
Characterizing Arithmetic Circuit Classes by
Constraint Satisfaction Problems

Stefan Mengel?

Institute of Mathematics, University of Paderborn, D-33098 Paderborn, Germany
stefan.mengel@mail.uni-paderborn.de

Abstract. We explore the expressivity of constraint satisfaction prob-
lems (CSPs) in the arithmetic circuit model. While CSPs are known to
yield VNP-complete polynomials in the general case, we show that for
different restrictions of the structure of the CSPs we get characterizations
of different arithmetic circuit classes. In particular we give the first nat-
ural non-circuit characterization of VP, the class of polynomial families
efficiently computable by arithmetic circuits.

Acknowledgements. I am very grateful to my supervisor Peter Bürgisser for
many helpful discussions and his support in making the presentation of this paper
much clearer. I would also like to thank the organizers of the Dagstuhl Seminar
10481 “Computational Counting” where some of the results in this paper were
conceived.

? supported by the Research Training Group GK-693 of the Paderborn Institute for
Scientific Computation (PaSCo) and DFG grant BU 1371/3-1

1 Introduction and related work

The complexity class VP has a very natural definition: It is the class of families
of polynomials computable by arithmetic circuits efficiently, i.e., by families of
arithmetic circuits of polynomial size. Despite this apparent naturality there is
one irritating aspect in which VP differs from other arithmetic circuit classes:
There are no known natural complete problems for VP – artificial ones can be
constructed – and no known natural characterizations of VP that do not in one
form or another depend on circuits. This puzzling feature of VP raises the ques-
tion whether VP is indeed the right class for measuring natural efficient com-
putability. This scepticism is further strengthened by the fact that Malod and
Portier [MP08] have shown that many natural problems from linear algebra are
complete for VPws, a subclass of VP. Thus the search for complete problems
or natural characterizations of VP is an interesting and meaningful problem in
algebraic complexity. In this paper we give such a natural characterization of
VP and other classes by constraint satisfaction problems.

Constraint satisfaction problems (CSPs) are a classical problem in complex-
ity theory and among the first shown to be NP-complete. In a seminal paper
Schaefer [Sch78] characterized the complexity of boolean CSPs by showing a fa-
mous dichotomy theorem: if all constraints are chosen from a small class which
he completely describes, then the corresponding CSP is in P, otherwise it is
NP-complete. This result has spawned several follow up results, in one of which
Briquel and Koiran [BK09] gave a similar dichotomy result in the arithmetic cir-
cuit model. To a family (Φn) of CSPs they assign a polynomial family (P (Φn)).
They show that there is a small set S of constraints with the following property:
If a family (Φn) of CSPs is built of constraints in S only, then (P (Φn)) ∈ VP.
On the other hand if CSPs may be constructed with the help of any constraint
not in S, one can construct such a CSP-family (Φn) such that (P (Φn)) is VNP-
complete.

Because CSPs are immensely important for practical purposes, researchers
especially in database theory and AI tried to circumvent Schaefer’s result by
finding feasible subclasses of CSPs. The key idea here is not to restrict the
individual constraints but instead to restrict the structure of the CSPs built
with these constraints. It was shown [BFMY83] that if one restricts the problem
to so called acyclic CSPs, then the resulting CSPs are solvable in P. It was
even shown that acyclic CSPs are parallelizable, but the exact complexity of the
problem was open for some time. Gottlob et. al [GLS01] solved this question by
proving that acyclic CSPs are complete for the class LOGCFL. This result easily
extends to CSPs of bounded treewidth.

Treewidth is a crucial graph parameter for many algorithmic problems on
graphs. Often hard problems become feasible if one bounds the treewidth of the
inputs by a constant. During the last years treewidth has found its way into
arithmetic circuit complexity. This was started by Courcelle et al. [CMR01] who
showed that generating functions of graph problems expressible in monadic sec-
ond order logic have small arithmetic circuits for graphs of bounded treewidth.
This line of research was continued by Flarup et al. [LKF07] who improved these

upper bounds and showed matching lower bounds for some familes of polynomi-
als: On the one hand the permanent and the hamilton polynomial on graphs of
bounded treewidth can be computed by arithmetic formulas of polynomial size.
On the other hand all arithmetic formulas can be expressed this way. Briquel,
Koiran and Meer [BKM11,KM08] – building on a paper by Fischer et al. [FMR08]
which deals with counting problems – considered polynomials defined by CNF
formulas of bounded treewidth (see also Section 3).

In this paper we unify these different lines of work: We complement the
general infeasibility results of Briquel and Koiran [BK09] by showing feasible
subclasses of polynomials assigned to CSPs. In this respect the results in this
paper correspond to the results of Gottlob et al. [GLS01] in the boolean model.
Also, our paper can be seen as an extension of the work of Briquel, Koiran and
Meer [KM08,BKM11] by generalization from CNF-formulas to general CSPs.
We introduce two kinds of polynomials for CSPs and show that they charac-
terize the hierarchy VPe ⊆ VPws ⊆ VP ⊆ VNP of arithmetic circuit classes
commonly considered (cf Section 2.1), respectively, for different classes of CSPs.
Boolean bounded treewidth or pathwidth CSPs capture VPe, while in the non-
boolean case we get VPws for bounded pathwidth and VP for bounded treewidth.
We also explain where exactly the difference in expressivity between boolean
and non-boolean CSPs comes from. We prove that if each variable can take
only a constant number of values in satisfying assignments of each constraint in
non-boolean CSPs, then these CSPs capture VPe again. In boolean CSPs each
variable trivially takes only at most 2 values in the satisfying assignments of
each constraint. This explains that non-boolean CSPs are more powerful, sim-
ply because the variables can take more values in satisfying assignments of the
constraints.

2 Preliminaries

2.1 Arithmetic circuit complexity

We briefly recall the relevant definitions from arithmetic circuit complexity. A
more thorough introduction into arithmetic circuit classes can be found in the
book by Bürgisser [Bür00]. Newer insights into the nature of VP and espe-
cially VPws are presented in the excellent paper of Malod and Portier [MP08].

An arithmetic circuit over a field F is a labeled directed acyclic graph (DAG)
consisting of vertices or gates with indegree or fanin 0 or 2. The gates with
fanin 0 are called input gates and are labeled with constants from F or variables
X1, X2, . . . , Xn. The gates with fanin 2 are called computation gates and are
labeled with × or +.

The polynomial computed by an arithmetic circuit is defined in the obvious
way: An input gate computes the value of its label, a computation gate computes
the product or the sum of its childrens’ values, respectively. We assume that a
circuit has only one sink which we call output gate. We say that the polynomial
computed by the circuit is the polynomial computed by the output gate. The

size of an arithmetic circuit is the number of gates. The depth of a circuit is the
length of the longest path from an input gate to the output gate in the circuit.

Sometimes we also consider circuits in which the +-gates may have un-
bounded fanin. We call these circuits semi-unbounded circuits. Observe that in
semi-unbounded circuits ×-gates still have fanin 2. A circuit is called multiplica-
tively disjoint if for each ×-gate v the subcircuits that have the children of v as
output-gates are disjoint. A circuit is called skew, if for all of its ×-gates one of
the children is an input gate.

We call a sequence (fn) of multivariate polynomials a family of polynomials
or polynomial family. We say that a polynomial family is of polynomial degree,
if there is a univariate polynomial p such that deg(fn) ≤ p(n) for each n. VP is
the class of polynomial families of polynomial degree computed by families of
polynomial size arithmetic circuits. VPe is defined analogously with the circuits
restricted to trees. By a classical result of Brent [Bre76], VPe equals the class of
polynomial families computed by arithmetic circuits of depth O(log(n)). VPws is
the class of families of polynomials computed by families of skew circuits of
polynomial size. Finally, a family (fn) of polynomials is in VNP, if there is a
family (gn) ∈ VP and a polynomial p such that fn(X) =

∑
e∈{0,1}p(n) gn(e,X)

for all n where X denotes the vector (X1, . . . , Xq(n)) for some polynomial q.
A polynomial f is called a projection of g (symbol: f ≤ g), if there are

values ai ∈ F ∪ {X1, X2, . . .} such that f(X) = g(a1, . . . , aq). A family (fn)
of polynomials is a p-projection of (gn) (symbol: (fn) ≤p (gn)), if there is a
polynomial r such that fn ≤ gr(n) for all n. As usual we say that (gn) is hard
for an arithmetic circuit class C if for every (fn) ∈ C we have (fn) ≤p (gn). If
further (gn) ∈ C we say that (gn) is C-complete.

2.2 CSPs. . .

Let D and X be two sets. We denote with DX := {a : X → D} the set of
functions from X to D. A constraint is a function φ : DX → {0, 1} where X and
D are finite sets. We call D the domain and var(φ) = X the set of variables of
φ. We call k = |var(φ)| the arity of the constraint φ. If k = 2 we also say that
φ is binary. An assignment a : var(φ) → D is said to satisfy φ, if and only if
φ(a) = 1. We say that φ is boolean, if D = {0, 1}.

A constraint satisfaction problem (CSP) Φ of size m in the variables var(Φ)
and domain D is a set of m constraints {φ1, . . . , φm} such that the domain of
all φi is D and

⋃
i∈[m] var(φi) = var(Φ). A CSP Φ is called binary if and only if

all constraints φi of Φ are binary. If D = {0, 1} we call the CSP boolean.
A CSP Φ is satisfied by an assignment a : var(Φ) → D if for all i = 1, . . .m

we have φi(a|var(φi)) = 1, where a|var(φi) ∈ Dvar(φ) is the restriction of a onto
var(φ). We also say that a satisfies the constraints of Φ.

When we have an order on the variables of the CSP we sometimes identify
assignments a : var(Φ)→ D and vectors of length var(Φ) in the obvious way by
giving a value table of a. We sometimes also describe constraints by describing
its satisfying assignments as a set of vectors.

A CSP defines a function Φ∗ : Dvar(Φ) → {0, 1} by setting Φ∗(a) = 1 if and
only if a satisfies Φ. In a slight abuse of notation we will not distinguish between
the CSP Φ and the function Φ∗ in this paper, but use the same symbol Φ for
both of them. It will always be clear from the context which one of the two we
mean.

Many well known decision problems can be formulated as CSPs. For example
2-CNF-formulas are constraint satisfaction problems in which all constraint are
of the form a∨b where a and b are literals of the form xi or ¬xi for a variable xi.
This illustrates the fact that in general a CSP has many more variables than
each of its individual constraints.

We will in the following consider families (Φn) of CSPs. Every Φn may have
its own universe Dn and its own set of variables var(Φn). But we will always
assume that the arity of all constraints in all of the CSPs Φn is bounded by a
constant k independent of n. We say that (Φn) has bounded arity in this case.
We assume bounded arity for two reasons: First, the complexity of CSPs with
unbounded arity is not even well understood in the traditional decision version
on Turing machines (see [Mar09]), and thus it appears difficult to adapt it to
our model. Secondly if we allow our constraints to have polynomial size arity it
is easy to come up with CSPs that define hard polynomials (see Section 2.3),
say the permanent, and have only one single constraint. Thus restricting the
structure of the CSPs – as we will do in this paper – does not make much sense
for unbounded arity.

We call a family (Φn) of CSPs p-bounded, if and only if (Φn) has bounded
arity and there is a polynomial p such that |Dn| ≤ p(n) and |var(Φn)| ≤ p(n) for
every n. We say that a constraint φ is c-assignment bounded if for all x ∈ var(φ)
we have |{a(x) | a : var(φ) → D with φ(a) = 1}| ≤ c, i.e., in the satisfying
assignments of φ each variable x takes at most c values. We call a CSP c-
assignment bounded if all of its constraints are c-assignment bounded. Observe
that all boolean CSPs are trivially 2-assignment bounded.

We will (sometimes implicitely) use the following simple observation:

Lemma 1. Let (Φn) be p-bounded family of CSPs. Then there is a p-bounded
family of CSPs (Φ′n) that defines the same family of functions such that Φ′n is of
polynomial size in n.

Proof. Let the arity of all constraints in (Φn) be bounded by k and |var(Φn)| ≤
p(n) for a polynomial p. For each n do the following: Let the constraints of Φn be
φ1, . . . , φm. For each set I ⊆ var(Φn) with |I| ≤ k we set φI =

∧
φi:var(φi)=I

φi
and denote by Φ′n the resulting CSP {ΦI | I ⊆ var(Φn), |I| ≤ k}. It is obvious
that Φn and Φ′n define the same function and the size of Φ′n is bounded by
(p(n) + 1)k. But k is a constant, so the size of (Φ′n) grows polynomially. ut

2.3 . . . and their polynomials

To a CSP Φ we will assign two polynomials P (Φ) and Q(Φ). However, P (Φ) is
only defined for boolean CSPs. So let Φ first be a boolean CSP with the set

of variables X = {x1, . . . , xn}. We assign a polynomial P (Φ) in the (position)
variables Y1, . . . , Yn to Φ in the following way:

P (Φ) :=
∑

e:{x1,...xn}→{0,1}n
Φ(e)Y e.

Here Y e stands for Y e(x1)
1 Y

e(x2)
2 . . . Y

e(xn)
n .

Example 1. Let the constraints in Φ be {x1 ∨ x2, x3 6= x2,¬x4 ∨ x2}. The sat-
isfying assignments are then 0100, 0101, 1010, 1100 and 1101. This results in
P (Φ) = X2 +X2X4 +X1X3 +X1X2 +X1X2X4.

In contrast to P (Φ) the second polynomial Q(Φ) is also defined for non-
boolean CSPs. So let Φ be a CSP with domain D. We assign to Φ the following
polynomial Q(Φ) in the variables {Xd | d ∈ D}.

Q(Φ) :=
∑

a:var(Φ)→D

Φ(a)
∏

x∈var(Φ)

Xa(x) =
∑

a:var(Φ)→D

Φ(a)
∏
d∈D

X
µd(a)
d ,

where µd(a) = |{x ∈ var(Φ) | a(x) = d}| computes number of variables mapped
to d by a. Note that the number of variables in Q(Φ) is |D|, the size of the
domain. and that Q(Φ) is homogeneous of degree |var(Φ)|.

Example 2. Let D = {1, 2, 3, 4} and let the constraints in Φ be {x1 + x2 ≥
4, x3 = 5 − x2, x1 < x2}. The satisfying assignments are then (1, 3, 2), (2, 3, 2),
(1, 4, 1), (2, 4, 1) and (3, 4, 1). This results in Q(Φ) = X1X2X3 +X2

2X3 +X2
1X4 +

X1X2X4 +X1X3X4.

Remark 1. The polynomial Q has a very natural algebraic interpretation: Con-
sider the free monoid D∗ consisting of finite words of the symbols in D. Further-
more consider the free commutative monoid Xc

D on the symbols XD := {Xd | d ∈
D} which is essentially the set of monomials in the variables in XD. There is a
natural monoid morphism q : D∗ → Xc

D with q(a1 . . . as) =
∏s
i=1Xai . The mor-

phism q drops the order of the symbols in a word and computes a commutative
version of it.

Now we consider two rings: The first one is Z[D∗] consisting of formal integer
linear combinations of words in D∗. Observe that we can think of any finite set
S ⊆ D∗ as an element of Z[D∗] by encoding it as

∑
a∈S a. The second ring we

consider is Z[XD] which is simply the polynomial ring over Z in the variables
XD. The monoid morphism q induces the ring morphism Q : Z[D∗] → Z[XD]
by Q(

∑
a caa) =

∑
a caq(a). Given the encoding

∑
a∈S a of a set S, Q computes

a commutative version of it. This is exactly what the polynomial Q(Φ) defined
above does: To a CSP Φ it computes a commutative version of the set of satisfying
assignments.

Remark 2. If Φ is a boolean CSP, i.e. D = {0, 1}, we can get Q(Φ) from P (Φ)
easily. Q(Φ) has only two variables X0 and X1 and is homogeneous of degree
|var(Φ)|. Substituting Yi of P (Φ) by X1

X0
we get

X
|var(Φ)|
0 P (Φ)

(
X1

X0
, . . . ,

X0

X1

)
= Q(Φ)(X1, X0).

In Section 2.4 we will see that in general P (Φ) can be expressed as Q(Φ).
Both P (Φ) and Q(Φ) are expressive enough to characterize VNP (see Section

4). Thus in order to characterize subclasses of VNP we introduce structural
restrictions to CSPs in the next section.

2.4 Treewidth

An excellent introduction to treewidth, its properties and algorithmic conse-
quences can be found in [FG06, Chapter 11]. For the convenience of the reader
we recall the definitions and facts needed in the remainder of this paper.

A tree decomposition of a graph G = (V,E) is a pair (T , (Bt)t∈T), where
T = (T, F) is a tree and (Bt)t∈T is a family of subsets of V such that:

–
⋃
t∈T Bt = V .

– For every v ∈ V , the set B−1(v) := {t ∈ T | v ∈ Bt} is nonempty and
connected in T .

– For every edge uv ∈ E there is a t ∈ T such that u, v ∈ Bt.

The sets Bt are called the bags of the decomposition. The width of the decom-
position is max{|Bt| | t ∈ T}−1. The treewidth tw(G) of a graph G is defined as
the minimum of the widths of all tree-decompositions of G. With this definition
trees have a treewidth of 1.

A path decomposition is a tree decomposition in which T is a path. The path-
width pw(G) is defined in a completely analogous fashion to tw(G). Clearly for
all graphs G we have tw(G) ≤ pw(G).

We state a well known property of tree-decompositions (see [FG06, Chapter
11]).

Proposition 1. Let G = (V,E) be a graph and (T , (Bt)t∈T) be a tree-decompo-
sition of G. Then for each clique C ⊆ V in G there is a bag Bt such that C ⊆ Bt.

To a CSP Φ we assign two graphs: The primal graph GPΦ has the vertex set
var(Φ) and there is an edge between two vertices x and y if and only if there
is a constraint φ in Φ such that {x, y} ⊆ var(φ). Note that the constraints in
Φ yield cliques in GPΦ . The incidence graph GIΦ has the vertex set var(Φ) ∪ {φ |
φ constraint in Φ}. There is an edge between x ∈ var(Φ) and φ if and only if
x ∈ var(φ). There are no other edges in GIΦ, thus GIΦ is bipartite.

We define the treewidth of a CSP G as tw(Φ) := tw(GPΦ). We say that a
family of CSPs (Φn) has bounded treewidth, if and only if tw(GΦn) ≤ d for a
constant d independent of n. We could also have defined the treewidth of Φ as
the treewidth of the incidence graph GIΦ, but the following lemma tells us that
there is not much difference if we consider CSPs with bounded arity.

Lemma 2. For every CSP Φ we have:

a) tw(GIΦ) ≤ tw(GPΦ) + 1.
b) If all constraints in Φ have arity at most k, then tw(GPΦ) ≤ k(tw(GIΦ)+1)−1.

Lemma 2 appears to be folklore, for example part a) can be found in [FMR08]
without proof. For completeness we sketch a proof.

Proof. Let Φ be a CSP with the primal graph GPΦ = (var(Φ), EP) and the
incidence graph GIΦ = (var(Φ) ∪ {φ | φ constraint in Φ}, EI).

For a) consider a tree-decomposition (T , (Bt)t∈T) of GPΦ with T = (T, F).
We construct a tree decomposition of GI from it in the following way: For each
constraint φ of Φ we pick a vertex tφ ∈ T such that var(φ) ⊆ Btφ , i.e. Btφ
contains all of φ’s variables. Such a bag always exists, because constraints of Φ
yield cliques in GPΦ and by Proposition 1 we know that in a tree decomposition
there is for each clique a bag containing its vertices. We add a vertex t′φ to T
and connect it to tφ with an edge tφt′φ. Furthermore we set Bt′φ := Btφ ∪ {φ}. It
is easy to check that the result is indeed a tree decomposition of GIΦ and that
the width increases only by 1. This proves a).

For b) we start from a tree-decomposition (T , (Bt)t∈T) of GIΦ with width
tw(GIΦ). In each bag Bt we substitute all vertices φ corresponding to constraints
of Φ by var(φ) calling the resulting sets B̄t. It is easy to check that (T , (B̄t)t∈T)
is a tree decomposition of GPΦ with at most k(tw(GIΦ) + 1) vertices in each
bag. In particular, B̄−1(x) is connected for each x ∈ var(Φ), because B−1(x)
was connected, for each constraint φ B−1(φ) was connected and for each φ
with x ∈ var(φ) there is a t such that x, φ ∈ Bt. It follows that B̄−1(x) =
B−1(x) ∪

⋃
φ : x∈var(φ)B

−1(φ) is connected. This yields b). ut

The following lemma relates the expressivity of P and Q.

Lemma 3. For every boolean CSP Φ in s variables there is a 2-assignment
bounded CSP Ψ with domain size |D| = 2s such that P (Φ) ≤ Q(Ψ) and GPΦ '
GPΨ .

Proof. Let var(Φ) = {x1 . . . , xs}. We construct Ψ with the variable set var(Ψ) =
{x̄1, . . . , x̄s}. For each boolean variable xi ∈ var(Φ) the domain D contains two
elements (i, 0) and (i, 1).

For each constraint φm in Φ with the variables xj1 , . . . , xjk we construct a
constraint ψm in Ψ with the variables x̄j1 , . . . , x̄jk . The new constraint ψm is
satisfied by an assignment a with x̄jt 7→ (it, bt), if and only if xjt 7→ bt is a
satisfying assignment of φm and it = jt for t = 1, . . . , k.

This way in each satisfying assignment of Ψ the only variable that can take
the values (i, 0) and (i, 1) is the variable x̄i. Also satisfying assignments of Φ
and Ψ directly correspond: If xi has the value b, then x̄i has the value (i, b).
Identifying Yi in P (Φ) with X(i,1) in Q(Ψ) and substituting all variables X(i,0)

in Q(Ψ) by 1, we get P (Φ) = Q(Ψ)|(Y(i,0)=1). Thus P (Φ) ≤ Q(Ψ). Observing that
GΦ ' GΨ via xi 7→ x̄i completes the proof. ut

3 Statement of the results

Having introduced all necessary definitions we will now formulate our results in
this section. Our first theorem characterizes the expressive power of boolean and
non-boolean c-assignment bounded CSPs of bounded path- and treewidth.

Theorem 1 (Characterization of VPe).

a) Let (Φn) be a p-bounded family of boolean CSPs with bounded treewidth. Then
(P (Φn)) ∈ VPe. Moreover, any family in VPe is a p-projection of such a
(P (Φn)). The same statement also holds with pathwidth instead of treewidth.

b) Let (Φn) be a p-bounded family of c-assignment bounded CSPs with bounded
treewidth. Then (Q(Φn)) ∈ VPe. Moreover, any family in VPe is a p-projec-
tion of such (Q(Φn)). The same statement also holds with pathwidth instead
of treewidth.

Observe that Theorem 1 implies that bounded pathwidth and bounded tree-
width have the same computational power in this setting, although pathwidth
is a far more restrictive measure. This is a striking parallel to the findings of
Flarup and Lyaudet in [FL08] where in a different context of arithmetic circuit
complexity the expressive power of path-width and treewidth coincides, too.

Our next Theorem shows that general non-boolean CSPs with bounded
treewidth characterize VP.

Theorem 2 (Characterization of VP). Let (Φn) be a p-bounded family of
CSPs with bounded treewidth. Then (Q(Φn)) ∈ VP. Moreover, any family in
VP is a p-projection of such a (Q(Φn)).

Finally we show that for general non-boolean CSPs pathwidth and treewidth
differ in expressivity. With bounded pathwidth we get a characterization of VPws.

Theorem 3 (Characterization of VPws). Let (Φn) be a p-bounded family of
CSPs with bounded pathwidth. Then (Q(Φn)) ∈ VPws. Moreover, any family in
VPws is a p-projection of such a (Q(Φn)).

Observe that the only difference between Theorem 1 b) and Theorem 2/3 is
the c-assigment boundedness. This means that the difference between VPe and
VP/VPws in this setting is simply that for VP and VPws the variables in the
constraints may take more different values in satisfying assignments.

We will prove Theorem 1, Theorem 2 and Theorem 3 in several individual
lemmas.

We now relate our results to known results. Fischer, Makowsky and Ravve
[FMR08] consider the problem of counting solutions to boolean CSPs and achieve
the following results:

Theorem 4 ([FMR08]).

a) There is an algorithm that given a CNF-Formula Φ of size n and a tree
decomposition of GIΦ of width k counts the number of satisfying assignments
of Φ using at most 4kn operations.

b) Given a boolean CSP Φ of size n and a tree decomposition of GPΦ of width
k, the number of satisfying assignments of Φ can be computed with 4kn2

arithmetic operations.

Observe that CNF formulas are special forms of CSPs in which the con-
straints are disjunctive clauses. For CNF-formulas the size of the clauses need
not have bounded arity to guarantee feasibility in part a) of Theorem 4. In b)
there is an implicit bound on the arity of the constraints, because the treewidth
of the primal graph is bounded, so the setting is more comparable to ours. Thus
Theorem 2 can be seen as an extension of b) to non-boolean CSPs also adding
a matching lower bound.

Briquel, Koiran and Meer [KM08,BKM11] give the following result.

Theorem 5 ([KM08,BKM11]). For every family (Φn) of p-bounded CNF-
formulas with bounded treewidth of GIΦn we have (P (Φn)) ∈ VPe. Moreover, any
family in VPe is a p-projection of such a (P (Φn)).

Again the size of the CNF-clauses is not restricted and the treewidth of
the incidence graph is considered. Theorem 5 can be interpreted as translation
of Theorem 4 a) into the arithmetic circuit model with a matching hardness
result. Theorem 1 is an extension of Theorem 5 to general CSPs instead of
CNF-formulas. Moreover, the lower bound is shown to already hold for bounded
pathwidth. But in contrast to Briquel, Koiran and Meer we require a bound on
the arity of the constraints to show feasibility in our setting.

4 The power of unrestricted CSP

To start off our explorations of the expressivity of CSPs we briefly examine the
power of CSPs when we do not restrict their structure. We will show that in
this case we get a characterization of VNP in both the boolean and non-boolean
case. The hardness follows directly from the results in [BK09]. The upper bound
is a standard argument.

Lemma 4. a) If (Φn) is a p-bounded family of boolean CSPs, then (P (Φn)) ∈
VNP. Moreover, any family in VNP is a p-projection of such (P (Φn)).

b) If (Φn) is a p-bounded family of CSPs, then (Q(Φn)) ∈ VNP. Moreover, any
family in VNP is a p-projection of such (Q(Φn)).

Proof. Note that with Lemma 3 we only need to show the lower bound for a)
and the upper bound for b). The lower bound for a) is proved in [BK09, Section
3], so it only remains to prove that Q(Φn) ∈ VNP for a p-bounded family (Φn)
of CSPs.

So let (Φn) be a p-bounded family of CSPs with domains (Dn). Set dn = |Dn|
and an = |var(Φn)|. We encode assignments a : var(Φn)→ D by dn×an-matrices
M = (mdx)d∈Dn,x∈var(Φn) with entries 0 and 1. The entry mdx is 1 if and only if
a(x) = d. Note that a matrix M ∈ {0, 1}dn×an is an encoding of an assignment
a : var(Φn)→ D if and only if there is exactly one 1 in each column of M .

For Φn we will construct an arithmetic formula Ψn of size polynomial in dn
and |var(Φ)| such that Q(Φ)(X) =

∑
M∈{0,1}dn×an Ψ(M,X). We sub-divide Ψn

into three factors Ψn,1, Ψn,2 and Ψn,3.
We set

Ψn,1 =
∏

x∈var(Φn)

∑
d∈Dn

mdx

∏
d′∈Dn,d′ 6=d

(1−md′x).

It is easy to see that for M ∈ {0, 1}dn×an we have Ψn,1(M) ∈ {0, 1} and
Ψn,1(M) = 1 if and only if M is an encoding of an assignment a : var(Φn)→ D,
i.e., in every column there is exacly one 1-entry.

We set
Ψn,2 =

∏
φ constraint of Φn

ψφ,

where ψφ is the following: Assuming that the matrix M encodes an assignment
a : var(Φn) → D we have ψφ(M) = 1 if a|var(φ) satisfies φ, otherwise ψφ =
0. The constraints all have arity bounded by a constant k, so they have at
most dkn satisfying assignments. Each of these can be checked individually by an
arithmetic formula of size O(k) = O(1), so ψφ can be realized as a formula of
size O(dkn). Observing that by Lemma 1, Φn has w.l.o.g. at most polynomially
many constraints we get that Ψn,2 has a formula of polynomial size.

Finally,
Ψn,3 =

∏
x∈var(Φ)

(
∑
d∈D

mdxXd).

It is clear that indeed Ψn = Ψn,1Ψn,2Ψn,3 can be computed by a polynomial size
formula. Also we haveQ(Φ)(X) =

∑
M∈{0,1}dn×an Ψ(M,X) and thus (Q(Φn)) ∈ VNP.

ut

5 Lower bounds

In this section we show the lower bounds on the expressivity of polynomials
defined by CSPs of bounded pathwidth and treewidth.

Lemma 5. There is a constant c ≤ 26 such that the following holds: For every
(fn) ∈ VPe there is a p-bounded family (Φn) of boolean CSPs with pathwidth at
most c such that (fn) ≤p (P (Φn)).

Proof. Let A1, . . . , An be 3 × 3-matrices. We denote the entries in matrix Ai
by (Xi

jk)j,k∈[3]. Let fn be the (1, 1)-entry of the product A1A2 . . . An. We show
that there is a family Φn of boolean CSPs with pathwidth 26 such that (fn) ≤
(P (Φn)). With the well-known VPe-completeness of 3 × 3-matrix product (see
[BOC92]) the claim of Lemma 5 follows.

We construct a CSP Φn iteratively. For each i we give a CSP Φin in the
variables xljk and yljk with l ≤ i and j, k ∈ [3]. The resulting polynomial P (Φin)
has the variables X l

jk and Y ljk. The variables Y ijk do not appear in the iterated
matrix product and we get rid of them by projecting them all to 1. In order

not to clutter the construction in our proof too much with these variables, we
already substitute them by 1 in the polynomials P (Φin), so they never appear in
our computations.

Let f ijk be the polynomial computed in the (j, k)-entry of A1A2 . . . Ai. Fur-
thermore let ay(i, j, k) := yijk ∧

∧
(j′k′)6=(j,k) ¬yij′k′ . Note that ay(i, j, k) is a con-

straint in the variables yijk that is satisfied only by the assignment yijk 7→ 1 and
yij′k′ 7→ 0 for (j, k) 6= (j′, k′). Let ax(i, j, k) be the same for the variables xijk.

We now construct the Φin iteratively. In a slight abuse of notation we write
the Φin as a conjunction of their constraints φl. During the construction we will
make sure that the following holds:

P
(
Φin ∧ ay(i, j, k)

)
= f ijk.

Intuitively by fixing the yijk we can compute individual entries of the product
A1A2 . . . Ai.

The CSP Φ1
n has the single constraint

φ1 =
∨
j′,k′

(y1
j′k′ ∧ ax(1, j′, k′)).

We have P (Φ1
n ∧ ay(1, j, k)) = P (ax(1, j, k)) = X1

jk as desired.
For the construction of Φi+1

n assume that we have already constructed Φin
with the desired properties. We construct Φi+1

n from Φin by adding one constraint
φi+1. We set

Φi+1
n = Φin ∧

 ∨
(j′,k′)

(
yi+1
j′k′ ∧

∨
l

(ax(i+ 1, l, k′) ∧ ay(i, j′, l))

)
︸ ︷︷ ︸

:=φi+1

.

We get

P (Φi+1
n ∧ ay(i+ 1, j, k)) = P

(
Φin ∧

(∨
l

(ax(i+ 1, l, k) ∧ ay(i, j, l))

))

=
3∑
l=1

P (Φin ∧ ax(i+ 1, l, k) ∧ ay(i, j, l))

=
3∑
l=1

Xi+1
l,k P (Φin ∧ ay(i, j, l))

=
3∑
l=1

Xi+1
l,k f

i
j,l

= f i+1
jk

Having constructed Φnn we easily get fn as

fn = P (Φnn ∧ a(n, 1, 1)︸ ︷︷ ︸
:=Φn

).

Certainly (Φn) is p-bounded, so only the bound on the pathwidth remains
to be shown. The primal graph GPΦn has the vertices xijk and yijk for i ∈ [n] and
j, k ∈ [3]. Each constraint φi yields a clique in GPΦn and there are no other edges.
We give a path decomposition by a path P of the vertices t1, . . . tn and the bags
Bti = var(φi). It is easy to check that this is indeed a path decomposition of
GPΦn and it has width 26. ut

One could show a version of Lemma 5 for bounded tree-width with a more
standard parse tree argument. We chose to instead present this version, not only
because it is stronger due to its path-width formulation but mainly because we
deem the proof to be more interesting. We will see parse tree arguments in the
proof of Lemma 6 and Lemma 8.

Combining Lemma 5 and Lemma 3 directly yields the following corollary.

Corollary 1. There is a constant c ≤ 26 such that the following holds: For every
(fn) ∈ VPe there is a p-bounded family (Ψn) of 2-assignment bounded CSPs with
pathwidth at most c such that (fn) ≤p (Q(Ψn)).

Next we will show the lower bounds for the characterizations of VP and VPws.
For the proofs we use so called parse tree arguments (see e.g. [MP08, Section 4]).
A parse tree T of a multiplicatively disjoint circuit C is a subgraph of C that is
constructed in the following way:

– Add the output gate of C to T .
– For every gate v added to T do the following;
• If v is a +-gate, add exactly one of its children to T .
• If v is a ×-gate, add both of its children to T .

Observe that parse trees are binary trees. The weight w(T) of a parse tree T
is the product of the labels of its leaves. The polynomial computed by C is the
sum of the weights of all of C’s parse trees.

Lemma 6. Let (fn) ∈ VP, then there is a p-bounded family Φn of binary CSPs
such that (fn) ≤p (Q(Φn)) and GPΦn is a tree for every n.

In the proof we will use the following result.

Lemma 7. (fn) ∈ VP if and only if (fn) is computed by a family of multiplica-
tively disjoint semi-unbounded logarithmic depth circuits.

The proof of Lemma 7 easily follows by applying the techniques of Malod and
Portier [MP08, Lemma 2] on the classical characterization of VP by logarithmic
depth semi-unbounded arithmetic circuits found by Valiant et al. [VSBR83].

+

×

+

2X1 X2 X3

+

× ×

+ + +

1 2 X1 X2 X3

Fig. 1. The original circuit on the left is changed into one in which the gates on each
level have the same operation label.

Proof (of Lemma 6). The idea of the proof is the following: We use the char-
acterization in Lemma 7 which yields that the polynomials fn have logarithmic
depth parse trees. We encode these parse trees into polynomial size CSPs whose
primal graphs are trees isomorphic to the parse trees of the fn. Summing up
over all possible encodings of parse trees we get polynomials whose projection
are the fn. We now describe the construction in more detail.

So consider a polynomial f = fn from our family. By Lemma 7 we know that
fn is computed by a logarithmic depth semi-unbounded circuit C of polynomial
size. By adding dummies we can make sure that C has the following “layered”
form (see Figure 1 for an illustration):

– All operation gates at the same depth have the same operation.
– All leaves are at the same depth level.

This implies that all parse trees of C are isomorphic binary trees. Let the
children of the ×-gates in Φ be ordered, i.e., we call one of them the left child
and the other one the right child. Let T be a binary tree isomorphic to the parse
trees of C. The children of vertices in T that correspond to ×-gates in C are
also ordered.

We now build a CSP Φ with var(Φ) = V (T) and GPΦ = T . The domain is the
vertex set V (C) of C. To distinguish the vertices of T from the gates of C we
write the vertices of T with a hat, e.g. v̂ ∈ V (T). For each edge ûv̂ in T we define
a constraint φûv̂ on the variables û and v̂ in the following way: If û corresponds
to a +-gate in C, then the satisfying assignments of φûv̂ (where u and v denote
the images of û and v̂, respectively) are described by

{(u, v) | u, v ∈ V (C), u is a +-gate, v is a child of u}.

If û corresponds to a ×-gate and v̂ is the left child of û, then φûv̂ is described by

{(u, v) | u, v ∈ V (C), u is a ×-gate, v is the left child of u}.

For right children we add constraints in an analog fashion.
It is easy to see, that Φ is satisfied by an assignment a : V (T)→ V (C) if and

only if a maps T onto a parse tree Ta of C. Also for each satisfying assignment
a the resulting monomial

∏
û∈V (T)Xa(û) can be projected to w(Ta) by doing

the following: If v is an operation gate of C, then substitute Xv by 1. If v is an
input gate of C with label l, then substitute Xv by l. Because each v is either an
operation gate or an input gate but never both, these settings do not contradict
for different satisfying assignments of Φ. It follows that f ≤ Q(Φ). The primal
graph GPΦ of Φ is by construction the tree T . The observation that the size of Φ
and its domain V (C) are polynomial completes the proof. ut

We use a similar parse tree argument for VPws.

Lemma 8. Let (fn) ∈ VPws, then there is a p-bounded family Φn of binary
CSPs such that (fn) ≤p (Q(Φn)). Furthermore pw(Φn) = 1 for every n.

Proof. The main difference to the proof of Lemma 6 is that for skew circuits not
all parse trees are isomorphic and that we know no way to make them isomorphic
without losing skewness. This problem is remedied by the insight that parse trees
of skew circuits have a very restricted form that allows encoding them into CSPs
of bounded pathwidth.

So let (fn) ∈ VPws. Then there is a family (Cn) of polynomial size skew
circuits such that Cn computes fn for every n. Let f = fn and C = Cn and
s = |C|. Each multiplication gate v of C has at least one child that is an input
gate. We call this child the leaf child of v and the other child the inner child of
v. If both children of v are input gates we arbitrarily choose one of them to be
the leaf child and the other one the inner child. Each parse tree T of C has a
very special form: T consists of a path P with some dangling leaf children. An
illustration is shown in Figure 2. Note that in general not all parse trees have
the same depth and that the order of the +- and ×-gates may differ in them.

We construct a CSP Φ that has the primal graph G = GPΦ = (V,E) with V =
{v̂i | i ∈ {0, . . . s}}∪{ûi | i ∈ {0, . . . s}} and E = {v̂iûi | i ∈ {0, . . . s}}∪{v̂iv̂i+1 |
i ∈ {0, . . . s − 1}}. We have var(Φ) = V and the domain of D = V (C) ∪ {d}
for a dummy value d. Note that Φ has more variables than any parse tree of C,
so that we cannot simply map var(Φ) onto the parse trees like in the proof of
Lemma 6. Instead we map redundant vertices in var(Φ) onto the dummy d. This
way we deal with the fact that the parse trees are not isomorphic.

For each edge e in G we have a constraint φe. For e = v̂iûi the constraint
φv̂iûi has the set of satisfying assignments

{(v, u) | v ×-gate, u its leaf child } ∪ {(v, d) | v +-gate } ∪ {(d, d)}.

For each edge e = v̂iv̂i+1 the constraint φv̂iv̂i+1 has the satisfying assignments

{(v, v′) | v ×-gate, v′ its inner child }
∪ {(v, v′) | v +-gate, v′ child of v }
∪ {(v, d) | v input gate } ∪ {(d, d)}.

×

X1 +

×

X2 +

X1 X3

×

X1 +

×

X2 +

X1

×

X1 +

×

X2 +

X3

×

X1 +

+

X1

×

X1 +

+

X3

Fig. 2. A skew cicuit and all of its parse trees. The polynomial computed equals X2
1X2+

X1X2X3 + X2
1 + X1X3.

Furthermore Φ has one unary constraint φv̂0 that is only satisfied by the
assignment a : {v̂0} → V (C) with a(v̂0) = v∗ where v∗ is the output gate of C.

It is easy to see that the only satisfying assignments a : V → V (C) of Φ are
encodings of parse trees of C. The constraint φv̂0 forces the satisfying assign-
ments to map v̂0 to the output gate v∗. As discussed before the the satisfying
assignments are “filled up” with dummies to deal with the different size and
structure of the parse trees. With projections similar to those in the proof of
Lemma 6 and substituting Xd by 1 we get f ≤ Q(Φ). ut

6 Upper bounds on the complexity

Having shown lower bounds on the expressivity of polynomials defined by CSPs,
we will now prove the matching upper bounds. We will do this in detail for the
case of non-boolean c-assignment bounded CSPs of bounded treewidth and then
show how this proof can be adapted for the other two cases.

Lemma 9. For every family (Φn) of p-bounded and c-assignment bounded CSPs
of bounded treewidth we have (Q(Φn)) ∈ VPe.

The proof of Lemma 9 is conceptually similar to that in [KM08,BKM11] and
[FMR08]: We make an inductive construction along the tree-decomposition. The
difference here is that we do not consider CNF-formulas but arbitrary constraint
satisfaction problems. In the proofs in [KM08,BKM11] and [FMR08] the authors
use the fact that they can split the clauses of CNF formulas into different parts.
This is not possible here, because we do not restrict the internal structure of
the constraints. That is why we have to handle the individual constraints as a
unit. For this reason we consider tree-decompositions of GP and not of GI . In
the former it is guaranteed that the variables of the individual constraints are
kept together by Proposition 1. Remember that for the case of bounded arity

constraints which we consider here both treewidth measures are equivalent by
Lemma 2.

The authors of [FMR08] also consider a counting problem #GENSAT that
has boolean constraints with arbitrary structure instead of CNF. They achieve
results similar to ours in their setting, i.e. their results also hold for bounded
treewidth of GPΦ or bounded arity of the constraints and bounded treewidth of
GIΦ. Their technique for the proof is very different though: They reduce it to the
CNF-case. It seems unclear how such an approach would work in our setting,
because our CSPs are not boolean and thus we know of no standard form like
CNF for them. Therefore we present a different approach that unfortunately is
combinatorically more intricate.

Proof (of Lemma 9). Consider a family (Φn) of CSPs with the desired properties.
To ease notation we fix n and set Φ = Φn and D = Dn.

Fix a tree-decomposition (T , (Bt)t∈T) of the primal graph GPΦ with minimal
width. W.l.o.g. the tree T = (T, F) is a rooted, binary tree and has depth
O(log(n)) (see [Bod89]). We give T a direction from the leaves to the root and
will later make an induction along this direction.

Claim 1. We may assume that there is a bijection from the vertices in T to the
constraints in Φ such that t ∈ T is mapped to a constraint φt with var(φt) = Bt.

Proof. In a first step we define a mapping λ1 from the constraints to the vertices
in T : For each φ in Φ we choose t ∈ T such that var(φ) ⊆ Bt and set λ1(φ) := t.
From Proposition 1 we know that this is always possible. For each t ∈ T that
is not an image of a constraint φ we add a constant constraint φt : U∅ → {1}
and set λ1(φt) = t. It follows that λ1 is a surjection from the constraints to the
vertices in T such that var(φ) ⊆ Bλ1(φ) for all constraints φ.

From λ1 we construct a bijection λ2 by combining all constraints that are
mapped onto t to one constraint φt by φt :=

∧
φ∈λ−1

1 (t) φ. Note that var(φt) ⊆ Bt.
In a last step we make sure that for all t we have Bt ⊆ var(φt). If there exists

x ∈ Bt \ var(φt), we take an arbitrary constraint φx such that x ∈ var(φx).
Because Φ is c-assignment bounded, the set Ax := {a(x) | a : var(φx) →
D with φx(a) = 1} has at most c elements. We set φ′t := φt∧ (

∨
u∈Ax x = u). By

doing this iteratively for all t and all x ∈ Bt \ var(φt), we get a new constraints
that are still c-assignment bounded. For the resulting CSP Φ′ with the constraint
set {φ′t | t ∈ T} we have that t 7→ φ′t is bijective and var(φ′t) = Bt.

Observe that Φ and Φ′ compute the same function. Moreover, we did not
change the Bt during the construction. Furthermore for each t ∈ T the edges
induced by φ′t in the primal graph GPΦ have both their end vertices in Bt. Thus
(T , (Bt)t∈T) is a tree decomposition of GPΦ′ , too. Also Φ′ is still c-assignment
bounded. So we may assume that Φ′ was the CSP we started with. ut

From Claim 1 it follows that we can assume |Bt| ≤ k for every t ∈ T , where
k is the upper bound on arity of the constraints in Φ.

For each vertex t of T let Tt be the subtree of T that has t as its root. Let
Tt = V (Tt) be the vertex set of Tt. Furthermore let Φt be the CSP with the set
of constraints {φt′ | t′ ∈ Tt} and the set of variables var(Φt) =

⋃
t′∈Tt Bt′ .

We say that an assignment a : Bt → D is good for t or φt if it satisfies φt.
Similarly we call a partial assignment to Bt good for t or φt if it can be extended
to a good assignment. We are only interested in good assignments for individual
constraints φt, because bad assignments do not contribute to Q(Φ) anyway.

Let a : V → D and b : W → D be assignments. We say that a and b are
consistent (symbol: a ∼ b), if a|V ∩W = b|V ∩W , i.e. they assign the same values
to variables they share.

For each vertex t ∈ T we will compute polynomials

ft,a,e :=
∑

α : var(Φt)→D,
a∼α

Φt(α)
∏

x∈var(Φt)\e

Xα(x),

where a is a good assignment for φt and e ⊆ Bt. The sets e ⊆ Bt will later in the
construction prevent that variables Xa(x) appear more than once in a monomial
for x ∈ var(Φ).

Observe that for each t there are only O(1) polynomials ft,a,e: Because Φ is
c-assignment bounded and its constraints φ have at most arity k, each φ has
at most ck satisfying assignments. Also there are at most 2|Bt| ≤ 2k sets e. It
follows that there are at most ck2k = O(1) polynomials ft,a,e for each t.

The depth of a vertex t ∈ T , denoted by depth(t), is the length of the longest
path from a leaf to t in Tt.

Claim 2. For each t ∈ T we can compute all ft,a,e with a circuit of depth
O(depth(t)).

Lemma 9 follows easily with Claim 2: Let t∗ be the root of T . By definition

Q(Φ) =
∑

α : var(Φ)→D

Φ(α)
∏

x∈var(Φ)

Xα(x)

=
∑

a : Bt∗→D

∑
α : var(Φ)→D,a∼α

Φ(α)
∏

x∈var(Φ)

Xα(x)

=
∑

a : Bt∗→D,Φt∗ (a)=1

ft∗,a,∅

The tree T has depth O(log(n)), so with Claim 2 we can compute Q(Φ) with a
circuit of depth O(log(n)). It follows that (Φn) ∈ VPe. Thus all that is left to do
is to prove Claim 2. ut

Proof (of Claim 2). We make an induction along Tt from the leaves to t. So let t
be a leaf. We have ft,a,e =

∏
x∈Bt:x/∈eXa(x). Because of |Bt| ≤ k all the ft,a,e can

be computed with constantly many arithmetic operations and thus in constant
depth.

For the induction step we consider a vertex t ∈ T with children t1 and t2.
With the induction hypothesis it suffices to show how to compute the ft,a,e from
the polynomials ftj ,aj ,ej in a constant number of steps. We will show this in two

substeps: First we compute reduced polynomials f ′tj ,a′j ,e′j from the ftj ,aj ,ej . Then
we compute ft,a,e from the f ′tj ,a′j ,e′j .

Let a′j : Btj ∩ Bt → D be an assignment of Btj ∩ Bt that is good for tj and
let e′j ⊆ Btj ∩Bt. We define

f ′tj ,a′j ,e′j :=
∑

α:var(Φtj)→D,a
′
j∼α

Φtj (α)
∏

x∈var(Φtj)\e
′
j

Xα(x)

=
∑

a′:Btj→D,a
′
j∼a′

∑
α:var(Φtj)→D,a′∼α

Φtj (α)
∏

x∈var(Φtj)\e
′
j

Xα(x)

=
∑

a′:Btj→D,a
′
j∼a′

ftj ,a′,e′j . (1)

There are at most ck good assignments for tj . Thus the computation of the
f ′tj ,a′j ,e′j

from the ftj ,aj ,ej can be done with O(1) additions.

We now compute the ft,a,e from the f ′tj ,a′j ,e′j
. To do so we split Bt into

disjoint sets Bt = B(1)∪̇B(2)∪̇Bb∪̇B∗ as follows: B∗ := Bt ∩ Bt1 ∩ Bt2 , B(1) :=
(Bt ∩Bt1) \B∗, B(2) := (Bt ∩Bt2) \B∗, Bb := Bt \ (Bt1 ∪Bt2).

Note that

var(Φt) \ (var(Φt1) ∪ var(Φt2)) = Bb. (2)

We claim that

var(Φt1) ∩ var(Φt2) = B∗. (3)

Indeed, var(Φt1) ∩ var(Φt2) ⊇ B∗ is clear by the definition of B∗. For the other
direction consider x ∈ var(Φt1) ∩ var(Φt2). There must be t1 ∈ T1 and t2 ∈ T2

such that x ∈ Bt1 and x ∈ Bt2 . This means that t1, t2 ∈ B−1(x). The vertex set
B−1(x) is connected in T , because (T , (Bt)t∈T) is a tree decomposition. This
yields that t, t1, t2 ∈ B−1(x) which means that indeed x ∈ Bt ∩Bt1 ∩Bt2 . Thus
var(Φt1) ∩ var(Φt2) ⊆ B∗ and (3) follows.

For e ⊆ Bt we define e∗ := e∩B∗ and e(j) := e∩B(j). Moreover, we chose a
decomposition B∗ = e′1∪e′2 with e∗ = e′1∩e′2. This will allow us to prevent below
that Xa(x) is multiplied twice for x ∈ B∗. We claim that we have the following
disjoint decomposition:

var(Φt) \ e =
(
var(Φt1) \ (e′1 ∪ e(1))

)
∪̇
(
var(Φt2) \ (e′2 ∪ e(2))

)
∪̇ (Bb \ e) . (4)

To see this note that Bb \e is disjoint from the other sets by (2). Moreover, from
(3) and B∗ = e′1∪e′2 we get

(
var(Φt1) \ (e′1 ∪ e(1))

)
∩
(
var(Φt2) \ (e′2 ∪ e(2))

)
= ∅.

Thus the union is indeed disjoint. Equality in (4) can be seen like this: From (2)
we get var(Φt) = var(Φt1) ∪ var(Φt2) ∪ Bb. Also, by the respective definitions,
e = (e∩Bb)∪̇e(1)∪̇e(2)∪̇(e′1 ∩ e′2). With these equalities, e∗ = e′1 ∩ e′2 and (2) one
can show (4).

For a : Bt → D we set a(j) := a|B(j) . With (4) we can compute ft,a,e in the
following way:

ft,a,e =
∑

a:var(Φt)→D

Φt(a)
∏

x∈var(Φt)

Xa(x)

=
∑

α : var(Φt1)→D,
β : var(Φt2)→D,

a∼α,a∼β

Φt1(α)Φt2(β)
∏

x∈var(Φt1)\(e′1∪e(1))

Xα(x)

∏
x∈var(Φt2)\(e′2∪e(2))

Xβ(x)

∏
x∈Bb\e

Xa(x)

=

 ∏
x∈Bb\e

Xa(x)

 f ′t1,a(1),e
′
1∪e(1)

f ′t2,a(2),e
′
2∪e(2)

.

ut

As a corollary of Lemma 9 we get with Lemma 3:

Corollary 2. For every family (Φn) of boolean p-bounded CSPs of bounded
treewidth we have (P (Φn)) ∈ VPe.

The proof of Lemma 9 can be adapted to show the following missing upper
bounds for VP and VPws. We only sketch the proofs here, because they are very
similar.

Lemma 10. For every family (Φn) of p-bounded CSPs of bounded treewidth we
have (Q(Φn)) ∈ VP.

Proof (Sketch). If we do not require c-assignment boundedness, the construction
of the proof of Lemma 9 still works. It is easy to check that Claim 1 still holds.
The difference is that instead of Claim 2 we formulate another claim:

Claim 3. For each t ∈ T we can compute all ft,a,e with an arithmetic circuit of
size |Tt||Dn|O(1).

Claim 3 follows easily by the same techniques as in the proof of Claim 2. The
difference is that we have (for fixed t) |Dn|O(1) polynomials ft,a,e and thus in
the computation of the f ′tj ,a′j ,e′j (see Equation (1) on page 19) there is a sum of

|Dn|O(1) terms. Lemma 10 follows directly from Claim 3 . ut

Lemma 11. For every family (Φn) of p-bounded CSPs of bounded pathwidth we
have (Q(Φn)) ∈ VPws.

Proof (Sketch). The proof is very similar to that of Lemma 10. Instead of a
tree decomposition we have a path decomposition (P, (Bt)t∈T) with P = (P, F)
being a path. The key step is proving the following new claim.

Claim 4. For each t ∈ P we can compute all ft,a,e with a skew circuit of size
|Pt||Dn|O(1).

Claim 4 can easily be proved analogously to Claim 3. There are two new impor-
tant insights;

1. Each vertex t has only one child t′. Thus the ft,a,e can be computed from
f ′t′,a′,e′ defined analogously to the f ′tj ,a′j ,e′j . In this computation every multi-
plication has a variable Xa(x) as one factor. We never have to multiply any
of the f ′t′,a′,e′ .

2. The computation of the f ′t′,a′,e′ from the ft′,a,e requires only additions, so it
is uncritical concerning skewness of the resulting circuit.

Lemma 11 follows directly with Claim 4 ut

References

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the
desirability of acyclic database schemes. J. ACM, 30(3):479–513, 1983.

[BK09] Irénée Briquel and Pascal Koiran. A dichotomy theorem for polynomial
evaluation. In MFCS09, pages 187–198, 2009.

[BKM11] Irénée Briquel, Pascal Koiran, and Klaus Meer. On the expressive power
of cnf formulas of bounded tree- and clique-width. Discrete Applied Math-
ematics, 159(1):1 – 14, 2011.

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a
constant number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[Bod89] Hans L. Bodlaender. NC-algorithms for graphs with small treewidth. In
Graph-theoretic concepts in computer science (Amsterdam, 1988), volume
344 of Lecture Notes in Comput. Sci., pages 1–10. Springer, Berlin, 1989.

[Bre76] R.P. Brent. The complexity of multiple-precision arithmetic. In R P Brent
R S Andersson, editor, The Complexity of Computational Problem Solving,
pages 126–165. Univ. of Queensland Press, 1976.

[Bür00] Peter Bürgisser. Completeness and reduction in algebraic complexity theory.
Springer Verlag, 2000.

[CMR01] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed pa-
rameter complexity of graph enumeration problems definable in monadic
second-order logic. Discrete Applied Mathematics, 108(1-2):23–52, 2001.

[FG06] J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag
New York Inc, 2006.

[FL08] Uffe Flarup and Laurent Lyaudet. On the expressive power of perma-
nents and perfect matchings of matrices of bounded pathwidth/cliquewidth.
CoRR, abs/0801.3408:x, 2008.

[FMR08] Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth
assignments of formulas of bounded tree-width or clique-width. Discrete
Applied Mathematics, 156(4):511–529, 2008.

[GLS01] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of
acyclic conjunctive queries. J. ACM, 48(3):431–498, 2001.

[KM08] Pascal Koiran and Klaus Meer. On the expressive power of CNF formulas
of bounded tree- and clique-width. In WG08, pages 252–263, 2008.

[LKF07] Laurent Lyaudet, Pascal Koiran, and Uffe Flarup. On the expressive power
of planar perfect matching and permanents of bounded treewidth matrices.
CoRR, abs/0705.3751:xx, 2007.

[Mar09] Dániel Marx. Tractable structures for constraint satisfaction with truth
tables. In STACS, pages 649–660, 2009.

[MP08] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic
complexity classes. J. Complexity, 24(1):16–38, 2008.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In STOC78,
pages 216–226, 1978.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast par-
allel computation of polynomials using few processors. SIAM J. Comput.,
12(4):641–644, 1983.

