapter not from
the logical perspective used before. Instead we will give them in the
homomorphism perspective often used in constraint satisfaction liter-
ature (see e.g. [Gro07]).

We will start off this chapter by showing an improved version of
Theorem 3.1.3 to showcase some of the techniques used later in this
chapter. In Section 7.2 we will introduce the homomophism perspec-
tive on #CQ. In Section 7.3 we will show how to use cores of conjunc-
tive queries to completely characterize classes of queries of bounded
arity that lead to tractable #CQ.

7.1 warmup : an improved hardness result for #CQ on

star-shaped queries

Before going into the more technical proofs of this chapter, let us do
a small warmup by giving an improved version of Lemma 3.1.4. The
proof will use similar ideas as the later proofs of this chapter but will
be simpler.

Remember that Gstar is the class of S-graphs (Gn, S) where Gn is the
star with n leaves and S consists of all vertices but the the center of
Gn (see Example 3.2.7).

Lemma 7.1.1. Let τ be a vocabulary consisting of a single binary relation
symbol R. Then #CQ on Gstar is #P-hard for queries that use only the rela-
tion symbol R.

Let us quickly discuss the difference between Lemma 3.1.4 and
Lemma 7.1.1. The former told us that we could construct queries with
S-hypergraphs in Gstar such that counting their solutions was #P-hard.
In the proof of Lemma 3.1.4 part of the hardness came from the design
of the queries and we used in the hardness proof that we could use
an unbounded number of relation symbols.

Now Lemma 7.1.1 tells us that we actually do not need an un-
bounded number of relation symbols for constructing hard instances.

89

90 tractable conjunctive queries and cores

In fact every class of queries that has Gstar as its class of associated
S-hypergraph yields a hard counting problem. Thus for Gstar an anal-
ysis of specific classes of queries does not give us any tractable cases.

We will see that for other classes of of S-hypergraphs the situation
will be different. There will be additional tractable classes of queries
that we do not get directly by Corollary 5.2.5. We will also see in the
remainder of this chapter that in the case of bounded arity we will be
able to exactly characterize these new tractable classes of queries.

Proof of Lemma 7.1.1. We reduce from the instances constructed in the
proof of Lemma 3.1.4. So let (A, φ) be one of those instances. Remem-
ber that the query is φ := ∃z

∧
i∈[n]Ri(z, yi).

Let U := {z, y1, . . . , yn} and S := free(φ) = {y1, . . . , yn}. We con-
struct a new instance Ψ = (D, ψ) as follows: The query ψ is

ψ := ∃z
∧

i∈[n]
R(z, yi).

The domain D of D is D := U × A. We set

RD := {((z, v1), (yi, v2)) | i ∈ [n], (v1, v2) ∈ RAi }.

This completes the construction of Ψ = (D, ψ).
We will show that |φ(A)| can be computed from |ψ(D)|.
To this end, let Π : D → U with (u, v) 7→ u be the projection onto

the first component of D. Let

N := {a ∈ ψ(D) | Π ◦ a = id}.

Obviously, N and φ(A) have the same size, so it suffices to deter-
mine |N |.

Let now N ′ := {a ∈ ψ(D) | (Π ◦ a)(S) = S}. We claim that |N ′| =
|N |n!. To see this observe that r : N × Sn → N ′ with (a, σ)→ (a ◦ σ)

is a bijection. Thus we have reduced computing |φ(A)| to comput-
ing |N ′|.

Now consider assignments a : S → D. First observe that if for
any yi ∈ S we have (Π ◦ a)(yi) = z, then a cannot be in ψ(D) by
construction of the relation RD. So we can in the following assume
that (Φ ◦ h)(S) ⊆ S for all h we consider.

It follows that only two cases of satisfying assignments in a ∈ ψ(D)
occur: Either (Φ ◦ a)(S) = S or (Φ ◦ a)(S) ⊂ S. The mappings a from
the first case form the set N ′. We claim that the satisfying a from
the second case can be counted easily. Indeed, similarly to Remark
3.1.5 we claim that all such mappings a : S → D satisfy ψ. To see
this, recall how the relations of Ri were constructed in the proof of
Lemma 3.1.4. Consider an a with (Π ◦ a)(S) ⊂ S and let yj ∈ S be
such that yj /∈ (Π ◦ h)(S). Then assigning z the value (z, (v, v, j, j))
for arbitrary v ∈ V, where V is the vertex set from the graph in the
reduction of Lemma 3.1.4, satisfies all atoms.

7.2 homomorphisms between structures and cores 91

Since there are (|S||S| − |S|!)|A||S| mappings a : S → D with (Π ◦
a)(S) ⊂ S, it follows that

|ψ(D)| = |N ′|+ (|S||S| − |S|!)|A||S|.

Thus computing |φ(A)| reduces to computing |ψ(D)| and thus #CQ
ion Gstar over the vocabulary τ is #P-hard. �

7.2 homomorphisms between structures and cores

In this section we introduce a more symmetric view on CQ where we
see the queries of instances as structures themselves. The definitions
and results in this subsection are mostly taken from [FG06] where the
reader can also find more background.

Definition 7.2.1. To a conjunctive query φ over the vocabulary τ we assign
a structure A = Aφ called the natural model as follows:

• the domain of A is var(φ),

• A is over the vocabulary τ, and

• for each relation symbol R ∈ τ we set

RA := {var(φ′) | φ′ ∈ atom(φ),R relation symbol of φ′}. �

Note that the definition of the natural model is very similar to that
of the hypergraph associated to a query. The main difference that we
do not only remember the scope of the atoms but also the vocabu-
lary symbol. This gives us additional information that we can use to
isolate larger tractable classes of queries than those guaranteed by
Theorem 6.1.2. The general idea is illustrated in the following exam-
ple.

Example 7.2.2. Consider the query

φn := ∃x1 . . . ∃xn∃y1 . . . ∃yn
∧

i,j∈[n]
E(xi, yj).

When trying to solve CQ-instances Φn := (B, φn), Theorem 6.1.1
does not help: The hypergraph of φn is the complete bipartite graph
Kn,n which has treewidth n, so the runtime of the algorithm of Theo-
rem 6.1.1 will be exponential.

But it is easy to see that Φn has a solution if and only if EA is
non-empty, i.e., φn is equivalent to the atomic subformula E(x1, y1).
Thus in contrast to what one could get by applying Theorem 6.1.2,
the decision problem CQ on instances with the query φn is actually
extremely easy. �

In the remainder of this section we will generalize and formalize
the observation of Example 7.2.2.

92 tractable conjunctive queries and cores

Definition 7.2.3. Let A and B be two structures over the same vocabu-
lary τ. A homomorphism from A to B is a function h : A→ B such that
for each relation symbol R ∈ τ and each t = (t1, . . . , t`) ∈ RA we have
(h(t1), . . . , h(t`)) ∈ RB . We denote the set of homomorphisms from A to B
by hom(A,B).

A homomorphism h fromA to B is called an isomorphism if h is bijective
and h−1 is a homomorphism from B to A. We call A and B isomorphic
if there is an isomorphism from A to B. An isomorphism from A to A is
called automorphism. �

In the definition above we always assume the structures A and B
to be over the same vocabulary. If this is not the case, we make the
convention that there are no homomorphisms from A to B and thus
hom(A,B) = ∅.

We fix a vocabulary τ. Unless stated otherwise, all structures in the
remainder of this chapter will be over this vocabulary τ.

Let Φ = (B, φ) be a CQ-instance with domain B. Let moreover Aφ

be the natural model of φ. It is important to note that (by definition)
a function h : var(φ) → B is a satisfying assignment of Φ if and only
if it is a homomorphism from Aφ to B. For this reason, research in
constraint satisfaction and Boolean CQ is often stated in this homo-
morphism perspective in the following way.

CQ
Input: Two structures A and B.
Problem: Decide if hom(A,B) is nonempty.

p-CQ
Input: Two structures A and B.
Parameter: ‖A‖
Problem: Decide if hom(A,B) is nonempty.

The primal graph of a structure A is the graph GA := (A, E) where
uv ∈ E if and only if there is a relation RA in A such that u and
v appear together in a tuple of RA. The treewidth of a structure is
defined as the treewidth of its primal graph.

As before, we will consider #CQ and p-#CQ on restricted classes
of instances. The restriction of the queries in the previous chapters
directly corresponds to a restriction of the structure A. For example,
one could consider classes of queries of bounded treewidth that di-
rectly correspond to classes of structures A of bounded treewidth.
Because A is on the left side of the homomorphism, these restrictions
are also called “left-hand side restrictions”. Let C be a class of struc-
tures, then we define the restricted version of the decision problems
as follows.

CQ(C)
Input: A ∈ C and a structure B.
Problem: Decide if hom(A,B) is nonempty.

7.2 homomorphisms between structures and cores 93

p-CQ(C)
Input: A ∈ C and a structure B.
Parameter: ‖A‖.
Problem: Decide if hom(A,B) is nonempty.

The counting versions in the quantifier-free setting are

#CSP(C)
Input: A ∈ C and a structure B.
Problem: Compute | hom(A,B)|.

p-#CSP(C)
Input: A ∈ C and a structure B.
Parameter: ‖A‖.
Problem: Compute | hom(A,B)|.

In Example 7.2.2 we have seen that there are classes of queries of
unbounded treewidth that are tractable. This is because we may have
equivalent subqueries that are easier to handle algorithmically than
the original queries. This is formalized by the notions of homomorphic
equivalence and cores.

Definition 7.2.4. Two structures A and B are homomorphically equiv-
alent if there are homomorphisms from A to B and from B to A. �

Example 7.2.5. To get a feeling for the nature of homomorphisms and
homomorphic equivalence, let us consider the case of graphs. Each
graph G = (V, E) naturally gives a structure A where the domain is
A := V and E is the only relation of A. Observe that G = GA, i.e., G
is the primal graph of its structure.

Now consider two graphs G, G′ with structures A and B. Then
there is a homomorphism from A to B if and only if there is a ho-
momorphism from G to G′. Thus, in this setting a homomorphism
of structures is simply a homomorphism between graphs (see e.g.
[GR01] for more on graph homomorphisms).

Let now G be a bipartite graph and G′ any graph that contains at
least one edge. Let furthermoreA and B be the structures of G and G′,
respectively. Then there is a homomorphism from A to B. It follows
that if G and G′ are both bipartite and have an edge then the corre-
sponding structures A and B are homomorphically equivalent. �

Note that, as we have seen in Example 7.2.5, homomorphically
equivalent structures A and B need in general not be isomorphic and
need not even have the same domain size.

Definition 7.2.6. A structure is a called core if it is not homomorphically
equivalent to a proper substructure of itself.

A structure B is a core of a structure A if

94 tractable conjunctive queries and cores

• B is a substructure of A,

• B is homomorphically equivalent to A, and

• B is a core. �

We state a basic property of cores of structures.

Lemma 7.2.7. Every (finite) structureA has at least one core. Furthermore,
every two cores B1 and B2 of A are isomorphic.

Because of Lemma 7.2.7 we will speak of the core of a structure
instead of a core.

Example 7.2.8. It is easy to see that the structure An of the graph Kn

is a core for every n ∈N.
Let G be any bipartite graph with at least one edge and the struc-

ture A. Then the core of A is isomorphic to the structure of K1,1, the
graph consisting of two vertices connected by a single edge. �

Dalmau, Kolaitis and Vardi [DKV02] proved that for the decision
problem CQ not the treewidth of instances is important, but it suffices
to have bounded treewidth of the cores of the instances.

Theorem 7.2.9 ([DKV02]). Let k ∈ N be a fixed constant. Let Ck be the
class of all structures with cores of treewidth at most k. Then CQ(Ck) can
be decided in polynomial time.

Grohe [Gro07] showed that this result is optimal.

Theorem 7.2.10 ([Gro07]). Let C be a recursively enumerable class of struc-
tures of bounded arity. Assume FPT 6= W[1]. Then the following statements
are equivalent:

1. CQ(C) ∈ P.

2. p-CQ(C) ∈ FPT.

3. There is a constant c such that the cores of the structures in C have
treewidth at most c.

Dalmau and Jonsson [DJ04] considered the analogous question for
#CSP and found that cores do not help in this setting.

Theorem 7.2.11 ([DJ04]). Let C be a recursively enumerable class of struc-
tures of bounded arity. Assume FPT 6= #W[1]. Then the following state-
ments are equivalent:

1. #CSP(C) ∈ FP.

2. p-#CSP(C) ∈ FPT.

3. There is a constant c such that the structures in C have treewidth at
most c.

7.3 tractable conjunctive queries and cores 95

7.3 tractable conjunctive queries and cores

In this section we will give a refinement of Theorem 6.1.2 to capture
tractable classes of queries directly instead of characterizing them by
their S-hypergraphs. This result will generalize both Theorem 7.2.10

and Theorem 7.2.11. To allow instances with quantification we make
the following definition analogous to S-hypergraphs: To each conjunc-
tive query φ we assign the pair (A, S) where A is the natural model
of φ and S the set of its free variables. To each class of conjunctive
queries C we assign the corresponding class of pairs.

From a structure A and a set S of variables it is easy to reconstruct
the corresponding query φ: A corresponds to a quantifier free query
φ′ as discussed in the previous section. From φ′ we get the query φ

corresponding to (A, S) by existentially quantifying the variables not
in S.

Because of this easy correspondence between queries and pairs
(A, S) with S ⊆ A, in a slight abuse of notation, we do not differ-
entiate between pairs (A, S) and queries in this section. In particular,
we will call a pair A, S) a query, and we will use C interchangably for
classes of queries and classes of pairs (A, S).

To formulate #CQ in the homomorphism perspective, we make the
following definition.

Definition 7.3.1. For a pair (A, S), whereA is a structure and S ⊆ A, and
a structure B we define hom(A,B, S) to be the set of functions h : S → B
that can be extended to homomorphisms h′ : A → B. �

Let φ be a query with associated pair (A, S). Then we have φ(B) =
hom(A,B, S) for every structure B. This allows us to give an alterna-
tive formulation of our conjunctive query problems, which we give
directly for the restricted problems. So let C in the following be a class
of conjunctive queries.

#CQ(C)
Input: (A, S) ∈ C and a structure B.
Problem: Compute | hom(A,B, S)|.

p-#CQ(C)
Input: (A, S) ∈ C and a structure B.
Parameter: ‖A‖
Problem: Compute | hom(A,B, S)|.

Remark 7.3.2. Observe that #CQ contains both CQ and #CSP as spe-
cial cases: A pair (A, S) is associated to a quantifier free query if
S = A (this corresponds to the special case #CSP). If S = ∅ then
(A, S) is associated to a fully quantified query (this corresponds to
the special case CQ).

96 tractable conjunctive queries and cores

We have seen that for CQ cores of instances are crucial while for
#CSP they do not matter at all. Thus we introduce a notion of cores for
conjunctive queries that interpolates between these two extreme cases.
The idea behind the definition is that we require the homomorphisms
between (A, S) and its core to be the identity on the free variables,
while they may map the quantified variables in any way that leads to
a homomorphism. This is formalized as follows. �

Definition 7.3.3. To a conjunctive query (A, S) we assign the augmented
structure A′ over the augmented vocabulary τ ∪ {Ra | a ∈ S} defined as
A′ := A ∪ ⋃a∈SRA

′
a where RA′a := {a}. We call (A′, S) the augmented

query of (A, S). The core of (A, S) is defined as the core of A′. �

Example 7.3.4. Let (A, S) be a fully quantified query, i.e., S = ∅.
Then the core of (A, S) is the core of A.

If (A, S) is quantifier free, i.e., S = A, then the core of (A, S)
equals A.

Thus our notion of cores of conjunctive queries really does what
we asked for in Remark 7.3.2. �

Lemma 7.3.5. Let (A, S) be a conjunctive query such that the augmented
structureA′ is a core. Then every homomorphism h : A → A with h|S = id
is a bijection.

Proof. Clearly, h is also a homomorphism h : A′ → A′, because h(a) =
a ∈ RA′a for every a ∈ S. But by assumption A′ is a core, so there is
no homomorphism from A′ to a proper substructure and thus h must
be a bijection on A′ and consequently also on A. �

The cores of conjunctive queries were essentially already studied by
Chandra and Merlin in a seminal paper [CM77] although the notation
used there is different. We formulate some fundamental results on
conjunctive queries.

Definition 7.3.6. We call two queries (A1, S) and (A2, S) equivalent if
for each structure B we have

hom(A1,B, S) = hom(A2,B, S). �

Theorem 7.3.7 ([CM77]). If two conjunctive queries (A1, S) and (A2, S)
have the same core, then they are equivalent.

The following lemma seems to be folklore. A proof can be found
e.g. in [FG06].

Lemma 7.3.8. Let A and B be two homomorphically equivalent structures,
and let A′ and B′ be cores of A and B, respectively. Then A′ and B′ are
isomorphic.

7.3 tractable conjunctive queries and cores 97

We now assign another structure A∗ to a query (A, S):

Definition 7.3.9. To a conjunctive query (A, S) we assign the structureA∗
over the vocabulary τ ∪ {Ra | a ∈ A} defined as A∗ := A ∪ ⋃a∈ARA

∗
a

where RA∗a := {a}. �

Note that A′ and A∗ differ in which relations we add: For A′ we
add RA′a for variables a ∈ S while for A∗ we add RA∗a for all a ∈ A.
Thus, A∗ in general has more relations than A′.

We now formulate the main technical lemma of this section whose
proof uses ideas from [DJ04].

Lemma 7.3.10. Let C be a class of conjunctive queries such that for each
(A, S) ∈ C the augmented structure A′ is a core. Let C∗ := {(A∗, S) |
(A, S) ∈ C}. Then there is a parameterized T-reduction from p-#CQ(C∗)
to p-#CQ(C).

Proof. Let ((A∗, S),B) be an input for #CQ(C∗). Remember that A∗
and B are structures over the vocabulary τ∪{Ra | a ∈ A}. By the def-
inition of A∗ we get the corresponding structure A with (A, S) ∈ C
by deleting the the relations RA∗a for a ∈ A. We will reduce the com-
putation of | hom(A∗,B, S)| to the computation of | hom(A,B′, S)| for
different structures B′.

Let D := {(a, b) ∈ A× B | b ∈ RBa } and define a structure D over
the vocabulary τ with the domain D that contains for each relation
symbol R ∈ τ the relation

RD := {((a1, b1), . . . , (ar, br)) |
(a1, . . . , ar) ∈ RA, (b1, . . . , br) ∈ RB ,

∀i ∈ [r] : (ai, bi) ∈ D}.

Let furthermore Π : D → A be the projection onto the first coor-
dinate, i.e., Π(a, b) := a. Observe that Π is by construction of D a
homomorphism from D to A.

We will several times use the following claim:

Claim 7.3.11. Let h ∈ hom(A,D) with h(S) = S. Then Π ◦ h is an
automorphism of A.

Proof. Let g := Π ◦ h. As the composition of two homomorphisms, g
is a homomorphism from A to A. Furthermore, by assumption g|S
is a bijection from S to S. Since S is finite, there is i ∈ N such that
gi|S = id. But gi is a homomorphism and thus, by Lemma 7.3.5, gi is
a bijection. It follows that g is a bijection.

Since A is finite, there is j ∈ N such that g−1 = gl . It follows
that g−1 is a homomorphism and thus g is an automporphism. �

Let N be the set of mappings h : S → D with Π ◦ h = id that can
be extended to a homomorphism h′ : A → D.

98 tractable conjunctive queries and cores

Claim 7.3.12. There is a bijection between hom(A∗,B, S) and N .

Proof. For each h∗ ∈ hom(A∗,B, S) we define P(h∗) := h by h(a) :=
(a, h∗(a)) for a ∈ S. From the extension of h∗ to A we get an extension
of h that is a homomorphism and thus h ∈ N . Thus P is a mapping
P : hom(A∗,B, S)→ N .

We claim that P is a bijection. Clearly, P is injective. We we will
show that it is surjective as well. To this end, let h : S → D be a map-
ping in N and let he ∈ hom(A,D) be an extension of h which exists
by definition of N . By Claim 7.3.11 we have that Π ◦ he is an automor-
phism, and thus (Π ◦ he)−1 is a homomorphism. We set h′e := he ◦ (Π ◦
he)−1. Obviously, h′e is a homomorphism in hom(A,D), because h′e is
the composition of two homomorphisms. Furthermore, for all a ∈ S
we have h′e(a) = (he ◦ (Π ◦ he))(a) = (he ◦ (Π ◦ h))(a) = he(a) = h(a),
so h′e is an extension of h. Moreover Π ◦ h′e = (Π ◦ he) ◦ (Π ◦ he)−1 = id.
Hence, we have h′e = id × h̄ for a homomorphism h̄ : A → B,
where B is the structure we get from B by deleting the relations RBa
for a ∈ A. But by definition h′e(a) ∈ D for all a ∈ A and thus
h̄(a) ∈ RBa . It follows that h̄ ∈ hom(A∗,B). We set h∗ := h̄|S. Clearly,
h∗ ∈ hom(A∗,B, S) and P(h∗) = h. It follows that P is surjective. This
proves the claim. �

Let I be the set of mappings g : S → S that can be extended to an
automorphism of A. Let N ′ be the set of mappings h : S → D with
(Π ◦ h)(S) = S that can be extended to homomorphisms h′ : A → D.

Claim 7.3.13.

| hom(A∗,B, S)| = |N
′|
|I| .

Proof. Because of Claim 7.3.12 it is sufficient to show that

|N ′| = |N ||I|. (2)

We first prove that

N ′ = { f ◦ g | f ∈ N , g ∈ I}. (3)

The ⊇ direction is obvious. For the other direction let h ∈ N ′. Let h′

be the extension of h that is a homomorphism h′ : A → D. By Claim
7.3.11, we have that g := Π ◦ h′ is an automorphism of A. It follows
that g−1|S ∈ I. Furthermore, h ◦ g−1|S is a mapping from S to D
and h′ ◦ g−1 is an extension that is a homomorphism from A to D.
Furthermore (Π ◦ h′ ◦ g−1|S)(a) = (g|S ◦ g−1|S)(a) = a for every a ∈ S
and hence h′ ◦ g−1|S ∈ N and h = h ◦ g−1|S ◦ g|S which proves the
claim (3).

To show (2), we claim that for every h, h′ ∈ N and every g, g′ ∈ I,
if f 6= f ′ or g 6= g′, then f ◦ g 6= f ′ ◦ g′. To see this, observe that f can
always be written as f = id× f2 and thus (f ◦ g)(a) = (g(a), f2(g(a)).

7.3 tractable conjunctive queries and cores 99

Thus, if g and g′ differ, Π ◦ f ◦ g 6= Π ◦ f ′ ◦ g′ and thus f ◦ g 6= f ′ ◦ g′.
Also, if g = g′ and f 6= f ′, then clearly f ◦ g 6= f ′ ◦ g′. This completes
the proof of (2) and the claim. �

Clearly, the set I depends only on (A, S) and thus it can be com-
puted by an FPT-algorithm. Thus it suffices to show how to compute
|N ′| in the remainder of the proof.

For each set T ⊆ S we define NT := {h ∈ hom(A,D, S) | (Π ◦
h)(S) ⊆ T}. We have by inclusion-exclusion

|N ′| = ∑
T⊆S

(−1)|S\T||NT|. (4)

Observe that there are only 2|S| summands in (4) and thus if we can
reduce all of them to #CQ with the query (A, S) this will give us the
desired parameterized T-reduction.

We will now show how to compute the NT by interpolation. So fix
a T ⊆ S. Let NT,i for i = 0, . . . , |S| be

NT,i := {h ∈ hom(A,D, S) | |(Π ◦ h)(S) ∩ T| = i},

i.e., NT,i consists of the mappings h ∈ hom(A,D, S) such that there
are exactly i elements a ∈ S that are mapped to h(a) = (a′, b) such
that a′ ∈ T. Obviously, NT = NT,|S| with this notation.

Now for each j = 1, . . . , |S| we construct a new structure Dj,T over
the domain Dj,T. To this end, let a(1), . . . , a(j) be copies of a ∈ T that
are not in D. Then we set

Dj,T := {(a(k), b) | (a, b) ∈ D, a ∈ T, k ∈ [j]}
∪{(a, b) | (a, b) ∈ D, a /∈ T}.

We define a mapping B : D → P(Dj,T), where P(Dj,T) is the power
set of Dj,T, by

B(a, b) :=

{(a(k), b) | k ∈ [j]}}, if a ∈ T

{(a, b)}, otherwise.

For every relation symbol R ∈ τ we define

RDT,j :=
⋃

(d1,...,ds)∈RD

B(d1)× . . .× B(d2).

Then every h ∈ NT,i corresponds to ij mappings in hom(A,Dj,T, S).
Thus for each j we get

|S|

∑
i=1

ij|NT,i| = | hom(A,Dj,T, S)|.

This is a linear system of equations and the corresponding matrix is a
Vandermonde matrix, soNT = NT,|S| can be computed with an oracle

100 tractable conjunctive queries and cores

for #CQ on the instances ((A, S),Dj,T). The size of the linear system
depends only on |S|. Furthermore, ‖Dj‖ ≤ ‖D‖js ≤ ‖D‖s+1 where s
is the bound on the arity of the relations symbols in τ and thus a con-
stant. If follows that the algorithm described above is the desired pa-
rameterized T-reduction. This completes the proof of Lemma 7.3.10.�

We will use a lemma that is probably well known, but as we could
not find a reference, we give a proof for it.

Lemma 7.3.14. Let k ∈N be a fixed constant. Let A be a structure having
a core with treewidth at most k. Then we can compute a core of A in time
polynomial in ‖A‖.

Proof. The proof is based on well-known query minimization tech-
niques already pioneered in [CM77]. The basic observation is that
if A is not a core, then there is a substructure As, that we get by delet-
ing a tuple from a relation of A, that contains a core of A. Trivially, As

is homomorphically equivalent to A. Thus by Lemma 7.3.8, for every
substructure As of A that is homomorphically equivalent to A, the
core of As is also a core of A.

The construction of a core Ac goes as follows: For every tuple t
in every relation check, using the algorithm of Theorem 7.2.9, if the
structure we get from A by deleting t is homomorphically equivalent
to A. If there is such a tuple t, delete it from A and iterate the process,
until no tuple can be deleted anymore.

By the discussion above the end result Ac of this procedure must
be a core. Furthermore, Ac is homomorphically equivalent to A and
a substructure of A, so Ac is a core of A. Finally, at most ‖A‖ tuples
get deleted and for every deleted tuple the algorithm has to perform
at most ‖A‖ homomorphism test. The left hand sides of these test all
have the same core of treewidth at most k and the right hand sides
have size at most ‖A‖. Using Theorem 7.2.9 then gives a runtime
polynomial in ‖A‖. �

We make an observation similar to Observation 6.1.3 For a conjunc-
tive query (A, S) with core Ac we define w(A, S) as the sum of the
treewidth of Ac and the quantified star size of of the core of (Ac, S).

Observation 7.3.15. Let C be a recursively enumerable class of conjunctive
queries such that p-#CQ(C) is fixed-parameter tractable and the values of w
on the instances of C is unbounded. Then there is a recursive class C ′ of con-
junctive queries such that p-#CQ(C ′) is fixed-parameter tractable, the value
of w on the instances of C ′ is unbounded and there is a Turing machine M′

that enumerates C ′ in an order (H′1, S′1), (H′2, S′2), . . . such that the function
i 7→ w(Hi, Si) is increasing.

Proof. Let M be a Turing-machine that enumerates the queries in C.
Let (A1, S1), (A2, S2), . . . be the order in which M enumerates the

7.3 tractable conjunctive queries and cores 101

queries in C. We define C ′ := {(A′1, S′1), (A′2, S′2), . . .} by (A′1, S′1) :=
(A1, S1) and (A′i, S′i) := (An(i), Sn(i)) where n(i) := min{j ∈ N | j >
n(i− 1), w(Aj, Sj) > w(A′i−1, S′i−1)}. Because w is unbounded on the
instances in C, we have that C ′ is infinite and w is unbounded on the
instances of C ′.

From M it is easy to construct a Turing-machine M′ that enumer-
ates C ′ in the order (A′1, S′1), (A′2, S′2), Furthermore, there is an
algorithm that decides membership in C ′: On an input (A, S), enu-
merate C ′ with M′ until (A, S) is found or M′ enumerates a query
(A′, S′) such that w(A′, S′) > w(A, S). In the first case the algorithm
accepts, in the second case the algorithm rejects. Thus C ′ is recursive.

Finally, all queries in C ′ are by construction also in C, so #CQ(C ′) is
fixed-parameter tractable. �

We can now finally fully characterize the tractable classes queries
for #CQ of bounded arity.

Theorem 7.3.16. Let C be a recursively enumerable class of conjunctive
queries of bounded arity. Assume FPT 6= W[1]. Then the following state-
ments are equivalent:

1. #CQ(C) ∈ FP.

2. p-#CQ(C) ∈ FPT.

3. There is a constant c such that the cores of the queries in C have
quantified star-size and treewidth at most c.

Proof. 1→ 2 is trivial.
2 → 3: By way of contradiction, assume that there is a class C of

conjunctive queries of unbounded treewidth or unbounded quanti-
fied star size such that p-#CQ(C) is fixed-parameter tractable. We
will show that there is then also a class G of S-hypergraphs of un-
bounded treewidth or unbounded S-star size such that #CQ on G is
fixed-parameter tractable. This is a contradiction with Theorem 6.1.2.

Obviously, the function w is unbounded on C and thus we assume
w.l.o.g. that C has the properties of the class known to exist from Ob-
servation 7.3.15. In particular, there is a machine M′ that enumerates
C by increasing value of w.

For each (A, S) ∈ C we construct a structure A as follows: Con-
struct the augmented structure A′ of A and compute its core A′.
Then we define A to be the structure that we get by deleting the
relations Ra for a ∈ S that we added in the construction of A′. We set

C := {(A, S) | (A, S) ∈ C}.

Obviously, w is unbounded on C. Furthermore, observe that C is re-
cursive: For a query (A, S) simply enumerate C until a corresponding
query (A, S) ∈ C is found or M′ enumerates a query (A′, S′) with
w(A′, S′) > w(A, S). Observe that this also gives an algorithm that,
given a query (A, S) ∈ C, computes a corresponding (A, S) ∈ C.

102 tractable conjunctive queries and cores

Claim 7.3.17. #CQ(C) is fixed-parameter tractable.

Proof. We will show a parameterized parsimonious reduction from
p-#CQ(C) to p-#CQ(C).

First, we claim that there is a computable function g such that to
an instance (A, S) ∈ C we can in time g(|A|) find a corresponding
(A, S) ∈ C. We have already seen that there is an algorithm that to
any individual (A, S) ∈ C computes (A, S) ∈ C. Let f (A, S) be the
time that the algorithm needs for this computation. We set g(k) :=
max(A,S)(f (A, S)) where the maximum is over all (A, S) ∈ C with
‖A‖ = k. Since C is recursive, it follows that g is computable.

We have that A is a substructure of A and there is a homomor-
phism from A to A, because there is a homomorphism from A′ to A′.
Hence, A and A are homomorphically equivalent and by Theorem
7.3.7 we have that (A, S) and (A, S) are equivalent.

Thus there is indeed a parameterized parsimonious reduction from
p-#CQ(C) to p-#CQ(C) and it follows that p-#CQ(C) is fixed-parame-
ter tractable. �

Let C∗ := {(A∗, S) | (A, S) ∈ C}. By Lemma 7.3.10 there is a pa-
rameterized T-reduction from p-#CQ(C∗) to p-#CQ(C) and thus p-
#CQ(C∗) is fixed-parameter tractable.

Let now G be the class of S-hypergraphs of the instances in C. By
definition the S-star size or the treewidth of G is unbounded.

Claim 7.3.18. #CQ on G is fixed-parameter tractable.

Note that Claim 7.3.18 is a contradition to Theorem 6.1.2, because,
as we have already observed, the treewidth of the S-star size of G is
unbounded. Thus it only remains to prove Claim 7.3.18.

Proof of Claim 7.3.18. We will show that there is a parameterized parsi-
monious reduction from #CQ on G to #CQ(C∗). To this end, let (B, φ)

be a #CQ-instance such that the S-hypergraph (H, S) of φ is in G. We
assume w.l.o.g. that every scope appears only once in φ. If this is not
the case, we can substitute atoms with the same scope by one atom
whose relation is the intersection of the relation of the original atoms.
This does not change the S-hypergraph associated to φ, so this new
instance still has the S-hypergraph (H, S).

By similar arguments as before, there is a computable function g′

such that we can compute in time g′(|φ|) a query (A, S) ∈ C that has
the S-hypergraph (H, S).

Let the vocabulary of (A, S) be τ.
We now construct a structure B over the same relation symbols

as A∗, i.e., over the vocabulary τ ∪ {Rx | x ∈ A}. The structure B has

7.3 tractable conjunctive queries and cores 103

the domain B := A× B where A := var(φ) is the domain of A and B
is the domain of B. For R ∈ τ we set

RB := {((xi1 , a1), . . . , (xik , ak)) |(xi1 , . . . , xik) ∈ R
A,

R(xi1 , . . . , xik) ∈ atom(φ),

(a1, . . . , ak) ∈ RB}.

Furthermore, for the relations symbols Rx that are added in the con-
struction of A∗ from A we set

RBx := {(x, a) | a ∈ B}

where B is the domain of B.
Let φ′ be the query we get from φ by deleting all quantifiers. It

is easy to see that from a satisfying assignment h ∈ φ′(B) we get a
homomorphism h′ : A∗ → B by setting h′(x) := (x, h(x)). Further-
more, this construction is obviously bijective. Thus we get |φ(B)| =
| hom(A∗,B, S)|. Since ‖B‖ is polynomial in |φ| and ‖B‖, the con-
struction is a parameterized parsimonious reduction from #CQ on G
to #CQ(C∗). This completes the proof of Claim 7.3.18. �

3 → 1: Let ((A, S),B) be an instance of #CQ(C) with domain A.
By assumption the treewidth and the quantified star size of the core
of (A, S) are at most c. We simply compute the core of (A, S) with
Lemma 7.3.14 and then use Theorem 7.3.7 and Theorem 6.1.2 to solve
the instance in polynomial time. �

8
C O N C L U S I O N

In this part of this thesis we have achieved a very fine understanding
of tractability for #CQ. Starting off from the general hardness results
in [BCC+

05] and [PS13] we have analysed the hard cases and used
our understanding of them to distill the parameter quantified star size
that characterizes the tractable cases for large classes of fragments
defined by well-known decomposition techniques. Of course there
remain numerous open questions and we will present several of them
in this final chapter of this part.

First, we did not completely characterize the tractable cases for
#CQ of unbounded arity. This is not surprising, because the analo-
gous question for CQ is not understood so far, either. There is how-
ever a characterization of the fixed parameter tractable classes of CQ
by Dániel Marx [Mar10]: The parameter “submodular width” intro-
duced by Marx makes CQ fixed-parameter tractable and it is the
most general parameter to do so—assuming the exponential time
hypothesis (see 5.1). It would be interesting to see if #CQ-instances
of bounded submodular width and bounded quantified star size are
tractable. This would then solve the complexity of p-#CQ completely.
Since the techniques of Marx are quite involved it is not apparent if
they transfer to counting.

Another direction of future research is trying to adapt our star size
techniques to different problems. For example, one could try to gener-
alize the results of this part of the thesis by extending the logical frag-
ment that the queries can be formulated in. Just recently, Chen and
Dalmau [CD12] have characterized the tractable classes of bounded
arity QCSP which is a version of CQ in which also universal quan-
tifiers are allowed. They do this by introducing a new width mea-
sure based on elimination orders for first order {∀, ∃,∧}-formulas.
As already discussed in Section 6.2 it appears likely that the tractable
fragment found by Chen and Dalmau can also be characterized by
an adapted version of quantified star size. This alternative charac-
terization would then maybe make it easier to understand tractable
fragments of unbounded arity.

Another extension of conjunctive queries appears in a recent paper
by Chen [Che12] where he considers existential formulas that may
use conjunction and disjunction. This is particularly interesting, be-
cause it corresponds to the classical select-project-join queries with
union that play an important role in database theory (see e.g. the text-
book [AHV95]). One may wonder if techniques used in this thesis
may help to understand the complexity of this class of queries better.

105

106 conclusion

Another basic question is the role of negation in queries. If we allow
negation in front of the atoms of a conjunctive query the decompo-
sition techniques of Chapter 2 do not yield tractable instances any-
more. Indeed, it is easy to see that if we allow such negation even
quantifier free, acyclic instances become NP-hard and #P-hard [SS10].
Ordyniak et al. [OPS10] have shown that a restriction of acyclicity
called β-acyclicity leads to tractable SAT. Brault-Baron generalized
this to NCQ—a version of CQ in which all atoms are negated—and
showed that β-acyclic instances cannot only be solved in polynomial
time but even in quasi-linear time. He also formulated a partial con-
verse by proving that if there is any non-β-acyclic query that allows
quasi-polynomial decision, then there are very fast algorithms for
detecting triangles in graphs. So far there is no known way to ex-
tend β-acyclicity ot a width measure that yields tractable NCQ, but
there are several incomparable width measures based on treewidth or
cliquewidth that make NCQ tractable (see e.g. [PSS13]). For counting
it is not known if β-acyclicity is helpful; even the question if counting
for quantifier free NCQ-instances is tractable is open.

Part II

U N D E R S TA N D I N G A R I T H M E T I C C I R C U I T
C L A S S E S

9
I N T R O D U C T I O N A N D P R E L I M I N A R I E S

9.1 introduction

In this part of the thesis we change the underlying model of compu-
tation from Turing machinges to arithmetic circuits. Arithmetic circuit
complexity is a classical area proposed by Valiant [Val79, Val82]. Over
that last decades it has attracted considerable attention and is still a
very active field.

Our main interest in this part will be to understand efficient com-
putation in the arithmetic circuit setting which is formalized by the
class VP. This class consists of families of polynomials of polynomial
degree that are computed by arithmetic circuits of polynomial size.
Consider for example the family (detn)n∈N where detn is the deter-
minant of the (n× n)-matrix (Xij)1≤i,j≤n where the Xij are variables.
Then (detn) lies in VP.

Despite its apparently natural definition there is one irritating as-
pect in which VP differs from other arithmetic circuit classes: There
are no known natural complete problems for VP—artificial ones can
be constructed (see e.g. [Mal07])—and prior to the work presented
in this part of this thesis there had been no natural characterizations
of VP that did not in one form or another depend on circuits. This
puzzling feature of VP raises the question whether VP is indeed the
right class for measuring natural efficient computability. This scep-
ticism is further strengthened by the fact that Malod and Portier
[MP08] have shown that many natural problems from linear algebra
are complete for VPws, a subclass of VP. Thus the search for com-
plete problems or natural characterizations of VP is an interesting
and meaningful problem in algebraic complexity. In this part of this
thesis we give several such natural characterization of VP and other
classes, none of them depending on arithmetic circuits directly.

The first set of results will connect arithmetic circuit classes to the
conjunctive queries of Part i. We will see in Chapter 10 that conjunc-
tive queries can be used to give circuit-free characterizations of all
arithmetic circuit classes commonly considered in the literature. It
follows that all counting results of Part i can be turned into results
for weighted counting which is often considered in the counting com-
plexity literature (see e.g. [CC12]).

In Chapter 11 we consider polynomials defined as generating func-
tions of graph properties. For most interesting graph properties these
polynomials are known to be VNP-complete [Bü00, BK09] and thus
conjectured to be intractable. We will follow the idea by Flarup et

109

110 introduction and preliminaries

al. in [FKL07] and consider graph polynomials for graphs of bounded
treewidth. This restriction will for several graph polynomials allow us
to characterize VPe, the class of families of polynomials computed by
polynomial size arithmetic formulas. We will also disprove a conjecture
of Lyaudet [Lya07] by showing that some polynomial familes that
are VNP-complete for general graphs fail to capture VPe on bounded
treewidth graphs.

Finally, in Chapter 12 we extend the well known characterization of
VPws as the class of polynomials computed by polynomial size arith-
metic branching programs [MP08] to other complexity classes. In order
to do so we add additional memory to the computation of branch-
ing programs to make them more expressive. We show that allowing
different types of memory in branching programs increases the com-
putational power even for constant width programs. In particular, this
leads to very natural and robust characterizations of VP and VNP by
branching programs with memory.

We will only consider some small parts of the rich field of arith-
metic circuit complexity in this and the next part of this thesis. For a
larger overview of the field see the textbooks [BCS97, Bü00] and the
recent surveys [SY10, Mah12].

9.2 some background on arithmetic circuit complexity

We present a short introduction into the setting of arithmetic circuit
complexity as proposed by Valiant [Val79, Val82].

An arithmetic circuit over a field F is a labeled directed acyclic graph
(DAG) consisting of vertices or gates with indegree or fanin 0 or 2.
The gates with fanin 0 are called input gates and are labeled with
constants from F or variables X1, X2, . . . , Xn. The gates with fanin 2
are called computation gates and are labeled with × or +.

In most parts of this thesis we will not specify which field F we are
computing in. All proofs will be valid for any field of characteristic
different from 2. Most results could also be proved for characteristic
2, but as this requires some cumbersome work and does not lead to
many new insights, we will not carry this out.

We sometimes also consider circuits in which gates may receive
more than two edges. In this case we say that they have unbounded
fanin. Circuits in which only the +-gates may have unbounded fanin
are called semi-unbounded circuits. Observe that in semi-unbounded
circuits ×-gates still have fanin 2. A circuit is called multiplicatively
disjoint if for each ×-gate v the subcircuits that have the children of
v as output-gates are disjoint. A circuit is called skew, if for all of its
×-gates one of the children is an input gate. An arithmetic formula is
an arithmetic circuit whose underlying graph is a tree.

The polynomial computed by an arithmetic circuit is defined in
the obvious way: an input gate computes the value of its label, a

9.2 some background on arithmetic circuit complexity 111

computation gate computes the product or the sum of its children’s
values, respectively. We assume that a circuit has only one sink which
we call the output gate. We say that the polynomial computed by the
circuit is the polynomial computed by the output gate. The size of an
arithmetic circuit is the number of gates. The depth of a circuit is the
length of the longest path from an input gate to the output gate in
the circuit.

An arithmetic circuit is called constant free, if the only constants at
input gates are −1, 0 and 1. Finally, a circuit or formula is called
monotone if only the constants 0 and 1 are allowed. When we consider
constant free arithmetic circuits we always assume them to compute
over a field of characteristic 0, such that the circuits compute polyno-
mials in Z[X1, . . . , Xn]. When a constant free arithmetic circuit is the
input of a problem, we assume that it is given as a graph with labels
on the vertices, for instance as an adjacency list.

We call a sequence (fn) of multivariate polynomials a family of
polynomials or polynomial family. We say that a polynomial family is
of polynomial degree, if there is a univariate polynomial p such that
deg(fn) ≤ p(n) for each n. VP is defined as the class of polynomial
families of polynomial degree computed by families of polynomial
size arithmetic circuits. Throughout the thesis we will use the follow-
ing characterizations of VP, sometimes without explicitly referencing
this theorem.

Theorem 9.2.1. ([VSBR83, MP08]) Let (fn) be a family of polynomials.
The following statements are equivalent:

1. (fn) ∈ VP

2. (fn) is computed by a family of multiplicatively disjoint polynomial
size circuits.

3. (fn) is computed by a family of semi-unbounded circuits of logarith-
mic depth and polynomial size.

4. (fn) is computed by a family of semi-unbounded, multiplicatively dis-
joint circuits of logarithmic depth and polynomial size.

The last item of Theorem 9.2.1 is not stated explicitly in the ref-
erenced papers, but it follows easily by applying the techniques of
Malod and Portier [MP08, Lemma 2] on the characterization of VP by
logarithmic depth semi-unbounded arithmetic circuits.
VPe is defined as the class of polynomial families computed by

arithmetic formulas of polynomial size. By a classical result of Brent
[Bre76], VPe can equivalently be defined as the class of polynomial
families computed by arithmetic circuits of depth O(log(n)). VPws is
defined as the class of families of polynomials computed by families
of skew circuits of polynomial size. Finally, a family (fn) of polyno-
mials is defined to be in VNP, if there is a family (gn) ∈ VP and a

112 introduction and preliminaries

polynomial p such that fn(X) = ∑e∈{0,1}p(n) gn(e, X) for all n where X
denotes the vector (X1, . . . , Xq(n)) for some polynomial q.

The most prominent polynomial in arithmetic circuit complexity
besides the determinant is certainly the permanent. For an (n × n)-
matrix (Xij)i,j∈[n] we define the permanent as

PERn := ∑
σ∈Sn

n

∏
i=1

Xiσ(i).

The permanent has roughly the same importance in arithmetic circuit
complexity as SAT has in Boolean complexity because of the follow-
ing theorem.

Theorem 9.2.2 ([Val79]). The family (PERn) is VNP-complete.

The following criterion by Valiant [Val79] (see also [Bü00, Proposi-
tion 2.20]) for containment in VNP is often helpful:

Lemma 9.2.3 (Valiant’s criterion). Let φ : {0, 1}∗ →N be a function in
#P/poly, Then the family (fn) of polynomials defined by

fn = ∑
e∈{0,1}n

φ(e)
n

∏
i=1

Xei
i

is in VNP.

A polynomial f is called a projection of g (symbol: f ≤ g), if there
are values ai ∈ F ∪ {X1, X2, . . .} such that f (X) = g(a1, . . . , aq). A
family (fn) of polynomials is called a p-projection of (gn) (symbol:
(fn) ≤p (gn)), if there is a polynomial r such that fn ≤ gr(n) for all n.
As usual we say that (gn) is hard for an arithmetic circuit class C if
for every (fn) ∈ C we have (fn) ≤p (gn). If further (gn) ∈ C we say
that (gn) is C-complete.

When considering arithmetic circuits as the input of computational
problems as we will do in Part iii, it is common to consider so-called
degree-bounded arithmetic circuits, i.e., one assumes that there is a
polynomial p such that for all polynomial f computed as circuits
C that are inputs to the computational problem we have deg(f) ≤
p(|C|). This kind of degree bound has two problems: One is that
computing the degree of a polynomial represented by a circuit is sus-
pected to be hard (see also Section 14.4 and [ABKPM09, KP07, KS11]),
so problems defined with this degree bound must often be promise
problems. The other problem is that the bound on the degree does
not bound the size of the coefficients of the computed polynomial,
which by iterative squaring can have exponential bitsize. Thus even
evaluating circuits on a Turing machine in polynomial time becomes
intractable. Problems resulting from this are discused in a paper by
Allender et al. [ABKPM09].

To avoid all these complications, instead of bounding the degree
of the computed polynomial, we will bound the formal degree of the
circuit. The formal degree of a circuit C is defined inductively:

9.2 some background on arithmetic circuit complexity 113

• The formal degree of an input gate v is 1.

• The formal degree of an addition gate v with with children u, w
is the maximum of the formal degree of u and the formal degree
of w.

• The formal degree of a multiplication gate v with children u, w
is the sum of the the formal degree of u and the formal degree
of w.

The formal degree of C is defined to be the formal degree of its out-
put gate.

Clearly, the formal degree of a circuit C is an upper bound for the
degree of the polynomial f computed by C. Also it is easy to see that
the formal degree of C can be computed efficiently. Finally, a circuit C
can be evaluated in time polynomial in |C| and the formal degree.
Thus we avoid the complications dicussed above for the degree.

Instead of considering circuits of bounded formal degree, it is often
more convenient to consider multiplicatively disjoint circuits. This is
justified by the following Lemma of Portier and Malod [MP08] which
states that the two notions are essentially equivalent.

Lemma 9.2.4. a) Let C be a constant free arithmetic circuit of formal
degree d. Then there is a constant free arithmetic circuit of size at
most d|C| computing the same polynomial as C.

b) Every multiplicatively disjoint circuit C has formal degree at most |C|.

We will several times consider parse trees of multiplicatively dis-
joint ciruits, which can be seen as objects tracking the formation of
monomials during the computation [MP08, Section 4] and which are
the algebraic analog of proof trees [VT89].

A parse tree T of a multiplicatively disjoint circuit C is a subgraph
of C that is constructed in the following way:

• Add the output gate of C to T.

• For every gate v added to T do the following;

– If v is a +-gate, add exactly one of its children u and the
edge vu to T.

– If v is a ×-gate with inputs u and w, add both u and w and
the edges vu and vw to T.

Observe that parse trees are binary trees. The weight w(T) of a
parse tree T is defined as the product of the labels of its leaves. It is
straightforward to check that the polynomial computed by C is the
sum of the weights of all of C’s parse trees.

We remark that parse trees can also be defined for arithmetic cir-
cuits that are not multiplicatively disjoint. In this case the definition

114 introduction and preliminaries

is a little more tricky, because the parse tree of a circuit C is in general
not a subtree of C and can be of exponential size in |C|. Since we will
only need parse trees of multiplicatively disjoint circuits, we refer the
reader to [MP08] for more details.

9.3 digression : reduction notions in arithmetic circuit

complexity

The usual reduction notion in arithmetic circuit complexity is that
of p-projections introduced above. There is also a different notion
of reductions more similar to Turing- or oracle-reductions that was
defined in [Bü00] and is used in some recent papers (see e.g. [BK09,
dRA12]).

Definition 9.3.1. The oracle complexity L(g)(f) of a polynomial f with
oracle g is the minimum number of arithmetic operations +,−,× and eval-
uations of g (at previously computed values) that are sufficient to compute f
from the variables X1, X2, . . . and constants in F. �

Definition 9.3.2. Let (fn) and (gn) be families of polynomials. We call
(fn) a c-reduction of (gn), symbol (fn) ≤c (gn), if and only if there is
a polynomially bounded function t : N → N such that the map n 7→
Lgt(n)(fn) is polynomially bounded. �

Intuitively, if (fn) c-reduces to (gn), then there is a family of arith-
metic circuit of polynomial size that may use polynomials from (gn)

to compute (fn).
It appears as though c-reductions should be more powerful than

p-projections. The main observation of this section is that we can ac-
tually prove this unconditionally over the field R. This is in contrast to
the Boolean setting where results of this kind have only been proven
under some complexity assumptions (see e.g. [HP06]).

We consider a polynomial that we model after the permanent poly-
nomial PERn:

Pn := ∑
σ∈Sn

n

∏
i=1

Xi,σ(i) + ∑
σ

n

∏
i=1

X2
i,σ(i),

where the sum is over all permutations.
We remark that the same construction would also work for an arbi-

trary homogeneous polynomial known to be VNP-complete.

Lemma 9.3.3. (Pn) is VNP-complete under c-reductions over R.

Proof. This is a simple interpolation argument using that the homo-
geneous part of degree n of P is obviously the permanent. We inter-
polate P(λX) at the arguments 1 and 2 and get that

PERn(X) =
2n

2n − 1
Pn(X)− 1

2n(2n − 1)
Pn(2X).

9.3 digression : reduction notions in arithmetic circuit complexity 115

It follows that Pn is even VNP-complete under linear p-projections
(see [Bü00, p. 54]). �

Remark 9.3.4. This construction works for every field with at least 2
elements, i.e., for every field except GF(2). We can interpolate at ar-
guments 1 and a with a 6= 1 and a 6= 0. The only problem in this case
is that an might be 1 so that the interpolation will not work. We can
work around this by simply evaluating Pn+1 in this case. �

Lemma 9.3.5. (Pn) is not VNP-complete under p-projections over R.

The short proof of Lemma 9.3.5 emerged from discussions with
Dennis Amelunxen and Christian Ikenmeyer.

Proof. We show that the simple polynomial X is not a projection of Pn

for any n (X is just a single variable here). Assume this were not
the case. Then there is a (n × n)-matrix A = (aij)i,j∈[n] with entries
from {X} ∪ R such that Pn(A) = X. Let σ be a permutation such
that ∏n

i=1 aiσ(i) has maximal degree. Obviously this degree is at least
1. Then the monomial ∏n

i=1 a2
iσ(i) has at least degree 2 and it cannot

cancel out because

• it cannot cancel with any ∏n
i=1 aiµ(i) for a permutation µ, be-

cause those all have smaller degrees, and

• it cannot cancel out with any ∏n
i=1 a2

iµ(i), because those all have
positive coefficients in Pn(A).

Thus Pn(A) has degree at least 2, which implies that it cannot com-
pute X. �

As a corollary we get that over R, c-reductions yield strictly more
complete problems that p-projections.

Theorem 9.3.6. There is a family of polynomials that is VNP-complete over
R under c-reductions but not under p-projections.

Lemma 9.3.5 unfortunately does not generalize to arbitrary fields.

Lemma 9.3.7. Let F be a field such that there are elements a1, . . . , as with
∑s

i=1 ai 6= 0 and ∑s
i=1 a2

i = 0. Then (Pn) is VNP-complete over F under
p-projections.

Proof. For an (n × n)-matrix A let PER(A) be the permanent of A
and set PER(A2) := ∑σ ∏n

i=1 a2
iσ(i). With this notation clearly Pn(A) =

PER(A) +PER(A2). For block matrices we have the following decom-
position formula

Ps+t

(
A 0

0 B

)
= PER(A)PER(B) + PER(A2)PER(B2), (5)

116 introduction and preliminaries

where A is an (s× s)-matrix and B is a (t× t)-matrix.
Let a := ∑s

i=1 ai and

A :=



a1 a2 a3 . . . as 0

1 0 0 . . . 0 a−1

0 1 0 . . . 0 a−1

0 0 1 . . . 0 a−1

...
...

...
. . .

...
...

0 0 0 . . . 1 a−1


It is easy to verify that PER(A) = ∑s

i=1 aia−1 = 1 and PER(A2) =

∑s
i=1 a2

i (a−1)2 =
(
∑s

i=1 a2
i
)

a−2 = 0.
Thus we get with (5)

Ps+t+1

(
A 0

0 B

)
= PER(A)PER(B) + PER(A2)PER(B2) = PER(B)

for every (t× t)-matrix B.
Thus the permanent family is a p-projection of (Pn) and with the

VNP-completeness of the permanent under p-projections the claim
follows. �

Corollary 9.3.8. a) (Pn) is VNP-complete under p-projections over C.

b) (Pn) is VNP-complete under p-projections over any field of character-
istic greater than 2.

Proof. a) Set a1 = 1 and a2 = i. We have a1 + a2 = 1+ i and a2
1 + a2

2 = 0
and thus the claim follows by Lemma 9.3.7.

b) Let p > 2 be the characteristic of the field. We have

p−1
2

∑
i=1

1 +

p+1
2

∑
i=1

(−1) = −1 6= 0

and
p−1

2

∑
i=1

12 +

p+1
2

∑
i=1

(−1)2 = p · 1 = 0.

With Lemma 9.3.7 the claim follows. �

interpretation We have shown that there are fields in which
c-reductions and p-projections differ. This result is a little irritating
because it depends crucially on the field of real numbers. It is not
clear what happens over other fields, especially in the light of Corol-
lary 9.3.8, so we close this digression with a question:

Question 1. For which fields F is there a family of polynomials that is
VNP-complete over F under c-reductions but not under p-projections?

10
C O N S T R A I N T S AT I S FA C T I O N P R O B L E M S ,
C O N J U N C T I V E Q U E R I E S A N D A R I T H M E T I C
C I R C U I T C L A S S E S

In this chapter we will connect the considerations on conjunctive
queries and constraint satisfaction problems of Part i to the arith-
metic circuit setting. While conjunctive queries so far have not been
considered in the arithmetic circuit literature, constraint satisfaction
has been considered before by Briquel and Koiran [BK09]: They gave
a dichotomy result for arithmetic circuits similar to those of Schaefer
[Sch78] for decision and Hermann and Creignou [CH96] for counting.
To a family (Φn) of Boolean CSP-instances they assign a polynomial
family (P(Φn)) and show that there is a small set S of Boolean rela-
tions with the following property: If a family (Φn) of CSP-instances
is constructed of relations in S only, then (P(Φn)) ∈ VP. On the
other hand if instances may be constructed with any Boolean rela-
tion not in S, one can construct a family of CSP-instances (Φn) such
that (P(Φn)) is VNP-complete.

Because constraint satisfaction and conjunctive queries are impor-
tant for practical purposes, researchers in database theory and AI
have tried to pinpoint the exact complexity of both problems when
restricted to the classes of Part i (see Section 2). The key class of prob-
lems is ACQ, i.e., the class of CQ-instances that have acyclic asso-
ciated hypergraphs, because more general instances can be reduced
to them (see Lemma 2.3.28). It was shown that ACQ can be solved
in parallel, i.e., in the NC-hierarchy, but the exact complexity of the
problem was open for some time. Gottlob et al. [GLS01] solved this
question by proving that ACQ is complete for the class LOGCFL, the
Boolean sibling of VP. This result also extends to CSP-instances of
bounded width for many of the width measures considered in Part i.

During the last years treewidth has found its way into arithmetic
circuit complexity. This was started by Courcelle et al. [CMR01] who
showed that generating functions of graph problems expressible in
monadic second order logic have small arithmetic circuits for graphs
of bounded treewidth. This line of research was continued by Flarup
et al. [FKL07] who improved these upper bounds and showed match-
ing lower bounds for some families of polynomials (see also Chap-
ter 11). Briquel, Koiran and Meer [BKM11]—building on a paper by
Fischer et al. [FMR08] which deals with counting problems—consi-
dered polynomials defined by CNF-formulas of bounded treewidth.
The more general width measures of Part i have so far not appeared
in arithmetic circuit complexity.

117

118 CQ, CSP and arithmetic circuit classes

In this chapter we unify these different lines of work sketched
above: We complement the general intractability results of Briquel
and Koiran [BK09] by identifying tractable subclasses of polynomials
assigned to CQ-instances. In this respect the results in this paper cor-
respond to the results of Gottlob et al. [GLS01] for CQ and the results
presented in Part i. Also, this chapter can be seen as an extension of
the work of Briquel, Koiran and Meer [KM08, BKM11] by consider-
ing CQ-instances instead of CNF-formulas. We consider two kinds
of polynomials for CQ-instances and show that they characterize the
hierarchy VPe ⊆ VPws ⊆ VP ⊆ VNP of arithmetic circuit classes com-
monly considered, respectively, for different classes of CQ-instances.
CQ-instances of bounded relation size, i.e., with relations whose size
is bounded by a constant, capture VPe when restricted by the width
measures of Part i, while in the case of unbounded relation size we
get VPws for bounded pathwidth and VP for the width measures of
Part i, e.g. generalized hypertree width, when combining them with
bounded quantified star size.

It will be convenient to prove most of our results in this chapter in
the quantifier free setting, i.e., for CSP-instances instead of the more
general CQ-instances. The generalization to CQ-instances will follow
by Lemma 5.2.1.

10.1 polynomials defined by conjunctive queries

We call a CQ-instance Φ Boolean if it has domain {0, 1}. To avoid con-
fusion, we warn the reader that word “Boolean” is used in two differ-
ent ways in the context of conjunctive queries: On the one hand, the
decision problem CQ is called the Boolean conjunctive query prob-
lem. On the other hand, CQ-instances are called Boolean if they have
domain {0, 1}. Fortunately, we will not consider the Boolean conjunc-
tive query problem CQ in this chapter at all, so the word “Boolean”
stands for the domain {0, 1} in this chapter.

To a CQ-instance Φ = (A, φ) we will assign two polynomials P(Φ)

and Q(Φ). However, P(Φ) is only defined for Boolean instances, i.e.,
for such with domain {0, 1}. So let Φ first be a Boolean CQ-instance
with the free variables free(Φ) = {x1, . . . , xn}. We assign to Φ a poly-
nomial P(Φ) in the (position) variables Y1, . . . , Yn in the following
way:

P(Φ) := ∑
e∈φ(A)

Ye.

Here Ye stands for Ye(x1)
1 Ye(x2)

2 . . . Ye(xn)
n .

Example 10.1.1. Let the atoms in Φ be defined by the propositional
formulas {x1 ∨ x2, x3 6= x2,¬x4 ∨ x2}. The satisfying assignments are
then 0100, 0101, 1010, 1100 and 1101. This results in P(Φ) = X2 +

X2X4 + X1X3 + X1X2 + X1X2X4. �

10.1 polynomials defined by conjunctive queries 119

In contrast to P(Φ) the second polynomial Q(Φ) is also defined
for non-boolean CQ-instances. So let Φ = (A, φ) be a CQ-instance
with domain A. We assign to Φ the following polynomial Q(Φ) in
the variables {Xd | d ∈ A}

Q(Φ) := ∑
a∈φ(A)

∏
x∈free(Φ)

Xa(x) = ∑
a∈φ(A)

∏
d∈A

Xµd(a)
d ,

where µd(a) = |{x ∈ free(Φ) | a(x) = d}| is the number of variables
mapped to d by a. Note that the number of variables in Q(Φ) is |A|,
the size of the domain, and that Q(Φ) is homogeneous of degree
|free(Φ)|.

Example 10.1.2. Let A = {1, 2, 3, 4} and let the atoms in Φ have the
relations{x1 + x2 ≥ 4, x3 = 5− x2, x1 < x2}. The satisfying assign-
ments are then (1, 3, 2), (2, 3, 2), (1, 4, 1), (2, 4, 1) and (3, 4, 1). This
results in Q(Φ) = X1X2X3 + X2

2X3 + X2
1X4 + X1X2X4 + X1X3X4. �

Remark 10.1.3. The polynomial Q has a very natural algebraic inter-
pretation: Consider the free monoid A∗ of words over A. Furthermore
consider the free commutative monoid Xc

A over XA := {Xd | d ∈ A},
which is essentially the set of monomials in the variables in XA. There
is a natural monoid morphism q : A∗ → Xc

A with q(a1 . . . as) =

∏s
i=1 Xai . The morphism q ignores the order of the symbols in a word

and thus computes a commutative version of it.
Now we consider two rings: The first one is Z[A∗] consisting of

formal integer linear combinations of words in A∗. Observe that we
can think of any finite set S ⊆ A∗ as an element of Z[A∗] by en-
coding it as ∑a∈S a. The second ring we consider is Z[XA] which is
simply the polynomial ring over Z in the variables XA. The monoid
morphism q induces the ring morphism Q : Z[A∗] → Z[XA] by
Q(∑a caa) = ∑a caq(a). Given the encoding ∑a∈S a of a set S, Q com-
putes a commutative version of it. This is exactly what the polynomial
Q(Φ) defined above does: To a CQ-instance Φ it computes a commu-
tative version of the query result of Φ. �

Remark 10.1.4. If Φ is a Boolean CQ-instance, i.e., it has domain
A = {0, 1}, we can get Q(Φ) from P(Φ) easily. Q(Φ) has only two
variables X0 and X1 and it is homogeneous of degree |free(Φ)|. Sub-
stituting Yi of P(Φ) by X1

X0
we get

X|free(Φ)|
0 P(Φ)

(
X1

X0
, . . . ,

X1

X0

)
= Q(Φ)(X1, X0). �

In the following two lemmas we will see that the two polynomials
we defined for CQ-instances are even closer related than observed in
Remark 10.1.4. Recall the definition of the S-hypergraph associated
to a query φ from Definition 3.2.3.

120 CQ, CSP and arithmetic circuit classes

Lemma 10.1.5. For every Boolean CQ-instance Φ = (A, φ) there is a CQ-
instance Ψ = (B, ψ) of size polynomial in ‖Φ‖ such that P(Φ) ≤ Q(Ψ)

and φ and ψ have the same S-hypergraph. Furthermore, the size of the
biggest relation in A and B coincide.

Proof. We show this for quantifier free instances. The extension to
general CQ-instances will be clear.

Let var(φ) = {x1 . . . , xn}. We assume w.l.o.g. that each relation sym-
bol in φ appears only once. This can always be achieved by renaming
relation symbols of atoms and copying relations. This only increases
the size of Φ polynomially and does not change the S-hypergraph.
We set ψ := φ and construct B with the domain B that contains two
elements (i, 0) and (i, 1) for each i ∈ [n].

For each atom R(xi1 , . . . , xik) of φ and ψ we construct the relation
RB as

RB := {((i1, t1), . . . , (ik, tk)) | (t1, . . . , tk) ∈ RA}.

Observe that this construction is well-defined because each relation
symbol only appears in one atom. This completes the construction
of Ψ.

Let HΦ be the set of assignments a : var(φ) → {0, 1} and HΨ the
set of assignments a′ : var(ψ) → B. Then the mapping m : HΦ → HΨ

with m(xi 7→ bi) = (xi 7→ (i, bi)) is an isomorphisms between φ(A)
and ψ(B). Furthermore, each assignment a ∈ φ(A) yields a mono-
mial ∏s

i=1 Xa(i)
i in P(Φ) while m(a) yields the monomial ∏s

i=1 Xi,a(i)
in Q(Ψ). Thus substituting for each i ∈ [s] the variable X(i,0) by 1 and
X(i,1) by Xi gives P(Φ) ≤ Q(Ψ).

The rest of the claims is clear by construction. �

Next we formulate a lemma that can be seen as a partial con-
verse of Lemma 10.1.5: Q-polynomials can always be expressed as
P-polynomials. Unfortunately, the construction leads to an increase
of the arity of the atoms.

LetH = (V, E) be a hypergraph. A blow-up hypergraphH′ = (V ′, E′)
of H is a hypergraph that has for each v ∈ V a set Vv such V ′ =⋃̇

v∈VVv and E′ = {⋃v∈e Vv | e ∈ E}. If for every v ∈ V we have
|Vv| ≤ ` then we call H′ an `-bounded blow-up graph.

Lemma 10.1.6. For every CQ-instance Φ one can construct in polynomial
time a Boolean CQ-instance Ψ with Q(Φ) ≤ P(Ψ). The sizes of the biggest
relations of Φ and Ψ coincide. Furthermore, the associated hypergraph of
Ψ is an `-bounded blow-up hypergraph of the associated hypergraph of Φ
where ` is the size of the biggest relation in Φ. Moreover, the quantified star
sizes of Φ and Ψ coincide.

Proof. Let Φ = (A, φ). We again assume that each relation symbol
appears only once in φ. Moreover, we assume that Φ satisfies the fol-
lowing consistency condition: Let x be a variable and φ′ an atom in

10.1 polynomials defined by conjunctive queries 121

which x appears. Let a ∈ φ′(A), then for every atom φ′′ in which
x appears there is a a′ ∈ φ′′(A) such that a′(x) = a(x). Clearly, ev-
ery instance Φ can be transformed into an instance that satisfies this
consistency condition by iteratively deleting tuples from the relations
of A. Moreover, this procedure does not change the query result, so
we can assume that Φ satisfies this consistency condition. It follows
that there is a set Dx ⊆ A for every variable x such that in every satis-
fying assignment a ∈ φ(A) we have a(x) ∈ Dx and, since all relations
have size at most `, we have d(x) := |Dx| ≤ `.

Let Dx := {s1, . . . , sd(x)} ⊆ A. We encode s ∈ Dx by a {0, 1}-string
ex(s) of length d(x) by setting ex(s)i := 1 if s = si and ex(s)i := 0
otherwise. This encoding induces an encoding of tuples and relations
which we call e(t) for a tuple t and e(RA) for a relation RA, respec-
tively.

We now construct Ψ = (B, ψ). For every atom R(xi1 , . . . , xik) of
φ the query ψ has an atom R′(xi1,1, . . . , xi1,d(xi1)

, . . . , xik ,1, . . . , xik ,d(xik
)).

The associated relation is R′B := e(RB). Finally, xi,j ∈ var(ψ) is quan-
tified in ψ if and only if xi ∈ var(φ) is quantified. This completes the
construction of Ψ.

By construction, a ∈ φ(A) if and only if e(a) ∈ φ(B). Thus we
get Q(Φ) ≤ P(Ψ) by substituting all Xi,j by Xj. The other desired
properties of Ψ are easily checked. �

Since we want to compute families of polynomials we also consider
families of CQ-instances in this chapter.

Definition 10.1.7. We call a family (Φn) of CQ-instances p-bounded if
the size ‖Φn‖ is polynomially bounded. We call (Φn) relation bounded if
there is a constant ` such that all relations of all instances Φn have size at
most `. �

Example 10.1.8. We consider a straightforward encoding of 3-CNF-
formulas into CQ-instances: Each clause C with three variables is
encoded by an atom φc in these variables. The associated relation
contains the 7 assignments that make C true.

It follows that every family (ψn) of 3-CNF-formulas of polynomial
size can be encoded by a family (Φn) of CQ-instances. Since every
relation of every Φn contains exactly 7 tuples, the family (Φn) is p-
bounded and relation bounded. �

Example 10.1.9. Of course, one can also encode general CNF-formu-
las into CQ-instances as in Example 10.1.8. Observe though that a
clause with n variables has 2n − 1 satisfying assignments and thus
the size of the relations encoding the clauses grows exponentially in
the arity of the clauses. It follows that families of CNF-formulas in
general cannot be encoded by p-bounded families of CQ-instances.�

122 CQ, CSP and arithmetic circuit classes

10.2 main results

In this section we give a short overview over the characterizations
of different arithmetic circuit classes by p-bounded families of CQ-
instances that we prove in this chapter.

In Section 10.3 we show that all #P-complete cases of #CQ dis-
cussed in Part i yield characterizations of VNP:

• p-bounded families of CSP-instances of unrestricted structure,

• p-bounded families of ACQ-instances without restriction of the
quantified star size, and

• p-bounded families of unions or intersections of quantifier free
ACQ-instances

all characterize VNP.
It follows that families of CQ-instances for which we can hope

to get tractable polynomials should have restricted hypergraphs, e.g.
bounded generalized hypertree width, and bounded quantified star
size. We will see that these restrictions indeed yield tractable polyno-
mials and that all families in VP can be expressed that way.

Theorem 10.2.1. For every p-bounded family (Φn) of CQ-instances with
bounded generalized hypertree width and bounded quantified star size, the
family (Q(Φn)) is in VP. Moreover, every family in VP is a p-projection of
such (Q(Φn)).

It is not hard to see that one gets another characterization of VP by
choosing any other width measure from Part i, except pathwidth.

The exception of pathwidth is because the expressivity of the CQ-
instances drops if the decompositions are too path-like.

Theorem 10.2.2. For every p-bounded family (Φn) of CQ-instances with
bounded pathwidth and bounded quantified star size, the family (Q(Φn)) is
in VPws. Moreover, every family in VPws is a p-projection of such (Q(Φn)).

Finally, considering relation bounded families gives very robust
characterizations of VPe.

Theorem 10.2.3. Let (Φn) be a relation bounded and p-bounded family of
CQ-instances of bounded generalized hypertree width. Then (Q(Φ)) ∈ VPe.
Moreover, every family in VPe is a p-projection of such (Q(Φn)), where
(Φn) may even be assumed to be of bounded pathwidth and quantifier free.

Note that in the case of relation bounded instances existential quan-
tification does not increase the complexity of the computed polyno-
mials. This is because quantified variables in CQ-instances can be
handled by dynamic programming which yields circuits of size expo-
nential in the size of the relations. Since the size of the relations is

10.3 characterizations of VNP 123

assumed to be bounded by a constant, this exponential size is not a
problem in this setting. Furthermore, note that there is no difference
in expressivity between patwidth and more general width measures:
All considered width measures characterize VPe.

We remark that while relation bounded instances appear quite ar-
bitrary at first sight, they are actually considered very often in the
database and constraint satisfaction literature. In the database liter-
ature they appear when one considers the so-called query complex-
ity (sometimes also called expression complexity) of query problems.
Here the database (or in our wording the structure) is considered as
fixed and one asks what the complexity of queries against this fixed
database is. Thus only the size of the query counts as input size of the
computational problem while the size of the database is considered
as constant.

In the constraint satisfaction literature one often considers instances
built with a fixed set of relations called the constraint language. Here
one often tries to find dichotomy results for the complexity depend-
ing on the constraint language.

Pichler and Skritek [PS13] have shown that #ACQ is tractable in
the sense of query complexity. Our results can be seen as a version of
this result for the arithmetic circuit setting.

We remark that for nearly all of the theorems presented above one
can also prove versions for the P-polynomial with the help of Lemma
10.1.5 and Lemma 10.1.6. We leave the details to the reader.

10.3 characterizations of VNP

To start off our explorations of the expressivity of polynomials de-
fined by CQ-instances we first examine the hard cases, i.e., those that
are at least as hard as VNP.

10.3.1 Instances of unrestricted structure

We first show that that if we do not restrict the structure of quan-
tifier free instances, this gives us a characterization of VNP in both
the Boolean and non-Boolean case. Both the upper and lower bound
are more or less standard arguments. Remember that we call a CSP-
instance binary if all its atoms have arity at most 2. Recall also that a
Boolean CSP-instance is an instance with domain {0, 1}.

Lemma 10.3.1. a) Let (Φn) be a p-bounded family of Boolean CSP-
instances. Then the family (P(Φn)) of polynomials is in VNP. More-
over, every family in VNP is a p-projection of such (P(Φn)) where
Φn can even be assumed to be binary.

124 CQ, CSP and arithmetic circuit classes

b) Let (Φn) be a p-bounded family of CSP-instances. Then (Q(Φn)) ∈
VNP. Moreover, every family in VNP is a p-projection of such a fam-
ily (Q(Φn)) where Φn can even be assumed to be binary.

Proof. Note that with Lemma 10.1.5 we only need to show the lower
bound for a) and the upper bound for b). The lower bound for a) is
proved in [BK09, Section 3], so it only remains to prove that Q(Φn) ∈
VNP for a p-bounded family (Φn) of CSP-instances.

So let (Φn) be a p-bounded family of CSP-instances where Φn =

(An, φn). Let dn := |An| be the size of the domain of Φn and set
an := |var(Φn)|. We encode assignments a : var(φn)→ An by (dn× an)-
matrices M = (md,x)d∈An,x∈var(Φn) with entries 0 and 1. The entry md,x

is 1 if and only if a(x) = d. Note that a matrix M ∈ {0, 1}dn×an is
an encoding of an assignment a : var(φn) → An if and only if there is
exactly one 1 in each column of M.

For Φn we will construct an arithmetic formula Ψn of size polyno-
mial in ‖Φn‖ such that Q(Φ)(X) = ∑M∈{0,1}dn×an Ψ(M, X). We sub-
divide Ψn into three factors Ψn,1, Ψn,2 and Ψn,3.

We set

Ψn,1 = ∏
x∈var(Φn)

∑
d∈An

mdx ∏
d′∈An,d′ 6=d

(1−md′x).

It is easy to see that for M ∈ {0, 1}dn×an we have Ψn,1(M) ∈ {0, 1}
and Ψn,1(M) = 1 if and only if M is an encoding of an assignment
a : var(Φn)→ An, i.e., in every column there is exacly one 1-entry.

We set
Ψn,2 = ∏

φ atom of φn

ψφ,

where ψφ is the following: Assuming that the matrix M encodes an
assignment a : var(φn) → An we have ψφ(M) = 1 if a|var(φ) satis-
fies φ, otherwise ψφ = 0. The relation of φ is bounded in size by
‖Φn‖, so there are at most ‖Φn‖ satisfying assignments of φ. Each of
these can be checked individually by an arithmetic formula of size
O(arity(φ)) = O(Φn), so ψφ can be realized as a formula of size
O(‖Φ‖2). Since the number of atoms φ is bounded by ‖Φn‖ if follows
Ψn,2 has a formula of polynomial size.

Finally,
Ψn,3 = ∏

x∈var(Φ)

(∑
d∈D

md,xXd).

It is clear that indeed Ψn = Ψn,1Ψn,2Ψn,3 can be computed by a poly-
nomial size formula. Also we have Q(Φ)(X) = ∑M∈{0,1}dn×an Ψ(M, X)

and thus (Q(Φn)) ∈ VNP. �

10.3.2 Acyclic instances with quantification

In this section we show a version of Theorem 3.1.3—Pichler and
Skritek’s hardness result for #ACQ—for the arithmetic circuit model.

10.3 characterizations of VNP 125

We will see later in Section 10.5 that, for quantifier free ACQ-instances
(Φn), computing (Q(Φn)) is in VP. So again it is quantification that
makes the considered problems hard.

To show VNP-hardness for polynomials defined by ACQ-instances
it is convenient to show hardness of a clique-polynomial. This allows
to keep the reduction very parallel to that in the proof of Lemma 3.1.4.

So let G be a graph. We give a vertex weight Xv to each vertex v of
G and consider the following clique-polynomial

CPG,c := ∑
C

∏
v∈C

Xv,

where the sum is over the vertex sets C of all cliques of size c in G.

Lemma 10.3.2. There is a family Gn of graphs of polynomial size such that
(CPGn,n+1) is VNP-complete.

The proof is a minor modification of the proof of Theorem 3.10 of
[Bü00]. We give it here for the sake of completeness.

Proof. We reduce from the permanent PERn. Let [n]2 ∪ (0, 0) be the
vertex set of Gn. We construct Gn as follows: For each (i, j) ∈ [n]2 the
graph G contains the edge (0, 0)(i, j). For each pair (i, j), (k, `) ∈ [n]2

the edge (i, j)(k, `) is in Gn if and only if i 6= k and j 6= `.
We now show that PERn ≤ CPGn,n+1. To do so we give the vertex

(0, 0) the weight 1. Each other vertex (i, j) gets weight Xij.
Let C be the vertex set of a clique of size n+ 1 in Gn. By construction

of Gn, each pair (i, j), (k, `) ∈ C with i, j, k, l > 0 must differ in the first
and in the second coordinate. Thus, (0, 0) must be part of any such
clique C and furthermore each i ∈ [n] must appear exactly once in the
first and the second coordinate of the vertices in C, respectively. This
gives a bijection between perfect matchings in Kn,n and the cliques of
size n + 1 in Gn. Furthermore, this reduction obviously preserves the
weights and thus PERn ≤ CPGn,n+1. �

We now formulate a version of Lemma 3.1.4 in the arithmetic circuit
setting. Remember that φstar,n = ∃z

∧
i∈[n]Ri(z, yi).

Proposition 10.3.3. If (Φn) is a family of p-bounded ACQ-instances, then
(Q(Φn)) ∈ VNP. Moreover, there is a family (Φn) of p-bounded ACQ-
instances with Φn = (An, φstar,n) such that (Q(Φn)) is VNP-complete.

Proof. For the first part of the statement we will use Valiant’s criterion.
To do so we show that the coefficient function of Q(Φn) is in #P/poly.
Consider an instance Φ = (A, φ). Let the number of free variables of
φ be m. Remember that Q(Φ) is homogeneous of degree m. Consider
a monomial Xa1 . . . Xam , a ∈ A with possibly several occurences of the
same variable. Let a := (a1, . . . , am) and let Ma be the set of tuples
of length m in which each entry ai appears as often as in a. Then the

126 CQ, CSP and arithmetic circuit classes

coefficient of Xa1 . . . Xam in Q(Φ) equals the number of b ∈ Ma such
that b ∈ φ(A).

Let now TΦ be a nondeterministic Turing-machine that does the fol-
lowing: On input (a1, . . . , am) it nondeterministically guesses a a tuple
b ∈ Ma and accepts if and only if b satisfies Φ. By Theorem 2.3.19 the
machine TΦ runs in polynomial time. Furthermore, the number of ac-
cepting computations of TΦ is the coefficient of Xa1 . . . Xam in Q(Φ).
It follows that for every family Φn of ACQ-instances the coefficient
function of Q(Φn) is in #P/poly (the polynomial size advice is the
encoding of Φn). With Theorem 9.2.3 we get that Q(Φn) ∈ VNP.

For the second part of the claim it remains to show hardness. To this
end, we will show that for every family (Gn) of graphs of polynomial
size the family (CPGn,n+1) is a p-projection of a p-bounded family
(Φn) of ACQ-instances with Φn = (An, φstar,n). With Lemma 10.3.2
the claim will follow.

So let (Gn) be a family of polynomial size graphs. Fix n and set
G := Gn−1 = (V, E). We will reduce CPG,n to a CQ-instance Φ with
the query φstar,n+1. Let Ψ := (A, φstar,n) be the CQ-instance that we
constructed in the proof of Lemma 3.1.4. Remember that the rela-
tions RAi of A were constructed in such a way that an assignment a :
{y1, . . . , yn} → A satisfies Ψ if and only if the set {a(y1), . . . , a(yn)} ⊆
V does not induce a clique of size n in G.

We extend A to a structure B of φstar,n+1 = ∃z
∧

i∈[n+1]Ri(z, yi). For
the new relation symbol Rn+1 we define

RBn+1 := {(d, d)} ∪ {(a, c) | a ∈ A},

where c and d are new domain elements. Furthermore, for each i ∈ [n]
we set

RBi := RAi ∪ {(d, a) | a ∈ A}.
We set Φ := (B, φstar,n+1).

Depending on the value that is assigned to yn+1, there are two types
of assignments a : {y1, . . . , yn} → A ∪ {c, d} that satisfy the query

φstar,n+1 = ∃z
∧

i∈[n+1]

Ri(z, yi)

with respect to B: If a(yn+1) = d, then any assignment to the other
variables is satisfying. If a(yn+1) = c, then a is satisfying if and only
if a|{v1,...,vn} ∈ φstar,n(A). Let nocliquen(G) be the sets of vertices of G
that do not induce a clique of size n in G. Then

Q(Φ) = Xd · ∑
(v1,...,vn)∈Vn

∏
i∈[n]

Xvi + Xc · ∑
(v1,...,vn)∈Vn

{v1,...,vn}∈nocliquen(G)

∏
i∈[n]

Xvi .

Setting Xc := −Xd simplifies the expression to

Q(Φ)|Xc :=−Xd = Xd · ∑
(v1,...,vn)∈Vn,
{v1,...,vn} induces

a clique of size n in G

∏
i∈[n]

Xvi .

10.3 characterizations of VNP 127

Observe that we sum each monomial n! times, because we sum once
for every permutations of the set {v1, . . . , vn}. Thus setting Xd := 1

n!
yields CPG,n+1 ≤ Q(Φn+1) as desired. �

We also get a version of Proposition 10.3.3 for the P-polynomial.

Corollary 10.3.4. Let (Φn) be a p-bounded family of Boolean ACQ-instan-
ces, then (P(Φn)) ∈ VNP. Moreover, there is a family (Φn) of p-bounded
Boolean ACQ-instances such that (P(Φn)) is VNP-complete.

Proof. The upper bound follows directly by applying Lemma 10.1.5
and the upper bound of Proposition 10.3.3.

For the lower bounds we reduce from the hard polynomials of
Proposition 10.3.3 by using Lemma 10.1.6. This is possible, because
blow-up graphs of acyclic graphs are obviously acyclic. �

Observe that the instances Φn of Corollary 10.3.4 are acyclic but not
of bounded treewidth because their atoms have unbounded arity. We
will see that this is not a conincidence in Section 10.5.1: For Boolean
CQ-instances of bounded treewidth the resulting P-polynomials are
tractable and even in VPe.

10.3.3 Unions and intersections of ACQ-instances

We now show that a version of Proposition 3.4.2 is also true for the
arithmetic circuit setting.

Proposition 10.3.5. Let (Φn) be a family of p-bounded query instances
that are conjunction (resp. disjunction) of two acyclic CSP-instances, then
the family (Q(Φn)) of polynomials is in VNP. Moreover, any family in VNP

is a p-projection of such a (Q(Φn)). An analogous result holds for (P(Φn)).

Proof (Sketch). The upper bound is shown as in the proof of Lemma
10.3.1.

The proof of the lower bound for conjunction of acyclic queries
follows directly like Proposition 3.4.2. The case of disjunction is ob-
tained by reduction from the case of conjunction. Let Φ = (A, φ(x))
and Ψ = (A, ψ(x)) be two acyclic CSP-instances. W.l.o.g. assume that
they both are on the same structure A of signature τ and domain
A. We denote by Φ ∧ Ψ the instance (A, φ(x) ∧ ψ(x)) and by Φ ∨ Ψ
the instance (A, φ(x) ∨ ψ(x)). Let A′ be a new structure of domain
A′ = A ∪ {α1, α2, α3} where α1, α2, α3 are not in D. The structure A′
includes A and has two new unary relation symbols R and S which
are interpreted by

RA′ = {α1, α2},SA
′
= {α2, α3}.

Let us now consider the following disjunction of two acyclic formu-
las:

λ(x, y) = (φ(x) ∧R(y)) ∨ (ψ(x) ∧ S(y)) .

128 CQ, CSP and arithmetic circuit classes

The instance Λ = (A′, λ(x, y)) has the following tuples as solu-
tions:

• (a, α1) for a ∈ φ(A).

• (a, α3) for a ∈ ψ(A).

• (a, α2) for a ∈ φ(A) ∪ ψ(A).

We associate each value αi with variable Yi and get

Q(Λ) = Y1Q(Φ) + Y3Q(Ψ) + Y2Q(Φ ∨Ψ).

By projection, we get

Q(Φ ∧Ψ) = Q(Υ)(X, Y1, Y2, Y3)|Y1=1,Y2=−1,Y3=1.

This shows that Q-polynomials obtained as the disjunction of two
acyclic CSP-instances can be represented as projections of polynomi-
als obtained by conjunction and hence this is true for all polynomial
families in VNP. The case of P-polynomials follows easily with the
Lemmas 10.1.5 and 10.1.6 �

10.4 lower bounds for instances of bounded width

In this section we show the lower bounds of the Theorems 10.2.1,
10.2.2 and 10.2.3. In Section 10.5 we will see the matching upper
bounds for the different cases to get the upper bounds of the theo-
rems.

We start off with the lower bound for Theorem 10.2.3.
Remember that a Boolean CSP-instance is an instance with domain
{0, 1}.

Lemma 10.4.1. There is a constant c ≤ 26 such that the following holds:
For every (fn) ∈ VPe there is a p-bounded family (Φn) of Boolean CSP-
instances with pathwidth at most c such that (fn) ≤p (P(Φn)).

Proof. Let A1, . . . , An be (3 × 3)-matrices. We denote the entries in
matrix Ai by (Xi

jk)j,k∈[3]. Let fn be the (1, 1)-entry of the product
A1A2 . . . An. We will show that there is a family Φn of boolean CSP-
instances with pathwidth 26 such that (fn) ≤ (P(Φn)). With the well-
known VPe-completeness of (3× 3)-matrix product (see [BOC92]) the
claim of Lemma 10.4.1 will follow.

Let f i
jk be the polynomial computed in the (j, k)-entry of the prod-

uct A1A2 . . . Ai. We will simulate the computation ∑3
l=1 Xi+1

l,k f i
j,l =

f i+1
jk by CSP-instances Φi

n in the Boolean variables xl
jk and yl

jk with
l ≤ i and j, k ∈ [3] and we construct the Φi

n iteratively for each i.
While the xl

jk correspond to the variables Xl
jk of the polynomial

we want to compute, the yl
jk are “selector” variables that will allow

10.4 lower bounds for instances of bounded width 129

us to choose individual entries f i
jk from P(Φi

n). The corresponding
variables Yl

jk do not appear in the iterated matrix product and we
get rid of them by projecting them all to 1. In order not to clutter
the construction too much with these variables, we already substitute
them by 1 in the polynomials P(Φi

n), so they never appear in our
computations.

In a slight abuse of notation we write the Φi
n as a conjunction of

atoms φl and define the relations of the atoms implicitly by proposi-
tional formulas.

Let ay(i, j, k) := yi
jk ∧

∧
(j′k′) 6=(j,k) ¬yi

j′k′ . Note that ay(i, j, k) defines
an atom in the variables yi

jk that is satisfied only by the assignment
yi

jk 7→ 1 and yi
j′k′ 7→ 0 for (j, k) 6= (j′, k′). Let ax(i, j, k) be the same for

the variables xi
jk.

We now construct the Φi
n iteratively. During the construction we

will make sure that the following holds:

P
(

Φi
n ∧ ay(i, j, k)

)
= f i

jk.

Intuitively, by fixing the yi
jk, we can compute individual entries of

the product A1A2 . . . Ai.
The CSP-instance Φ1

n has the single atom

φ1 =
∨
j′,k′

(y1
j′k′ ∧ ax(1, j′, k′)).

We have P(Φ1
n ∧ ay(1, j, k)) = P(ax(1, j, k)) = X1

jk as desired.
For the construction of Φi+1

n assume that we have already con-
structed Φi

n with the desired properties. We construct Φi+1
n from Φi

n
by adding one atom φi+1. We set

Φi+1
n = Φi

n ∧

 ∨
(j′,k′)

(
yi+1

j′k′ ∧
∨

l

(ax(i + 1, l, k′) ∧ ay(i, j′, l))

)
︸ ︷︷ ︸

:=φi+1

.

We get

P(Φi+1
n ∧ ay(i + 1, j, k))

=P

(
Φi

n ∧
(∨

l

(ax(i + 1, l, k) ∧ ay(i, j, l))

))

=
3

∑
l=1

P(Φi
n ∧ ax(i + 1, l, k) ∧ ay(i, j, l))

=
3

∑
l=1

Xi+1
l,k P(Φi

n ∧ ay(i, j, l))

=
3

∑
l=1

Xi+1
l,k f i

j,l

= f i+1
jk

130 CQ, CSP and arithmetic circuit classes

Having constructed Φn
n we easily get fn as

fn = P(Φn
n ∧ a(n, 1, 1)︸ ︷︷ ︸

:=Φn

).

Since each atom φi has at most 27 Boolean variables, (Φn) is p-
bounded and relation bounded. So only the bound on the pathwidth
remains to be shown. The primal graph HP of Φn has the vertices xi

jk

and yi
jk for i ∈ [n] and j, k ∈ [3]. Each atom φi yields a clique in HP

with the vertices var(φi), and there are no other edges in HP. We have
var(φ1) = {x1

j,k, y1
j,k | j, k ∈ [3]} and var(φi) = {xi

j,k, yi
j,k, yi−1

j,k | j, k ∈ [3]}
for 1 < i ≤ n.

We give a path decomposition by a path P of the vertices t1, . . . tn

and the bags χti = var(φi). We have var(φi) ∩ var(φj) = ∅ for i ∈ [n]
and j > i + 1. Furthermore, var(φi) ∩ var(φi+1) = {yi

j,k | j, k ∈ [3]}.
Thus it is easy to check that (P , (χt)t∈T) is indeed a path decomposi-
tion of HP and it has width 26. �

One could show a version of Lemma 10.4.1 for bounded tree-width
with a more standard parse tree argument. We instead presented this
version, not only because it is stronger due to its path-width formu-
lation but mainly because we deem the proof to be more interesting.
We will see parse tree arguments in the proofs of Lemma 10.4.3 and
Lemma 10.4.4.

Combining Lemma 10.4.1 and Lemma 10.1.5 directly yields the fol-
lowing corollary.

Corollary 10.4.2. There is a constant c ≤ 26 such that the following holds:
For every (fn) ∈ VPe there is a p-bounded family (Ψn) of relation bounded
CSP-instances with pathwidth at most c such that (fn) ≤p (Q(Ψn)).

Next we will show the lower bound for the characterization of VP
of Theorem 10.2.1. Remember that we call a CSP-instance binary if all
its atoms have arity at most 2.

Lemma 10.4.3. Let (fn) ∈ VP, then there is a p-bounded family (Φn) of
binary CSP-instances such that (fn) ≤p (Q(Φn)). Furthermore, the associ-
ated primal graph of Φn can be assumed to be a tree for every n.

Proof. The idea of the proof is the following: We use the characteri-
zation of VP in Theorem 9.2.1 by semi-unbounded, multiplicatively
disjoint circuits of logarithmic depth. It follows that there are circuits
computing fn that have logarithmic depth parse trees. We encode
these parse trees into polynomial size CSP-instances whose primal
graphs are trees isomorphic to the parse trees of the fn. Summing up
over all possible encodings of parse trees we get polynomials whose
projection are the fn. We now describe the construction in more detail.

Consider a polynomial f = fn from our family. By Theorem 9.2.1
we know that fn is computed by a logarithmic depth semi-unbounded

10.4 lower bounds for instances of bounded width 131

+

×

+

2X1 X2 X3

+

× ×

+ + +

1 2 X1 X2 X3

Figure 15: The original circuit on the left is changed into one in which the
gates on each level have the same operation label.

circuit C of polynomial size. By adding dummies we can make sure
that C has the following “layered” form (see Figure 15 for an illustra-
tion):

• All operation gates at the same depth have the same operation.

• All leaves are at the same depth level.

This layered form implies that all parse trees of C are isomorphic
binary trees. Let the children of the ×-gates in Φ be ordered, i.e., we
call one of them the left child and the other one the right child. Let T
be a binary tree isomorphic to the parse trees of C. The children of
vertices in T that correspond to ×-gates in C are also ordered.

We now construct a CSP-instance Φ = (A, φ) with var(Φ) = V(T)
and associated hypergraph T. The domain A of A is the vertex set
V(C) of C. To distinguish the vertices of T from the gates of C we
write the vertices of T with a hat, e.g. v̂ ∈ V(T). For each edge ûv̂
in T the query φ has an atom Rûv̂(û, v̂). The corresponding relation
RAûv̂ is defined as follows: If û corresponds to a +-gate in C, then

RAûv̂ := {(u, v) | u, v ∈ V(C), u is a +-gate, v is a child of u}.

If û corresponds to a ×-gate and v̂ is the left child of û, then

RAûv̂ := {(u, v) | u, v ∈ V(C), u is a ×-gate, v is the left child of u}.

For right children RAûv̂ is defined in an analog fashion.
It is easy to see that Φ is satisfied by an assignment a : V(T) →

V(C) if and only if a maps T onto a parse tree Ta of C. Also for each
satisfying assignment a the resulting monomial ∏û∈V(T) Xa(û) can be
projected to w(Ta) by doing the following: If v is an operation gate
of C, then substitute Xv by 1. If v is an input gate of C with label l,
then substitute Xv by l. Because each v is either an operation gate
or an input gate but never both, these settings do not contradict for

132 CQ, CSP and arithmetic circuit classes

different satisfying assignments of Φ. It follows that f ≤ Q(Φ). The
associated hypergraph of Φ is by construction the tree T. The obser-
vation that the size of φ and the domain A := V(C) are polynomial
completes the proof. �

We use a similar parse tree argument to show the lower bound for
Theorem 10.2.2.

Lemma 10.4.4. Let (fn) ∈ VPws, then there is a p-bounded family (Φn) of
binary CSP-instances such that (fn) ≤p (Q(Φn)). Furthermore, the associ-
ated primal graph of Φn can be assumed to be a path for every n.

Proof. The main difference to the proof of Lemma 10.4.3 is that for
skew circuits not all parse trees are isomorphic and that we know of
no way to make them isomorphic without losing skewness. This prob-
lem is remedied by the insight that parse trees of skew circuits have
a very restricted form that allows encoding them into CSP-instances
with paths as associated hypergraphs.

So let (fn) ∈ VPws. Then there is a family (Cn) of polynomial size
skew circuits such that Cn computes fn for every n. Let f = fn and
C = Cn and s = |C|. Each multiplication gate v of C has at least one
child that is an input gate. We call this child the leaf child of v and the
other child the inner child of v. If both children of v are input gates we
arbitrarily choose one of them to be the leaf child and the other one
to be the inner child.

Each parse tree T of C has a very special form: T consists of a
path P with some dangling leaf children. An illustration is shown in
Figure 16. We define the essential path P of a parse tree as the path
we get from T after deleting all leaf children. Observe that from the
essential path P one can uniquely recover the parse tree T, because
each multiplication gate only has one leaf child and this child must
be part of T. Note that in general not all parse trees have the same
depth and that the order of the +- and ×-gates may differ in them.
In particular, this results in not all essential paths having the same
length.

We construct a CSP-instance Φ = (A, φ) that has the associated
graph P = (V, E) with V = {v̂i | i ∈ {0, . . . s}} and E = {v̂iv̂i+1 | i ∈
{0, . . . s− 1}}. We have var(φ) := V and the domain A := V(C)∪ {d}
for a dummy value d. Note that φ has more variables than any parse
tree of C has vertices, so that we cannot simply map var(φ) onto the
parse trees like in the proof of Lemma 10.4.3. Instead we will map
onto essential paths of parse trees and map redundant vertices in
var(Φ) onto the dummy d. By doing the latter we will deal with the
fact that the parse trees are not isomorphic.

10.5 constructing circuits for conjunctive queries 133

×

X1 +

×

X2 +

X1 X3

×

X1 +

×

X2 +

X1

×

X1 +

×

X2 +

X3

×

X1 +

+

X1

×

X1 +

+

X3

Figure 16: A skew cicuit and all of its parse trees. The polynomial computed
equals X2

1X2 + X1X2X3 + X2
1 + X1X3.

For each edge e = v̂iv̂i+1 the query φ has an atom Rv̂i v̂i+1(v̂i, v̂i+1)

which is interpreted by the relation

RAv̂i v̂i+1
:={(v, v′) | v ×-gate, v′ its inner child}
∪ {(v, v′) | v +-gate, v′ child of v }
∪ {(v, d) | v input gate }
∪ {(d, d)}.

Furthermore φ has one unary atom Rv̂0(v0) which is interpreted
by the relation RAv̂0

:= {v∗} where v∗ is the output gate of C.
It is easy to see that the satisfying assignments a : V → V(C) of Φ

are exactly the encodings of essential paths of C: The atom φv̂0 forces
the satisfying assignments to map v̂0 to the output gate v∗; the other
atoms force to assign the other variables along an essential path. As
discussed before, the satisfying assignments are “filled up” with dum-
mies to deal with the different size of the parse trees. We now project
from Q(Φ) as follows: For each input gate v̂ of C we substitute Xv by
the label of v in C. For each +-gate v of C we substitute Xv by 1. For
each ×-gate v with leaf child u we substitute Xv by the label of u in C.
Finally, we substitute Xd by 1. Obviously the computed polynomial
is f and thus f ≤ Q(Φ). �

10.5 constructing circuits for conjunctive queries

In this section we will prove the upper bounds of the Theorems 10.2.1,
10.2.2 and 10.2.3, i.e., we will show that the structural restrictions of
CQ-instances we considered in Part i yield tractable polynomials. Us-
ing Lemma 5.2.1 it will be enough to show this for acyclic, quantifier
free instances. We start off with a lemma that lets us balance join
trees.

Lemma 10.5.1. For every ACQ-instance Φ = (A, φ) one can in polyno-
mial time construct a solution equivalent instance Ψ = (B, ψ) and a join

134 CQ, CSP and arithmetic circuit classes

tree (T , (λt)t∈T) of Ψ such that the tree T = (T, F) is binary and and of
depth O(log(|T|). Furthermore, if all relations in A have size at most `,
then all relations in B have size at most `4.

Proof. Given Φ = (A, φ), first use the algorithm of Lemma 2.3.17 to
compute in polynomial time a join tree (T , (λt)t∈T) with T = (T, F).
Until T is binary, do the following: Take a vertex t ∈ T with children
t1, t2, . . . , t` for ` ≥ 3. Add a new vertex t′, delete the edges tt1 and
tt2 and add the edges tt′, t′t1 and t′t2. We set λt′ = λt. Clearly, after a
linear number of iterations the tree is binary and still a join tree of Φ.
To keep the notation simple we also denote this tree by T .

Now apply Lemma 2.3.10 to T . Let (T ′, (χt′)t′∈T′) with T ′ = (T′, F′)
be the resulting tree decomposition of width 3 of T . We construct a
new ACQ-instance Ψ = (B, ψ) as follows: For each t′ ∈ T′ let φt′,1,
φt′,2, φt′,3 and φt′,4 be the atoms of φ that belong to the edges λt1 , λt2 ,
λt3 and λt4 where {t1, t2, t3, t4} = χt′ (if χt′ contains fewer than 4 ver-
tices, we act accordingly on less atoms). For each t′ ∈ T′ the query ψ

has an atom ψt′ in the variables
⋃4

i=1 var(φti). We define the corre-
sponding relation as RBt′ := φt1(A) ./ φt2(A) ./ φt3(A) ./ φt4(A).
The query ψ has the same quantifiers as φ. This completes the con-
struction of Ψ.

Obviously, φ and ψ are solution equivalent. Moreover, the bound
on the size of the relations of B is clear from the construction. Set
λ′t′ := et′ where et′ is the edge induced by ψt′ .

We claim that (T ′, (λ′t′)t′∈T′) is a join tree of ψ which will complete
the proof. We only have to check the connectivity condition. So let v
be any variable of ψ. In T the set C := {t ∈ T | v ∈ λt} is connected,
because T is a join tree. Also for each t ∈ T the set Ct := {t′ ∈ T′ | t ∈
χt′} is connected in (T ′, (χt′)t′∈T). Furthermore, for each edge t1t2 ∈
F we have that t1 and t2 are in one common bag χt′ . Consequently,
the set Ct1 ∪Ct2 is connected in (T ′, (χt′)t′∈T). It follows that for every
set C′ ⊆ T that is connected in T the set {t′ ∈ T′ | ∃t ∈ C′ : t ∈ χt′}
is connected in (T ′, (χt′)t′∈T). Thus we get that {t′ ∈ T′ | ∃t ∈ T : v ∈
λt, t ∈ χt′} = {t′ ∈ T′ | ∃t ∈ C : t ∈ χt′} = {t′ ∈ T′ | v ∈ λ′t′} is
connected which completes the proof. �

Proposition 10.5.2. There is an algorithm that, given an acyclic CSP-in-
stance Φ = (A, φ), constructs in time polynomial in ‖Φ‖ an arithmetic
circuit C that computes Q(Φ).

Proof. We construct C by dynamic programming on the join tree of Φ.
So let Φ = (A, φ) be an acyclic CSP-instance. Let (T , (λt)t∈T) be the
join tree associated to φ. By Lemma 2.3.17 T can be constructed from
φ in polynomial time and thus we do not consider the construction
of T but take it as given. By Lemma 10.5.1 we may w.l.o.g. assume
that T is binary. By possibly adding some additional leaves to T
we may also assume that T is a full binary tree, i.e., every vertex

10.5 constructing circuits for conjunctive queries 135

in T that is not a leaf has exactly two children. By definition, the
tree T has m vertices t1, . . . , tm associated to the edges λt1 , . . . , λtm

in the hypergraph H associated to φ. To ease notation we do not
differentiate between the atoms of φ and the edges λt induced by
them in H but denote the atoms as λt.

For t ∈ T we call φt the conjunction of atoms corresponding to the
subtree Tt with t as root. The set var(φt) =

⋃
t′∈Tt

var(λt′) is denoted
by et.

To every t ∈ T we assign a set c(t) ⊆ et as follows: To the root r
of T we assign c(r) := var(φ). To a vertex t with parent t̃ we assign
c(t) := et \ λt̃. Furthermore, we assign to every t ∈ T the set c0(t) :=
var(λt) ∩ et. Observe that for a vertex t with children t1, t2 the sets
c0(t), c(t1) and c(t2) form a partition of c(t) into disjoint sets. This
partition will make sure that, in the dynamic programming below,
each variable x appearing in several λti will be taken into account at
most once and thus the exponent of Xa(x) will not be overcounted
in Q(Φ).

We define for every t ∈ T the set vt ⊆ var(λt). For the root r of
T we set vt := var(λr). For all other t ∈ T with parent t̃ we set
vt := var(t̃) ∩ var(t).

Let t ∈ T and let a be an assignment to vt. Remember that for an
assignment α we say that a and α are compatible, in symbols a ∼ α,
if they agree on their common variables. We consider the polynomial
in the variables {Xd | d ∈ A}

ft,a = ∑
α∈φt(A)

α∼a

∏
x∈c(t)

Xα(x).

We will show by induction on T that ft,a can for every fixed combi-
nation of t and a be computed by an arithmetic circuit of polynomial
size.

For every t ∈ T let At be the set of assignments a : var(λt) → A
in λt(A) that can be extended to a satisfying assignment in φt(A).
Obviously, if t is a leaf, then At := λt(A). If t has two children t1, t2,
then

At := πvar(λt)(φt(A)) = (λt(A)n φt1(A))n φt2(A).
Claim 10.5.3. For every t ∈ T with children t1, t2 and every assignment
a : vt → A we have

ft,a = ∑
β∈At
β∼a

∏
x∈c0(t)

Xβ(x) · ft1,β|vt1
· ft2,β|vt2

.

Proof. By definition of ft,a we have

ft,a = ∑
α∈φt(A)

α∼a

∏
x∈c(t)

Xα(x)

= ∑
α∈φt(A)

α∼a

∏
x∈c0(t)

Xα(x) ∏
x∈c(t1)

Xα(x) ∏
x∈c(t2)

Xα(x).

136 CQ, CSP and arithmetic circuit classes

Each tuple α ∈ φt(A) can be uniquely expressed as the natural
join of a tuple β ∈ At with two tuples α1 ∈ φt1(A) and α2 ∈ φt2(A)
compatible with β (more formally by the natural join of singleton
relations containing these tuples), i.e., given α ∈ φt(A), there exist
β ∈ At and α1 ∈ φt1(A) and α2 ∈ φt2(A) such that

{α} = {β} ./ {α1} ./ {α2}.

Conversely, given β ∈ At and a pair α1 ∈ φt1(A) and α2 ∈ φt2(A)
compatible with β, the natural join α of β, α1 and α2 is contained
in α ∈ φt(A). This follows from the connectedness condition in the
join tree, i.e., from the fact that var(φt1) ∩ var(φt2) ⊆ var(λt) and thus
α1 and α2 agree on their common variables, because they both agree
with β.

These reasonings impliy the following equalities:

ft,a = ∑
α∈φt(A)

α∼a

∏
x∈c0(t)

Xα(x) ∏
x∈c(t1)

Xα(x) ∏
x∈c(t2)

Xα(x)

= ∑
β∈At
β∼a

∑
α1∈φt1 (A)

α1∼β

∑
α2∈φt2 (A)

α2∼β

∏
x∈c0(t)

Xβ(x) ∏
x∈c(t1)

Xα1(x) ∏
x∈c(t2)

Xα2(x)

= ∑
β∈At
β∼a

∏
x∈c0

Xβ(x) · ft1,β|vt1
· ft2,β|vt2

This proves the claim. �

Note that the sum is now over At and not over φt(A) anymore.

Claim 10.5.4. The relation At can be computed in time

O(‖A‖ log(‖A‖)|φt|).

Proof. The proof is an adaptation of Yannakakis’ [Yan81] algorithm
for ACQ (compare Theorem 2.3.19). We proceed by induction on Tt.
If t is a leaf, the result is obvious.

If t is not a leaf, let t1, t2 ∈ T be its children. Note that

At = (λt(A)n At1)n At2 ,

since each Ati is the projection of φti(A) onto var(λti). By Lemma 2.1.6
we can thus compute At from At1 and At2 in time O(‖A‖ log(‖A‖)).
By induction each Ati is computable in time O(‖A‖ log(‖A‖)|φti |).
Thus, At is computable in time O(‖A‖ log(‖A‖)(1 + |φt1 |+ |φt2 |)) ≤
O(‖A‖ log(‖A‖)|φt|). �

Claim 10.5.5. For evert t ∈ T and every assignment a : vt → A the polyno-
mial ft,a can be computed by a circuit C of size O(|φt|‖A‖2). Furthermore,
the circuit C can be computed in polynomial time.

10.5 constructing circuits for conjunctive queries 137

Proof. First observe, that if a cannot be extended to a tuple a′ ∈ At,
then ft,a = 0 and the claims are trivial. For the other assignments a
we make a slightly stronger claim: For every t ∈ T we can compute
a circuit of size O(|φt|‖A‖2) that computes ft,a for all a : vt → A that
can be extended to an assignment a′ ∈ At.

We make an induction on the number of atoms in |φt|.
Assume first that t is a leaf. Then φt is an atom λt. Hence every ft,a

can be computed naively because it consists only of |λt(A)| monomi-
als whose degree is at most the arity of λt. For fixed a this circuit has
size at most |φt| · ‖A‖, so we can compute all of the ft,a with a circuit
of size |φ| · ‖A‖ · |At| ≤ |φ| · ‖A‖2. Certainly, the construction can be
done in polynomial time.

Let t now be a vertex with children t1, t2. We only have to compute
the ft,a for |At| ≤ ‖A‖ assignments a. By Claim 10.5.3, we can com-
pute ft,a for a fixed a from the fti ,β|vti

with O(|At| · |c0(t)|) = O(‖A‖ ·
|φ|) arithmetic operations. By induction we can compute the neces-
sary fti ,β|vti

by a circuit of size O(|φti | · ‖A‖). Then we can compute

all ft,a by a circuit of size O((|φ1|+ |φ2|+ 1)‖A‖2) = O(|φt| · ‖A‖2).
Now remark that each set At for t ∈ T can be constructed in time

O(|φ|‖A‖ log(‖A‖)) by Claim 10.5.4. For a fixed a, filtering all ele-
ments β of At compatible with a can be done in linear time after
sorting At. Hence, the index set of each sum is efficiently computable
and the construction of the circuit can be done in polynomial time.�

With the observation that Q(Φ) = ∑a∈Ar
fr,a where r is the root

of T we get by Claim 10.5.5 a polynomial size circuit C computing
Q(Φ). Furthermore, C can be computed in polynomial time. �

As a corollary of Proposition 10.5.2 we get Theorem 3.1.2 as we
promised in Chapter 3.

Theorem 3.1.2 ([PS13]). #ACQ restricted to quantifier-free instances can
be solved in polynomial time.

Proof. Given an instance Φ, compute a circuit C that computes Q(Φ)

with Proposition 10.5.2 and then evaluate at the input (1, . . . , 1). �

In the arithmetic circuit setting we get the following result.

Corollary 10.5.6. Let (Φn) be a p-bounded family of acyclic CSP-instances,
then (Q(Φn)) ∈ VP.

Now we can use Lemma 5.2.1 to extend Corollary 10.5.6 to CQ-
instances. We combine this also with the lower bound from Lemma
10.4.3 to give the promised characterization for VP.

Theorem 10.2.1. For every p-bounded family (Φn) of CQ-instances with
bounded generalized hypertree width and bounded quantified star size, the
family (Q(Φn)) is in VP. Moreover, every family in VP is a p-projection of
such (Q(Φn)).

138 CQ, CSP and arithmetic circuit classes

Obviously, on could easily generalize Theorem 10.2.1 to all decom-
position techniques from Corollary 5.2.5.

There is also a path version of Proposition 10.5.2.

Proposition 10.5.7. There is an algorithm that, given an acyclic CSP-in-
stance Φ = (A, φ) that has a join tree (T , (λt)t∈T) such that T is a path,
constructs in time polynomial in ‖Φ‖ a skew arithmetic circuit C that
computes Q(Φ).

Proof (sketch). The proof is a modification of that of Proposition 10.5.2.
Since every vertex t ∈ T has at most one child t∗ the computation of
ft,a is given as

ft,a = ∑
β∈At
β∼a

∏
x∈c0(t)

Xβ(x) · ft∗,β. (6)

Observe that the product in (6) contains only one factor that is not an
input. Thus the resulting circuit is skew. �

One could now formulate a version of Theorem 10.2.1 for a path
version of the generalized hypertree decompositions, but since this
path version is not commonly considered in the literature, we only
formulate the promised theorem for pathwidth.

Theorem 10.2.2. For every p-bounded family (Φn) of CQ-instances with
bounded pathwidth and bounded quantified star size, the family (Q(Φn)) is
in VPws. Moreover, every family in VPws is a p-projection of such (Q(Φn)).

Proof. The upper bound follows by the combination of Lemma 5.2.3
and Proposition 10.5.7.

The lower bound here follows from Lemma 10.4.4. �

10.5.1 The relation bounded case

We now consider relation bounded families of CQ-instances, i.e., we
allow existential quantification but assume that the families we con-
sider have a bound ` on the size of all occuring relations in the in-
stance. As discussed in Section 10.2, Pichler and Skritek [PS13] have
shown that #CQ is tractable on such instances. The following theorem
is a version of this result for the arithmetic circuit setting. The proof
is a combination of techniques used by Pichler and Skritek and the
proof of Proposition 10.5.2.

Proposition 10.5.8. There is an algorithm that, given an ACQ-instance
Φ = (A, φ) such that the size of each relation in A is bounded by `, con-
structs in time polynomial in ‖Φ‖ and exponential in ` an arithmetic for-
mula that computes Q(Φ).

10.5 constructing circuits for conjunctive queries 139

Proof. We use the same notation as in the proof of Proposition 10.5.2.
Let (T , (λt)t∈T) be a join tree of Φ. With Lemma 10.5.1 we may as-
sume that T = (T, F) has depth O(log(|φ|)) and is a binary tree.
Furthermore, we assume that whenever t ∈ T has two children t1, t2,
then all three vertices have the same atom, i.e., λt = λt1 = λt2 . This
form can always be easily achieved by introducing new vertices. To
ease notation let X := free(φ) and Y := var(φ) \ free(φ). Remember
that for an assignment a and a set of variables Z we denote by a|Z
the restriction of a onto Z. We sometimes also use this notation if
Z * var(a). In this case a|Z := a|Z∩var(a). If a and a′ are assignments
with a ∼ a′, we write in a slight abuse of notation a ./ a′ for the single
assignment in the relation {a} ./ {a′}.

For t ∈ T let φ′t be the query that we get from φt by deleting all
quantifiers. Let Xt := X ∩ var(λt) and Yt := Y ∩ var(λt).

For every t ∈ T we define the set c(t) containing free variables as
follows: For the root r of T we set c(r) := free(φr). For a vertex t with
parent t̃ we set c(t) := free(φt) \Xt̃. Moreover, we set c0(t) := Xt∩ c(t).
Observe that for a vertex t ∈ T with children t1, t2 the sets c0(t), c(t1)

and c(t2) form a disjoint partition of c(t).
We will do dynamic programming similar to the proof of Proposi-

tion 10.5.2. The difference here is that we have to take the quantified
variables into account when doing the dynamic programming step. It
will be necessary to have knowledge on how an assignment b ∈ φt(A)
can be extended to the quantified variables. To this end, we now de-
fine a decomposition of the set of satisfying assignments φt(A).

For each t ∈ T we define a mapping It : φt(A) 7→ P(πYt(λt(A)))
where P(πYt(λt(A))) is the power set of πYt(λt(A)). For b ∈ φt(A)
we define It(b) as

It(b) := {a′ ∈ πYt(λt(A)) | ∃b′ ∈ φ′t(A) : b′ ∼ a′ ∧ b′ ∼ b)}.

For a tuple a ∈ πXt(λt(A)) and a nonempty set I ⊆ πYt(λt(A))
we define N(t, a, I) as the fiber of (a, I) under the mapping b 7→
(b|Xt , It(b)), i.e., N(t, a, I) is the set of assignments b ∈ φt(A) with
b ∼ a and It(b) = I.

From the definition we directly get the decomposition

φt(A) =
⋃̇

a∈πXt (λt(A))
I⊆πYt (λt(A))

N(t, a, I). (7)

We will show how to compute the polynomials

ft,a,I := ∑
b∈N(t,a,I)

∏
x∈c(t)

Xb(x)

for every t ∈ T, a ∈ πXt(λt) and I ⊆ πYt(λt(A)).

140 CQ, CSP and arithmetic circuit classes

First observe that from the ft,a,I we can compute Q(Φ). Indeed, let r
be the root of T , then

Q(Φ) := ∑
a∈πXr (λr(A)),
I⊆πYr (λr(A))

fr,a,I , (8)

because of the decomposition (7). Since |λr(A)| ≤ ` we only have to
show how to compute the ft,a,I for fixed t, a and I by formulas of size
polynomial in ‖Φ‖ and the theorem will follow.

Let first t be a leaf. Note that in this case φt = λt. Let a ∈ πXt(λt(A))
and let I′ be the set of possible extensions of a to Yt, i.e., I′ := {a′ ∈
πYt(λt(A)) | a ./ a′ ∈ λt(A)}. Then N(t, a, I) = {a} if I = I′, other-
wise N(t, A, I) = ∅. It follows that

ft,a,I =

∏x∈c(t) Xa(x) if I = I′,

0 otherwise.
(9)

Let t now be a vertex with a single child t′. Let

Aa := {a′ ∈ πXt′ (λt′(A)) | a′ ∼ a}.

For each a′ ∈ Aa let

Ia′ := {a′′ ∈ πYt′
(λt′(A)) | a′ ./ a′′ ∈ λt′(A)}.

Let similarly

Ia := {a′′ ∈ πYt(λt(A)) | a ./ a′′ ∈ λt(A)}.

Claim 10.5.9. b ∈ N(t, a, I) if and only if b|Xt = a and b|free(φt′)
∈

N(t′, a′, I′) for some a′ ∈ Aa and I ′ ⊆ Ia′ with Ia n I′ = I.

We skip the proofs of Claim 10.5.9 and some later claims and
present them at the end of the proof of Proposition 10.5.8.

We have by Claim 10.5.9

ft,a,I = ∏
c∈c0

Xa(x) · ∑
a′∈Aa

∑
I′⊆Ia′ ,

IanI′=I

ft′,a′,I′,c1 (10)

.
Let now t be a vertex with two children t1 and t2. By assumption

we have that λt = λt1 = λt2 .

Claim 10.5.10. b ∈ N(t, a, I) if and only if b|free(φt1)
∈ N(t1, a, I1) and

b|free(φt2)
∈ N(t2, a, I2) with I1 ∩ I2 = I.

We claim that

ft,a,I = ∑
I1,I2⊆πYt (λt(A))

I1∩I2=I

ft1,a,I1 · ft2,a,I2 . (11)

10.5 constructing circuits for conjunctive queries 141

Indeed, we have by Claim 10.5.10 and the assumption λt = λt1 = λt2

ft,a,I

= ∏
x∈c0(t)

Xa(x) · ∑
I1,I2⊆πYt (λt(A))

I1∩I2=I

∑
b1∈N(t,a,I1),
b2∈N(t,a,I2)

∏
x∈c(t1)

Xb1(x) ∏
x∈c(t2)

Xb2(x)

= ∏
x∈c0(t)

Xa(x) · ∑
I1,I2⊆πYt (λt(A))

I1∩I2=I

(
∑

b1∈N(t1,a,I1)
∏

x∈c(t1)

Xb1(x)

)

·
(

∑
b2∈N(t2,a,I2)

∏
x∈c(t2)

Xb2(x)

)
= ∏

x∈c0(t)
Xa(x) · ∑

I1,I2⊆πYt (λt(A))
I1∩I2=I

ft1,a,I1 · ft2,a,I2 .

The equations (9), (10) and (11) let us compute ft,a,I by dynamic
programming. We will see that this computation is efficient.

Claim 10.5.11. For every choice of t, a and I, the polynomial ft,a,I can be
computed by a circuit of depth (2`+ 2)dt + log(|c(t)|) where dt is the depth
of Tt.

Since T has depth O(log(|φ|) it follows that Q(Φ) can be computed
by a circuit C of depth O(log(|φ|)) by Claim 10.5.11 and (8). Unfold-
ing this circuit we get a formula of size polynomial in |φ| computing
Q(Φ). It is easy to see that the whole construction can be done in
time polynomial in |φ|. Thus it only remains to prove the claims.

Proof of Claim 10.5.9. For b ∈ N(t, a, I) there must be clearly a tuple
a′ ∈ Aa such that b ∼ a′. But φt′ decomposes into sets N(t′, a∗, I∗) by
(7) and thus b|free(φt′)

∈ N(t, a′, I′) for some I′ ⊆ Ia′ . Thus we only have
to prove that Ia n I′ = I. First assume that there is b′ ∈ (Ia n I′) \ I.
Then there is a b′′ such that b ./ b′′ ∈ φ′t(A) and (b ./ b′′)|Yt = b′ and
thus b /∈ N(t, a, I) which contradicts the assumption. Now assume
that there is b′ ∈ I \ (Ia n I′). Then there is no b′′ such that (b ./ b′′) ∈
φ′t(A) and (b ./ b′′)|Xt = b′ and thus b /∈ N(t, a, I) which is again a
contradiction.

Now now consider an assignment b of free(φt) with b|Xt = a and
b|free(φt′)

∈ N(t′, a′, I′) for some a′ ∈ Aa and some I′ ⊆ Ia′ with Ia n
I′ = I. We show b ∈ N(t, a, I).

Obviously a ∼ b.
Consider now a′ ∈ I. Because of I = Ia n I′ there is an a′′ ∈ I′ such

that a′′ ∼ a′. Because of b|free(φt′)
∈ N(t′, a′, I′) there is a b′′ ∈ φ′t′(A)

with b′′|free(φt) = b|free(φt′)
and b′′|Yt′

= a′′. It follows that b′′ ∼ a′

and b′′ ∼ a. Thus b′′, a′ and a can be combined to an assignment
b′ := b′′ ./ a′ ./ a ∈ φ′t(A) with b′|free(φt) = b and b|Yt = a′ as
desired.

142 CQ, CSP and arithmetic circuit classes

Now let b′ ∈ φ′t(A) with b′|free(φt) = b. Since b|free(φt′)
∈ N(t′, a′, I′),

we have that b′|Yt′
∈ I′. Furthermore, obviously b′|Yt ∈ Ia. Thus b′|Yt ∈

Ia n I′ = I which completes the proof.
This proves Claim 10.5.9. �

Proof of Claim 10.5.10. Let first b ∈ N(t, a, I). Then b ∼ a and for each
a′ ∈ I there is a b′ ∈ φ′t(A) such that b′|free(φt) = b and b|Yt =

a′. It follows that b|free(t1) ∼ a, b′|var(t1) ∈ φ′t1
(A) and b|Yt1

= a′.
Thus b|free(φt1)

∈ N(t1, a, I1) for a superset I1 = It1(b|free(φt1)
) of I.

Analogously we get that b|free(φt2)
∈ N(t2, a, I2) for a superset I2 =

It2(b|free(φt2)
) of I.

Now assume that there is an a′ ∈ (I1 ∩ I2) \ I. Then there is a b′1 ∈
φ′t1

(A) with b′1|free(φt1)
= b|φt1

and b′1|Yt1
= a′. Also there is a b′2 ∈

φ′t2
(A) with b′2|free(φt2)

= b|φt2
and b′2|Yt2

= a′. Then b′1 and b′2 coincide
on var(λt) and thus by the connectivity condition b′1 ∼ b′2. Thus, b′ :=
b′1 ./ b′2 ∈ φ′t(A), b′|free(φt) = b and b′|Yt = a′. But a′ /∈ I and thus
b /∈ N(t, a, I) which contradicts the assumption. Thus I1 ∩ I2 = I
which completes the first direction.

Now consider sets I1, I2 ⊆ πYt(λt(A)) with I1 ∩ I2 = I. Consider
b1 ∈ N(t1, a, I1) and b2 ∈ N(t1, a, I2). Then we get b1 ∼ b2 again
by the connectivity condition. It follows that b := b1 ./ b2 is well-
defined. We will show that b ∈ N(t, a, I) which completes the proof
of the claim.

First we observe that b ∈ φt(A). This is because b1 ∈ φt1(A) and
b2 ∈ φt2(A) and thus there are b′1 ∈ φ′t1

(A) and b′2 ∈ φt2(A) with
b1 ∼ b′1 and b2 ∼ b′2 and b′1 ∼ a′ and b′2 ∼ a′ for an a′ ∈ I. Again by
the connectivity condition we get b′1 ∼ b′2, so they can be combined
to b′ := b′1 ./ b′2 ∈ φt′(A). But b′|free(φt) = b and thus b ∈ φt(A) as
desired. With the same argument we also get that for each a′ ∈ I there
is a b′ ∈ φ′t(A) with b′|free(φt) = b.

It only remains to show that for every b′ ∈ φ′t(A) with b′|free(φt) = b
we have that b|Yt ∈ I. So consider b′ ∈ φ′t(A). We have that b|free(φt1)

∈
N(t1, a, I1) and b′|free(φt1)

= b|free(φt1)
and thus b′|Yt ∈ I1. Similarly,

b′|Yt ∈ I2 and it follows b′|Yt ∈ I1 ∩ I2 = I.
This proves Claim 10.5.10 �

Proof of Claim 10.5.11. Proof by induction on Tt. Let t first be a leaf,
then by (9) we need at most |c(t)| − 1 multiplications and no addi-
tions to compute ft,a,I . Doing the multiplications in a balanced fash-
ion, leads to a circuit of depth log(|c(t)|).

Let now t be a vertex with two children t1 and t2. By induction
ft1,a,I and ft2,a,I can be computed in depth (2` + 2)dt1 + log(|c(t1)|)
and (2`+ 2)dt2 + log(|c(t2)|), respectively. Since the computation of
ft,a,I in (11) needs only at most 2 · (2`)2 ≤ 22`+2 + |c0(t)| addititions
and multiplication we get that it can be computed in depth max((2`+
2)dt1 + log(|c(t1)|), (2`+ 2)dt2 + log(|c(t2)|))+ 2`+ 2+ log(|c0(t)|) ≤
(2`+ 2)dt + log(|c(t)|).

10.5 constructing circuits for conjunctive queries 143

For the case with one child observe that in (10) the first sum is
over at most ` tuples a′. The second sum is over at most 2` sub-
sets of Ia′ . Since the ft′,a′,I′ can by induction be computed in depth
(2`+ 2)dt′ + log(|c(t′)|) we get that 1

∏x∈c0(t)
Xa(x)

ft,a,I can be computed

in depth log(|`| + 2|`|) + (2` + 2)(dt − 1) + log(|c(t′)|). To compute
ft,a,I we only have to multiply with ∏x∈c0(t) Xa(x) and thus ft,a,I can
be computed in depth

1 + max(log(|c0(t)|),
log(|`|+ 2|`|) + (2`+ 2)(dt − 1) + log(|c(t′)|))

≤ log(`+ 2`) + (2`+ 2)(dt − 1) + 1 + log(|c(t)|)
= (2`+ 2)dt + log(|c(t)|).

This proves Claim 10.5.11. �

This completes the proof of Proposition 10.5.8 �

Now Theorem 10.2.3 follows directly from Proposition 10.5.8 and
Lemma 10.4.1.

Since Boolean CQ-instances of bounded treewidth have bounded
arity, they are always relation bounded. Thus we get the following
Corollary that gives characterizations of VPe.

Corollary 10.5.12. a) Let (Φn) be a p-bounded family of Boolean CQ-
instances of bounded treewidth. Then P(Φ) ∈ VPe. Moreover, any
family in VPe is a p-projection of such (P(Φn)).

b) Let (Φn) be a p-bounded family of Boolean CQ-instances of bounded
pathwidth. Then P(Φ) ∈ VPe. Moreover, any family in VPe is a p-
projection of such (P(Φn)).

11
G R A P H P O LY N O M I A L S O N B O U N D E D T R E E W I D T H
G R A P H S

11.1 introduction

In this chapter we explore a problem posed by Lyaudet in his PhD-
thesis [Lya07]: Consider a graph property and the graph polynomial
it defines as its generating function. If we restrict the graphs to be
of bounded treewidth, then computing the considered graph polyno-
mial is easy for most well known properties: If the property is defin-
able in monadic second order logic then the graph polynomials can
be computed efficiently [CMR01] (see Section 11.2.3 for more details).

Now assume that on general graphs the generating function of the
considered graph property is VNP-complete. Does it follow then, that
it is expressive enough to compute all families in VPe on bounded
treewidth graphs? Flarup, Koiran and Lyaudet showed that this is
true for the permanent and the hamiltonian [FKL07]: Both polyno-
mials give a characterization of VPe when considered on bounded
treewidth graphs. Lyaudet [Lya07] then conjectured that this might
be extended to hold for all VNP-complete generating functions de-
fined by monadic second order formulas.

In this chapter we settle this conjecture negatively: We show that
there are some VNP-complete generating functions that, on graphs of
bounded treewidth, are not expressive enough to capture VPe. On the
other hand we show results in the style of Flarup et al. hold for many
known VNP-complete polynomial families.

11.2 monadic second order logic , generating functions

and universality

11.2.1 Monadic second order logic on graphs

In this section we will give a very short introduction into monadic sec-
ond order logic. For more background see e.g. [FG06, Lib04, Cou97].
We assume the reader to be to be familiar with the basics of second
order logic which is the extension of first-order logic by relation vari-
ables and quantification over those. As it is common, we will write re-
lation variables in uppercase letters, e.g. P, Q, . . ., while the variables
for domain elements are written in lowercase letters, e.g. x, y, z,

A second order logic formula is monadic if it contains only unary
relation variables. In this case quantification over relation variables is
simply quantification over subsets of the domain. In the following we

145

146 graph polynomials on bounded treewidth graphs

will only consider formulas φ with one free relation variable X which
we denote by φ(X).

So let φ(X) be a monadic second order formula with free relation
variable X. Let A be a finite structure over the same vocabulary as φ

with domain A. A solution of φ in the structure A is a subset S ⊆
A such that A is a model of φ(S), the formula we get from φ(X)

by substituting the free variable X by the set S. The solution set is
defined as

φ(A) := {S ⊆ A | A |= φ(S)}.

Observe that in contrast to the query results considered before so-
lution sets φ(A) are sets of subsets of A and not sets of tuples of
elements of A.

We restrict our attention in this chapter to directed and undirected
graphs which we encode as finite structures. There are two different
ways to encode a directed graph G = (V, E) as a structure A. The
first one is encoding G as a structure A over the vocabulary τ1 = {E},
where the domain A of A is V and EA ⊆ V2. If G is undirected, then
the edge relation E of G is symmetric. We denote the set of monadic
second order formulas over τ1 by MS1.

Example 11.2.1. The formula

graph1 := (∀x∀y (Exy→ Eyz)) ∧ (∀x¬Exx)

is true for a τ1-structure A if and only if A is an encoding of an
undirected graph as discussed above. �

In the remainder of this chapter, whenever we assume that a τ1-
structure encodes a graph, we could enforce this by considering in-
stead of a formula φ always φ∧ graph1. We will not do this here to in
order not to clutter the notation unnecessarily. It will always be clear
from the context if we talk about undirected or directed graphs.

Example 11.2.2. Consider the MS1-formula

φclique1(X) := ∀x∀y ((x ∈ X ∧ y ∈ X)→ (Exy ∨ x = y)) .

Given an encoding A of a graph G, the solution set φ(X) contains
exactly the vertex sets of the cliques in G. �

The second encoding of a graph G = (V, E) is by its incidence
structure, a structure over the vocabulary τ2 = {V , E , I}. Here the
domain of A is A = V ∪ E. Furthermore, VA := V, EA := E and
IA := {(v, e) | v ∈ V, e ∈ E, v is a vertex of e}.

For directed graphs the incidence structure A is over the vocabu-
lary τ2,d := {V , E , I ,O} where again the domain of A is A = V ∪ E,
VA := V and EA := E. Furthermore,

IA := {(v, e) | v ∈ V, e ∈ E, v is the target of e}

11.2 mso, generating functions and universality 147

and
OA := {(v, e) | v ∈ V, e ∈ E, v is the source of e}.

Example 11.2.3. Again there is a formula that checks if a τ2-structure
encodes a graph, this time given by

graph2 :=∀x ((Vx ∧ ¬Ex) ∨ (¬Vx ∧ Ex))

∧ ∀x ((∃yIxy→ Vx) ∧ (∃yIyx → Ex))

∧ ∀x(Ex → (∃y∃y′∀z(y 6= y′ ∧ Iyx ∧ Iy′x∧
(Izx → y = z ∨ y′ = z)))).

It is easy but somewhat tedious to show that there is a similar
formula that checks if a τ2,d-structure is an encoding of a directed
graph. �

We will assume that all τ2- and τ2,d-structures are encodings of
graphs. Furthermore, we will always assume that the solution set of
every τ2-formula contains either vertex sets or edge sets but never
both. This can again be enforced by formulas easily. We will call the
free variable a vertex variable or an edge variable, respectively. We de-
note the set of monadic second order formulas over τ2 and τ2,d by
MS2. When it is not important or clear from the context if we talk
about MS1- or MS2-formulas, we sometimes drop the index and sim-
ply talk about MS-formulas.

Example 11.2.4. The edge set of cliques of a graph can be expressed
as the solution set of an MS2-formula as follows:

φclique2(X) :=∃Y((∀y(Yy↔ (∃x(Xx ∧ Iyx)))︸ ︷︷ ︸
Y is the set of
end vertices of the
edges in X

∧ (∀y∀y′((Yy ∧Yy′)↔ (∃x(Ixy ∧ Ixy′))︸ ︷︷ ︸
X connects exactly
the vertices in Y

)). �

From an algorithmic perspective it makes of course no difference
if a graph is encoded by a τ1- or a τ2-structure since both repre-
sentations can easily be transformed into each other. From a logi-
cal perspective there is a difference though. The possibility of MS2-
formulas to quantify over edge sets makes MS2 strictly more expres-
sive than MS1.

Monadic second order logic on graphs is interesting because many
computational problems can be expressed by it and because of the
following theorem by Courcelle [Cou90] that is widely considered as
one of the cornerstones of parameterized complexity theory.

148 graph polynomials on bounded treewidth graphs

Theorem 11.2.5 (Courcelle’s Theorem). For every monadic second order
formula φ(X) there is a computable function f and an algorithm that on
inputs G = (V, E) decides in time f (tw(G))|V| if φ(A) is empty or not
where A is an encoding of G.

For a proof and several extensions of Courcelle’s theorem see e.g.
[Kre11, FG06].

11.2.2 Generating functions

We consider generating functions of monadic second order formulas
on graphs. Since the free variables in the formulas may be either ver-
tex or edge variables, we have to consider two different cases.

Definition 11.2.6. The generating function GF(G, φ) of a graph G with
edge weight function w and a monadic second order formula φ with free edge
variable is defined as

GF(G, φ) := ∑
E′∈φ(A)

w(E′),

where A is the encoding of G and w(E′) = ∏e∈E′ w(e).
The generating function GF(G, φ) of a graph G with a vertex weight

function w and a monadic second order formula φ with a free vertex variable
is defined as

GF(G, φ) := ∑
V′∈φ(A)

w(V ′),

where A is the encoding of G and w(V ′) = ∏v∈V′ w(v). �

Example 11.2.7. Let φclique1 be the formula from Example 11.2.2. Then
GF(G, φclique1) sums over the weights of the vertices of all cliques of G.

Let φclique2 be the formula from Example 11.2.4. Then GF(G, φclique2)

sums over the weights of the edges of all cliques of G. �

A weighted graph is defined to be a graph G with either an edge
weight function w or a vertex weight function w. It will always be
clear from the context if a weighted graph has edge or vertex weights.
The size of a weighted graph is the size of the underlying graph.
Since we want to consider families of polynomials computed by gen-
erating functions, we will consider families of weighted graphs. A
family (Gn) of weighted graphs is called p-bounded if there is a poly-
nomial p such that the size of Gn is at most p(n).

Remark 11.2.8. Bürgisser in [Bü00, Chapter 3] considers generating
functions of graph properties similar to the generating functions we
defined above. A graph property is a class of graphs closed under iso-
morphisms. Given an edge weighted graph G = (V, E) and a graph
property E , Bürgisser defines the generating function as

GF(G, E) := ∑
E′⊆E

w(E′),

11.2 mso, generating functions and universality 149

where the sum is over all subsets E′ of E such that the spanning
subgraph (V, E′) ∈ E .

Clearly, for every MS-formula φ and every encoding A of a graph
the solution set φ(A) is closed under isomorphisms and thus φ(A)
is a graph property in Bürgisser’s sense. This shows that our generat-
ing functions and that of Bürgisser are essentially the same. The key
difference is that we restrict our graph properties to be definable by
MS-formulas while for Bürgisser they can be arbitrary. Furthermore,
to capture graph polynomials like the independent set polynomial or
the dominating set polynomial we also consider generating proper-
ties defined by vertex subsets of G. �

Restricting our considerations to generating function defined by
monadic second order formulas has the advantage that we get a very
general upper bound on the complexity of these generating function
on graphs of bounded treewidth. Courcelle, Makowski and Rotics
[CMR01] gave the following version of Courcelle’s theorem for the
arithmetic circuit model.

Theorem 11.2.9. Let φ be a monadic second order formula on graphs and
let (Gn) be a p-bounded family of weighted graphs of bounded treewidth.
Then the polynomial family (GF(Gn, φ)) is in VPe.

Note that Courcelle, Makowski and Rotics in [CMR01] do not state
Theorem 11.2.9 for VPe. Instead they only state containment in VP.
However, their methods can be seen to show containment in VPe

instead of VP rather easily [Dur13]. To not rely on an unpublished
claim that we do not verify here, we will show all upper bounds in
this chapter directly with the techniques of Chapter 10, even though
we could get them directly from Theorem 11.2.9.

To an (n× n)-matrix M = (aij)i,j∈[n] we assign the directed graph
GM = (V, E) by V := [n] and E := {ij | i, j ∈ [n], aij 6= 0}. We give
GM the edge weights w(ij) := aij.

Example 11.2.10. Let CC be the class of directed graphs that consist
of one or more directed cycles, where we also count loops as cycles.
Then it is well-known that

PERn(M) = GF(GM, CC).

The corresponding MS2-formula is

φCC(X) :=∀x(Vx → (∃y∃z(Ixy ∧Oxz ∧ Xy ∧ Xz)))∧
∀x∀y((Xx ∧ Xy ∧ ∃z ((Izx ∧ Izy) ∨ (Ozx ∧Ozy))

→ x = y)). �

150 graph polynomials on bounded treewidth graphs

11.2.3 Treewidth preserving reductions and universality

One of our aims in this chapter is to show that VPe can be character-
ized by generating functions for bounded treewidth graphs. To this
end, we introduce the following universality notion:

Definition 11.2.11. Let φ be a monadic second order formula. We say that
φ is VPe-universal for bounded treewidth if

• for every p-bounded family (Gn) weighted graphs of bounded tree-
width we have (GF(Gn, φ)) ∈ VPe, and

• for every family (fn) ∈ VPe there is a p-bounded family (Gn) of
weighted graphs of bounded treewidth with (fn) ≤p GF(Gn, φ). �

In a slight abuse of notation we sometimes call the corresponding
graph polynomial GF(., φ) VPe-universal.

Note that with Theorem 11.2.9 we could drop the first item in Def-
inition 11.2.11. However, since we do not want to rely on Theorem
11.2.9 as discussed above, we keep it in the definition.

Let φCC be the formula of Example 11.2.10. Then we can formulate
one of the main results proved by Flarup et al. [FKL07] as follows:

Theorem 11.2.12. [FKL07] φCC is VPe-universal.

With these definitions we can now reformulate a conjecture by
Lyaudet.

Conjecture 2 ([Lya07]). Let φ be a monadic second order formula such that
there is a family (Gn) of polynomial size graphs such that (GF(Gn, φ)) is
VNP-complete. Then φ is VPe-universal on bounded treewidth graphs.

To show universality results we use the usual technique of reduc-
tions. To do so we introduce a new kind of reduction between graph
properties tailored exactly for our needs. Remember that for two poly-
nomials f , g we denote by f ≤ g that f is a projection of g (see Sec-
tion 9.2).

Definition 11.2.13. Let φ and ψ be two monadic second order formulas.
We say that there is a treewidth preserving reduction from GF(., φ)

to GF(., ψ) (in symbols: GF(., φ) ≤BW GF(., ψ)) if there is a function
f and a polynomial p such that for every weighted graph G there is a
weighted graph G′ such that GF(G, φ) ≤ GF(G′, ψ) and |G′| ≤ p(|G|)
and tw(G′) ≤ f (tw(G′)). �

The treewidth of an undirected graph is defined to be that of the
underlying directed graph. The treewidth of a matrix is that of the
associated weighted directed graph.

If we have GF(., φ) ≤BW GF(., ψ) then every family (fn) of poly-
nomials defined as a generating function of φ can be computed as

11.3 cliques are not universal 151

generating function of ψ. Furthermore, if the treewidth of the family
of graphs (Gn) that allows computing (fn) as the generating function
of ψ is bounded, then the treewidth remains bounded for the compu-
tation with φ.

We will use treewidth preserving reductions to prove that specific
generating functions on bounded treewidth graphs are expressive
enough to capture VPe. This allows us to give more graph polyno-
mials that restricted to graphs of bounded treewidth characterize the
class VPe.

From Definition 11.2.11 and Definition 11.2.13 the following propo-
sition is immediate.

Lemma 11.2.14. Let φ be a monadic second order formula. The following
statements are equivalent:

1. φ is VPe-universal for bounded treewidth.

2. For every family (Gn) of weighted polynomial size graphs of bounded
treewidth we have (GF(Gn, φ)) ∈ VPe and there is a monadic second
order formula ψ that is VPe-universal for bounded treewidth such that
GF(., ψ) ≤BW GF(., φ).

3. There are two monadic second order formulas ψ and ψ′ which are VPe-
universal for bounded treewidth with GF(., ψ) ≤BW GF(., φ) ≤BW
GF(., ψ′).

With Proposition 11.2.14 and Theorem 11.2.12 we can easily show
universality for new graph properties by reductions without having
to resort to direct simulations of formulas.

11.3 cliques are not universal

Before showing more universality results, we prove that Lyaudet’s
conjecture is false. We will see that the formulas φclique1 and φclique2
from the Examples 11.2.2 and 11.2.4 are counterexamples.

Proposition 11.3.1. φclique1 and φclique2 are not VPe-universal for bounded
treewidth.

Proof. Let (Gn) be a family of bounded treewidth graphs. We have
by Lemma 2.3.4 the size of cliques in any graph Gn is bounded by
tw(Gn) + 1 and hence by a constant. It follows that the of degree
of GF(Gn, φclique1) and GF(Gn, φclique2) are bounded by a constant. p-
projections can only decrease the degree of polynomials. Hence, the
family (fn) of polynomials with fn = Xn, which certainly is in VPe, is
neither a p-projection of (GF(Gn, φclique1)) nor of (GF(Gn, φclique2)).�

Corollary 11.3.2. Conjecture 2 is false.

152 graph polynomials on bounded treewidth graphs

Proof. For MS2-formulas this follows directly from Proposition 11.3.1
and the VNP-completeness of GF(Kn, φclique2) (see [Bü00]).

For the less expressive MS1-formulas Conjecture 2 remains false.
This follows from the non-universality of φclique1 and the fact that
there is a family (Gn) of polynomial size graphs such that the family
(GF(Gn, φclique2)) is VNP-complete. The latter follows easily from the
VNP-completeness of the independent set polynomial (see [BK09]) by
considering complement graphs. �

11.4 vpe -universality for bounded treewidth

In this section we show that while Lyaudet’s conjecture is false in
general, many well-known graph polynomials are VPe-universal for
bounded treewidth.

11.4.1 Formulation of the results and outline

In this subsection we introduce several graph polynomials and state
a theorem that says that they are all VPe-universal for bounded tree-
width. Furthermore, we sketch an outline of the proof that we give in
the next sections.

A partial cycle cover of a directed graph is an edge set such that every
vertex has at most one incoming and one outgoing edge. Partial cycle
covers are the solutions of the monadic second order formula

φPCC(X) :=∀x∀y((Xx ∧ Xy ∧ ∃z ((Izx ∧ Izy) ∨ (Ozx ∧Ozy))

→ x = y)).

We assign to a matrix M a graph GM as before and define the partial
permanent PER∗(M) by

PER∗(M) := GF(GM, φPCC).

Consider the MS1-formula

φIS(X) := ∀x∀y((x ∈ X ∧ y ∈ X)→6= Exy).

Let G be a graph with structure A. Then it is easy to see that φIS(A)
contains exactly the independent sets of G.

Remember that a vertex cover of G is a subset of V that contains at
least one vertex of each edge in E. Let again G be a graph with struc-
ture A. Then we have that φVC(A), where φVC is the MS1-formulas

φVC(X) := ∀y∀y′(Eyy′ → (Xy ∨ Xy′)),

contains all vertex covers of G.
A dominating set of G is defined to be a vertex set D such that for

every vertex v ∈ V we have that v or a neighbor u of v is in D. It is
easy to see that φDS(A), where

φDS(X) := ∀x(Xx ∨ ∃y(Xy ∧ Exy)),

11.4 vpe-universality for bounded treewidth 153

contains the contains the dominating sets of G.

Theorem 11.4.1. φPCC, φIS, φVC and φDS are VPe-universal for bounded
treewidth.

We will show the lower and upper bounds individually in the
following subsections. We will start proving φCC ≤BW φBCC which
shows the lower bound for φPCC.

When trying to show lower bounds for the other properties, we
face a small complication: We would like to use a known reduction
from φBCC to φIS from [BK09]. This reduction constructs to a graph G
the line graph L(G). Unfortunately, in general, we cannot bound the
treewidth of L(G) by the treewidth of G. For example, the line-graph
of a star is a clique, which by Lemma 2.3.4 has high treewidth. Thus
we cannot use the reduction from [BK09] directly. We solve this small
complication by bounding not only the treewidth but also the degree
of the graph G. Fortunately, for this restriction φCC and φPCC are still
expressive enough to capture all of VPe. Now we can use the reduc-
tion from [BK09] to show the lower bound for φIS.

Lower bounds for φVC and φDS are then shown by the reductions
φIS ≤BW φVC and φVC ≤BW φDS.

Finally, we show the upper bounds which we only have to show
for φPCC and φDS because φIS and φVC reduce to φDS.

11.4.2 Reduction: φCC ≤BW φPCC

Lemma 11.4.2. φCC ≤BW φPCC

Proof. The construction is an adaption of Jerrum’s VNP-completeness
proof for PER∗n [Jer81] (see also [Bü00, Chapter 3]).

Let G = (V, E) be an edge weighted, directed graph on the vertex
set [n]. For each ij ∈ E let Xij be the weight of the edge ij. For i ∈ V
we add two new vertices iin and iout and the edges iini and iiout both
with weight −1. Call the resulting directed graph G′.

Let π ⊆ E be a partial cycle cover of G, i.e., an edge set E such the
every vertex has at most one edge in E entering it and at most one
leaving it. We define w(π) := ∏ij∈π Xij. Let I(π) be the set of vertices
that have no entering edge in π and J(π) the set having no outgoing
edge in π. We construct partial cycle covers of G′ by choosing sets
M ⊆ I(π) and N ⊆ J(π) and adding the edges iini for i ∈ M and
iiout for i ∈ N. Oberserve that the resulting partial cycle cover has the
weight (−1)|M|+|N|w(π). Also every partial cycle cover of G′ can be
uniquely constructed by selecting a partial cycle cover of G and then
selecting M and N. Thus we get

PER∗(G′) = ∑
π:π partial cover of G

(
w(π) ∑

M⊆I(π)

(−1)|M| ∑
N⊆J(π)

(−1)|N|
)

.

154 graph polynomials on bounded treewidth graphs

If I(π) is not empty, then the term ∑M⊆I(π)(−1)|M| is 0. The anal-
ogous statement is true for J(π). Thus only partial cycle covers in
which every vertex has an incoming and an outcoming edge con-
tribute to the sum. But these are exactly the cycle covers of G and
thus PER(G) = PER∗(G′).

Let T be a tree-decomposition of G. We construct a tree decom-
position of G′ by simply adding iin and iout to all the bags contain-
ing i in T . It is easy to see, that the result is indeed a valid tree-
decomposition and tw(G′) ≤ 3tw(G). This means the construction is
a treewidth preserving reduction. �

11.4.3 φCC and φPCC on bounded degree graphs

Lemma 11.4.3. For every family (fn) ∈ VPe there is a p-bounded family
(Gn) of weighted graphs of bounded treewidth and bounded degree such that
(fn) ≤p GF(Gn, φCC).

Proof (sketch). The proof is a minimal modification of the two-stage
construction of Flarup et al. [FKL07] which follows Valiant’s proof
of the universality of the permanent [Val79] (see also [Bü00, Chap-
ter 2]). In the first stage we simulate arithmetic formulas by arith-
metic branching programs. Flarup et al. observed that the underlying
graphs of the branching programs are so-called series parallel graphs
which have treewidth at most 2. We modify the case φ1 + φ2: instead
of identifying the sources s1 and s2 and the sinks t1 and t2 we add
two new vertices s′ and t′ as new source and sink and add the edges
s′s1, s′s2, t1t′ and t2t′ each with the weight 1. It is easy to see that
this new graph computes the same polynomial, has size O(|φ|) and
treewidth 2 and each of its vertices has in- and out-degree at most 2.

In the second step of the construction in [FKL07] the constructed
ABP is reduced to the permanent. We add only self-loops and an edge
from the sink of the ABP to its source. Thus we increases the in- and
out-degree by at most 1 and the treewidth by at most 1. Consequently,
every formula can be computed as the permanent of a degree 6 graph
with treewidth at most 3. �

Corollary 11.4.4. For every family (fn) ∈ VPe there is a p-bounded fam-
ily (Gn) of weighted graphs of bounded treewidth and bounded degree such
that (fn) ≤p GF(Gn, φPCC).

Proof. The construction of Lemma 11.4.2 increases the degree only
by 2. �

11.4.4 The lower bound for φIS

Lemma 11.4.5. For every family (fn) ∈ VPe there is a p-bounded family
(Gn) of weighted graphs of bounded treewidth and bounded degree such that
(fn) ≤p GF(Gn, φIS).

11.4 vpe-universality for bounded treewidth 155

Proof. We show a treewidth preserving reduction from the family
GF(Gn, φPCC) of Corollary 11.4.4. This reduction is a slight modifi-
cation of the VNP-hardness proof of GF(., φIS) in [BK09] in which we
also consider the treewidth. Let G be a directed graph with vertex
set [n], edge in E ⊆ [n]2 and edge weight function w. We construct a
graph G′ = (V ′, E′) such that PER∗(G) = GF(G′, φIS). We set V ′ := E.
Two vertices ij, i′ j′ ∈ V ′ are connected by an edge if and only if i = i′

or j = j′. We give G′ the vertex weight w′ with w′(ij) := w(ij).
Let π ⊆ E be a partial cycle cover of G. We claim that π is an

independent set in G′. Indeed, assume that it is not, i.e., there are
vertices ij and i′ j′ that are adjacent. Then i = i′ or j = j′ which which
contradicts π being a partial cycle cover.

Let now π be an independent set of G′. Then it is easy to see that π

is an independent set of G.
Thus, partial covers of G and independent sets in G′ coincide and,

due to the definition of weights, PER∗(G) = GF(G′, φIS).
For the bound on the treewidth of G′ consider a tree decomposition

(T , (χt)t∈T) of G of width k − 1 and assume that G has maximum
degree d. We construct a tree decomposition (T , (χ′t)t∈T) of G′ with
the same underlying tree T . We define χ′t := {ij ∈ V ′ | i ∈ χt ∨ j ∈
χt}.

We claim that the result is indeed a tree decomposition. Clearly,
each e ∈ V ′ is in at least one bag. Also two vertices ij, i′ j′ ∈ V ′ are
connected in G′ if and only if i = i′ or j = j′. Thus ij and i′ j′ share
a bag χ′t, if they are connected in G′. Also the bags containing a ver-
tex ij ∈ V ′ are connected, because the set of bags containing i and
that containing j in the tree decomposition of G are connected and
intersecting. Thus (T , (χ′t)t∈T) is a tree decomposition. It has width
at most dk − 1, because for each bag χt and each i ∈ χt the bag χ′t
contains at most d vertices ij ∈ V ′. Thus the construction is treewidth
preserving if d is constant and with Corollary 11.4.4 the claim fol-
lows. �

11.4.5 Reduction: φIS ≤BW φVC

Lemma 11.4.6. φIS ≤BW φVC

Proof. The reduction is taken from [BK09, p. 8]. We will show that
it is treewidth preserving. Remember that the incidence graph G′ =
(V ′, E′) of a graph G = (V, E) has the vertex set V ′ := V ∪ E and the
edge set

E′ := {ve | v ∈ V, e ∈ E, v is a vertex of e}.
Let w be the vertex weight function of G, then we define the vertex
weight function of G′ as w′(v) := w(v) for v ∈ V and w′(e) = −1 for
e ∈ E. Briquel and Koiran showed that

GF(G, φIS) = (−1)|E
′| GF(G, φVC). (12)

156 graph polynomials on bounded treewidth graphs

We claim that G′ always has an even number of edges. Indeed, ev-
ery vertex e ∈ E of G′ has exactly two neighbors which are the end
vertices of e in G. Thus |E′| = 2|E| and (12) simplifies to

GF(G, φIS) = GF(G, φVC)

which this is the desired reduction.
It remains to show that tw(G′) is bounded in tw(G). To this end,

let (T , (χt)t∈T) be a tree decompositions of G of width k − 1. We
construct a tree decomposition (T , (χ′t)t∈T) by adding each e ∈ E to
any bag χt that contains both vertices of e. It is easy to see that the
result is indeed a tree decomposition. To bound its width observe that
to each bag χt at most (k

2) vertices may have been added. It follows
that tw(G′) ≤ tw(G) + (tw(G)+1)

2). �

11.4.6 Reduction: φVC ≤BW φDS

Lemma 11.4.7. φVC ≤BW φDS

Proof. To a graph G = (V, E) we construct G′ = (V ′, E′) where V ′ :=
V ∪ E and

E′ := E ∪ {ve | v ∈ V, e ∈ E, v is a vertex of e}.

We set w′(v) := w(v) for v ∈ V and w′(e) := 0 for e ∈ E. Every
dominating set D of G′ has to dominate all vertices e ∈ E. But if
e ∈ D, then the corresponding product contributes 0. So one of the
end points v or u has to be in the dominating set D, if we want
it to contribute. It follows that the dominating sets with non-zero
contribution to GF(G′, φDS) are exactly the vertex covers of G. This
implies GF(G, IS) = GF(G,DS).

We have tw(G′) = O(tw(G)2) with the same proof as Lemma for
11.4.6. �

Since treewidth preserving reductions are special p-projections, we
get the following corollary which we will use in Chapter 12.

Corollary 11.4.8. There is a family (Gn) of polynomial size graphs such
that (GF(Gn, φDS)) is VNP-complete.

Proof. Containment in VNP is clear with Lemma 9.2.3, because for a
vertex set D of a graph G one can in polynomial time decide if D is
dominating.
VNP-hardness follows from the VNP-hardness of (GF(Gn, φVC)) for

a family (Gn) constructed in [BK09] and the proof of Lemma 11.4.7.�

11.4 vpe-universality for bounded treewidth 157

11.4.7 The upper bounds

As discussed in Subsection 11.4.1, it suffices to show containment in
VPe only for GF(PCC, Gn) and GF(DS , Gn) for bounded treewidth
graphs (Gn). We will use Theorem 10.2.3 to establish these results
and avoid dynamic programming here.

Lemma 11.4.9. GF(DS , Gn) ∈ VPe for every p-bounded family (Gn) of
weighted graphs of bounded treewidth.

Proof. We construct Boolean, quantifier free ACQ-instances (Φn) of
bounded arity such that GF(Gn, φDS) ≤ P(Φn). Obviously, such in-
stances are relation bounded and thus the Claim will follow with
Theorem 10.2.3.

So let G = (V, E) be a vertex weighted graph and let (T , (χt)t∈T) be
a tree decomposition of G of width k− 1. We assume w.l.o.g. that T
is a full binary tree, i.e., every t ∈ T is either a leaf or it has exactly 2
children. This form can alway be achieved by making copies of bags.

We construct an ACQ-instance Φ = (A, φ). Remember that Tt is the
subtree of T with t as its root. For each t ∈ T and each vertex v ∈ χt

the query φ has the variables vd and vt
b. The intuitive interpretation

of these variables is the following: vd takes the value 1 if v is in a
dominating set and 0 otherwise. The variable vt

b takes the value 0 if v
is dominated by a vertex u appearing in any bag χt′ such that t′ lies
in Tt. Otherwise, vt

b takes the value 1.
The query φ is the conjunction of the following atoms: For each

leaf t ∈ T there is an atom φt with the relation symbol Rt and the
variables vd and vt

b for each v ∈ χt. For each non-leaf t ∈ T with
children t1, t2 we have an atom φt with the relation symbol Rt that
has for v ∈ χt the variables vd and vt

b, for every v ∈ χt1 the variable vt1
b

and for every v ∈ χt2 the variable vt2
b . This completes the construction

of φ.
We now describe the relations of the RAt by their satisfying assign-

ments. If t is a leaf of T , then the satisfying assignments in RAt are
those that assign arbitrary values to the vd and assign 1 to vt

b if and
only if vd is assigned 1 or there is a neighbor u ∈ χt of v such that ud
is assigned 1.

For a non-leaf t ∈ T with children t1 and t2 the satisfying assign-
ments are those that for each v ∈ χt assign 0 to vt

b if and only if one
of the following conditions is satisfied:

• vd is assigned 1,

• there is a neighbor u ∈ χt of v such that ud is assigned 1, or

• at least one child ti such that the bag χti contains v and vti
b is

assigned 0.

This completes the construction of Φ = (A, φ).

158 graph polynomials on bounded treewidth graphs

Let us now show that GF(G, φDS) ≤ Q(Φ). To a vertex set D ⊆ V
we assign a partial assignment aD : {vd | v ∈ V} → {0, 1} that assigns
1 to vd if and only if v ∈ D.

We state the following observation which can be proved be an easy
reduction:

Observation 11.4.10. For every D the assignment aD can be uniquely ex-
tended to a satisfying assignment a′D of Φ. This assignment a′D assigns the
value 0 to vt

b if and only if aD(vd) = 1 or there is a vertex u appearing in a
bag in Tt such that u is a neighbor of v in G and aD(ud) = 1.

Let r(v) be the t ∈ T that is nearest to the root of T with v ∈ χt.

Claim 11.4.11. A set D ⊆ V is a dominating set if and only if a′D(v
r(v)
b) =

0 for every v ∈ V.

Proof. Let first D be a dominating set of G. Consider a vertex v ∈ V.
If v ∈ D, then clearly a′D(v

t
b) = 0 for every t ∈ T with v ∈ χt and thus

in particular a′D(v
r(v)
b) = 0. If v /∈ D, then there is a neighbor u of v

in G such that u ∈ D. But then u is in a bag in Tt by the properties
of tree decompositions. By definition of aD if follows that aD(ud) = 1
and we get a′D(v

r(v)
b) = 0 by the characterization of a′D from above.

Thus a′D has the desired property.
Let now a′D(v

r(v)
b) = 0 for every v ∈ V. Then either v ∈ D or there

is a neighbor u of v with u ∈ D by the characterization of a′D above.
It follows that v is dominated by D. �

We directly get

P(Φ) = ∑
D⊆V

∏
v∈V

XaD(vd)
vd ∏

t∈T,v∈V
Xa′D(v

t
b)

vt
b

= ∑
D⊆V

∏
v∈D

Xvd ∏
t∈T,v∈V,a′D(v

t
b)=1

Xvt
b
. (13)

Now substitute for each v ∈ V the variable X
vr(v)

b
by 0 and all other Xvt

b

by 1. Furthermore substitute Xvd by Xv, then (13) simplifies to

∑
D⊆V

∏
v∈D

Xv ∏
v∈V,a′D(v

r(v)
b)=1

0 = ∑
D dominating set of G

∏
v∈D

Xv = GF(G, φDS).

Thus we have GF(G, φDS) ≤ P(Φ).
Observe that φ is acyclic: It is easy to see that (T , (λt)t∈T) where λt

is the edge associated to the atom φt is a join tree. Furthermore, each
atom has at most 6k Boolean variables. Thus the relations of A have
at most size 26k.

Hence, for every family (Gn) of graphs of bounded treewidth we
can construct a relation bounded and p-bounded family (Φn) of quan-
tifier free, Boolean ACQ-instances with (GF(Gn, φDS)) ≤p (P(Φn)).
As the latter family of polynomials is in VPe by Theorem 10.2.3 the
lemma follows. �

11.5 conclusion 159

Lemma 11.4.12. GF(PCC, Gn) ∈ VPe for every p-bounded family (Gn) of
weighted graphs of bounded treewidth.

Proof (sketch). The idea is the same as in the proof of Lemma 11.4.9.
Instead of a vertex set D we select an edge set E′ by setting variables
xe to 0 or 1. Again we have an atom φt for every bag in a tree de-
composition of a graph G. The variable xe appears in the atoms that
correspond to the bags that contain both end vertices of e. We only
have to check that every vertex v has at most one incoming and one
outgoing edge in E′. This can again be done by variables vt

b as in the
proof of Lemma 11.4.9. �

11.5 conclusion

We have seen that the results of [FKL07] for the permanent and the
hamiltonian can be extended to other graph polynomials by straight-
forward modification of known VNP-completeness proofs. It seems
very likely that many more such results can be proved relatively eas-
ily. But we have seen that the general principle stated in Conjecture 2

is not true, because it fails for clique polynomials. It would be inter-
esting to see if these clique polynomials can express all of VPe for
other width measures, say cliquewidth.

This chapter and [FKL07] give many alternative characterizations
of VPe by graph polynomials. In [FKL07] there is also a characteri-
zation of VPws by a matching polynomial on planar graphs. Finally,
there are lots of VNP-complete graph polynomials (see e.g. [Bü00,
Chapter 3]). Curiously, there is no known characterization of VP by
graph polynomials, so we leave this as an open question.

Question 2. Is there a way to define graph polynomials that capture VP?

One idea would be to slightly generalize Question 2 to hypergraphs
and then consider the hypergraph width measures of Part i. While it
is clear that not all monadic second order formulas will give tractable
polynomials [GP04], specific polynomials could still be interesting.
For example, it is easy to define an independent set polynomial for
hypergraphs. In the light of the results of Chapter 4 it seems plausi-
ble that it is tractable for, say, acyclic hypergraphs. But can the exact
complexity be determined?

12
A R I T H M E T I C B R A N C H I N G P R O G R A M S W I T H
M E M O RY

12.1 introduction

Arithmetic Branching Programs (ABPs) are a well studied model of
computation in algebraic complexity: They were already used in the
VNP-completeness proof of the permanent by Valiant [Val79] and
have since then contributed to the understanding of arithmetic cir-
cuit complexity (see e.g. [Nis91, Koi12]). The computational power
of ABPs is well understood: They are equivalent to both skew and
weakly skew arithmetic circuits and thus capture the determinant,
matrix power and other natural problems from linear algebra [Tod92,
MP08]. The complexity of bounded width ABPs is also well under-
stood: In analogy to Barrington’s Theorem [Bar89], Ben-Or and Cleve
[BOC92] proved that polynomial size ABPs of bounded width are
equivalent to arithmetic formulas.

We modify ABPs by giving them memory during their computa-
tions and ask how this changes their computational power. There are
several different motivations for doing this: We define branching pro-
grams with stacks, that are an adaption of the nondeterministic aux-
iliary pushdown automaton (NAuxPDA) model to the arithmetic cir-
cuit model. The NAuxPDA-characterization of LOGCFL has been very
successful in the study of this class and has contributed greatly to its
understanding. In this section we give a characterization of VP and
thus contribute to the general aim of this part of this thesis to get a
better understanding of VP. Our characterization also has some sim-
ilarity to results in the Boolean setting in which graph connectivity
problems on edge-labeled graphs that are similar to our ABPs with
stacks were shown to be complete for LOGCFL [SV85, WS07]. One mo-
tivation for adapting these results to the arithmetic circuit setting is
the hope that one can apply techniques from the NAuxPDA setting to
arithmetic circuits. We show that this is indeed applicable by sketch-
ing an adaption of a proof of Niedermeier and Rossmanith [NR95] to
give a straightforward proof of the classical parallelization theorem
for VP first proved by Valiant et al. [VSBR83].

Another motivation is that our modified branching programs in
different settings give various very similar characterizations of differ-
ent arithmetic circuit classes. This allows us to give a new perspective
on problems like VP vs. VPws, VP vs. VNP that are classical question
from arithmetic circuit complexity. This is similar to the motivation

161

162 arithmetic branching programs with memory

that Kintali [Kin10] had for studying similar graph connectivity prob-
lems for the Boolean setting.

Finally, all modifications we make to ABPs are straightforward and
natural. The basic question is the following: ABPs are in a certain
sense a memoryless model of computation. At each point of time dur-
ing the computation we do not have any information about the his-
tory of the computation so far apart from the state we are in. So what
happens if we allow memory during the computation? Intuitively, the
computational power should increase, and we will see that it indeed
does (under standard complexity assumptions of course). How do
different types of memory compare? What is the role of the width of
the branching programs if we allow memory? In the remainder we
will answer several of these questions.

The structure of this chapter is a follows: After some preliminaries
we start off with ABPs that may use a stack during their computa-
tion. We show that they characterize VP, consider several restrictions
and sketch a proof of the parallelization theorem for VP. Next we
consider ABPs with random access memory, show that they charac-
terize VNP and consider some restrictions of them as well.

12.2 arithmetic branching programs

We quickly present some basic facts on arithmetic branching pro-
grams, a classical model of arithmetic circuit complexity.

Definition 12.2.1. An arithmetic branching program (ABP) G is a di-
rected acyclic graph with two vertices s and t and an edge labeling w :
E → F ∪ {X1, X2, . . .}. A path P = v1v2 . . . vr in G has the weight
w(P) := ∏r−1

i=1 w(vivi+1). Let v and u be two vertices in G, then we de-
fine

fv,u = ∑
P

w(P),

where the sum is over all v-u-paths P. The ABP G computes the polynomial
fG = fs,t. The size of G is the number of vertices of G. �

Toda and Malod and Portier proved the following theorem:

Theorem 12.2.2. ([Tod92, MP08]) We have (fn) ∈ VPws, iff (fn) is com-
puted by a family of polynomial size ABPs.

Definition 12.2.3. An ABP of width k is an ABP in which all vertices are
organized into layers Li, i ∈ N, there are only edges from layer Li to Li+1

and the number of vertices in each layer Li is at most k. �

The computational power of ABPs of constant width was settled by
Ben-Or and Cleve:

Theorem 12.2.4. ([BOC92]) We have (fn) ∈ VPe, iff (fn) is computed by
a family of polynomial size ABPs of constant width.

12.3 stack branching programs 163

12.3 stack branching programs

12.3.1 Definition

Let S be a set called symbol set. For a symbol s ∈ S we define two
stack operations: push(s) and pop(s). Additionally we define the stack
operation nop without any arguments. A sequence of stack operations
on S is a sequence op1 op2 . . . opr, where either opi = op i(si) for op i ∈
{push, pop} and si ∈ S or opi = nop. Realizable sequences of stack
operations are defined inductively:

• The empty sequence is realizable.

• If P is a realizable sequence of stack operations, then the se-
quence push(s)P pop(s) is realizable for all s ∈ S. Also nop P
and P nop are realizable sequences.

• If P and Q are realizable sequences of stack operations, then PQ
is a realizable sequence.

Definition 12.3.1. A stack branching program (SBP) G is an ABP with
an additional edge labeling σ : E → {op(s) | op ∈ {push, pop}, s ∈ S} ∪
{nop}. A path P = v1v2 . . . vr in G has the sequence of stack operations
σ(P) := σ(v1v2)σ(v2v3) . . . σ(vr−1vr). If σ(P) is realizable we call P a
stack-realizable path. The SBP G computes the polynomial

fG = ∑
P

w(P),

where the sum is over all stack-realizable s-t-paths P. �

It is helpful to interpret the stack operations as operations on a real
stack that happen along a path through G. On an edge uv with the
stack operation σ(uv) = push(s) we simply push s onto the stack.
If uv has the stack operation σ(uv) = pop(s) we pop the top symbol
of the stack. If it is s we continue the path, but if it is different from
s the path is not stack realizable and we abort it. nop stands for “no
operation” and thus as this name suggests the stack is not changed
on edges labelled with nop. Realizable paths are exactly the paths
on which we can go from s to t in this way without aborting while
starting and ending with an empty stack.

To ease notation we sometimes call edges e with σ(e) = push(s)
for an s ∈ S simply push-edges. The pop-edges and nop-edges are
defined in the obvious analogous way.

It will sometimes be convenient to consider only SBPs that have no
nop-edges. The following easy proposition shows that this is not a
restriction.

Proposition 12.3.2. Let G be an SBP of size s. There is an SBP G′ of size
O(s2) such that fG = fG′ and G′ does not contain any nop-edges. If G is
layered with width k, then G′ is layered as well and has width at most k2.

164 arithmetic branching programs with memory

Proof. The idea of the construction is to subdivide every edge of G.
So let G be an SBP with vertex set V and edge set E. Let σ and w
be the stack symbol labeling and the weight function, respectively. G′

will have the vertex set V ∪ {ve | e ∈ E}, stack symbol labeling σ′ and
weight function w′. The construction goes as follows: For each edge
e = uv ∈ E the SBP G′ has the edges uve, vev. We set w′(uve) := w(uv)
and w′(vev) := 1. If e is a nop-edge we set σ′(uve) := push(s) and
σ′(vev) = pop(s) for an arbitrary stack symbol s. Otherwise, both uve

and vev get the stack operation σ(uv).
It is easy to verify that G′ has all the desired properties. �

12.3.2 Characterizing VP

In this section we show that stack branching programs of polynomial
size characterize VP.

Theorem 12.3.3. (fn) ∈ VP, iff (fn) is computed by a family of polynomial
size SBPs.

We prove the two directions of Theorem 12.3.3 in two steps.

Lemma 12.3.4. If (fn) is computed by a family of polynomial size SBPs,
then (fn) ∈ VP.

Proof. Let (Gn) be a family of SBPs computing (fn), of size at most
p(n) for a polynomial p. Observe that deg(Gn) ≤ p(n), so we only
have to show that we can compute the fn by polynomial size cir-
cuits Cn.

Let G = Gn be an SBP with m vertices, source s and sink t. The
construction of C = Cn uses the following basic observation: Ev-
ery stack-realizable path P of length i between two vertices v and u
can be uniquely decomposed in the following way. There are vertices
a, b, c ∈ V(G) and a symbol s ∈ S such that there are edges va and
bc with σ(va) = push(s) and σ(bc) = pop(s). Furthermore there are
stack-realizable paths Pab from a to b and Pcu from c to u such that
length(Pab) + length(Pcu) = i − 2 and P = vaPabbcPcu. The paths Pab
and Pcu may be empty.

We define w(u, v, i) := ∑P w(P) where the sum is over all stack-
realizable s-t-paths of length i.

We claim that the values w(v, u, i) can be computed efficiently by a
straightforward dynamic programming approach. First observe that
w(v, u, i) = 0 for odd i. For i = 0 we set w(v, u, 0) = 0 for v 6= u and
w(v, v, 0) = 1. For even i > 0 we get by the above observation

w(v, u, i) = ∑
a,b,c,j,s

w(v, a)w(a, b, j)w(b, c)w(c, u, i− j− 2),

where the sum is over all s ∈ S, all j ≤ i− 2 and all a, b, c such that
σ(va) = push(s) and σ(bc) = pop(s). Since there are only polyno-
mially many combinations v, u, i, this recursion formula allows us to

12.3 stack branching programs 165

compute all w(v, u, i) with a polynomial number of arithmetic opera-
tions. Having computed all w(v, u, i) we get fG = ∑i∈[m] w(s, t, i). �

The more involved part of the proof of Theorem 12.3.3 will be the
reverse direction. To prove it it will be convenient to slightly relax our
model of computation. A relaxed SBP G is an SBP where the under-
lying directed graph is not necessarily acyclic. To make use of cyclic-
ity, in a relaxed SBP G, we do not consider paths but walks, i.e., ver-
tices and edges of G may be visited several times. Realizable walks are
defined completely analogously to realizable paths. Also the weight
w(P) of a walk is defined in the obvious way. Clearly, we cannot de-
fine the polynomial computed by a relaxed ABP by summing over the
weights of all realizable walks, because there may be infinitely many
of them since they may be arbitrarily long. Hence, we define for each
pair u, w of vertices and for each integer m the polynomial

fu,v,m := ∑
P

w(P),

where the sum is over all stack-realizable u-v-walks P in G that have
length m. Furthermore, we say that, for each m, the relaxed SBP G
computes the polynomial fG,m := fs,t,m.

The connection to SBPs is given by the following straight-forward
lemma.

Lemma 12.3.5. Let G be a relaxed SBP and m ∈N. Then for each m there
is an SBP G′m of size m|G| that computes fG,m.

Proof. The idea is to unwind the computation of the relaxed SBP
into m layers. Let G = (V, E, w, σ), then for each v ∈ V the SBP G′

has m copies {v1, . . . , vm}. For each uv ∈ E the SBP G′ had the edges
uivi+1 for i ∈ [m− 1] with weight w(uivi+1) := w(uv) and stack oper-
ation σ(uivi+1) := σ(uv). This completes the construction of G′.

Clearly, G′ computes fG,m and has size m|G|. �

To prove the characterization of VP we show the following rather
technical proposition:

Proposition 12.3.6. Let C be a multiplicatively disjoint arithmetic circuit.
For each v ∈ V we denote by Cv the subcircuit of C with output v, and we
denote by fv the polynomial computed by Cv. Then there is a relaxed SBP
G = (V, E, w, σ) of size at most 2|C|(|C|+ 1) + 3(|C|) such that for each
v ∈ V there is a pair v−, v+ ∈ V and an integer mv ≤ 4|Cv| with

• fv = fv−,v+,mv , and

• there is no stack-realizable walk from v− to v+ in G that is shorter
than mv.

166 arithmetic branching programs with memory

Proof. We construct G iteratively along a topological order of C by
adding new vertices and edges, starting from the relaxed SBP with
empty vertex set. We distinguish three cases:

Case 1: Let first v be an input of C with label X. We add two new
vertices v−, v+ to G and the edge v−v+ with weigth w(v−v+) := X
and stack-operation σ(v−v+) := nop. Furthermore, mv := 1. Clearly,
none of the polynomials computed before change and the size of the
relaxed SBP grows only by 2. Thus all statements of the proposition
are fulfilled.

Case 2: Let now v be an addition gate with children u, w. By induc-
tion G contains vertices u−, u+, w−, w+ and there are mu, mv such that
fu−,u+,mu = fu and fw−,w+,mw = fw. Assume w.l.o.g. mu ≥ mw. We add
the new vertices v−, v+, vs, vt to G. We further add the edges v−u−,
v−vs, vtw−, u+v+ and w+v+. Moreover, we connect vs an vt by a path
of length mu − mw whose inner vertices are also new. All edges we
add get weight 1. Furthermore, we set the stack symbol operations
σ(v−u−) := push(vu), σ(u+v+) := pop(vu), σ(v−vs) := push(vw)

and σ(w+v+) := pop(vw) for new stack symbols vu and vw. All other
edges we added are nop-edges. Finally, set mv := mu + 2.

Let us check that G computes the correct polynomials. First observe
that the edges we added do not allow any new walks between old
vertices, so we still compute all old polynomials by induction. Thus
we only have to consider the realizable v−-v+-walks of length mv.
Each of these either starts with the edge v−u− or the edge v−vs. In
the first case, because of the stack symbols the walk must end with
the edge u+v+. Thus the realizable v−v+-walks of length mv that start
with v−u− contribute exactly the same weight as the realizable u−-u+-
walks of length mu. Hence, these weights add up to fu by induction.
Every v−v+-walks of length mv that start with v−vs first makes mu −
mw unweighted steps to w− and ends with the edge w+v+. Thus,
these walks contribute exactly the same as the stackrealizable w−-w+

walks of length mv − 2 − (mu − mw) = mw, so they contribute fw.
Combining all walks we get fv−,v+,mv = fu + fw = fv as desired.

We have that every realizable walk from u+ to u− has length at
least mu, and thus there is no realizable v−-v+-walk starting with
v−u− that is shorter than mu + 2 = mv. Moreover, since the realizable
w−-w+-walks have length at least mw, the realizable paths starting
with v−w− have length at least mw + (mu −mw) + 2 = mu + 2 = mw.
Thus there is no realizable v−-v+-walk of length less that mv.

We have mv = mu + 2 ≤ 4|Cu|+ 2 ≤ 4|Cv| where the first inequality
is by induction and the second inequality follows from the fact that v
is not contained in Cu and thus |Cv| > |Cu|. To see the bound on |G|
let s be the size of G before adding the new edges and vertices. By
induction s ≤ 2(|Cv| − 1)(|Cv| − 1 + 1) + 3(|Cv| − 1). We have added
2 + mu −mv + 1 vertices and thus G has now size s + 3 + mu −mv ≤
s + 3 + mu. But we have mu ≤ 4|Cu| ≤ 4|Cv| and thus the number

12.3 stack branching programs 167

of vertices in G is at most 2(|Cv| − 1)|Cv|+ 3(|Cv| − 1) + 3 + 4|Cv| ≤
2|Cv|(|Cv|+ 1) + 3|Cv|. This completes the case that v is an addition
gate.

Case 3: Let now v be a multiplication gate with children u, w. As
before, G already contains u−, u+, w−, w+ and there are mu, mv with
the desired properties. We add three vertices v−, v+ and v∗ and the
edges v−u−, u+v∗, v∗w− and w+v+ all with weight 1. The new edges
have the stack symbols σ(v−u−) := push(vu), σ(u+v∗) := pop(vu),
σ(v∗w−) := push(vw) and σ(w+v+) := pop(vw) for new stack sym-
bols vu and vw. Finally, set mv := mu + mw + 4.

Clearly, no stack-realizable walk between any pair of old vertices
can traverse v−, v+ or v∗ and thus these walks still compute the
same polynomials as before. Thus we only have to analyse the v−-
v+-walks of length mv in G. Let P be such a walk. Because of the
stack symbols vu and vw the walk P must have the structure P =

v−u−P1u+v∗w−P2w+v+ where P1 and P2 are a stack-realizable u−-
u+-walk and a stack-realizable w−-w+-walk, respectively. The walk P
is of length mv and thus P1 and P2 must have the combined length
mu + mw. But by induction P1 must at least have length mu and P2

must have at least length mw, so it follows that P1 has length ex-
actly mu and P2 has length exactly mw. The walks P1 and P2 are in-
dependent and thus we have fv−,v+,mv = fu−,u+,mu fw−,w+,mw = fu fw as
desired.

The circuit C is multiplicatively disjoint and thus we have |Cv| =
|Cu|+ |Cw|+ 1. It follows that mv = mu + mw + 4 ≤ 4|Cu|+ 4|Cw|+
4 = 4|Cv| where we get the inequality by induction. The relaxed SBP
has grown only by 3 vertices which gives the bound on the size of G.
This completes the proof for the case that v is an addition gate and
hence the proof of the lemma. �

Now the second direction of Theorem 12.3.3 is straightforward.

Lemma 12.3.7. Every family (fn) ∈ VP can be computed by a family of
SBPs of polynomial size.

Proof. Given a family (Cn) of multiplicatively disjoint arithmetic cir-
cuits of polynomial size, first turn them into relaxed SBPs of poly-
nomial size and polynomial m with Proposition 12.3.6 and then turn
those relaxed SBPs into SBPs with Lemma 12.3.5. It is easy to check
that the resulting SBPs have polynomial size. �

Let us quickly discuss the proof of Proposition 12.3.6. The only
place in which we use the multiplicative disjointness of the circuit C
is when we give the upper bound for mv in Case 3. Consequently, the
following Lemma is not hard to prove.

Lemma 12.3.8. For every (not necessarily multiplicatively disjoint) arith-
metic circuit C there is a relaxed SBP G of size polynomial in |C| and an
integer m = 2|C|

O(1)
such that fG,m is the polynomial computed by C.

168 arithmetic branching programs with memory

Proof (sketch). We make nearly the same construction as in the proof
of Proposition 12.3.6. The only minor complication is that in Case 2

we cannot simply add a path of length mu − mw to G, because this
number may be exponential in |G|, since in Case 2 we may have
mv = 2mu and iterating Case 3 may cause an exponential blow-up.
Fortunately, it is not hard to construct a gadget Gk of size O(k) such
that every stack-realizable walk through Gk must be of length 2k.
Using this gadget Gk for different values of k one can construct a
gadget G′ of polynomial size such that every stack-realizable walk
through G′ has length at least mu−mv. Using G′ instead of a directed
path of length mu − mv gives a construction with all desired proper-
ties. �

It is not apparent if the reverse of Lemma 12.3.8 is true, so we leave
this as a small question.

Question 3. Given a relaxed SBP G and an integer m of size at most
2O(|G|), is there always an arithmetic circuit of size polynomial in |G| that
computes fG,m?

Let us also quickly point out the key difference between our con-
struction in the proof of Proposition 12.3.6 and the corresponding
construction of Malod and Portier [MP08] for weakly skew circuits.
If a circuit C is weakly skew, we may assume that in Case 3 of the
construction the pairs u−, u+ and w−, w+ are in different components
of G. Thus one can simply append one of the components to the other
to get an ABP such that the underlying graph is acyclic. When C is
not weakly skew, u−, u+ and w−, w+ need not be in different compo-
nents of G. Thus our construction introduces cycles in G and we use
the stack to make sure that G is traversed by realizable walks in the
desired way.

12.3.3 Stack branching programs with few stack symbol

We start off this section with an easy observation.

Lemma 12.3.9. For every SBP G one can construct an SBP G′ with stack
symbol set {0, 1} and size |G′| = O(|G| log(|G|)) such that G and G′

compute the same polynomial.

Proof. Let S be the set of stack symbols appearing along edges of G.
Let ` := dlog(|S|)e, then each stack symbol s can be encoded into
a {0, 1}-string µ(s) of length `. We substitute each edge e of G by a
path Pe of length `. If σ′(e) = push(s) the edges along Pe are push-
edges as well, that push µ(e) onto the stack. If σ′(e) = pop(s) we
pop µ(s) in reverse order along Pe. If e is a nop-edge, all edges of
Pe are also nop-edges. Finally, we give one of the edges in Pe the
weight w′(e), while all other edges get weight 1. Doing this for all

12.3 stack branching programs 169

edges, it is easy to see that the resulting SBP G′ computes the same
polynomial as G. Moreover, G′ has size |G|` = O(|G| log(|G|)). �

Considering Lemma 12.3.9, the only meaningful restriction of the
size of the symbol set is the restriction to one single symbol. The fol-
lowing fairly straightforward lemma shows that doing so decreases
the computational power. Note that Kintali [Kin10] proved a similar
result for the Turing machine setting.

Lemma 12.3.10. (fn) ∈ VPws if and only if it can be computed by polyno-
mial size SBPs with one stack symbol.

Proof. The direction from left to right is easy: Simply interpret each
edge e of an ABP G as a nop-edge.

For the other direction the key insight is that if one has only one
stack symbol, one only has to keep track of the size of the stack at
any point on the path. We will see that this size can be encoded by
vertices of an ABP.

So let G be a SBP of size m. It is clear that the stack can never
contain more than m symbols on any path through G. We construct an
ABP G′ that has for every vertex v in G the m + 1 vertices v0, v1, . . . vm.
If vu is a push-edge in G, we connect vi to ui+1 for i = 0, . . . , m− 1 in
G′. If vu is a pop-edge in G, we add viui−1 for i = 1, . . . , m to G′. All
these edges get the same weight as vu in G. It is easy to see that every
stack-realizable s-t-path P in the SBP G corresponds directly to an
s0-t0-path P′ in the ABP G′ and P and P′ have the same weight. Thus
G and G′ compute the same polynomial. Moreover, |G′| = (m+ 1)|G|
which completes the proof. �

12.3.4 Width reduction

In this section we show that, unlike for ordinary ABPs, bounding the
width of SBPs does not decrease the computational power: Polyno-
mial size SBPs with at least 2 stack symbols and width 2 can still
compute every family in VP.

Lemma 12.3.11. Every family (fn) ∈ VP can be computed by a SBP of
width 2 with the stack symbol set {0, 1}.

Proof. The idea of the proof is to start from the characterization of VP
by SBPs from Theorem 12.3.3. We use the stack to remember which
edge will be used next on a realizable path through the branching
program. We will show how this can be done with width 2 SBPs with
a bigger stack symbol size. In a second step we will reduce the stack
symbol set to {0, 1} with Lemma 12.3.9.

So let (Gn) be a family of SBPs. Fix n and let G := Gn with vertex
set V and edge set E. Furthermore, let w be the weight function, σ

the stack operation labeling and S the set of stack symbols of G. Let s

170 arithmetic branching programs with memory

v1
e,e′ v3

e,e′

v2
e,e′ v4

e,e′

v5
e,e′ v6

e,e′

pop(e)

w(e)/σ(e)

push(e′)

Figure 17: The gadget Ge,e′ . We illustrate only the weight of the weighted
edge. All edges without stack operation label are nop-edges.

and t be the source and the sink of the SBP G. We assume without loss
of generality that s has one single outgoing edge es. Furthermore, t is
only entered by one nop-edge et with weight 1. We will construct a
new SBP G′ with weight function w′ and stack operation labeling σ′.
The SBP G′ will have S ∪ E as the set of stack symbols.

For each edge e with a successor edge e′ the SBP G′ contains a
gadget Ge,e′ . The vertex set of Ge,e′ is {v1

e,e′ , v2
e,e′ , v3

e,e′ , v4
e,e′ , v5

e,e′ , v6
e,e′}.

These vertices are connected to a DAG by the edges {v1
e,e′v

2
e,e′ , v1

e,e′v
3
e,e′ ,

v2
e,e′v

4
e,e′ , v3

e,e′v
5
e,e′ , v4

e,e′v
6
e,e′ , v5

e,e′v
6
e,e′}. All these edges have weight 1 ex-

cept for v2
e,e′v

4
e,e′ which we give the weight w′(v2

e,e′v
4
e,e′) := w(e). We call

v2
e,e′v

4
e,e′ the weighted edge of Ge,e′ . Furthermore, we set σ(v1

e,e′v
2
e,e′) :=

pop(e), σ(v2
e,e′v

4
e,e′) := σ(e), σ(v4

e,e′v
6
e,e′) := push(e′). All other edges

are nop-edges. The construction of Ge,e′ is illustrated in Figure 17.
We now construct order ≤E of E. Let ≤V be a topological order

of V. Then we define for uv, u′v′ ∈ E

uv ≤E u′v′ ↔ u <V u′ ∨ (u = u′ ∧ v ≤V v′).

Observe that for each pair uv, vw ∈ E we have uv <E vw.
From ≤E we construct an order ≤G of the gadgets Ge,e′ by defining

Ge1,e2 ≤G Ge3,e4 ↔ e1 <E e3 ∨ (e1 = e3 ∧ e2 ≤E e4).

We now connect the gadgets along the order ≤G in the following
way: Let Ge3,e4 be the successor of Ge1,e2 in≤G. We connect v6

e1,e2
to v1

e3,e4

by a nop-edge of weight 1. Let Ge,e′ be the minimum of ≤G. We add a
new vertex s and the edge sv1

e,e′ with weigth 1 and stack operation
σ(sv1

e,e′) := push(es) where es is the single outgoing edge of s in G.
Let now Ge,e′ be the maximum gadget in ≤G. We add a new vertex t
and the edge v6

e,e′ t with weight 1 and stack operation pop(et). This
concludes the construction of G′.

It is easy to see that G′ has indeed width 2. Thus we only need to
show that G and G′ compute the same polynomial. This will follow
directly from the following claim:

12.3 stack branching programs 171

Claim 12.3.12. There is a bijection π between the stack-realizable paths in
G and G′. Furthermore w(P) := w′(π(P)) for each stack-realizable path
in G.

Proof. Clearly every s-t-path in G′ must traverse all gadgets in G′. Fur-
thermore, whenever a gadget is entered, the stack contains only one
symbol from E which lies at the top of the stack. Through each gadget
Ge,e′ there are exactly the two paths v1

e,e′v
2
e,e′v

4
e,e′v

6
e,e′ and v1

e,e′v
3
e,e′v

5
e,e′v

6
e,e′ .

We call the former the weighted path through Ge,e′ . For every stack-
realizable s-t-path P = e1e2 . . . ek through G we define π(P) to be the
unique path through G′ that takes the weighted path through exactly
the gadgets Gei ,ei+1 for i = 1, . . . , k = 1. We have w(P) := w′(π(P))
with this definition, because only the weighted edges in the gadgets
have a weight different from 1 in G′. So it suffices to show that π is
indeed a bijection.

We first show that π maps stack-realizable paths in G to stack-
realizable paths in G′. So let P be as before. Observe that π(P) tra-
verses the gadgets Gei ,ei+1 in the same order as P traverses the edges ei.
Furthermore, whenever π(P) enters a gadget Gei ,ei+1 the top stack
symbol is ei and the rest of the stack content is exactly that on P
before traversing ei. When leaving Gei ,ei+1 the stack content is that
after traversing ei on P with an additional symbol ei+1 on the top.
Thus all stack operations along π(P) are legal and the stack is empty
after traversing the last edge towards t. Thus π(P) is indeed stack-
realizable.

Clearly, π is injective, so to complete the proof of the claim we only
need to show that it is surjective. So let P′ be a stack-realizable s-t-
path in G′. Let Ge1,e′1

, . . . , Gek ,e′k
be the gadgets in which P′ takes the

weighted path in the order in which they are visited. We claim that
the path P := ese1 . . . ek is a stack-realizable s-t-path. Clearly, s is the
first vertex of P. Also in P′ the symbol et is popped in the last step
by construction of G′, so the last gadget in which P′ took a weighted
path must be one of the form Ge,et , because otherwise et cannot be the
top symbol on the stack before the last step. Thus t is the last vertex
of P.

To see that P is a path, observe that we have e′i = ei+1. Otherwise P
cannot have the right top symbol when taking the weighted path in
Gei+1,e′i+1

. Thus ei+1 must be a successor of ei in G and P is an s-t-path.
To see that P is stack-realizable observe that when P′ traverses the

weighted edge of a gadget Gei ,e′i
it has the same stack content as when

P traverses ei in G. So P is obviously stack-realizable because P′ is.
Observing that obviously w(P) = P′ by construction completes the

proof. �

We now reduce the stack symbol set of G′ to {0, 1} with the con-
struction of Lemma 12.3.9. Note that because of the specific form of
the gadgets Ge,e′ this construction does not increase the width of the

172 arithmetic branching programs with memory

resulting SBP and thus it yields an SBP G′′ of width 2 computing the
same polynomial as G with stack symbol set {0, 1}. �

12.3.5 Depth reduction

In this section we sketch how the characerization of VP by SBPs al-
lows us to directly use results from counting complexity that rely on
NAuxPDAs. More specifically, we will discuss how one can adapt a
proof by Niedermeier and Rossmanith [NR95] to reprove the classi-
cal parallelization theorem for VP originally proved by Valiant et al.
[VSBR83].

The basic idea is the following: The realizable paths in an SBP are
recursively cut into subpaths and the polynomials are then computed
by combining the polynomials of the subpaths. In order to reach loga-
rithmic depth we have to make sure that the paths are cut in paths of
approximately equal length to result in a balanced computation. This
is complicated by the fact that the paths have to be realizable, so we
have to account for the content of the stack during the computation.

Ideally, we would like to cut each realizable path of an SBP G into
subpaths of roughly equal length and then give recursion formulas
similar to those in the proof of Lemma 12.3.4 to get a logarithmic
depth circuit computing fG. Unfortunately, the situation is not quite
so easy for SBPs because we have to account for the stack content
along the path. So we cannot simply cut all paths in the middle and
then recombine these subpaths freely later as we could for ABPs, be-
cause some of these combinations might not be stack-realizable. One
way to prevent these wrong combinations would be to remember the
stack changes along paths explicitly, but as there can be exponentially
many stack configurations this does not result in polynomial size cir-
cuits, at least if done naively.

The solution of Niedermeier and Rossmanith is different: Instead
of decomposing a stack-realizable path P by cutting it once in the
middle, they cut a realizable path out of the middle of P. This results
in a realizable path P1 and a path P2 with a “gap” in the middle. This
decomposition is made in such a way that whenever the gap of P2 is
filled with a realizable path, the result is a realizable path. Further-
more, P1 and P2 both have a constant fraction of the edges of P. Now
this procedure can be recursed. P1 and P2 are decomposed similarly
to P. During this recursion one makes sure that every path P′ with
gap only has a single gap and not several of them. Thus P′ can be
described by few parameters: One just remembers the starting and
end vertex and the number of edges of P′. Furthermore, one remem-
bers the last vertex before the gap, the first vertex after the gap and
the length of the realizable path that was cut out of P′. Implementing
these ideas, one gets recursion formulas for the computation of fG
that can be turned into an arithmetic circuit analogously to the proof

12.4 random access memory 173

of Lemma 12.3.4 but this time with logarithmic depth. For details we
refer the reader to [NR95].

12.4 random access memory

12.4.1 Definition

We change the model of computation by allowing random access
memory instead of a stack. We still work over a symbol set S like
for SBPs but we introduce three random access memory operations: The
operations write and delete take an argument s ∈ S while the op-
eration nop again takes no argument. Let op(s) be a random access
memory operation with op ∈ {write, delete} and P = op1 op2 . . . opr a
sequence of memory operations. By occ(P, op(s)) we denote the num-
ber of occurences of op(s) in P. We call a sequence P realizable if for all
symbols s ∈ S we have that occ(P, write(s)) = occ(P, delete(s)) and
for all prefixes P′ of P we have occ(P′, write(s)) ≥ occ(P′, delete(s))
for all s ∈ S.

Intuitively, the random access memory operations do the following:
write(s) writes the symbol s into the random access memory. If s is
already there it adds it another time. The operation delete(s) deletes
one occurence of the symbol s from the memory if there is one. Oth-
erwise an error occurs. nop is the “no operation” operation again like
for SBPs. A sequence of operations is realizable if no error occurs
during the deletions, and moreover starting from empty memory the
memory is empty again after the sequence of operations.

Definition 12.4.1. A random access branching program (RABP) G is
an ABP with an additional edge labeling

σ : E→ {op(s) | op ∈ {write, delete}, s ∈ S} ∪ {nop}.

A path P = v1v2 . . . vr in G has the sequence of random access memory
operations σ(P) := σ(v1v2)σ(v2v3) . . . σ(vr−1vr). If σ(P) is realizable we
call P a random-access-realizable path. The RABP G computes the poly-
nomial

fG = ∑
P

w(P),

where the sum is over all random-access-realizable s-t-paths P. �

In a completely analogous way to Proposition 12.3.2 we can prove
that disallowing nop-edges does not change the computational power
of RABPs.

Proposition 12.4.2. Let G be an RABP of size s. There is an RABP G′ of
size O(s2) such that fG = fG′ and G′ does not contain any nop-edges. If G
is layered with width k, then G′ is layered as well and has width at most k2.

174 arithmetic branching programs with memory

12.4.2 Characterizing VNP

Intuitively, random access on the memory should allow us more fine-
grained control over the paths in the branching program that con-
tribute to the computation. While in SBPs nearly all of the memory
content is hidden, in RABPs we have access to the complete memory
at all times. This makes RABPs more expressive than SBPs which is
formalized in the following theorem.

Theorem 12.4.3. (fn) ∈ VNP if and only if there is a family of polynomial
size RABPs computing (fn).

Again we prove the theorem in two independent lemmas, starting
with the upper bound, which is very easy.

Lemma 12.4.4. If (fn) is computed by a family of polynomial size RABPs,
then (fn) ∈ VNP.

Proof. This is easy to see with Valiant’s criterion (Lemma 9.2.3) and
the fact that checking if a path through a RABP is realizable is cer-
tainly in P. �

We will now show the lower bound of Theorem 12.4.3, which we
will prove directly for bounded width RABPs. To do so we reduce
from the dominating-set polynomial GF(., φDS) which we have shown
to be VNP-complete in Corollary 11.4.8.

Lemma 12.4.5. For each family (fn) ∈ VNP there is a family of width 2
RABPs of polynomial size computing (fn).

Proof. We will show that for a graph G = (V, E) with n vertices there
is a RABP of size nO(1) and width 2 that computes GF(G, φDS). The
RABP works in two stages. The symbol set of the RABP will be V.
In a first stage it iteratively selects vertices v and writes v and all of
its neighbors into the memory. In a second stage it checks that each
vertex v was written at least once into the memory, i.e., either v or one
of its neighbors was chosen in the first phase. Thus the set of chosen
vertices must have been a dominating set.

So fix a graph G and set w(v) = Xv for each v ∈ V. For each
vertex v with neighbors v1, . . . , vd we construct a choose gadget Gv as
shown in Figure 18. We call the path through Gv consisting of the
edges that have memory operations the choosing path. Moreover, for
each vertex v we construct a check gadget G′v that is shown in Figure
19.

Choose an order on the vertices. For each non-maximal vertex v in
the order with successor u, we connect the sink of Gv to the source
of Gu and the sink of G′v to the source of G′u with a nop-edge of
weight 1. Finally, let x be the maximal vertex in the order and y the

12.4 random access memory 175

x0
v x1,1

v

x1,0
v x2,0

v

x2,1
v

xd,0
v

xd,1
v

xd+1
v

write(v)/Xv

write(v1) write(vd)

Figure 18: The gadget Gv. Let v be a vertex with neighbors v1, . . . , vd. The
weight of x0

vx1,0
v is Xv while all other edges have weight 1. Gv has

two paths. Every realizable path that traverses Gv on the upper
path writes v and all of its neighbors into the memory. This path
has weight Xv. Realizable paths through the lower path do not
change the memory in Gv and have a weight weight contribution
of 1 in Gv.

x0
v x1

v x2,1
v

x2,0
v x3,0

v

x3,1
v

xd+1,0
v

xd+1,1
v

xd+2
v

delete(v) delete(v) delete(v)

Figure 19: The gadget G′v. Let d be the degree of v, then G′v has d + 3 layers.
All edges have weight 1. The edges connecting vertices in the
lower level have operation delete(v) while all other edges have no
memory operation. Every realizable path through G′v has weight
1 and deletes between 1 and d + 1 occurences of the symbol v
from memory.

minimal vertex. Connect the sink of Gx to the source of G′y again by a
nop-edge of weight 1.

We claim that G′ computes GF(G, φDS). To see this, define the
weight of a vertex set D in G to be w(D) := ∏v∈D Xv. The follow-
ing claim completes the proof.

Claim 12.4.6. There is a bijection π between dominating sets in G and
random-access-realizable paths in G′ such that for each dominating set D in
G we have w(D) := w(π(D)).

Proof. Observe that for random-access-realizable paths through G′

once the path through the gadgets Gv is chosen, then rest of the path
is fixed. So each random-access-realizable path P can be described
completely by the v for which the choosing paths through Gv is taken.

Let D be a dominating set. Let P be the set of s-t-paths in G′ that
for each v ∈ D take the choosing path through Gv and for each v /∈ D
take the other path. Because D is dominating, after a path P ∈ P has
passed through the choose gadgets Gv, it contains each symbol v ∈ V
at least once. Then there is a unique path through the delete gadgets

176 arithmetic branching programs with memory

such that every memory symbol is deleted at its end. This path is the
unique random-access realizable path in P which we call π(D).

Obviously, π is injective. To show that it is also surjective, con-
sider a random-access-realizable path P in G′. Let D be the set of
v ∈ V for which P takes the choosing path in the choose gadgets. The
path P passes every delete gadget G′v, so each element v ∈ V gets
deleted from the memory at least once. It follows that each v ∈ V
must have been written to memory at least once before. So for v ∈ V
the path P must go through the choosing path in the choose gadget
Gv or through the choosing path in Gu for a neighbor u of v. It follows
that D is a dominating set. Furthermore, π(D) = P, so π is surjective.

Finally, w(D) := w(π(D)) is true, because the only weighted edges
in G′ are in the gadgets Gv and for each v the weighted edge in Gv

has the weight Xv. �

Observing that G′ has width 2 completes the proof. �

Part III

M O N O M I A L S I N A R I T H M E T I C C I R C U I T S

13
I N T R O D U C T I O N A N D P R E L I M I N A R I E S

13.1 introduction

In this part of the thesis we study arithmetic circuits from a com-
pletely different perspective than in Part ii. Instead of studying how
hard it is to compute a given polynomial by arithmetic circuits, we
now ask how hard it is to decide properties of the polynomial com-
puted by a given arithmetic circuit. We study mainly two problems:
The first one is to decide whether a given monomial has a zero co-
efficient in the polynomial computed by a given circuit, while the
second consists of counting the number of computed monomials. We
characterize their complexity using the counting hierarchy.

The counting hierarchy refers to the family of classes PP ∪ PPPP ∪
PPPPPP ∪ . . . which has appeared in several recent papers. For exam-
ple, Bürgisser [Bür09] uses these classes to connect computing inte-
gers to computing polynomials, while Jansen and Santhanam [JS11]—
building on results by Koiran and Perifel [KP11]—use them to de-
rive lower bounds from derandomization. The counting hierarchy
was originally introduced by Wagner [Wag86] to classify the com-
plexity of combinatorial problems. Curiously, after Wagner’s paper
and another by Torán [Tor88], this original motivation of the count-
ing hierarchy has to the best of our knowledge not been pursued for
more than twenty years. Instead, research focused on structural prop-
erties and the connection to threshold circuits [AW93]. As a result,
very few natural complete problems for classes in the counting hi-
erarchy are known: for instance, Kwisthout et al. give in [KBvdG11]
“the first problem with a practical application that is shown to be
FPPPPP

-complete”. The related class C=P appears to have no natural
complete problems at all (see [HO02, p. 293]). It is however possible
to define generic complete problems by starting with a #P-complete
problem and considering the variant where an instance and a positive
integer are provided and the question is to decide whether the num-
ber of solutions for this instance is equal to the integer. We consider
these problems to be counting problems disguised as decision prob-
lems and thus not as natural complete problems for C=P, in contrast
to the questions studied here. Note that the corresponding logspace
counting class C=L is known to have interesting complete problems
from linear algebra [ABO99].

In this part of this thesis we follow Wagner’s original idea and show
that the counting hierarchy is a helpful tool for classifying the com-
plexity of several natural problems on arithmetic circuits by show-

179

180 introduction and preliminaries

ing complete problems for the classes PPPP, C=P and some related
classes.The common setting of these problems is the use of circuits or
straight-line programs to represent polynomials. Such a representa-
tion can be much more efficient than giving the list of monomials, but
common operations on polynomials may become more difficult. An
important example is the question of determining whether the given
polynomial is identically zero. This is easy to do when the polynomial
is given as a list of monomials. When the polynomial is given as a cir-
cuit however, this problem, called ACIT for arithmetic circuit identity
testing, is not known to be in P, though it is in coRP. In fact, deran-
domizing this problem would imply significant circuit lower bounds,
as shown in [KI04]. This question thus plays a crucial part in com-
plexity and it is natural to consider other problems on polynomials
represented as circuits. In this part of the thesis we consider mainly
two questions.

The first main problem, called ZMC for zero monomial coefficient,
is to decide whether a given monomial in a circuit has coefficient 0
or not. This problem has already been studied by Koiran and Per-
ifel [KP07]. They showed that when the formal degree of the circuit
is polynomially bounded, the problem is complete for P#P. Unfor-
tunately this result is not fully convincing, because it is formulated
with the rather obscure notion of strong non-deterministic Turing re-
ductions. We remedy this situation by proving a completeness result
for the class C=P under the traditional logarithmic-space many-one
reductions. This also provides a natural complete problem for this
class. Koiran and Perifel also considered the general case of ZMC,
where the formal degree of the circuit is not bounded. They showed
that ZMC is in the counting hierarchy. We provide a better upper
bound by proving that ZMC is in coRPPP.

The second main problem is to count the number of monomials
in the polynomial computed by a circuit. This seems like a natural
question whose solution should not be too hard, but in the general
case it turns out to be PPPP-complete, and the hardness holds even
for bounded depth circuits. We thus obtain another natural complete
problem, in this case for the second level of the counting hierarchy.
We remark that if a polynomial bound is known on the number of
monomials, both the problem ZMC and the one of counting monomi-
als become easy since an explicit description of the polynomial can be
computed in polynomial time [GS09]. The related problem of enumer-
ating the monomials of a given polynomial, in the black-box model,
is addressed in [Strar].

Then we study the two above problems in the case of circuits com-
puting multilinear polynomials. We show that our first problem be-
comes equivalent to the fundamental problem ACIT and that count-
ing monomials becomes PP-complete.

13.2 preliminaries 181

Finally, we consider the case of univariate multiplicatively disjoint
circuits. We show that these problems and several related ones are
equivalent and complete for LOGCFL in the monotone case, or close
to C=LOGCFL in the general case.

13.2 preliminaries

We assume that the reader is familiar with basic concepts of com-
putational complexity theory (see e.g. [AB09]). All reductions in this
chapter will be logspace many-one unless stated otherwise.

We consider different counting decision classes in the counting hi-
erarchy [Wag86]. These classes are defined analogously to the quan-
tifier definition of the polynomial hierarchy but, in addition to the
quantifiers ∃ and ∀, the counting quantifiers C, C= and C 6= are used.

Definition 13.2.1. Let C be a complexity class containing P.

• A ∈ CC if and only if there is B ∈ C, f ∈ FP and a polynomial p
such that

x ∈ A⇔
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ B

}∣∣∣ ≥ f (x),

• A ∈ C=C if and only if there is B ∈ C, f ∈ FP and a polynomial p
such that

x ∈ A⇔
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ B

}∣∣∣ = f (x),

• A ∈ C 6=C if and only if there is B ∈ C, f ∈ FP and a polynomial p
such that

x ∈ A⇔
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ B

}∣∣∣ 6= f (x). �

Observe that C 6=C = coC=C where to a complexity class C we define
coC as usual by coC = {Lc | L ∈ C}, where Lc is the complement of L.
That is why the quantifier C 6= is often also written as coC=, so C 6=P is
sometimes called coC=P.

The counting hierarchy CH consists of the languages from all com-
plexity classes that we can get from P by applying the quantifiers ∃,
∀, C, C= and C 6= a constant number of times.

Remember that an oracle machine M with an oracle L is a Turing
machine that during its computation may ask oracle questions to L.
To do so, M writes a string o to a special oracle tape and then ask the
oracle if o ∈ L. The oracle gives the correct answer to this question in
a single step.

For a complexity class C defined by a class of machines M and a
language L we define CL to be the class of languages L′ that can be
decided by machines fromMwith the additional capability of asking

182 introduction and preliminaries

oracle questions to L as defined above. For two complexity classes C1

and C2 we define CC2
1 as the class of languages that are in CL for a

language L ∈ C2.
Remember that PP is the class of decision problems solvable by

an nondeterministic polynomial time Turing machine machine such
that, given a “yes” instance, strictly more than half of the computation
paths accept, while given a “no” instance, strictly less than half of the
computation paths accept.

Observe that with the definitions above PP = CP. Torán [Tor91]
proved that this connection between PP and the counting hierarchy
can be extended and that there is a characterization of CH by oracles
similar to that of the polynomial hierarchy. We state some such char-
acterizations which we will need later on, followed by other technical
lemmas.

Theorem 13.2.2. [Tor91] PPNP = C∃P and PPPP = CCP.

Lemma 13.2.3. CCP = CC 6=P.

Proof. This is not stated in [Tor91] nor is it a direct consequence, be-
cause Torán does not consider the C 6=-operator. It can be shown with
similar techniques and we give a proof for completeness.

One inclusion is straightforward: From the definition we directly
get CC 6=P ⊆ CPC 6=P ⊆ PP#P. By binary search we have PP#P =

PPPP = CCP where the latter equality is from Theorem 13.2.2.
The other inclusion needs a little more work. Let L ∈ CCP, there

are A ∈ P, f , g ∈ FP and a polynomial p such that

x ∈ L

⇔ there are more than f (x) values y ∈ {0, 1}p(|x|) such that∣∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A
}∣∣∣ ≥ g(x, y)

⇔ there are more than f (x) values y ∈ {0, 1}p(|x|) such that

∀v ∈ {1, . . . , 2p(|x|)} :∣∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A
}∣∣∣ 6= g(x, y)− v

⇔ there are more than 2p(|x|)(2p(|x|) − 1) + f (x) pairs (x, v)

with y ∈ {0, 1}p(|x|) and v ∈ {1, . . . , 2p(|x|)]} such that∣∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A
}∣∣∣ 6= g(x, y)− v. (14)

From statement (14) we directly get L ∈ CC 6=P and thus the claim.
To see the last equivalence we define

r(x, y) :=
∣∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A

}∣∣∣ .

Fix x, y, then obviously r(x, y) 6= g(x, y)− v for all but at most one v.
It follows that of the pairs (y, v) in the last statement 2p(|x|)(2p(|x|)− 1)

13.2 preliminaries 183

always lead to inequality. So statement (14) boils down to the question
how many y there are such that there is no v with r(x, y) = g(x, y)− v.
We want these to be at least f (x), so we want at least 2p(|x|)(2p(|x|) −
1) + f (x) pairs such that r(x, y) 6= g(x, y)− v. �

We will use the following result by Green.

Lemma 13.2.4. [Gre93] ∃C 6=P = C 6=P.

The following quantitative result on the distribution of primes by
Schönhage is often used in the design of randomized algorithms.

Lemma 13.2.5. [Sch79] For a large enough constant c > 0, it holds that for
any integers n > 0 and x with |x| 6 22n

and x 6= 0, the number of primes
p smaller than 2cn such that x 6≡ 0 mod p is at least 2cn/cn.

Finally, we use a result on probabilistic complexity class as oracles.

Lemma 13.2.6. [HO02, p. 81] For every oracle X we have PPBPPX
= PPX.

14
M O N O M I A L S I N A R I T H M E T I C C I R C U I T S

14.1 zero monomial coefficient

We first consider the question of deciding if a single specified mono-
mial occurs in a polynomial. In this problem and others regarding
monomials, a monomial is encoded by giving the variable powers in
binary.

ZMC
Input: Arithmetic circuit C, monomial m.
Problem: Decide if m has the coefficient 0 in the poly-
nomial computed by C.

Theorem 14.1.1. ZMC is C=P-complete for both multiplicatively disjoint
circuits and formulas.

Proof. With the help of standard reduction techniques used to show
the #P-completeness of the permanent (see for example [AB09]), one
defines the following generic C=P-complete problem, as mentioned
in the introduction.

per=

Input: Matrix A ∈ {0, 1,−1}n, d ∈N.
Problem: Decide if per(A) = d.

Therefore, for the hardness of ZMC, it is sufficient to show a reduc-
tion from per=. On input A = (aij) and d we compute the formula

Q := ∏n
i=1

(
∑n

j=1 aijYj

)
. It is a classical observation by Valiant [Val79]1

that the monomial Y1Y2 . . . Yn has the coefficient per(A). Thus the co-
efficient of the monomial Y1Y2 . . . Yn in Q − dY1Y2 . . . Yn is 0 if and
only if per(A) = d.

We now show that ZMC for multiplicatively disjoint circuits is in
C=P. Consider a monomial m and a constant free multiplicatively
disjoint circuit C, i.e., a multiplicatively disjoint circuit in which the
input gates of C are labeled either by a variable, by 1 or by −1. A
parse tree T (see Section 9.2) contributes to the monomial m in the
output polynomial if, when computing the weight of the tree, we get
exactly the powers in m; this contribution has coefficient +1 if the
number of gates labeled −1 in T is even and it has coefficient −1 if
this number is odd. The coefficient of m is thus equal to 0 if and only
if the number of trees contributing positively is equal to the number
of trees contributing negatively.

1 According to [vzG87] this observation even goes back to [Ham79].

185

186 monomials in arithmetic circuits

Let us represent a parse tree by a boolean word ε̄, by indicating
which edges of C appear in the parse tree (the length N of the words
is therefore the number of edges in C). Some of these words will not
represent a valid parse tree, but this can be tested in polynomial time.
Consider the following language L composed of triples (C, m, ε0ε̄)

such that:

1. ε0 = 0 and ε̄ encodes a valid parse tree of C which contribute
positively to m,

2. or ε0 = 1 and ε̄ does not encode a valid parse tree contributing
negatively to m.

Then the number of ε̄ such that (C, m, 0ε̄) belongs to L is the num-
ber of parse trees contributing positively to m and the number of ε̄

such that (C, m, 1ε̄) belongs to L is equal to 2N minus the number
of parse trees contributing negatively to m. Thus, the number of ε0ε̄

such that (C, m, ε0ε̄) ∈ L is equal to 2N if and only if the number
of trees contributing positively is equal to the number of trees con-
tributing negatively, if and only if the coefficient of m is equal to 0
in C. Because L is in P, ZMC for multiplicatively disjoint circuits is in
C=P. �

Theorem 14.1.2. ZMC ∈ coRPPP.

In the proof of Theorem 14.1.2 we will use the following problem:

CoeffSLP
Input: Arithmetic circuit C, monomial m, prime p
Problem: Compute the coefficient of m in the polyno-
mial computed by C modulo p

Kayal and Saha [KS11] showed an upper bound for the complexity
of CoeffSLP.

Theorem 14.1.3. CoeffSLP ∈ FP#P.

Proof of Theorem 14.1.2. Let c be the constant given in Lemma 13.2.5.
Consider the following algorithm to decide ZMC given a circuit C
of size n and a monomial m, using CoeffSLP as an oracle. First
choose uniformly at random an integer p smaller than 2cn. If p is
not prime, accept. Otherwise, compute the coefficient a modulo p of
the monomial m in C with the help of the oracle and accept if a ≡ 0
mod p. Since |a| ≤ 22n

, Lemma 13.2.5 ensures that the above is a
correct one-sided error probabilistic algorithm for ZMC. This yields
ZMC ∈ coRPCoeffSLP. Hence ZMC ∈ coRPPP by Theorem 14.1.3. �

We now give a result linking the ZMC problem to other questions
on polynomials computed by circuits. We define the following prob-
lem.

14.1 zero monomial coefficient 187

GapMonSLP
Input: Univariate arithmetic circuit C over X, a, b ∈N.
Problem: Decide if the polynomial computed by C con-
tains no monomial of the form Xc for a ≤ c ≤ b.

GapMonSLP can be seen as a generalization of the degree problem,
called DegSLP in [ABKPM09] (see also Section 14.4). This generaliza-
tion can actually be shown to be hard as it has the same complexity
as ZMC.

In GapMonSLP and all other problems in this Chapter that have in-
tegers as inputs we assume that integer input are given in binary. We
remark that if one encodes the inputs a and b in unary, then this mod-
ified version of GapMonSLP can be solved by an efficient random-
ized algorithm: To see this, observe that one can in time polynomial
in b|C| compute a circuit C′ that computes the homogeneous parts of
degree i for a ≤ i ≤ b of the polynomial f computed by C (see for
example [Bü00, Lemma 2.14]). Then one can check with the the classi-
cal Schwartz-Zippel-DeMillo-Lipton lemma (see for example [AB09])
if all the homogeneous components are zero.

Proposition 14.1.4. GapMonSLP is equivalent to ZMC.

Proof. The general case of ZMC easily reduces to ZMC for univari-
ate circuits: we only briefly explain the argument below and refer
to [ABKPM09] for further details. Given a circuit C over the variables
X1, . . . , Xn and a monomial m = Xd1

1 . . . Xdn
n , we can compute a cir-

cuit C′ over Y and a monomial m′ = Yd such that the coefficient of
m′ in C′ is zero if and only if the coefficient of m in C is zero. In-
deed, define C′ by substituting each variable Xi with YMi

in C for
M := 2|C| + 1 and let d = ∑n

i=1 di Mi. The coefficient of m′ = Yd in
C′ is zero if and only if the coefficient of m in C in zero. Since the
univariate case of ZMC is a special case of GapMonSLP, this shows
that ZMC reduces to GapMonSLP.

For the other direction, consider an instance (C, a, b) of GapMon-
SLP over the variable X. Let f ′ = f · (1 + XY)b−a where f is the
polynomial computed by C. The circuit C′ computing f ′ has polyno-
mial size since (1 + XY)b−a can be computed with a circuit of size
O(log b− a). Let f = ∑l λlXl , then

f ′ =

(
∑

l
λlXl

)(
b−a

∑
i=0

(
b− a

i

)
YiXi

)
.

It follows that the coefficient P(Y) of Xb in f ′ is

P(Y) =
b−a

∑
i=0

(
b− a

i

)
λb−iYi.

Thus P(Y) is the zero polynomial if and only if (C, a, b) is a posi-

tive instance of GapMonSLP. Now replace Y in C′ with B := 22|C
′ |2

188 monomials in arithmetic circuits

(obtained by repeated squaring from 2) to obtain a circuit C′′. Note
that the polynomial P has at most 2|C

′| monomials, with coefficients
bounded by 222|C′ |

. From the proof of [ABKPM09, Prop. 2.2], it follows
that P(B) = 0 if and only if P is the zero polynomial. That is, the coef-
ficient of Xb in C′′ is zero if and only if (C, a, b) is a positive instance
of GapMonSLP. �

14.2 counting monomials

We now turn to the problem of counting the monomials of a polyno-
mial represented by a circuit.

CountMon

Input: Arithmetic circuit C, d ∈N.
Problem: Decide if the polynomial computed by C has
at least d monomials.

To study the complexity of CountMon we will look at what we
call extending polynomials. Given two monomials M and m, we say
that M is m-extending if M = mm′ and m and m′ have no common
variable. We start by studying the problem of deciding the existence
of an extending monomial.

ExistExtMon

Input: Arithmetic circuit C, monomial m.
Problem: Decide if the polynomial computed by C con-
tains an m-extending monomial.

Proposition 14.2.1. ExistExtMon is in RPPP. For multiplicatively dis-
joint circuits it is C 6=P-complete.

Proof. We first show the first upper bound. So let (C, m) be an in-
put for ExistExtMon where C is a circuit in the variables X1, . . . , Xn.
Without loss of generality, suppose that X1, . . . , Xr are the variables
appearing in m. Let f be the polynomial computed by C and let
d = 2|C|. Clearly, d is a bound on the degree of the polynomial com-
puted by C. We define f ′ = ∏n

i=r+1(1 + YiXi)
d for new variables Yi.

Clearly, f ′ can be computed by an arithmetic circuit C′ of polynomial
size. Let

f = ∑
α

λαXα

in multi-index notation. Then

f ′ :=

(
∑
α

λαXα

)(
n

∏
i=r+1

(1 + YiXi)
d

)

=

(
∑
α

λαXα

)(
n

∏
i=r+1

(
d

∑
ki=0

(
d
ki

)
Yki

i Xki
i

))

14.2 counting monomials 189

(
∑
α

λαXα

)
 ∑

0≤kr+1≤d
...

0≤kn≤d

(
n

∏
r+1

(
d
ki

)
Yki

i

)
Xkr+1 . . . Xkn


Let P(Yr+1, . . . , Yn) be the coefficient of m ∏n

i=r+1 Xd
i in f ′. We have

that f has an m-extending monomial if P(Yr+1, . . . , Yn) is not iden-
tically 0. Observe that P is not given explicitly but can be evalu-
ated modulo a random prime with an oracle for CoeffSLP. Thus
it can be checked if P is identically 0 with the classical Schwartz-
Zippel-DeMillo-Lipton lemma (see for example [AB09]). Using that
CoeffSLP ∈ FP#P = FPPP by Lemma 14.1.3, we get ExistExtMon ∈
RPPP.

The upper bound in the multiplicatively disjoint setting is easier:
we can guess an m-extending monomial M and then output the an-
swer of an oracle for the complement of ZMC, to check whether M
appears in the computed polynomial. This establishes containment in
∃C 6=P which by Lemma 13.2.4 is C 6=P.

For hardness we reduce to ExistExtMon the C 6=P-complete prob-
lem per 6=, i.e., the complement of the per= problem introduced for
the proof of Theorem 14.1.1. We use essentially the same reduction
constructing a circuit Q := ∏n

i=1

(
∑n

j=1 aijYj

)
. Observe that the only

potential extension of m := Y1Y2 . . . Yn is m itself and has the coeffi-
cient per(A). Thus Q− dY1Y2 . . . Yn has an m-extension if and only if
per(A) 6= d. �

CountExtMon

Input: Arithmetic circuit C, d ∈N, monomial m.
Problem: Decide if the polynomial computed by C has
at least d m-extending monomials.

Proposition 14.2.2. CountExtMon is PPPP-complete.

Proof. Clearly CountExtMon belongs to PPZMC and thus with Theo-
rem 14.1.2 it is in PPcoRPPP

. Using Lemma 13.2.6 we get membership
in PPPP.

To show hardness, we reduce the canonical CC 6=P-complete prob-
lem CC 6=3-SAT to CountExtMon. With Lemma 13.2.3 the hardness
for PPPP then follows.

CC 6=3-SAT
Input: 3-CNF-formula F(x̄, ȳ), k, ` ∈N.
Problem: Decide if there are at least k assignments to x̄
such that there are not exactly ` assignments to ȳ such
that F is satisfied.

190 monomials in arithmetic circuits

Let (F(x̄, ȳ), k, `) be an instance for CC 6=3SAT. Without loss of gen-
erality we may assume that x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) and
that no clause contains a variable in both negated and non-negated
form. Let Γ1, . . . , Γc be the clauses of F.

For each literal u of the variables in x̄ and ȳ we define a monomial
I(u) in the variables X1, . . . , Xn, Z1, . . . , Zc in the following way:

I(xi) = Xi ∏
{j | xi∈Γj}

Zj, I(¬xi) = ∏
{j | ¬xi∈Γj}

Zj,

I(yi) = ∏
{j | yi∈Γj}

Zj, I(¬yi) = ∏
{j | ¬yi∈Γj}

Zj.

From these monomials we compute the polynomial f by

f :=
n

∏
i=1

(I(xi) + I(¬xi))
n

∏
i=1

(I(yi) + I(¬yi)) . (15)

We fix a mapping mon from the assignments of F to the monomials
of C: Let ᾱ be an assignment to x̄ and β̄ be an assignment to ȳ. We
define mon(ᾱβ̄) as the monomial obtained in the expansion of f by
choosing the following terms. If αi = 0, choose I(¬xi), otherwise
choose I(xi). Similarly, if βi = 0, choose I(¬yi), otherwise choose
I(yi).

The monomial mon(ᾱβ̄) has the form ∏n
i=1 Xαi

i ∏c
j=1 Z

γj
j , where γj

is the number of true literals in Γj under the assignment ᾱβ̄. Then F
is true under ᾱβ̄ if and only if mon(ᾱβ̄) has the factor ∏c

j=1 Zj. Thus

F is true under ᾱβ̄ if and only if mon(ᾱβ̄)∏c
j=1

(
1 + Zj + Z2

j

)
has the

factor ∏n
i=1 Xαi

i ∏c
j=1 Z3

j . We set f ′ = f ∏c
j=1

(
1 + Zj + Z2

j

)
.

Consider an assignment ᾱ to x̄. The coefficient of the monomial
∏n

i=1 Xαi
i ∏c

j=1 Z3
j in C′ is the number of assignments β̄ such that ᾱβ̄

satisfies F. Thus we get

(F(x̄, ȳ), k, `) ∈ CC 6=3SAT

⇔ there are at least k assignments ᾱ to x̄ such that the coeffi-

cient of the monomial
n

∏
i=1

Xαi
i

c

∏
j=1

Z3
j in f ′ is different from `

⇔ there are at least k assignments ᾱ to x̄ such that the monomial
n

∏
i=1

Xαi
i

c

∏
j=1

Z3
j occurs in f ′′ := f ′ − `

n

∏
i=1

(1 + Xi)
c

∏
j=1

Z3
j

⇔ there are at least k tuples ᾱ such that f ′′ contains

the monomial
n

∏
i=1

Xαi
i

c

∏
j=1

Z3
j

⇔ f ′′ has at least k (
c

∏
j=1

Z3
j)-extending monomials.

14.2 counting monomials 191

Observing that f ′′ can easily be computed by a depth 4 formula C′′

completes the proof. �

Theorem 14.2.3. CountMon is PPPP-complete. It is PPPP-hard even for
unbounded fan-in formulas of depth 4.

Proof. CountMon can be easily reduced to CountExtMon since the
number of monomials of a polynomial is the number of 1-extending
monomials. Therefore CountMon is in PPPP.

To show hardness, we prove that the instances of CountExtMon

constructed in Proposition 14.2.2 can be reduced to CountMon in
logarithmic space. The idea of the proof is that we make sure that
the polynomial for which we count all monomials contains all mono-
mials that are not m-extending. Thus we know how many non-m-
extending monomials it contains and we can compute the number of
m-extending monomials from the number of all monomials. We could
use the same strategy to show in general that CountExtMon reduces
to CountMon but by considering the instance obtained in the proof
of Proposition 14.2.2 and analyzing the extra calculations below we
get hardness for unbounded fanin formulas of depth 4.

So let (C′′, k, m) be the instance of CountExtMon constructed in
the proof of Proposition 14.2.2, with m = ∏c

j=1 Z3
j . Let f ′′ be the

polynomial computed by C′′. We need to count the monomials in f ′′

which are of the form f (X1, . . . , Xn)∏c
j=1 Z3

j . The polynomial f ′′ is
multilinear in the Xi, and the Zj can only appear with powers in
{0, 1, 2, 3, 4, 5}. So the non-m-extending monomials computed by f ′′

are all products of a multilinear monomial in the Xi and a monomial
in the Zj where at least one Zj has a power in {0, 1, 2, 4, 5}. Fix j, then
all monomials that are not m-extending because of Zj are computed
by the polynomial

f̃ j :=

(
n

∏
i=1

(Xi + 1)

)(
∏
j′ 6=j

5

∑
p=0

Zp
j′

)(
1 + Zj + Z2

j + Z4
j + Z5

j

)
. (16)

Thus the polynomial f̃ := ∑j f̃ j computes all non-m-extending
monomials that f ′′ can compute. The coefficients of monomials in
f ′′ cannot be smaller than −` where ` is part of the instance of
CC 6=3SAT from which we constructed (C′′, k, m) before. So the poly-
nomial f ∗ := f ′′ + (`+ 1) f̃ contains all non-m-extending monomials
that f ′′ can compute and it contains the same extending monomials.
There are 2n6c monomials of the form that f ′′ can compute, only 2n of
which are m-extending, which means that there are 2n(6c − 1) mono-
mials computed by f ∗ that are not m-extending. As a consequence,
f ′′ has at least k m-extending monomials if and only if f ∗ has at least
2n(6c − 1) + k monomials. Now observing that f ∗ can be computed
by a formula of depth 4 completes the proof. �

192 monomials in arithmetic circuits

14.3 multilinearity

In this section we consider the effect of multilinearity on our prob-
lems. We will not consider promise problems and therefore for the
multilinear variants of our problems we must first check if the com-
puted polynomial is multilinear. We start by showing that this step is
not difficult, indeed, it is equivalent to the problem ACIT.

ACIT
Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C is
the zero polynomial.

CheckML
Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C is
multilinear.

Proposition 14.3.1. CheckML is equivalent to ACIT.

Proof. Reducing ACIT to CheckML is easy: Let f be the polynomial
computed by C. ThenX2 f for an arbitrary variable X is multilinear if
and only if f is identically zero.

For the other direction the idea is to compute the second derivatives
of the polynomial computed by the input circuit and check if they
are 0.

So let C be a circuit in the variables X1, . . . , Xn that is to be checked
for multilinearity. For each i we inductively compute a circuit Ci that
computes the second derivative with respect to Xi. To do so, for each
gate v in C, the circuit C′ has three gates vi, v′i and v′′i . The polynomial
in vi is that of v, v′i computes the first derivative and v′′i the second. For
the input gates the construction is obvious. If v is a +-gate with chil-
dren u and w we have vi = ui +wi, v′i = u′i +w′i and v′′i = u′′i +w′′i . If v
is a ×-gate with children u and w we have vi = uiwi, v′i = u′iwi + uiw′i
and v′′i = u′′i wi + 2u′iw

′
i + uiw′′i . It is easy to see that the constructed

circuit computes indeed the second derivative with respect to Xi.
Next we compute C′ := ∑n

i=1 YiCi for new variables Yi. We have that
the polynomial computed by C′ is identically zero if and only if C is
multilinear. Also C′ can easily be constructed in logarithmic space.�

Next we show that the problem gets much harder if, instead of
asking whether all the monomials in the polynomial computed by a
circuit are multilinear, we ask whether at least one of the monomials
is multilinear.

MonML
Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C con-
tains a multilinear monomial.

14.3 multilinearity 193

The problem MonML lies at the heart of fast exact algorithms for
deciding k-paths by Koutis and Williams [Kou08, Wil09] (although in
these papers the polynomials are in characteristic 2 which changes
the problem a little). This motivated Chen and Fu [CF10, CF11] to
consider monML, to show that it is #P-hard and to give algorithms
for its bounded depth version. We provide further information on the
complexity of this problem.

Proposition 14.3.2. MonML is in RPPP. It is C 6=P-complete for multi-
plicatively disjoint circuits.

Proof. For the upper bound, let C be the input in variables X1, . . . , Xn.
We set f ′ = f ·∏n

i=1(1 + XiYi) where f is the polynomial computed
by C. Then f is multilinear monomial if and only if in f ′ the coef-
ficient polynomial P(Y1, . . . , Yn) of ∏n

i=1 Xi is not identically 0. This
can be tested as in the proof of Proposition 14.2.1, thus establishing
MonML ∈ RPPP.

The C 6=P-completeness in the multiplicatively disjoint case can be
proved in the same way as in Proposition 14.2.1. �

We now turn to our first problem, namely deciding whether a
monomial appears in the polynomial computed by a circuit, in the
multilinear setting.

ML-ZMC
Input: Arithmetic circuit C, multilinear monomial m.
Problem: Decide if C computes a multilinear polyno-
mial in which the monomial m has coefficient 0.

Proposition 14.3.3. ML-ZMC is equivalent to ACIT.

Proof. We first show that ACIT reduces to ML-ZMC. So let C be an
input for ACIT. Allender et al. [ABKPM09] have shown that ACIT
reduces to a restricted version of ACIT in which all inputs are −1
and thus the circuit computes a constant. Let C1 be the result of this
reduction. Then C computes identically 0 if and only if the constant
coefficient of C1 is 0. This establishes the first direction.

For the other direction let (C, m) be the input, where C is an arith-
metic circuit and m is a monomial using Proposition 14.3.1. First
check if m is multilinear, if not output 1 or any other nonzero polyno-
mial. Next we construct a circuit C1 that computes the homogeneous
component of degree deg(m) of C with the classical method (see for
example [Bü00, Lemma 2.14]). Observe that if C computes a multilin-
ear polynomial, so does C1. We now plug in 1 for the variables that
appear in m and 0 for all other variables, call the resulting (constant)
circuit C2. If C1 computes a multilinear polynomial, then C2 is zero
if and only if m has coefficient 0 in C1. The end result of the reduc-
tion is C∗ := C2 + ZC3 where Z is a new variable and C3 is a circuit

194 monomials in arithmetic circuits

which is identically 0 iff C computes a multilinear polynomial (ob-
tained via Proposition 14.3.1). C computes a multilinear polynomial
and does not contain the monomial m if and only if both C2 and ZC3

are identically 0, which happens if and only if their sum is identically
zero. �

In the case of our second problem, counting the number of mono-
mials, the complexity drops down to PP.

ML-CountMon

Input: Arithmetic circuit C, d ∈N.
Problem: Decide if the polynomial computed by C is
multilinear and has at least d monomials.

Proposition 14.3.4. ML-CountMon is PP-complete (for Turing reduc-
tions).

Proof. We first show ML-CountMon ∈ PP. To this end, we first use
CheckML to check that the polynomial computed by C is multilinear.
Then counting monomials can be done in PPML-ZMC, and ML-ZMC is
in coRP. By Lemma 13.2.6 the class PPcoRP is simply PP.

For hardness we reduce the computation of the {0, 1}-permanent to
ML-CountMon. The proposition then will follow, because the {0, 1}-
permanent is #P-complete for Turing reductions. So let A be a 0-1-
matrix and d ∈ N and we have to decide if per(A) ≥ d. We get a
matrix B from A by setting bij := aijXij. Because every entry of B is
either 0 or a distinct variable, we have that, when we compute the
permanent of B, every permutation that yields a non-zero summand
yields a unique monomial. This means that there are no cancellations,
so that per(A) is the number of monomials in per(B).

The problem is now that no small circuits for the permanent are
known and thus per(B) is not a good input for ML-CountMon. But
because there are no cancellations, we have that det(B) and per(B)
have the same number of monomials. So take a small circuit for the
determinant (for instance the one given in [MV97]) and substitute its
inputs by the entries of B. The result is a circuit C which computes a
polynomial whose number of monomials is per(A). Observing that
the determinant, and thus the polynomial computed by C, is multi-
linear completes the proof. �

14.4 univariate circuits

In this section we briefly study decision problesm on univariate, mul-
tiplicativelye disjoint circuits. One problem related to ZMC is to com-
pute the degree of a polynomial given by an arithmetic circuit. This
problem was first introduced in [ABKPM09] under the name DegSLP.

14.4 univariate circuits 195

DegSLP
Input: Arithmetic circuit C, d ∈N.
Problem: Decide if the degree of the polynomial com-
puted by C is smaller than d.

Allender et al. [ABKPM09] also introduced the problem EquSLP,
which is the problem ACIT restricted to circuits with no indetermi-
nates (i.e., computing integers).

EquSLP
Input: Arithmetic circuit C computing an integer.
Problem: Decide if the integer computed by C is 0.

In the general case, Allender et al. remark that EquSLP and ACIT
are equivalent and they are known to be in coRP. For DegSLP, the
best known upper bound is coRPPP [KS11] and it is an open problem
to obtain a lower bound better than P which was obtained by Koiran
and Perifel [KP07]. For ZMC we have given a coRPPP upper bound
and a C=P lower bound. Finally, we have shown that CountMon is
PPPP-complete.

In contrast to these differing complexities, we first show that in
the case of univariate, multiplicatively disjoint circuits, all these prob-
lems have equivalent complexities (the case of CountMon is slightly
different and treated after the others).

Proposition 14.4.1. For univariate multiplicatively disjoint circuits, the
problems DegSLP, ZMC, EquSLP and ACIT are equivalent under logspace
reductions. This holds in the monotone and in the general case.

Proof. The proof we give works both in the general case and in the
monotone case.

Clearly, EquSLP is a special case of ACIT and it can also be decided
by asking for the constant coefficient in the problem ZMC, or by ask-
ing whether the degree is smaller than 0 in DegSLP. Thus EquSLP
reduces to all other problems of the claim.

We will reduce ACIT, ZMC and DegSLP to EquSLP. To do so, we
first remark that given a univariate multiplicatively disjoint circuit C
of size s, we can construct a multiplicatively disjoint circuit C′ of size
O(s3), with s + 1 output gates computing the coefficients of the poly-
nomial computed by C (the degree of C cannot be greater than s,
because C is multiplicatively disjoint). This is done by the classical
argument for computing the homogeneous components of a circuit,
noting that if we start from a multiplicatively disjoint circuit we get a
multiplicatively disjoint circuit. Indeed, for each gate α in C, we have
in C′ the gates α0, . . . , αs computing the relevant coefficients of the
polynomial computed by α. Then if α is an addition gate with argu-
ments β and γ the gate αi in C′ is also an addition gate with argu-
ments βi and γi. If α is a multiplication gate with arguments β and γ

196 monomials in arithmetic circuits

the gate αi in C′ computes ∑i
k=0 βkγi−k. Each product in this sum mul-

tiplies a “β” gate with a “γ” gate, so that multiplicative disjointness
is maintained in the construction.

It is now easy to show the reductions to EquSLP. In particular, the
above construction directly gives the reduction from ZMC to EquSLP.

To reduce ACIT to EquSLP we apply the above construction, then
square the outputs α0, . . . , αs and add the results up. The resulting
circuit computes 0 if and only if the starting circuit computed the 0
polynomial.

To reduce DegSLP to EquSLP, we just need to check wether all
coefficients of degree at least d are 0, which can be done in a way
similar to the reduction from ACIT to EquSLP. �

We now show that, for univariate multiplicatively disjoint circuits,
all the problems considered above are complete for LOGCFL in the
monotone case and complete for C=LOGCFL in the general case. We
first recall basic facts about these classes.

We assume the reader to be familiar with the basics of Boolean cir-
cuit complexity (see e.g. [Vol99]). We only consider circuits in normal
form, i.e., for every ¬-gate the child is an input gate.

A Boolean circuit is called ∧-disjoint if for each ∧-gate v the subcir-
cuits that have the children of v as output-gates are disjoint. LOGCFL
is defined as the class of languages L ⊆ {0, 1}∗ accepted by ∧-disjoint,
logspace-uniform Boolean circuits [MP08].

We consider the following version of the circuit value problem.

∧-disjoint-CV
Input: a ∧-disjoint, monotone Boolean circuit C and an
input a of C.
Problem: Decide if C is satisfied by a.

The following observation is apparent.

Observation 14.4.2. A language L ⊆ {0, 1}∗ is in LOGCFL if and only if
L can be reduced in logarithmic space to ∧-disjoint-CV.

A function f : {0, 1} → N is defined to be in #LOGCFL if there
is a logspace uniform family of multiplicatively disjoint, monotone
arithmetic circuits computing f [MP08]. A function f : {0, 1} → Z

is defined to be in gapLOGCFL if and only if it is the difference of
two functions in #LOGCFL. Finally, a language L is defined to be in
C=LOGCFL if and only if there is a function f ∈ gapLOGCFL such that
x ∈ L if and only if f (x) = 0.

To a monotone Boolean circuit C we assign a monotone arithmetic
circuit ar(C) by replacing all ∨-gates by +-gates and replacing all ∧-
gates by ∨-gates. Observe that the construction is a bijection, so to
a monotone arithmetic circuit C we can assign a monotone Boolean
circuit ar−1(C).

We will use the following basic observation:

14.4 univariate circuits 197

Observation 14.4.3. Let C be a monotone Boolean circuit and a ∈ {0, 1}∗
an input to C. Then a satisfies C if and only if ar(C) on the input a evaluates
to an integer strictly greater than 0

Proposition 14.4.4. For monotone univariate multiplicatively disjoint cir-
cuits, the problems DegSLP, ZMC, EquSLP, ACIT and CountMon are
LOGCFL-complete.

Proof. By Proposition 14.4.1, for all of these problems apart from
CountMon, it is enough to show that in the monotone case the prob-
lem EquSLP is LOGCFL-complete.

So let C be a multiplicatively disjoint, monotone arithmetic circuit
in which all inputs are labeled by 0 and 1. We can interpret C as
an arithmetic circuit C′ with variable inputs together with a {0, 1}-
assignment a. By Observation 14.4.3 we have that C′ computes 0 on a
if and only if a does not satisfy ar(C′). If follows that EquSLP reduces
∧-disjoint-CV and thus it is in LOGCFL.

Again by Observation 14.4.3 ∧-disjoint-CV reduces to EquSLP:
Given a monotone Boolean circuit C and an assignment a, we have
that a satisfies C if and only if ar(C) computes a nonzero value on in-
put a. Thus EquSLP for monotone, multiplicatively disjoint arithmetic
circuits is LOGCFL-hard.

We now show the upper bound for CountMon. Given a monotone,
multiplicatively disjoint arithmetic circuit C, computing a univariate
polynomial f , and an integer d, we start from the construction given
in Proposition 14.4.1 which yields a family of constant free, monotone
arithmetic circuit C′ computing the coefficients of f . Let α0, . . . , αs be
the output gates such that αi computes the coefficient of Xi. In the cir-
cuit ar−1(C′) the gate αi evaluates to 1 if and only if the coefficient of
Xi in f is nonzero. Now interpreting the values of αi in ar−1(C′) as bi-
nary numbers, we have to accept (C, d) if and only if ∑s

i=1 αi ≥ d. But
iterated addition and comparison of binary numbers are in NC1 (see
e.g. [Vol99]), i.e., they can be computed by polynomial size Boolean
formulas. Thus we can construct a ∧-disjoint Boolean circuit C′′ and
an assignment a such that C′′ is satisfied by a if and only if f has
at least d monomials. Thus CountMon on univariate multiplicative
circuits is in LOGCFL.

Finally, the complement of EquSlp trivially reduces to CountMon

by asking whether the number of monomials is at least 1, so Count-
Mon is LOGCFL-hard. �

Proposition 14.4.5. For univariate multiplicatively disjoint circuits, the
problems DegSLP, ZMC, EquSLP, ACIT are C=LOGCFL-complete.

Proof. Once again, by Proposition 14.4.1 we just need to consider
EquSLP.

We first show hardness. So let first f = f+ − f− for f+, f− ∈
#LOGCFL and a ∈ {0, 1}∗ an input to f . Then we can in logarithmic

198 monomials in arithmetic circuits

space construct a multiplicatively disjoint arithmetic circuit C that
computes f = f+ + (−1) f−. Labeling the inputs of C by the values
of a completes the hardness proof.

For containment, consider a multiplicatively disjoint, constant free
arithmetic circuit C with only constant inputs. Let c be the constant
computed by C. We interpret C as a multivariate arithmetic circuit C′

with an input a ∈ {0, 1}∗. Let f be the function computed by C′. It
is well known that from C′ one can construct two monotone, multi-
plicatively disjoint, arithmetic circuits C1, C2 computing integers f1, f2,
respectively, such that f = f1 − f2 (see e.g. [Koi12]). Clearly, f1, f2 ∈
#LOGCFL and f1(a)− f2(a) = f (a) = c. This directly yields the upper
bound. �

Proposition 14.4.6. For univariate multiplicatively disjoint circuits, the
problem CountMon is C=LOGCFL-hard and is in LC=LOGCFL.

Proof. The hardness follows from Proposition 14.4.5 and the argu-
ment given at the end of the proof of Proposition 14.4.4. The upper
bound is clear using Proposition 14.4.5 for ZMC, since we only need
to add up a small number of answers to ZMC and then compare to d
similarly to the proof of Proposition 14.4.4. �

14.5 conclusion

In this chapter we have strengthened the known connection between
the counting hierarchy and arithmetic circuits by showing that natu-
ral questions on arithmetic circuits are complete for different classes
in CH. We consider it as likely that other questions on arithmetic cir-
cuits could be shown to be connected to CH with similar techniques.

Since the conference version of this chapter [FMM12] was pub-
lished, Mahajan, Rao and Sreenivasaiah [MRS12] analyzed the com-
plexity of several problems considered in this chapter for very re-
stricted arithmetic circuit classes, so-called read-once/twice formu-
las and branching programs. For these classes the complexity of our
problems often but not always drops considerably.

Let us also remark that the techniques from this chapter have found
an application in a recent paper by Mittmann, Saxena and Scheiblech-
ner [MSS12]: The notion of degeneracy considered there, to which
algebraic independence in positive characteristic can be reduced, is
shown to be hard by reduction from ZMC. It would be interesting to
see if a similar hardness result can be shown for algebraic indepen-
dence itself.

Let us close this chapter with some more open questions: The C=P

lower bound for ZMC does not match the upper bound of coRPPP

completely. Can this upper bound be derandomized to show that
ZMC is in C=P also in the general case?

14.5 conclusion 199

DegSLP is in our opinion one of the most puzzling open questions
in arithmetic circuit complexity. While it is widely believed to be hard,
not even conditional hardness results are known for it. Our contribu-
tion to the understanding of DegSLP has been very modest, but we
feel that the direction it proposes might be promising. Maybe a bet-
ter understanding of tractable classes of polynomials computed by
restricted classes of circuits will lead to a better understanding of the
general problem. So are there any other classes of circuits for which
DegSLP is tractable? Are there any multivariate classes? We leave this
as an open question.

Question 4. What is the complexity of DegSLP for different classes of
arithmetic circuits?

Part IV

A P P E N D I X

A
T H E P R O O F S F O R F R A C T I O N A L H Y P E RT R E E
W I D T H

a.1 tractable counting

We will use the following theorems.

Theorem A.1.1 ([GM06]). The solutions of a CQ-instance Φ with hyper-
graph H can be enumerated in time ‖Φ‖ρ∗(H)+O(1).

Theorem A.1.2 ([Mar10]). Given a hypergraph H and a rational number
w ≥ 1, it is possible in time ‖H‖O(w3) to either

• compute a fractional hypertree decomposition ofH with width at most
7w3 + 31w + 7, or

• correctly conclude that fhw(H) ≥ w.

We start of with the quantifier free case which we will use as a
building block for the more general result later.

Lemma A.1.3. The solutions of a quantifier free CQ-instance Φ with hy-
pergraph H can be counted in time ‖Φ‖fhw(H)O(1)

.

Proof. With Theorem A.1.2 we can compute a fractional hypertree de-
composition (T , (χt)t∈T, (ψt)t∈T) of width at most k := O(fhw(H)3).
For each bag χt we can with Theorem A.1.1 in time ‖Φ‖k compute
all solutions to the CQ-instance Φ[χt] that is induced by the variables
in χt. Let these solutions form a new relation Rt belonging to a new
atom φ′t. Then

∧
t∈T φ′t gives a solution equivalent, acyclic, quantifier

free #CQ instance of size ‖Φ‖O(k). Now we can count the solutions
with Theorem 3.1.2. �

Proof of Theorem 5.4.3. This is a minor modification of the proof of
Lemma 5.2.1.

Let H = (V, E) be the hypergraph of Φ. Because of Theorem A.1.2
we may assume that we have a fractional hypertree decomposition
Ξ := (T , (χt)t∈T, (ψt)t∈T) of width k′ := kO(1) of H. For each edge
e ∈ E we let ϕ(e) be the atom of Φ that induces e.

Let V1, . . . , Vm be the vertex sets of the components of H− S and
let V ′1, . . . , V ′m be the vertex sets of the S-components of H. Clearly,
Vi ⊆ V ′i and V ′i −Vi = V ′i ∩S =: Si. Let Φi be the restriction of Φ to the
variables in V ′i and let Ξi be the corresponding fractional hypertree
decomposition. Then Ξi has a tree Ti that is a subtree of T .

203

204 the proofs for fractional hypertree width

For each Φi we construct a new #CQ-instance Φ′i by computing
for each bag t ∈ T an atom φt in the variables χt that contains the
solutions of Φi[χt] that is induced by the variables of χt. The decom-
position Ξ has width at most k′ so this can be done in time ‖Φ‖O(k′)

by Theorem A.1.1. Obviously Φi and Φ′i are solution equivalent and
Φ′i is acyclic. Furthermore, Φ′i has only one single Si-component, be-
cause all the vertices in Vi are connected in Φ and thus also in Φ′i. Let
Hi be the hypergraph of Φ′i, then Hi has Si-star size at most `. Thus
the vertices in Si can be covered by at most ` edges in Hi by Lemma
4.1.1.

Now we construct a CQ-instance (A′′, φ′′i) such that φ′′i is an atomic
formula in the variables Si exactly as in the proof of Lemma 5.2.1.

We now eliminate all quantified variables in Φ. To do so we add
the atom φ′′i for i ∈ [m] and delete all atoms that contain any quanti-
fied variable, i.e., we delete all Φ′i. Call the resulting CQ-instance Φ′′.
Because (A′′i , φ′′i) is solution equivalent to Φ′i, we have that Φ and Φ′

are solution equivalent, too.
We now construct a fractional hypertree decomposition of Φ′′ by

doing the following: we set χ′t = (χt \
⋃

i∈It
Vi) ∪

⋃
i∈It

Si for each bag
χt where It := {i | χt ∩ Vi 6= 0}. For each bag χt we construct a
fractional edge cover ψ′t of χ′t by setting ψ′t(e) := ψt(e) for all old
edges and setting ψt(Si) = 1 for i ∈ It where Si corresponds to the
newly added constraint φi with χt ∩ Vi 6= 0. The result is indeed
a fractional edge cover, because each variable not in any Si is still
covered as before and the variables in Si are covered by definition
of ψt. Furthermore, we claim that the width of the cover is at most
k′. Indeed, for each i ∈ I we had for each v ∈ Vi ∑e∈E:v∈e ψ(e) ≥
1. None of these edges appears in the new decomposition anymore.
Thus adding the edge Si with weight 1 does not increase the total
weight of the cover. It is now easy to see that doing this construction
for all χt leads to a fractional hypertree decomposition of Φ′ of width
at most k′.

Applying Lemma A.1.3 concludes the proof. �

a.2 computing independents sets

Lemma A.2.1. The independent sets of a hypergraph H = (V, E) can be
enumerated in time |H|O(ρ∗H(V)).

Proof. Let H = (V, E). We construct a quantifier free CQ-instance
Φ = (A, φ) with the hypergraphH. Let V be the variables of Φ, {0, 1}
the domain and add an atom φe with relation symbol Re and scope
e for each e ∈ E. The relation RAe contains all tuples that contain at
most one 1 entry. Finally, φ :=

∧
e∈E φe.

Clearly, Φ has indeed the hypergraphH. Furthermore the solutions
of Φ are exactly the characteristic vectors of independent sets of H.

A.2 computing independents sets 205

Thus we can enumerate all independent sets of H in time |H|O(ρ∗)

with Theorem A.1.1. �

Proof of Lemma 5.4.4 (Sketch). We proceed by dynamic programming
along a fractional hypertree decomposition.

In a first step we compute a fractional hypertree decomposition
(T , (χt)t∈T, (ψt)t∈T) of width k′ = kO(1) of H with Theorem A.1.2. For
each bag χt we then compute all all independent sets of H[χt] by
Lemma A.2.1; call this set It.

By dynamic programming similar to the proof of Lemma 4.2.2 we
then compute a maximum independent set of H. �

B I B L I O G R A P H Y

[AB09] S. Arora and B. Barak. Computational Complexity: A Mod-
ern Approach. Cambridge University Press, 2009. (Cited
on pages 181, 185, 187, and 189.)

[ABKPM09] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and
P. B. Miltersen. On the Complexity of Numerical Anal-
ysis. SIAM J. Comput., 38(5):1987–2006, 2009. (Cited on
pages 12, 112, 187, 188, 193, 194, and 195.)

[ABO99] E. Allender, R. Beals, and M. Ogihara. The Complex-
ity of Matrix Rank and Feasible Systems of Linear Equa-
tions. Computational Complexity, 8(2):99–126, 1999. (Cited
on page 179.)

[AGG07] I. Adler, G. Gottlob, and G. Grohe. Hypertree Width and
Related Hypergraph Invariants. Eur. J. Comb., 28(8):2167–
2181, 2007. (Cited on page 32.)

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995. (Cited on pages 17

and 105.)

[AW93] E. Allender and K. W. Wagner. Counting Hierarchies:
Polynomial Time And Constant Depth Circuits. Current
Trends in Theoretical Computer Science, 40:469–483, 1993.
(Cited on page 179.)

[Bar89] D.A. Barrington. Bounded-width polynomial-size
branching programs recognize exactly those languages
in NC1. Journal of Computer and System Sciences,
38(1):150–164, 1989. (Cited on page 161.)

[BCC+
05] M. Bauland, P. Chapdelaine, N. Creignou, M. Hermann,

and H. Vollmer. An algebraic approach to the complex-
ity of generalized conjunctive queries. In Theory and
Applications of Satisfiability Testing, pages 30–45. Springer,
2005. (Cited on pages 37 and 105.)

[BCS97] P. Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic
complexity theory, volume 315. Springer, 1997. (Cited on
page 110.)

[BDG07] G. Bagan, A. Durand, and G. Grandjean. On Acyclic
Conjunctive Queries and Constant Delay Enumeration.
In CSL’07, 16th Annual Conference of the EACSL, volume

207

208 bibliography

4646 of LNCS, pages 208–222. Springer, 2007. (Cited on
page 3.)

[BG08] M. Bodirsky and M. Grohe. Non-dichotomies in Con-
straint Satisfaction Complexity. In ICALP 2008, pages
184–196, 2008. (Cited on page 73.)

[BK09] I. Briquel and P. Koiran. A Dichotomy Theorem for Poly-
nomial Evaluation. Mathematical Foundations of Computer
Science 2009, pages 187–198, 2009. (Cited on pages 109,
114, 117, 118, 124, 152, 153, 155, and 156.)

[BKM11] I. Briquel, P. Koiran, and K. Meer. On the expressive
power of CNF formulas of bounded tree- and clique-
width. Discrete Applied Mathematics, 159(1):1–14, 2011.
(Cited on pages 117 and 118.)

[BLMW11] P. Bürgisser, J. M. Landsberg, L. Manivel, and J. Weyman.
An Overview of Mathematical Issues Arising in the Geo-
metric Complexity Theory Approach to VP;VNP. SIAM
J. Comput., 40(4):1179–1209, 2011. (Cited on page 8.)

[BOC92] M. Ben-Or and R. Cleve. Computing Algebraic For-
mulas Using a Constant Number of Registers. SIAM
J. Comput., 21(1):54–58, 1992. (Cited on pages 128, 161,
and 162.)

[Bod88] H.L. Bodlaender. NC-Algorithms for Graphs with Small
Treewidth. In International Workshop on Graph-Theoretic
Concepts in Computer Science 1988, pages 1–10, 1988.
(Cited on page 26.)

[Bod93] H.L. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth. In STOC 1993,
pages 226–234. ACM, 1993. (Cited on page 25.)

[Bod98] H.L. Bodlaender. A Partial k-Arboretum of Graphs with
Bounded Treewidth. Theor. Comput. Sci., 209(1-2):1–45,
1998. (Cited on pages 24 and 26.)

[Bol98] B. Bollobas. Modern graph theory. Springer Verlag, 1998.
(Cited on page 53.)

[Bre76] R.P. Brent. The complexity of multiple-precision arith-
metic. In R P Brent R S Andersson, editor, The Complex-
ity of Computational Problem Solving, pages 126–165. Univ.
of Queensland Press, 1976. (Cited on page 111.)

[Bul11] A.A. Bulatov. On the CSP Dichotomy Conjecture. In
International Computer Science Symposium in Russia 2011,
pages 331–344, 2011. (Cited on pages 3 and 72.)

bibliography 209

[Bür09] P. Bürgisser. On Defining Integers And Proving Arith-
metic Circuit Lower Bounds. Computational Complexity,
18(1):81–103, 2009. (Cited on pages 12 and 179.)

[Bü00] P. Bürgisser. Completeness and Reduction in Algebraic Com-
plexity Theory. Algorithms and computation in math-
ematics. Springer, Berlin, New York, 2000. (Cited on
pages 109, 110, 112, 114, 115, 125, 148, 152, 153, 154, 159,
187, and 193.)

[CC12] J.-Y. Cai and X. Chen. Complexity of counting CSP with
complex weights. In STOC 2012, pages 909–920, 2012.
(Cited on pages 72 and 109.)

[CD05] H. Chen and V. Dalmau. Beyond Hypertree Width:
Decomposition Methods Without Decompositions. In
11th International Conference Principles and Practice of Con-
straint Programming, pages 167–181, 2005. (Cited on
page 5.)

[CD12] H. Chen and V. Dalmau. Decomposing Quantified Con-
junctive (or Disjunctive) Formulas. Logic in Computer
Science 2012, 2012. (Cited on pages 86 and 105.)

[CF10] Z. Chen and B. Fu. Approximating Multilinear Mono-
mial Coefficients and Maximum Multilinear Monomials
in Multivariate Polynomials. In Conference on Combina-
torial Optimization and Applications 2010, pages 309–323,
2010. (Cited on page 193.)

[CF11] Z. Chen and B. Fu. The Complexity of Testing Mono-
mials in Multivariate Polynomials. In Conference on Com-
binatorial Optimization and Applications 2011, pages 1–15,
2011. (Cited on page 193.)

[CH96] N. Creignou and M. Hermann. Complexity of Gener-
alized Satisfiability Counting Problems. Inf. Comput.,
125(1):1–12, 1996. (Cited on page 117.)

[Che12] H. Chen. On the Complexity of Existential Positive
Queries. ArXiv e-prints, June 2012. (Cited on page 105.)

[CJG08] D. Cohen, P. Jeavons, and M. Gyssens. A Unified
Theory of Structural Tractability for Constraint Satisfac-
tion Problems. Journal of Computer and System Sciences,
74(5):721 – 743, 2008. (Cited on pages 5, 27, and 35.)

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation
of conjunctive queries in relational data bases. In STOC
1977, pages 77–90. ACM, 1977. (Cited on pages 2, 7, 37,
45, 89, 96, and 100.)

210 bibliography

[CMR01] B. Courcelle, J.A. Makowsky, and U. Rotics. On the
fixed parameter complexity of graph enumeration prob-
lems definable in monadic second-order logic. Dis-
crete Applied Mathematics, 108(1-2):23–52, 2001. (Cited on
pages 10, 117, 145, and 149.)

[Cou90] B. Courcelle. Graph Rewriting: An Algebraic and Logic
Approach. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 193–242.
1990. (Cited on page 147.)

[Cou97] B. Courcelle. The Expression of Graph Properties and
Graph Transformations in Monadic Second-Order Logic.
In Handbook of Graph Grammars, pages 313–400, 1997.
(Cited on page 145.)

[DF99] R.G. Downey and M.R. Fellows. Parameterized complexity,
volume 3. springer New York, 1999. (Cited on page 66.)

[DHK05] A. Durand, M. Hermann, and P.G. Kolaitis. Subtractive
reductions and complete problems for counting com-
plexity classes. Theoretical Computer Science, 340(3):496–
513, 2005. (Cited on page 23.)

[Die05] R. Diestel. Graph Theory (Graduate Texts in Mathematics).
Springer, August 2005. (Cited on page 25.)

[DJ04] V. Dalmau and P. Jonsson. The complexity of counting
homomorphisms seen from the other side. Theor. Com-
put. Sci., 329(1-3):315–323, 2004. (Cited on pages 45, 73,
94, and 97.)

[DKV02] V. Dalmau, P.G. Kolaitis, and M.Y. Vardi. Constraint Sat-
isfaction, Bounded Treewidth, and Finite-Variable Log-
ics. In International Conference on Principles and Prac-
tice of Constraint Programming 2002, pages 310–326, 2002.
(Cited on pages 7 and 94.)

[DM11] A. Durand and S. Mengel. The Complexity of Weighted
Counting for Acyclic Conjunctive Queries. CoRR,
abs/1110.4201, 2011. (Cited on pages 12 and 13.)

[DM13] A. Durand and S. Mengel. Structural tractability of
counting of solutions to conjunctive queries. In Inter-
national Conference on Database Theory 2013, pages 81–92,
New York, NY, USA, 2013. ACM. (Cited on pages 12

and 13.)

[dRA12] N. de Rugy-Altherre. A Dichotomy Theorem for Homo-
morphism Polynomials. In MFCS 2012, pages 308–322,
2012. (Cited on page 114.)

bibliography 211

[Dur13] A. Durand. personal communication, 2013. (Cited on
page 149.)

[FFG02] J. Flum, M. Frick, and M. Grohe. Query Evaluation
via Tree-Decompositions. J. ACM, 49(6):716–752, 2002.
(Cited on pages 20 and 21.)

[FG04] J. Flum and M. Grohe. The Parameterized Complex-
ity of Counting Problems. SIAM Journal on Computing,
33(4):892–922, 2004. (Cited on page 23.)

[FG06] J. Flum and M. Grohe. Parameterized Complexity The-
ory. Texts in Theoretical Computer Science. An EATCS Se-
ries, 2006. (Cited on pages 22, 23, 25, 91, 96, 145, and 148.)

[FKL07] U. Flarup, P. Koiran, and L. Lyaudet. On the Expres-
sive Power of Planar Perfect Matching and Permanents
of Bounded Treewidth Matrices. In Takeshi Tokuyama,
editor, International Symposium on Algorithms and Com-
putation 2007, volume 4835 of Lecture Notes in Computer
Science, pages 124–136. Springer Berlin Heidelberg, 2007.
(Cited on pages 10, 110, 117, 145, 150, 154, and 159.)

[FMM12] H. Fournier, G. Malod, and S. Mengel. Monomials in
arithmetic circuits: Complete problems in the counting
hierarchy. In STACS 2012, pages 362–373, 2012. (Cited
on pages 13 and 198.)

[FMR08] E. Fischer, J.A. Makowsky, and E.V. Ravve. Counting
truth assignments of formulas of bounded tree-width or
clique-width. Discrete Applied Mathematics, 156(4):511–
529, 2008. (Cited on page 117.)

[FV98] T. Feder and M.Y. Vardi. The computational structure
of monotone monadic snp and constraint satisfaction: A
study through datalog and group theory. SIAM Journal
on Computing, 28(1):57–104, 1998. (Cited on page 72.)

[GJC94] M. Gyssens, P. Jeavons, and D.A. Cohen. Decompos-
ing Constraint Satisfaction Problems Using Database
Techniques. Artif. Intell., 66(1):57–89, 1994. (Cited on
page 35.)

[GLS00] G. Gottlob, N. Leone, and F. Scarcello. A comparison
of structural CSP decomposition methods. Artif. In-
tell., 124(2):243–282, 2000. (Cited on pages 5, 27, 32, 35,
and 71.)

[GLS01] G. Gottlob, N. Leone, and F. Scarcello. The complexity of
acyclic conjunctive queries. J. ACM, 48(3):431–498, 2001.
(Cited on pages 33, 117, and 118.)

212 bibliography

[GLS02] G. Gottlob, N. Leone, and F. Scarcello. Hypertree De-
compositions and Tractable Queries. J. Comput. Syst. Sci.,
64(3):579–627, 2002. (Cited on page 32.)

[GM06] M. Grohe and D. Marx. Constraint Solving via Frac-
tional Edge Covers. In SODA 2006, pages 289–298, New
York, NY, USA, 2006. ACM. (Cited on pages 76 and 203.)

[GMS09] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized
Hypertree Decompositions: NP-Hardness and Tractable
Variants. J. ACM, 56(6), 2009. (Cited on page 32.)

[GN06] J. Guo and R. Niedermeier. Exact algorithms and ap-
plications for Tree-like Weighted Set Cover. J. Discrete
Algorithms, 4(4):608–622, 2006. (Cited on page 53.)

[GP04] G. Gottlob and R. Pichler. Hypergraphs in Model Check-
ing: Acyclicity and Hypertree-Width versus Clique-
Width. SIAM J. Comput., 33(2):351–378, 2004. (Cited on
page 159.)

[GR01] C.D. Godsil and G. Royle. Algebraic graph theory, vol-
ume 8. Springer New York, 2001. (Cited on page 93.)

[Gre93] F. Green. On the Power of Deterministic Reductions to
C=P. Theory of Computing Systems, 26(2):215–233, 1993.
(Cited on page 183.)

[Gro07] M. Grohe. The complexity of homomorphism and con-
straint satisfaction problems seen from the other side.
J. ACM, 54(1), 2007. (Cited on pages 7, 45, 73, 79, 89,
and 94.)

[GS09] S. Garg and E. Schost. Interpolation of polynomials
given by straight-line programs. Theor. Comput. Sci.,
410(27-29):2659–2662, 2009. (Cited on page 180.)

[GSS01] M. Grohe, T. Schwentick, and L. Segoufin. When is the
evaluation of conjunctive queries tractable? In STOC
2001, pages 657–666. ACM, 2001. (Cited on pages 45,
47, and 79.)

[Ham79] J. Hammond. Question 6001. Educ. Times, 32:179, 1879.
(Cited on page 185.)

[HO02] L.A. Hemaspaandra and M. Ogihara. The Complexity
Theory Companion. Texts in theoretical computer science.
Springer, Berlin, New York, 2002. (Cited on pages 179

and 183.)

bibliography 213

[HP06] J.M. Hitchcock and A. Pavan. Comparing Reductions to
NP-Complete Sets. In ICALP 2006, pages 465–476, 2006.
(Cited on page 114.)

[Jer81] M. Jerrum. On the Complexity of Evaluating Multivariate
Polynomials. PhD thesis, University of Edinburgh, 1981.
(Cited on page 153.)

[JS11] M. Jansen and R. Santhanam. Permanent Does Not
Have Succinct Polynomial Size Arithmetic Circuits of
Constant Depth. In ICALP 2011, pages 724–735, 2011.
(Cited on pages 12 and 179.)

[KBvdG11] J. Kwisthout, H. L. Bodlaender, and L. C. van der Gaag.
The Complexity of Finding kth Most Probable Explana-
tions in Probabilistic Networks. In International Confer-
ence on Current Trends in Theory and Practice of Computer
Science, SOFSEM 2011, pages 356–367, 2011. (Cited on
page 179.)

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing Poly-
nomial Identity Tests Means Proving Circuit Lower
Bounds. Computational Complexity, 13:1–46, 2004. (Cited
on page 180.)

[Kin10] S. Kintali. Realizable Paths and the NL vs L Prob-
lem. Electronic Colloquium on Computational Complexity
(ECCC), 17:158, 2010. (Cited on pages 162 and 169.)

[KM08] P. Koiran and K. Meer. On the expressive power of CNF
formulas of bounded tree- and clique-width. In WG08,
pages 252–263, 2008. (Cited on page 118.)

[Koi12] P. Koiran. Arithmetic circuits: The chasm at depth four
gets wider. Theor. Comput. Sci., 448:56–65, 2012. (Cited
on pages 11, 161, and 198.)

[Kou08] I. Koutis. Faster Algebraic Algorithms for Path and
Packing Problems. In ICALP 2008, pages 575–586, 2008.
(Cited on page 193.)

[KP07] P. Koiran and S. Perifel. The complexity of two problems
on arithmetic circuits. Theor. Comput. Sci., 389(1-2):172–
181, 2007. (Cited on pages 12, 112, 180, and 195.)

[KP11] P. Koiran and S. Perifel. Interpolation in Valiant’s The-
ory. Computational Complexity, 20(1):1–20, 2011. (Cited
on pages 12 and 179.)

214 bibliography

[KPZ99] A. Kiayias, A. Pagourtzis, and S. Zachos. Cook reduc-
tions blur structural differences between functional com-
plexity classes. In Panhellenic Logic Symposium, pages
132–137, 1999. (Cited on page 23.)

[Kre11] S. Kreutzer. Algorithmic meta-theorems. Number 379 in
London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 2011. (Cited on page 148.)

[KS11] N. Kayal and C. Saha. On the Sum of Square Roots of
Polynomials and related problems. In IEEE Conference
on Computational Complexity 2011, pages 292–299, 2011.
(Cited on pages 112, 186, and 195.)

[KV00] P.G. Kolaitis and M.Y. Vardi. Conjunctive-Query Con-
tainment and Constraint Satisfaction. J. Comput. Syst.
Sci., 61(2):302–332, 2000. (Cited on pages 2 and 22.)

[Lad75] R.E. Ladner. On the structure of polynomial time re-
ducibility. Journal of the ACM, 22(1):155–171, 1975. (Cited
on pages 72 and 73.)

[Lib04] L. Libkin. Elements of Finite Model Theory. EATCS Series.
Springer, 2004. (Cited on pages 17 and 145.)

[Lya07] L. Lyaudet. Graphes et hypergraphes : complexités algorith-
mique et algébrique. PhD thesis, École normale supérieure
de Lyon, 2007. (Cited on pages 11, 110, 145, and 150.)

[Mah12] M. Mahajan. Algebraic Complexity Classes. In Proc.
Workshop on Complexity and Logic (in celebration of the 60th
birthday of Somenath Biswas), 2012. (Cited on page 110.)

[Mal07] Guillaume Malod. The Complexity of Polynomials and
Their Coefficient Functions. In IEEE Conference on Com-
putational Complexity 2007, pages 193–204, 2007. (Cited
on page 109.)

[Mar10] D. Marx. Approximating fractional hypertree width.
ACM Trans. Algorithms, 6(2):29:1–29:17, April 2010.
(Cited on pages 73, 105, and 203.)

[Men11] S. Mengel. Characterizing Arithmetic Circuit Classes by
Constraint Satisfaction Problems - (Extended Abstract).
In ICALP 2011, pages 700–711, 2011. (Cited on page 13.)

[Men13] S. Mengel. Arithmetic Branching Programs with Mem-
ory. ArXiv e-prints, March 2013. (Cited on page 13.)

[Mik08] Z. Miklós. Understanding Tractable Decompositions for Con-
straint Satisfaction. PhD thesis, University of Oxford,
2008. (Cited on page 27.)

bibliography 215

[MP08] G. Malod and N. Portier. Characterizing Valiant’s alge-
braic complexity classes. J. Complexity, 24(1):16–38, 2008.
(Cited on pages 8, 11, 109, 110, 111, 113, 114, 161, 162,
168, and 196.)

[MRS12] M. Mahajan, B. V. Raghavendra Rao, and K. Sreenivasa-
iah. Identity Testing, Multilinearity Testing, and Mono-
mials in Read-Once/Twice Formulas and Branching Pro-
grams. In MFCS 2012, pages 655–667, 2012. (Cited on
page 198.)

[MSS12] J. Mittmann, N. Saxena, and P. Scheiblechner. Alge-
braic Independence in Positive Characteristic – A p-
adic Calculus. ArXiv e-prints, February 2012. (Cited on
page 198.)

[Mul12] K.D. Mulmuley. The GCT program toward the P vs. NP
problem. Communications of the ACM, 55(6):98–107, 2012.
(Cited on page 8.)

[MV97] M. Mahajan and V. Vinay. Determinant: Combinatorics,
Algorithms, and Complexity. Chicago J. Theor. Comput.
Sci., 1997, 1997. (Cited on page 194.)

[Nis91] N. Nisan. Lower bounds for non-commutative compu-
tation. In STOC 1991, page 418. ACM, 1991. (Cited on
page 161.)

[NR95] R. Niedermeier and P. Rossmanith. Unambiguous aux-
iliary pushdown automata and semi-unbounded fan-
in circuits. Information and Computation, 118(2):227–245,
1995. (Cited on pages 161, 172, and 173.)

[OPS10] S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability
of Acyclic and Almost Acyclic CNF Formulas. In Foun-
dations of Software Technology and Theoretical Computer Sci-
ence 2010, pages 84–95, 2010. (Cited on page 106.)

[Pap94] Christos H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994. (Cited on page 73.)

[PB83] J.S. Provan and M.O. Ball. The complexity of counting
cuts and of computing the probability that a graph is
connected. SIAM Journal on Computing, 12(4):777–788,
1983. (Cited on page 38.)

[PS13] R. Pichler and S. Skritek. Tractable counting of the an-
swers to conjunctive queries. Journal of Computer and Sys-
tem Sciences, 2013. (Cited on pages 3, 6, 22, 37, 47, 105,
123, 137, and 138.)

216 bibliography

[PSS13] D. Paulusma, F. Slivovsky, and S. Szeider. Model Count-
ing for CNF Formulas of Bounded Modular Treewidth.
In STACS 2013, pages 55–66, 2013. (Cited on page 106.)

[RS86] N. Robertson and P.D. Seymour. Graph Minors. II. Al-
gorithmic Aspects of Tree-Width. J. Algorithms, 7(3):309–
322, 1986. (Cited on page 24.)

[Sch78] T.J. Schaefer. The complexity of satisfiability problems.
In STOC 1978, pages 216–226, 1978. (Cited on pages 3,
72, and 117.)

[Sch79] A. Schönhage. On the Power of Random Access Ma-
chines. In ICALP 1979, pages 520–529, 1979. (Cited on
page 183.)

[SS10] M. Samer and S. Szeider. Algorithms for propositional
model counting. J. Discrete Algorithms, 8(1):50–64, 2010.
(Cited on page 106.)

[Strar] Y. Strozecki. Interpolation Meets Enumeration. Theory
of Computing Systems, To appear. (Cited on page 180.)

[SV85] S. Skyum and L.G. Valiant. A Complexity Theory Based
on Boolean Algebra. J. ACM, 32(2):484–502, 1985. (Cited
on page 161.)

[SY10] A. Shpilka and A. Yehudayoff. Arithmetic Circuits: A
survey of recent results and open questions. Foundations
and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010. (Cited on page 110.)

[Thu06] M. Thurley. Tractability and Intractability of Parame-
terized Counting Problems. Diploma thesis, Humbold-
Universiät zu Berlin, 2006. (Cited on page 23.)

[Tod92] S. Toda. Classes of arithmetic circuits capturing the
complexity of computing the determinant. IEICE Trans-
actions on Information and Systems, 75(1):116–124, 1992.
(Cited on pages 161 and 162.)

[Tor88] J. Torán. Succinct Representations of Counting Prob-
lems. In Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes 1988, pages 415–426, 1988. (Cited on
page 179.)

[Tor91] J. Torán. Complexity Classes Defined by Counting
Quantifiers. J. ACM, 38(3):753–774, 1991. (Cited on
page 182.)

[Tur50] A. M. Turing. Computing machinery and intelligence.
Mind, 59(236):pp. 433–460, 1950. (Cited on page iii.)

bibliography 217

[Val79] L.G. Valiant. Completeness Classes in Algebra. In STOC
1979, pages 249–261. ACM, 1979. (Cited on pages 109,
110, 112, 154, 161, and 185.)

[Val81] L.G. Valiant. Universality considerations in VLSI cir-
cuits. IEEE Transactions on Computers, 30(2):135–140,
1981. (Cited on page 49.)

[Val82] L.G. Valiant. Reducibility by algebraic projections.
Logic and Algorithmic: an International Symposium held in
honor of Ernst Specker, 30(Monogr. No. 30 de l’Enseign.
Math.):365–380, 1982. (Cited on pages 109 and 110.)

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform
Approach. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1999. (Cited on pages 196 and 197.)

[VSBR83] L.G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff.
Fast Parallel Computation of Polynomials Using Few
Processors. SIAM J. Comput., 12(4):641–644, 1983. (Cited
on pages 111, 161, and 172.)

[VT89] H. Venkateswaran and M. Tompa. A New Pebble Game
that Characterizes Parallel Complexity Classes. SIAM J.
Comput., 18(3):533–549, 1989. (Cited on page 113.)

[vzG87] J. von zur Gathen. Feasible Arithmetic Computations:
Valiant’s Hypothesis. Journal of Symbolic Computation,
4(2):137–172, 1987. (Cited on page 185.)

[Wag86] K. W. Wagner. The Complexity of Combinatorial Prob-
lems with Succinct Input Representation. Acta Infor-
matica, 23(3):325–356, 1986. (Cited on pages 12, 179,
and 181.)

[Wil09] R. Williams. Finding paths of length k in O∗(2k) time. In-
formation Processing Letters, 109(6):315–318, 2009. (Cited
on page 193.)

[WS07] V. Weber and T. Schwentick. Dynamic Complexity The-
ory Revisited. Theory Comput. Syst., 40(4):355–377, 2007.
(Cited on page 161.)

[Yan81] M. Yannakakis. Algorithms for Acyclic Database
Schemes. In Proceedings of the seventh international con-
ference on Very Large Data Bases, volume 7, pages 82–94,
1981. (Cited on pages 29 and 136.)

I N D E X

(n×m)-grid, 47

∧-disjoint circuit, 196

#ACQ, 29

#CQ, 21

#CQ on G, 41, 65

#CSP, 21

p-#CQ on G, 41, 65

#W[1], 23

ACQ, 29

acyclic, 29

acyclic conjunctive query, 29

acyclic hypergraph, 28

arithmetic branching program,
162

arithmetic branching programs,
110

arithmetic circuit, 110

arithmetic circuit identity test-
ing, 180

arithmetic circuits, 109

arithmetic formula, 110

arithmetic formulas, 110

arity of a hypergraph, 27

assignment, 18

atom, 18

atomic formula, 18

augmented structure, 96

automorphism, 92

bag, 31

binary, 18

blow-up hypergraph, 120

Boolean conjunctive query prob-
lem, 21

C, 181

c-reduction, 114

C=, 181

C 6=, 181

compatible, 18

component, 40

conjunctive query, 18

Conjunctive query answering prob-
lem, 21

conjunctive query instance, 18

connectedness condition, 31

constant free arithmetic circuit,
111

constraint satisfaction problems,
21

core, 93

core of a conjunctive query, 96

core of a structure, 93

counting hierarchy, 179, 181

CSP, 21

degree-bounded arithmetic cir-
cuits, 112

depth of an arithmetic circuit,
111

domain, 17

edge cover, 53

edge variable, 147

elimination order, 26

elimination order of an S-graph,
82

elimination width, 26

elimination width of an S-graph,
82

equivalent queries, 96

exponential time hypothesis, 65

fill-in graph, 26

fixed-parameter tractable, 22, 23

formal degree, 112

FPT, 22, 23

fractional edge cover, 76

fractional edge cover number,
76

fractional hypertree decompo-
sition, 76

fractional hypertree width, 76

219

220 bibliography

free variable, 18

generalized hypertree decompo-
sition, 31

generalized hypertree width, 30,
31

generating function, 148

graph property, 148

grid, 47

guard, 31

guarded block, 30, 31

hingetree decomposition, 35

hingetree width, 35

hom(A,B), 92

homomorphically equivalent, 93

homomorphism, 92

independent set, 41

induced subhypergraph, 40

intersection of CQ-instances, 46

isomorphic, 92

isomorphism, 92

join tree, 28

monotome arithmetic circuit, 111

multiplicatively disjoint circuit,
110

natural join, 19

natural model, 91

p-#CQ, 24

p-bounded, 121

p-Clique, 22

p-#Clique, 23

p-CQ, 23

p-projection, 112

parameterized T-reduction, 23

parameterized counting problem,
22

parameterized decision problem,
22

parameterized many-one reduc-
tion, 22

parameterized parsimonious re-
duction, 23

parse tree, 113

partial cycle cover, 152

path, 40

path decomposition, 26

pathwidth, 26

permanent, 112

primal S-graph, 41

primal graph of a hypergraph,
28

primal graph of a structure, 92

projection, 19, 112

proper substructure, 17

quantified star size, 39, 44

quantified variables, 18

quantifier free conjunctive query,
18

query answers, 18

query complexity, 123

query result, 18

random access branching pro-
gram, 173

random-access-realizable path,
173

realizable sequence or stack op-
erations, 163

relation bounded, 121

relational structure, 17

relational vocabulary, 17

S-connected, 41

S-graph, 40

S-hypergraph, 40

S-star size, 41, 43

satisfying assignment, 18

scope, 18

semi-join, 19

semi-unbounded circuit, 110

sequence of stack operations, 163

size of an arithmetic circuit, 111

skew circuit, 110

solution equivalent, 19

solution set, 146

solutions of a query instance,
18

stack branching program, 163

stack-realizable path, 163

subhypergraph, 40

bibliography 221

substructure, 17

tree decomposition, 24

treewidth, 24, 28

treewidth of a structure, 92

treewidth preserving reduction,
150

unbounded fanin, 110

union of CQ-instances, 46

vertex variable, 147

VP, 109, 111

VPe, 110, 111

VPe-universal for bounded treewidth,
150

VPws, 111

W[1], 22

weighted graph, 148

width of a tree composition, 24

width of an elimination order,
26

zero monomial coefficient, 180

ZMC, 180, 185

E I D E S S TAT T L I C H E E R K L Ä R U N G

Hiermit versichere ich, dass ich die folgende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen als Hilfsmittel
benutzt sowie Zitate kenntlich gemacht habe.

Paderborn, 21. Mai 2013

Stefan Mengel

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Part i: Counting solutions to conjunctive queries
	1.1.1 Structural restrictions for tractable #CQ

	1.2 Part ii: Understanding arithmetic circuit classes
	1.2.1 Conjunctive queries and arithmetic circuits
	1.2.2 Graph polynomials on bounded treewidth graphs
	1.2.3 Modifying arithmetic branching programs

	1.3 Part iii: Monomials in arithmetic circuits
	1.4 Overview over the thesis

	Counting Solutions to Conjunctive Queries
	2 Preliminaries
	2.1 Conjunctive queries
	2.1.1 Model of computation and encoding of instances
	2.1.2 Query problems

	2.2 Parameterized complexity
	2.3 Graph and hypergraph decompositions
	2.3.1 Treewidth
	2.3.2 Hypergraph decomposition techniques

	3 The complexity of #CQ and quantified star size
	3.1 The complexity of #CQ
	3.2 Quantified star size
	3.3 Formulation of main results
	3.4 Digression: Unions of acyclic queries

	4 Computing S-star size
	4.1 Acyclic hypergraphs
	4.2 General hypergraphs
	4.2.1 Exact computation
	4.2.2 Parameterized complexity
	4.2.3 Approximation

	5 Quantified star size is sufficient and necessary for efficient counting
	5.1 Bounded quantified star size is necessary
	5.2 The complexity of counting
	5.3 A #P-intermediate class of counting problems
	5.4 Fractional Hypertree width

	6 Queries of Bounded Arity
	6.1 A characterization by treewidth and S-star size
	6.2 A characterization by elimination orders

	7 Tractable conjunctive queries and cores
	7.1 Warmup: An improved hardness result for #CQ on star-shaped queries
	7.2 Homomorphisms between structures and cores
	7.3 Tractable conjunctive queries and cores

	8 Conclusion

	Understanding Arithmetic Circuit Classes
	9 Introduction and preliminaries
	9.1 Introduction
	9.2 Some background on arithmetic circuit complexity
	9.3 Digression: Reduction notions in arithmetic circuit complexity

	10 Constraint Satisfaction Problems, Conjunctive Queries and Arithmetic Circuit Classes
	10.1 Polynomials defined by conjunctive queries
	10.2 Main results
	10.3 Characterizations of VNP
	10.3.1 Instances of unrestricted structure
	10.3.2 Acyclic instances with quantification
	10.3.3 Unions and intersections of ACQ-instances

	10.4 Lower bounds for instances of bounded width
	10.5 Constructing circuits for conjunctive queries
	10.5.1 The relation bounded case

	11 Graph Polynomials on Bounded Treewidth Graphs
	11.1 Introduction
	11.2 Monadic second order logic, generating functions and universality
	11.2.1 Monadic second order logic on graphs
	11.2.2 Generating functions
	11.2.3 Treewidth preserving reductions and universality

	11.3 Cliques are not universal
	11.4 VPE-universality for bounded treewidth
	11.4.1 Formulation of the results and outline
	11.4.2 Reduction: phiCC leBW phiPCC
	11.4.3 phiCC and phiPCC on bounded degree graphs
	11.4.4 The lower bound for phiIS
	11.4.5 Reduction: phiIS leBW phiVC
	11.4.6 Reduction: phiVC leBW phiDS
	11.4.7 The upper bounds

	11.5 Conclusion

	12 Arithmetic Branching Programs with Memory
	12.1 Introduction
	12.2 Arithmetic branching programs
	12.3 Stack branching programs
	12.3.1 Definition
	12.3.2 Characterizing VP
	12.3.3 Stack branching programs with few stack symbol
	12.3.4 Width reduction
	12.3.5 Depth reduction

	12.4 Random access memory
	12.4.1 Definition
	12.4.2 Characterizing VNP

	Monomials in Arithmetic Circuits
	13 Introduction and preliminaries
	13.1 Introduction
	13.2 Preliminaries

	14 Monomials in Arithmetic Circuits
	14.1 Zero monomial coefficient
	14.2 Counting monomials
	14.3 Multilinearity
	14.4 Univariate circuits
	14.5 Conclusion

	Appendix
	A The proofs for fractional hypertree width
	A.1 Tractable counting
	A.2 Computing independents sets

	Bibliography
	Index
	Declaration

