
The Complexity of Weighted Counting for
Acyclic Conjunctive Queries

Arnaud Durand
IMJ UMR 7586 - Logique
Université Paris Diderot
F-75205 Paris, France
durand@logique.jussieu.fr

Stefan Mengel∗

Institute of Mathematics
University of Paderborn

D-33098 Paderborn, Germany
smengel@mail.uni-paderborn.de

November 27, 2012

This paper is a study of weighted counting of the solutions of acyclic
conjunctive queries (ACQ). The unweighted quantifier free version of this
problem is known to be tractable (for combined complexity), but it is also
known that introducing even a single quantified variable makes it #P-hard.
We first show that weighted counting for quantifier-free ACQ is still tractable
and that even minimalistic extensions of the problem lead to hard cases.
We then introduce a new parameter for quantified queries that permits
to isolate a large island of tractability. We show that, up to a standard
assumption from parameterized complexity, this parameter fully characterizes
tractable subclasses for counting weighted solutions of ACQ queries. Thus
we completely determines the tractability frontier for weighted counting for
ACQ.

1 Introduction

Conjunctive query answering (CQ for short) is a fundamental problem from database
theory. It consists of evaluating a {∃,∧}-formula of first-order logic over a finite structure.
It is equivalent to the so-called Select-Project-Join queries in SQL and has several
equivalent definitions, in particular, in terms of constraint satisfaction or homomorphism
problems. The problem is known to be NP-complete [CM77], but due to its naturalness
and its practical and theoretical importance, the search for tractable fragments has
attracted a lot of attention.

∗Partially supported by DFG grants BU 1371/2-2 and BU 1371/3-1.

1

One source of tractability is putting structural conditions onto the graph or hypergraph
associated to the formula. It turns out, indeed, that a number of such structurally
restricted classes of conjunctive queries admit efficient algorithms. When the arity of
queries is bounded i.e. for problems over a fixed language (such as graphs or ternary
relations), it has been proved that being of bounded treewidth precisely characterizes
tractability [GSS01, Gro07]. For unbounded arity, the situation is more complex since
no ultimate feasible class of queries is known. In this context, acyclic conjunctive queries
(ACQ, for short) form a large and useful fragment which is well-known to be tractable
(see [Yan81, GLS01]) and is also the base case of numerous other classes, obtained
by hypergraph decomposition methods, for which evaluation is tractable (see [GLS02,
CJG08, Mik08].

Counting solutions to database queries is a basic operation of standard database systems,
in particular in the context of aggregate queries. The problem has been extensively
studied in constraint satisfaction in the non uniform setting i.e. when the structure is
fixed and only the formula is considered as input. As a generalization of #3SAT, it
is easy to see that counting solutions to unquantified (i.e. projection free) conjunctive
queries is #P-complete. Recently, Pichler and Skritek [PS11] showed that the restriction
to quantifier free acyclic queries gives tractable instances for counting like it does for
decision. This result also extends to other classes for which decision is known to be
tractable such as bounded hypertree width but, until now, for unbounded arity, there is
no criterion completely characterizing when a class of counting query is tractable. For
bounded arity however, the situation is, again, better understood. Dalmau and Jonsson
proved in [DJ04] that counting the solutions for a class of queries is polynomial time if
and only if the query is of bounded treewidth. A consequence of a latter work by Mengel
[Men11] is that on the bounded arity case, weighted counting on bounded treewidth
queries is easy, too. So in a sense if we do not allow quantification, not much changes if
we go from decision to counting problems.

Clearly, existential quantification — or equivalently the possibility to project out part
of the result before counting — may be a source of hardness. This is confirmed for the
general case for which the picture changes completely when existential quantification of
variables is allowed. While the complexity of the decision problem remains unchanged, it
turns out that counting solutions of general conjunctive queries becomes much harder
since it is complete for # ·NP [BCC+05]. More surprisingly, also the acyclic case is no
longer tractable. Pichler and Skritek [PS11] showed that introducing one single existential
quantifier allows constructing #P-hard instances for very simple acyclic formulas. An
immediate consequence of their result is that counting solutions to unions of a polynomial
number of acyclic conjunctive queries is #P-hard, too, while the decision problem is,
again, tractable. This shows that counting and decision differ fundamentally for acyclic
conjunctive queries and that in order to find islands of tractability for counting we need
new concepts that are tailored specifically to counting problems.

The main contribution of this paper is to give a complete picture of the (combined)
complexity of weighted counting problems related to acyclic conjunctive queries. We
consider weighted counting problems associated to instances of quantifier free ACQ and
present algorithms that compute arithmetic circuits which, in turn, can be evaluated to

2

obtain the result of counting problems. Thus we separate structural manipulations of the
CQ instance from the counting process itself. This separation is implicit in other papers
(see e.g. [FMR08]) and is made explicit here. In this context, we first prove (Theorem 3,
generalizing [PS11]) that computing the sum of the weights of solutions1 of a (weighted)
quantifier free ACQ can be done in polynomial time. Then, considering extensions of
the problem above, we show that counting the number of solutions of a conjunction or a
disjunction of two quantifier free ACQ is #P-complete even for Boolean domain and for
fixed arity (see Proposition 5). This last result and the fact that one single quantification
is enough to define hard cases (see [PS11]) shows that even “minimalistic” extensions of
quantifier free ACQ lead to intractable counting problems and that one cannot hope to
get any meaningful tractable class by these means.

However, our second set of results counterbalances this impression. We show that a large
subclass of ACQ with existentially quantified variables leads to efficiently solvable counting
problems. To this aim, we introduce a (hypergraph) parameter, called quantified star size,
to measure the degree of dispersion of free variables in acyclic conjunctive queries (this
generalizes the notion of connex-acyclicity of [BDG07]). We show (see Theorem 14) that
if this parameter is bounded by some constant k ∈ N, the resulting (weighted) counting
problem is solvable in time nO(k) where n is the size of the instance. Furthermore, we
show (see Theorem 16) that the quantified star size of a formula is efficiently computable
making the counting result applicable. We also show that the runtime bound nO(k) can
probably not be improved substantially in the sense that the parameterized problem
is not fixed parameter tractable under the standard hypothesis FPT 6= #W[1] from
parameterized complexity [FG04, FG06]. Under the same hypothesis, we finally show
(Theorem 22) that quantified star size is optimal in the sense that any other structural
restriction on acyclic conjunctive queries that leads to polynomial time counting of the
solutions must imply bounded quantified star size.

In this paper, we limit our study to acyclic conjunctive queries. There are several
reasons to do so. One of them is that acyclicity provides a natural and clear setting to
present our approach on charting the tractability frontier for conjunctive queries. Another
reason is that acyclicity is also the base case of numerous other tractable fragments
and although some additional work is required to extend our methods, it is really the
fragment that needs to be investigated and solved first.

A nice feature of our results, is their consequences on another direction of research
that concerns the complexity of families of polynomials. Indeed, our study of counting
problems is mostly formulated in the slightly more general setting of arithmetic circuit
complexity. So a consequence of our results is that they also provide information about
the structural complexity of families of polynomials computed by arithmetic circuits and
in particular on tractability and intractability in this context. As an example, it is an
immediate corollary of our results that the polynomial families we consider which are
built over bounded quantified star size queries characterize VP, a class that formalizes
efficient computation in the Valiant model [Val79] and is well known for its apparent lack

1Provided the evaluation space itself admits efficient algorithms for multiplication and addition of
weights (such as the field of rationals Q)

3

of natural non-circuit characterizations. Analog completeness results can also be derived
from our hardness results too. We refer the reader to Section 6 for an exposition of the
motivations and the results obtained in this setting.

Related works Counting complexity has deserved a lot of attention in the context of
non uniform CSP i.e. when only the formula is part of the input and the language (i.e.
the structure) is fixed. A dichotomy result has been given for]CSP in [Bul08] using
tools of universal algebra. This dichotomy has been reproved by simpler means and
proved to be effective in [DR10] (see also [DGJ09, CCL11] and [BDG+10] for similar
result on partition functions). Another related approach that has recently received a lot
of attention is based on holographic algorithms and has lead to major advances in the
understanding of counting complexity. Fixing the input structure results in a problem
of a very different nature and to our knowledge the tools and technics developed in the
area does not apply to our setting.

Structure of the paper Necessary preliminaries about arithmetic circuits, conjunctive
queries and acyclicity are given in Section 2. In Section 3 we show that the weighted
counting of solutions to acyclic conjunctive queries is easy extending the result of [PS11]
but also some results in [Men11]. In Section 4 we show that unions of solutions of acyclic
conjunctive queries are hard to count. Afterwards we turn to quantified star size to
give a parameterization of counting solutions to quantified acyclic queries in Section 5.
In passing, we prove that determining the quantified star size of a query (i.e. of the
hypergraph associated to the query) can be done in polynomial time. Here we also show
hardness in the sense of parameterized complexity and show that quantified star size
likely is the most general restriction that leads to polynomial time counting. Finally, in
section 6 we apply our results to arithmetic circuit complexity.

2 Preliminaries

Arithmetic circuit complexity An arithmetic circuit over a field F is a labeled directed
acyclic graph (DAG) consisting of vertices or gates with indegree or fanin 0 or 2. The
gates with fanin 0 are called input gates and are labeled with constants from F or variables
X1, X2, . . . , Xn. The gates with fanin 2 are called computation gates and are labeled
with × or +. The polynomial computed by an arithmetic circuit is defined in the obvious
way: An input gate computes the value of its label, a computation gate computes the
product or the sum of its childrens’ values, respectively. We assume that a circuit has
only one sink which we call output gate. We say that the polynomial computed by the
circuit is the polynomial computed by the output gate. The size of an arithmetic circuit
is the number of gates. The depth of a circuit is the length of the longest path from an
input gate to the output gate in the circuit. A circuit is called multiplicatively disjoint if,
for each ×-gate, its two input subcircuits are disjoint.

4

Conjunctive query: decision, counting and weighted counting. We assume the reader
to be familiar with the basics of (first order) logic (see [Lib04]). If φ is a first order
formula, var(φ) denotes the set of its variables, by free(φ) ⊆ var(φ) the set of its free
variables and atom(φ) the set of its atomic formulas. Let x = x1, ..., xk, we denote φ(x)
the formula with free variables x. The Boolean query problem Φ = (S, φ) associated to a
formula φ(x) and a structure S, asks whether the set

φ(S) = {a : (S,a) |= φ(x)}

called the query result is empty or not. The (general) query problem consists of computing
the set φ(S), while the corresponding counting problem is computing the size of φ(S),
denoted by |φ(S)|. When φ is a {∃,∧}-first order formula the boolean query problem is
known as the Conjunctive Query Problem, CQ for short. It is well known that the the
Boolean CQ problem is equivalent to the propositional satisfiability problem and thus
is NP-complete. We denote by #CQ the associated counting problem: given a query
instance Φ = (S, φ), return the value of |φ(S)|.

Let now F be a field and S be a finite structure of domain D. A F-weight function for
S is a mapping w : D → F. If a is a tuple of elements of D of length k, the weight of a is

w(a) =
k∏
i=1

w(ai).

The weighted counting problem for CQ, denoted #FCQ, is the following problem:
given Φ = (S, φ) and an F-weighted function w, return the sum of the weights of all
solutions i.e. the value of ∑

a∈φ(S)

w(a).

When w is the constant function 1, this value is clearly equal to |φ(S)|.

Query size and Model of computation. The size ‖Φ‖ of a query input is the sum of the size
of the formula |φ| and of the size |S| of S. We consider the size |S| of S with domain D
to be the number of elements in D plus the number of tuples in relations of S.

All algorithms below are expressed in terms of operations on tuples (without consider-
ation on their size). Hence, we choose the RAM model (with addition as basic operation)
under uniform cost measure as underlying model of computation. However, the choice of
a model will have some importance only in the few cases where precise polynomial time
bounds are given.

Acyclic Conjunctive Queries. A (finite) hypergraph H is a pair (V,E) where V is a
finite set and E ⊆ P(V). We associate a hypergraph H = (V,E) to a formula φ (the
canonical structure describing φ) by setting V := var(φ) and E := {var(a) | a ∈ atom(φ)}.

5

x1

x2

x3

x4

x5

x6

x7

x8

y1
y2

y3

y4
y5

y6

y7

Figure 1: The hypergraph associated to the formula from Example 1.

Example 1. The formula

ϕ(y1, . . . y7) := ∃x1 . . . ∃x8 R(x1, x2, y1, y2) ∧ S(y2, y1, x7, y4, x6, y3, x4, x3)∧
T (x4, y6) ∧ T (y6, x5) ∧ T (x5, y7) ∧ P (x7, y5, x8) ∧ T (x8, y5)

has the associated hypergraph illustrated in Figure 1.

Definition 1. A join tree (or tree structure) of a hypergraph H = (V,E) is a pair (T , λ)
where T = (VT , T) is a tree and λ is a function from VT to E such that:

• for each e ∈ E, there is a t ∈ VT such that λ(t) = e,

• For each v ∈ V , the set {t ∈ VT : v ∈ λ(t)} is a connected subtree of T .

A hypergraph is acyclic if it has a join tree [Fag83]. When there is no ambiguity,
we often identify vertices of a join tree and their labellings. We also sometimes only
specify the tree T explicitly, without talking of λ which is always implicitly understood
to exist. A formula φ is acyclic if its associated hypergraph is acyclic. Considering acyclic
{∃,∧}-first order formulas yields the Boolean acyclic conjunctive query problem denoted
ACQ. We denote by #ACQ (resp. #FACQ) the associated counting (resp. F-weighted
counting) problem. If φ is such that free(φ) = var(φ)) then φ is said to be quantifier-free.

Example 2. The formula ϕ(y1, . . . , y7) from example 1 is acyclic. It’s join tree is
depicted in Figure 2. It holds: free(ϕ) = {y1, . . . y7} and var(ϕ) = {x1, . . . , x8, y1, . . . y7}.

Any a ∈ φ(S) will be alternatively seen as an assignment a : var(φ) → D or as a
tuple of dimension |var(φ)|. Two arbitrary assignments a and a′ are compatible (symbol:
a ∼ a′) if they agree on their common variables. We will make use of the following
classical join operators.

6

S(y2,y1,x7,y4,x6,y3,x4,x3)

R(x1,x2,y1,y2) T(x4,y6) P(x7,y5,x8)

T(y6,x5) T(x5,y7) T(x8,y5)

Figure 2: A join tree for the formula from Example 1.

Definition 2. Let φ(x,y), ψ(y, z) be two conjunctive queries with x ∩ z = ∅ and let
R,S be two finite structures. Let us define:

- The natural join: φ(R) ./ ψ(S) = {(a,b, c) : (a,b) ∈ φ(R) and (b, c) ∈ ψ(S)}
- The (left) semi-join: φ(R)nψ(S) = {(a,b) : (a,b) ∈ φ(R) and there exists (b, c) ∈

ψ(S)}.

When R = S, φ(R) ./ ψ(S) is simply [φ ∧ ψ](R). The natural join between two
relations can be computed in time linear in the size of the relations (here in time linear
in |φ(R)| and |ψ(S)|).

Remark 1 (CQ and CSP). A well-known equivalent formulation of the quantifier-free
conjunctive query problem can be stated in terms of CSP. In this later problem, given two
structures S and T , one asks whether there exists an homomorphism from S to T . In
the recent past, counting and weighted counting for CSP have been mainly stated in the
non uniform version of the problem i.e. when the template T is fixed and only S is given
as input (see e.g. [DR10, BDG+10, DGJ09]). In this paper, we focus on the uniform
version of the problem.

Polynomials defined by conjunctive queries We briefly introduce a polynomial Q that
generalize #CQ. A more thorough discussion of Q can be found in [Men11].

Let Φ = (φ,S) be a query with domain D. We assign to Φ the following polynomial
Q(Φ) in the variables {Xd | d ∈ D}.

Q(Φ) :=
∑

a∈φ(S)

∏
x∈var(φ)

Xa(x) =
∑

a∈φ(S)

∏
d∈D

X
µd(a)
d ,

where µd(a) = |{x ∈ var(φ) | a(x) = d}| computes number of variables mapped to d by a.
Note that the number of variables in Q(Φ) is |D|, the size of the domain, and that Q(Φ)
is homogeneous of degree |var(Φ)|.

Observe that Q is essentially the weighted counting problem #FCQ by setting Xd :=
w(d) for all d ∈ D. Thus if we can efficiently compute circuits that in turn compute
Q(Φ), we can efficiently solve #FACQ on the instance Φ.

7

Parameterized counting complexity This section is a very short introduction to pa-
rameterized counting complexity (for more details see [FG04, FG06]).

A parameterized counting problem is a function F : Σ∗ × N→ N, for an alphabet Σ.
Let (x, k) ∈ Σ∗×N, then we call x the input of F and k the parameter. A parameterized
counting problem F is fixed parameter tractable, or F ∈ FPT, if there is an algorithm
computing F (x, k) in time f(k) · |x|c for some computable function f : N→ N and some
constant c ∈ N.

Let F : Σ∗ × N→ N and G : Π∗ × N→ N be two parameterized counting problems. A
parameterized parsimonious reduction from F to G is an algorithm that computes for
every instance (x, k) of F an instance (y, l) of G in time f(k) · |x|c such that l ≤ g(k)
and F (x, k) = G(y, l) for computable functions f, g : N → N and a constant c ∈ N. A
parameterized T -reduction from F to G is an algorithm with an oracle for G that solves
any instance (x, k) of F in time f(k) · |x|c in such a way that for all oracle queries the
instances (y, l) satisfy l ≤ g(k) for computable functions f, g and a constant c ∈ N.

Let p-#Clique be the problem of counting k-cliques in a graph where k is the parameter
and the graph is the input. A parameterized problem F is in #W[1] if there is a
parameterized parsimonious reduction from F to p-#Clique2. F is #W[1]-hard, if there
is a parameterized T -reduction from p-#Clique to F . As usual, F is #W[1]-complete if
it is in #W[1] and hard for it, too.

A standard assumption from parameterized complexity is that there are problems in
#W[1] (in particular the complete problems) that are not fixed parameter tractable.
Thus, from showing that a problem F is #W[1]-hard it follows that F can be assumed
to be not fixed parameter tractable.

Except for these definitions we will not use parameterized parsimonious reductions
and we will not use the complete power of parameterized T -reductions either. Instead,
all parameterized reductions in the remainder of the paper will be T -reductions with
exactly one oracle call.

3 Constructing circuits for acyclic conjunctive queries

Theorem 3. Given an acyclic quantifier free conjunctive query Φ, we can in time polyno-
mial in ‖Φ‖ compute a multiplicatively disjoint arithmetic circuit C that computes Q(Φ).

Proof. The first step follows that of [Men11]. Since arity of queries is not bounded, a
new approach is necessary to show that only polynomially many gates are necessary to
compute Q(Φ). Also the algorithmic nature of the construction is stressed more to give
the upper bound on the complexity of constructing the circuit C.

So let Φ = (S, φ) be an acyclic conjunctive query. Let (T , λ) the join tree associated with
φ. By definition, the tree T has m vertices t1, ..., tm associated to the atoms λ(t1), ..., λ(tm)

2Let us remark that Thurley [Thu06] gives good arguments for defining #W[1] not with parsimonious
reductions. He instead defines #W[1] with parameterized T -reductions with only one oracle call.
We keep the definition of [FG04, FG06], because we will show no #W[1] upper bounds and thus
can avoid these subtleties. We remark though that finding the right reduction notions for counting
problems is notoriously tricky to get right (see e.g. [KPZ99, DHK05]).

8

in φ. Observe that T can be constructed from φ in polynomial time; indeed it can even be
computed in logarithmic space, see [GLS01]. Thus we do not consider the construction of
T but take it as given. For t ∈ VT , we call φt the conjunction of constraints corresponding
to the subtree Tt with t as root. The set var(φt) =

⋃
t′∈Tt var(λ(t′)) is denoted by et. For

convenience we also denote the atomic formula λ(t) by λt.
Let a be an assignment of some variables of φ and c ⊆ var(φt). We show by induction

on the depth of T that the following polynomial in the variables {Xd | d ∈ D} can be
computed by an arithmetic circuit of polynomial size

ft,a,c =
∑

α∈φt(S)
α∼a

∏
x∈c

Xα(x).

Remark that if r is the root of T then, fr,∅,var(φ) = Q(Φ). Observe that in contrast
to [Men11] we have an exponential number of polynomials ft,a,c, so we cannot afford to
compute them all in a bottom up fashion. Instead we will construct the circuit top down
starting from r and make sure that in each step only polynomially many ft,a,c are needed.
This will directly give the runtime bound for the construction.

So suppose first that t is a leaf. Then, φt is some atomic constraint λt, hence φt(S) is
of size at most linear in |S| ≤ ‖Φ‖, so the sum only involves a number of terms linear
in ‖Φ‖.

Suppose now t ∈ VT is not a leaf and let t1, ..., tk in VT be the children of t in T . Let
c0, c1, ..., ck be a partition of c into disjoint sets such that each ci ⊆ ei ∩ c, for i = 1, ..., k
and c0 ⊆ c\

⋃k
i=1 eti (the need for choosing a partition is that each variable x appearing

in several λ(ti) sets must be taken into account at most once in order not to overcount
the exponent of Xa(x)).

ft,a,c =
∑

α∈φt(S)
α∼a

∏
x∈c

Xα(x)

=
∑

α∈φt(S)
α∼a

∏
x∈c1

Xα(x) · · ·
∏
x∈ck

Xα(x)

∏
x∈c0

Xα(x)

Let At = ((λt(S) n φt1(S)) n φt2(S)) n . . .n φtk(S). Note that At ⊆ λt(S).

Claim 1. The set At is computable in time |S| × |φt|.

Proof of the claim. By induction on the tree depth. The proof is an adaptation of
Yannakakis algorithm to evaluate acyclic conjunctive queries (see [Yan81]). Note that At
is a subrelation of φt(S) with φt being a constraint of the input formula. So if t is a leaf,
the result is obvious. If t is not a leaf. Let t1, ..., tk be its children. Remark that

At = (λt(S) nAt1) nAt2) n . . .nAtk ,

since each Ati is the projection of φti(S) onto var(φti). The set At is computed as follows:
Semi-joins are computed step by step respecting the order given by parentheses. To
compute each join sort the two sets of assignments using the lexicographic ordering

9

induced by the variables they have in common. Then, run once through the two sorted
relations to select the right tuples. Suppose now that each Ati is computable in time
|S| · |φti |. Then, At is computable in time |S| · (|λt|+ |φt1 |+ . . .+ |φtk |) ≤ |S| · |φt|.

Each solution α ∈ φt(S) can be uniquely expressed as the natural join of a tuple
β ∈ At and a sequence of αi ∈ φti(S), i = 1, ..., k, compatible with β (more formally by
natural join of singleton relations containing these tuples), i.e. given α ∈ φt(S), there
exist β ∈ At and αi ∈ φti(S), i = 1, ..., k, such that

{α} = {β} ./ {α1} .// {αk}.

Conversely, given β ∈ At and a sequence of αi ∈ φti(S), i = 1, ..., k, compatible with
β, the natural join of these tuples is an α ∈ φt(S). This follows from the connectedness
condition in the join tree, i.e. from the fact that given distinct i, j ≤ k, var(φti)∩var(φtj) ⊆
var(λt). Indeed, if αi and αj assign values to of a common variable, they must agree on
it, because they both agree with β. This implies that the following equalities hold.

ft,a,c =
∑

α∈φt(S)
α∼a

∏
x∈c1

Xα(x) · · ·
∏
x∈ck

Xα(x)

∏
x∈c0

Xα(x)

=
∑
β∈At
β∼a

∑
α1∈φt1 (S)
α1∼β

· · ·
∑

αk∈φtk (S)
αk∼β

∏
x∈c1

Xα1(x) · · ·
∏
x∈ck

Xαk(x)

∏
x∈c0

Xβ(x)

=
∑
β∈At
β∼a

ft1,β,c1 · · · ftk,β,ck ·
∏
x∈c0

Xβ(x)

Note that the sum is now over At and not over φt(S) anymore. We claim that the
construction described above can be done in polynomial time. Indeed, for each t we
only have to compute the ft,a,c for one fixed set c but for potentially all a ∈ At′ where
t′ is the father of vertex t in T . Thus for t we only have to compute |At′ | ≤ |S| ≤ ‖Φ‖
polynomials ft,a,c. Furthermore for t we only have to access the polynomials for t1, ..., tk,
more precisely all of ft1,β,c1 , . . . , ftk,β,ck with β ∈ At. So the computation of one ft,a,c
involves only O(|At| × (k + |c0|)) = O(|S| × |φ|) arithmetic operations. Computing the
ft,a,c for all a ∈ At′ but fixed t can then be done with O(|φ| × |S|2) operations. Summing
up over all t we get a total upper bound of O(|φ|2 × |S|2), so the circuit C for Q(Φ) is of
polynomial size. Now remark that each set At, for t ∈ VT can be constructed in time
O(|φ| × |S|) by Claim 1. For a fixed a, filtering all elements β of At compatible with a
can be done in linear time after sorting At. Hence, the index set of each sum is efficiently
computable and the construction of the circuit can be done in polynomial time.

In a final step we apply the construction of Malod and Portier [MP08] to make the
circuit multiplicatively disjoint.

We get the following corollary on weighted counting problems (which generalizes a
recent result of Pichler and Skritek [PS11]).

10

Corollary 4. Let F be a field such that iterated addition and multiplication are computable
in polynomial time in F. Then #FACQ can be solved in polynomial time for quantifier
free queries.

Proof. Given an instance Φ, Theorem 3 yields a circuit C that computes Q(Φ). Setting
Xd = w(d) for all d ∈ D, we can evaluate Q(Φ) to give the answer to the weighted
counting problem. Observe that efficient evaluation is possible, because the degree of
Q(Φ) is bounded and thus we can use standard depth reduction techniques to avoid a
blowup of the size of representations of field elements.

4 Union and intersection of acyclic queries

In this section, we show that considering conjunction and disjunction of two acyclic
conjunctive queries leads to intractable counting problems.

Proposition 5. Computing the size of the union and the intersection of query results to
two quantifier free #ACQ-instances are both #P-complete. This result remains true for
#ACQ on boolean domain and arity at most 3.

Remark 2. In [GSS01], it is proved that the (bi-)colored grid homomorphism problem is
NP-complete. This result implies part of Proposition 5, i.e. that counting the assignments
of the conjunction of two ACQ-instances is #P-complete (the fact that this hardness
result is still true on Boolean domain does not follow, however).

For the proof we use the following lemma:

Lemma 6. Counting solutions to quantifier free conjunctive queries whose primal graph
is a grid is #P-complete even for domains of size 4.

Proof. Counting solutions to general quantifier free conjunctive queries is in #P, so
we only need to show hardness. We show hardness by reducing a restricted version of
#circuitSAT to #CQ with the desired grid structure. From the #P-completeness of our
#circuitSAT version we get #P-hardness for counting solutions of conjunctive queries
with grid structure.

We now define this version of #circuitSAT that we call #(∧-¬-grid)-circuitSAT: An
instance of #(∧-¬-grid)-circuitSAT is a boolean circuit which only contains ∧- and
¬-gates and in which all gates are vertices of a 2-dimensional grid. Furthermore, the
edges of the circuit are non-intersecting paths along the edges of the grid.

Proposition 7. #(∧-¬-grid)-circuitSAT is #P-complete under parsimonious reductions.

Proof. We make a parsimonious reduction from #circuitSAT. Let C be a #circuitSAT
instance, i.e. a boolean circuit. In a first step we substitute all ∨-gates x∨y by ¬(¬x∧¬y).
We then make sure that every gate has at most degree 3 and that all input gates and
the output gate have at most degree 2 by adding double negations. Call the resulting
circuit C ′.

11

We now embed C ′ into a grid. To do so we take a three step approach that starts
with a coarse grid that is then refined. Let n be the size of C ′. We first distribute the
vertices that represent gates into a n× n-grid G1 such that each vertex of depth i has
the coordinates (i, j) for some j. Furthermore each edge of the circuit is a sequence of
straight lines where each straight line goes from a vertex in one row to another vertex in
the next row. Also in each vertex of G1 at most two lines start and end. For vertices on
which no gate of C ′ lies, we assume that at most one edge starts and ends. It is clear
that such an embedding can be constructed easily.

In a second step we make sure that the edges of the circuit follow the edges of a grid
without congestion. We do this for each row of the coarse grid G1 individually. We
construct a new grid G2 by adding 2n− 1 new rows before each row in G1 and one new
column before each column. Observe that each vertex (i, j) in G1 has the coordinates
(2ni, 2j) in G2. Each vertex v of G1 in row i has a most 2 outgoing straight lines l1, l2
representing edges of the circuit C ′ which both end in a vertex of row i+ 1. Let l1 end
in (i+ 1, j) and l2 end in (i+ 1, j′) with j < j′, then we call l1 be the low output and l2
the high output. If there is only one output, we define it to be high. We also make the
equivalent definition for high and low inputs.

Now we substitute the lines representing edges of C ′ by paths in G2. Let l be a line
that starts in G1 in (i, j′) and ends in (i+ 1, j). We construct a path Pl from (2ni, 2j)
to (2n(i+ 1), 2j′):

• If l is a low output and a low input the path is the piecewise linear curve through
the vertices (2ni, 2j)(2ni, 2j − 1)(2ni+ 2j, 2j − 1)(2ni+ 2j, 2j′)(2n(i+ 1), 2j′).

• If l is a high output and a low input the path is through (2ni, 2j)(2ni + 2j +
1, 2j)(2ni+ 2j + 1, 2j′)(2n(i+ 1), 2j′).

• If l is a low output and a high input the path is through (2ni, 2j)(2ni, 2j− 1)(2ni+
2j, 2j − 1)(2ni+ 2j, 2j′ + 1)(2n(i+ 1), 2j′ + 1)(2n(i+ 1), 2j′).

• If l is a high output and a high input the path is through (2ni, 2j)(2ni + 2j +
1, 2j)(2ni+ 2j + 1, 2j′ + 1)(2n(i+ 1), 2j′ + 1)(2n(i+ 1), 2j′).

The result is an embedding of C ′ into a grid such that the gates are on vertices of G2

and the edges of C ′ are paths in the grid. Observe that the paths were constructed in
such a way that two paths between gates never share edges, so they only intersect in
single vertices.

In the final step of the reduction we get rid of these intersections on non-gate vertices
by adding additional gates. Each crossing in G2 is substituted by the gadget illustrated
in Figure 3. To do so we make the grid finer again by a constant factor. The result
is a circuit C ′′ that is embedded into a grid. Furthermore C ′′ has the same satisfying
assignments as C ′.

Remark 3. We could also have given a proof of Proposition 7 with results on embedding
general planar graphs into grids in the way we need it (see e.g. [Val81]). We have chosen
to present an ad-hoc proof instead to keep the results of this paper self-contained.

12

a

b b

a

x

x⊕ y

y

⊕

⊕

⊕

¬ ∧ ∨

∨ ∧

¬

Figure 3: The crossing paths in the left are substituted by a gadget without crossings
in the middle that uses ⊕-gates which compute xor of its inputs. It is easily
checked that the outputs compute (a⊕ b)⊕ a and (a⊕ b)⊕ b which simplify to
b and a respectively. On the right we show how the ⊕-gates can be simulated
over the basis ∧,∨,¬ without losing planarity. Degree 4 gates, splitting of
edges and ∨-gates can be avoided by introducing some more ¬-gates and using
De Morgan’s law.

We now reduce #(∧-¬-grid)-circuitSAT to #CQ instances of grid structure. So let
(C,G) be an instance of #(∧-¬-grid)-circuitSAT, i.e. a circuit C that is embedded into a
grid G. Let G be of size n× n. W.l.o.g. we may assume that no gates are on neighboring
vertices in G and that the output gate is not a ∧-gate. For each ∧-gate af C we arbitrarily
fix one input as the first input while the other one is the second one. We construct a
binary conjunctive query Φ whose primal graph is G. The domain is {0, 1, 2, 3} where 0
and 1 represent the usual boolean values while 2 and 3 are used in a gadget construction
for ∧-gates. For each edge e = uv in G we add a constraint φe in the variables u and v
in the following way:

• If e is not an edge of C, φe has the satisfying assignments {ab | a, b ∈ {0, 1, 2, 3}}.

• If e is an edge of C directed from u to v and v is not a gate and u is not a ∧-gate,
φe has the satisfying assignments {00, 11}.

• If e is an edge of C directed from u to v and v is a ¬-gate, φe has the satisfying
assignments {01, 10}.

• If e is an edge of C directed from u to v and v is a ∧-gate and the path to v over u
is from the first input of v, φe has the satisfying assignment {00, 02, 11, 13}.

• If e is an edge of C directed from u to v and v is a ∧-gate and the path to v over u
is from the second input of v, φe has the satisfying assignment {00, 01, 12, 13}.

• If e is an edge of C directed from u to v and v is not a gate and u is a ∧-gate, φe
has the satisfying assignments {00, 10, 20, 31}.

Observe that the construction near the ∧-gates is possible, because no two gates are
neighbors. So the constraints are all well defined. Now each vertex that is not part of C

13

gets a unary constraint that has only the single satisfying assignment 1. Also the output
gate of C gets such a unary constraint.

We claim that if we fix an assignment a to the variables representing the inputs of
C, there is an satisfying extension to the other variables if and only if a satisfies C.
Furthermore, this extension is unique. It is clear that the constraints along the paths and
on the ¬-gates propagate the correct values along the grid. In a satisfying assignment,
the variable representing an ∧-gate has to take the value representing the values of its
inputs in binary. The gates after the ∧-gates then calculate the conjunction value for
these inputs.

Proof of Proposition 5. Again, we only need to show hardness. By the inclusion-exclusion
principle counting for unions and intersections is equally hard, so it suffices to show
hardness for intersections. The reduction is straightforward with Lemma 6. Let Φ be a
conjunctive query whose primal graph is a grid. We separate the constraints into two
new formulas: Φ1 gets all the constraints that lie on rows of the grid, Φ2 gets those on
the columns. Clearly we have Φ = Φ1 ∧ Φ2 and the Φi are acyclic. Thus the first part of
the lemma follows.

To show that the result is true for queries on boolean domain, we sketch a different
encoding of ∧-¬-grid-#circuitSAT into conjunctive queries. Roughly speaking, the
structure of the encoding is basically the same but non boolean elements are mapped to
sequences of boolean variables (that represent their binary encodings). To do so we need
ternary relations. For completeness, details are given below. Again let G be the n× n
grid and suppose no gates are on neighboring vertices in G and that the output gate is
not a ∧-gate. For each ∧-gate v, we introduce a second vertex/variable v1. We construct
a ternary CQ instance Φ as follows. For each edge e = uv in G we add an constraint φe
in the following way:

• If e is not edge of C , φe has the satisfying assignments {00, 01, 10, 11}.

• If e is an edge of C directed from u to v and v is not a gate and u is not a ∧-gate,
φe has the satisfying assignments {00, 11}.

• If e is an edge of C directed from u to v and v is a ¬-gate, φe is the constraint with
the following satisfying assignments {01, 10}.

• If e is an edge of C directed from u to v and v is a ∧-gate and the path to v over u
is from the first input of v, φe is the ternary constraint on variables u, v, v1 with
the following satisfying assignment set {000, 010, 101, 111}.

• If e is an edge of C directed from u to v and v is a ∧-gate and the path to v over
u is from the second input of v, φe is the ternary constraint on variables u, v, v1

which has the satisfying assignment {000, 001, 110, 111}.

• If e is an edge of C directed from u to v and v is not a gate and u is a ∧-gate,
φe is the constraint on variables u1, u, v which has the satisfying assignments
{000, 010, 100, 111}.

14

The constraint is then split into two conjunctive query instances Φ1 and Φ2 as above
grouping horizontal and vertical constraints separately. Note that, connection at gates v
between hyperedges is now on two vertices v and v1. But the resulting hypergraphs for
Φ1 and Φ2 are well acyclic.

The reductions of this section are all parsimonious, so we directly get the following
corollary 3:

Corollary 8. Deciding if the intersection of the solutions of two quantifier free acyclic
conjunctive queries is nonempty is NP-hard.

Note that in contrast, it is well-known that deciding the disjunction of acyclic conjunc-
tive queries can be done in time linear in ‖Φ‖.

5 Quantified star size

5.1 Definitions and statement of the results

It is proved in [PS11] that introducing one single existential quantifier in acyclic con-
junctive queries leads to #P-complete problems. So bounding the number of quantified
variables does not yield tractable instances. In this section, we will show that not the
number of quantified variables is crucial but how they are distributed in the associated
hypergraph. A basic observation on the hard instance in [PS11] is that the formula has a
star (in the graph theoretical sense) in its associated graph whose center is the quantified
variable. Abstracting this observation, we introduce a parameter called quantified star
size that leads to tractable #ACQ instances.

Before we formulate the main results of this section, we make several definitions.
Let H = (V,E) be a hypergraph and S ⊆ V . The induced subhypergraph H[S] of H is

the hypergraph H[S] = (S, {e ∩ S | e ∈ E, e ∩ S 6= ∅}). The induced subhypergraph of
an edge set E′ ⊆ E is H[E′] = (

⋃
e∈E′ e, E

′). Let x, y ∈ V , a path between x and y is a
subset of edges e1, ..., ek ∈ E such that x ∈ e1, y ∈ ek, and for all i ≤ k− 1, ei ∩ ei+1 6= ∅.
Alternatively, a path can be seen as the sequence of vertices (x, a1, ..., ak, y) such that
ai ∈ ei ∩ ei+1.These definitions apply to graphs as well.

Observation 9. If H is an acyclic hypergraph and C ⊆ V (H), then H[C] is acyclic. If
T = (VT , T) is a join tree of H then T [C], the tree obtained from T by replacing for all
vertices t ∈ V (T) the labeling λ(t) by λ(t) ∩ C, is a join tree of H[C].

Proof. Immediate. T [C] is a subforest of T . The connectedness condition of the set
{t ∈ VT [C] : v ∈ λ(t)}, for all v ∈ C is obviously true.

Definition 10 (S-component [BDG07]). Let H = (V,E) be a hypergraph and S ⊆ V .
Let E*S be the set of hyperedges {e ∈ E : e * S}. The S-component of e ∈ E*S is the
hypergraph H[E′] where E′ is the set of all edges e′ ∈ E*S such that there is a path from
e− S to e′ − S in H[V − S].

3We state this corollary for completeness. Although we found no references, it is certainly already known

15

x1

x2

x3

x4

x6

x7

x8

y1
y2

y3

y4
y5

y6

x5y7

y6

y2
y1

Figure 4: S-components

A subhypergraph H′ of H is an S-component if there is an edge e ∈ E*S such that H′
is the S-component of e.

Example 3. The formula ϕ(y1, . . . , y7) of Example 1 has 3 S-components depicted in
Figure 4.

It is clear that hyperedges of E*S are partitioned into pairwise disjoint S-components.

Definition 11 (S-k-star, S-star size). Let H = (V,E) be a hypergraph, S ⊆ V and
k ∈ N. The subhypergraph H′ = (V ′, E′) of H is a S-k-star if:

• H′ is an S-component of H.

• there exist y1, ..., yk ∈ V ′ ∩ S such that there is no edge e ∈ E that contains more
than one of the yi.

We say that y1, . . . , yk form the S-k-star.
The S-star size of H is the maximum k such that there is a S-k-star in H.

In other words, the S-star size of a hypergraph H is the maximal star size of its
S-components.

Example 4. Let us consider hypergraph H of Example 1 (and Figure 1) and S =
{y1, . . . , y7}. The hypergraph H has S-star size 3. The maximal starsize is obtained
for the S-component H′ = (V ′, E′) with V ′ = {x3, x4, x6, x7, x8, y1, y2, y3, y4, y5} and
E′ = {{y1, y2, y3, y4, x3, x4, x6, x7}, {x5, y7, x8}, {x4, y6}}. This maximal S-star is formed
by y1, y5, y6.

Observation 12. Let H = (V,E) be a hypergraph, S ⊆ V and H′ be an S-component of
H. Then, if H is acyclic, H′ is acyclic.

16

Proof. Let T be a join tree of H. An S-component H′ = (V ′, E′) is a subhypergraph
induced by the edge set E′. By definition E′ is connected in G and it follows that
{t | λ(t) ∈ E′} induces a subtree T ′ of T . The connectedness condition holds in T and
thus it holds in T ′, too. It follows that T ′ is a join tree of H′ and H′ is acyclic.

Definition 13. The quantified star size of an acyclic conjunctive formula φ(x) is the
S-star size of the hypergraph H associated to φ(x), where S is the set of free variables
in φ(x).

Example 5. The formula from Example 7 has quantified starsize 3.

Example 6. The formula φ(x, y) ≡ ∃t∃zR(x, y, t) ∧ S(x, z, t) has quantified star size 1
because the free variables x and y appear together in one atom.

Path formulas (of arbitrary length), for example φ(x, y, z) ≡ ∃t1∃t2R(x, t1)∧R(t1, z)∧
R(z, t2) ∧R(t2, y), are of quantified star size 2.

Star formulas, such as φ(x, y, z, t) ≡ ∃uR(u, x) ∧ R(u, y) ∧ R(u, z) ∧ R(u, t) have
quantified star size equal to the degree of the center of the star (here 4).

Example 7. The hard formula of [PS11] is of quantified star size n, the size of the
structure domain.

We now formulate the main results of this section. The first result is that bounding
the quantified star size yields tractable counting problems.

Theorem 14. There is an algorithm that given an acyclic conjunctive query Φ computes
an arithmetic circuit C that computes Q(Φ). The runtime of the algorithm is ‖Φ‖O(k)

where k is the quantified star size of Φ.

Corollary 15. There is an algorithm for the problem #ACQ that runs in time ‖Φ‖O(k)

where k is the quantified star size of the input query Φ.

The second result below implies that computing the quantified star size is easy and
thus classes of #ACQ-instances of bounded quantified star size are efficiently decidable.

Theorem 16. There is a polynomial time algorithm that, given a hypergraph H = (V,E)
and S ⊆ V , computes the S-star size of H.

We prove Theorem 14 and Theorem 16 in the following two subsections.

5.2 Computation of S-star size

In this section we show that S-star size can be computed in polynomial time.
Let H = (V,E) be a hypergraph and S ⊆ V . We say that E∗ ⊆ E covers S if

S ⊆
⋃
e∈E∗ e. If S = V we say that E∗ is an edge cover of H. An independent set I in H

is a set I ⊆ V such that there are no distinct vertices x, y ∈ I that lie in a common edge
e ∈ E.

17

Lemma 17. For acyclic hypergraphs the size of a maximum independent set and a
minimum edge cover coincide. Moreover, there is an algorithm that given an acyclic
hypergraph H computes a maximum independent set I and a minimum edge cover E∗ of
H.

The first sentence in Lemma 17 can be seen as an adaptation of Kőnig’s theorem for
bipartite graphs (see e.g. [Bol98]) to acyclic hypergraphs. The proof uses a minimally
modified version of an algorithm that Guo and Niedermeier [GN06] describe to compute
minimum (unweighted) edge covers of acyclic hypergraphs. We show here that their
techniques cannot only be used to compute minimum edge covers but also maximum
independent sets of acyclic hypergraphs.

Proof. Clearly the size of any independent set is not greater than that of any edge cover,
simply because no edge can cover two vertices in an independent set. So if we present an
algorithm that computes an independent set I and an edge cover E∗ of a given acyclic
hypergraph H = (V,E) such that |I| = |E∗| we are done.

So let us now describe an algorithm that computes I and E∗: Let T = (VT , ET) be a
join tree of H with root r. We start with initially empty sets I and E∗ and iteratively
delete leaves of T in a bottom-up manner from the leaves to the root. It is easily seen
that for each leaf t ∈ VT , either λ(t) ⊆ λ(t′) where t′ is the parent of t or there exists
y ∈ λ(t) such that y 6∈ λ(t′). In this case, we will say that y is unique for t. If t = r is a
leaf of T , i.e. r is the only vertex in T , we say by convention that if λ(t) contains any
vertices, they are all unique for t.

We do the following until VT is empty. First, choose a leaf t of T . If there is no vertex
unique for t, we simply delete t from VT . If there are vertices that are unique for t,
choose one vertex y among them and add it to I. Furthermore, add λ(t) to E∗, delete
all vertices in λ(t) from H and delete t from VT . When VT is empty, I and E∗ are the
result of the algorithm.

For a vertex t ∈ VT we denote by Tt the subtree of T with the root t. Let furthermore
Vt be defined as the vertices in V that appear only in {λ(t∗) | t∗ ∈ V (Tt)} ⊆ E and in no
other edge in E.

Claim 2. Whenever the algorithm deletes t ∈ VT , the edge set E∗ covers the vertices Vt.

Proof. Assume that the claim is false, then there is a first vertex t ∈ VT met during the
execution of the algorithm for which after t is deleted some vertex y ∈ Vt is not covered
by E∗. For all children t∗ of t the vertices in Vt∗ are covered by E∗, so y must lie in λ(t).
But then y is unique for t before t is deleted. Thus λ(t) is added to E∗ and y is covered
by λ(t) ∈ E∗ after t is deleted which is a contradiction.

From Claim 2 it follows directly that E∗ is an edge cover at the end of the algorithm.

Claim 3. At each point in time during the algorithm I is an independent set in H.

Proof. Assume the claim is wrong. Then, there is a first vertex y that is added to I
such that y is adjacent to x already in I. The vertex x was added to I, so there was

18

t ∈ VT such that x was unique for t when t was considered by the algorithm. Thus x
is in Vt and consequently not in λ(t′) for any vertex t′ ∈ VT \ V (Tt). Hence, if x and y
are adjacent, there must be a vertex t∗ ∈ V (Tt) such that {x, y} ⊆ λ(t∗). But y is added
to I after x and thus it must appear in λ(t′) for a vertex t′ ∈ VT \ V (Tt). Then because
of the connectedness condition and the fact that T is a tree, y must also be in λ(t) and
thus is deleted from H when t is deleted. But then y cannot be added later which is a
contradiction.

With Claim 2 and Claim 3 we have that at the end of the algorithm E∗ is an edge
cover of G and I is an independent set in G. It is easy to see, that |E∗| = |I|. This
completes the proof.

Corollary 18. Let H = (V,E) be an acyclic hypergraph and S ⊆ V . Then the following
statements are true:

a) The S-star size of H can be computed in polynomial time.

b) Let H′ = (V ′, E′) be an S-component of H and let k be the S-star size of H′. There
is a polynomial time algorithm that computes an edge set E∗ ⊆ E′ that covers S ∩ V ′
and |E∗| = k.

Proof. a) Let H1, . . . ,Hm be the S-components of H. By Observation 12, each Hi =
(Vi, Ei), i ∈ {1, . . . ,m}, is acyclic and then by Observation 9, Hi[S] is acyclic too. By
Lemma 17, for each i ∈ {1, . . . ,m}, one can determine the size of a maximum independent
set Ii of Hi[S]. But we claim that for each i the star size si of the S-component Hi and
the size of the maximum independent set in Hi[S] coincide. Indeed, consider two vertices
x, y ∈ S∩Vi such that there is an edge e ∈ E \Ei such that {x, y} ∈ e. Note that x and y
are each included in at least one edge of Ei. Remark also that (Vi, Ei∪E[Vi∩S]) = H[Vi]
where E[Vi∩S] := {e∩(Vi∩S) | e ∈ E, e∩(Vi∩S) 6= ∅}. H[Vi] is acyclic by Observation 9.
Let T ′i be a join tree of H[Vi]. The vertices {t ∈ V (T ′i) | λ(t) ∈ Ei} are connected in
H[Vi], so they induce a subtree Ti of T ′i . But then, if e ∈ E\Ei, by the connectedness
condition the vertex t with λ(t) = e must be connected to Ti by two different paths
that enter Ti via two different edges (since both x and y are in distinct edges of Ei).
This contradicts the fact that T ′i is a tree. Thus si is indeed the size of a maximum
independent set made of S-vertices in H[Vi] which is the S-star size of Hi. The S-star
size of H is then the maximal value among s1, ..., sm and the result follows.

b) We compute an edge cover Ẽ of size k for H′[S] with Lemma 17. Then for each
edge ẽ ∈ Ẽ one can easily find an edge e ∈ E′ with ẽ ⊆ e.

5.3 Efficiently computing the Q-polynomial

We now have the necessary ingredients to prove Theorem 14.

Proof of Theorem 14. Let Φ = (S, φ) be an input query of quantified star size k. We will
construct a quantifier free formula ϕ and a new structure S ′ in time ‖Φ‖O(k) such that
φ(S) = ϕ(S ′).

19

Let H be the hypergraph of φ and S the set of free variables of φ. Let H′ = (V ′, E′) be
an S-component of H and let φ′ be the subformula of φ whose atomic formulas are the
hyperedges of E′. The formula φ can then be written as a conjunction φ′ ∧ ψ, where the
formula ψ contains all the atoms of φ not in φ′. By the definition of S-components we
have (var(φ′)\free(φ′)) ∩ var(ψ) = ∅. In other words, the quantified variables in φ′ only
appear in atoms of φ′ and common variables of φ′ and ψ are necessarily in S, i.e. they
are free.

Let now E∗ ⊆ E′ be a cover of V ′ ∩ S of size s ≤ k computed with Corollary 18. Let
φ1, . . . , φs be the atomic formulas associated to edges in E∗. We will compute φ′(S)
and construct in parallel a new atomic constraint ϕ1 and a new relation ϕS1 such that
ϕS1 = φ′(S). The set of variables var(ϕ1) is

⋃s
i=1 free(φi) = free(φ′). For each combination

t1, . . . , ts of tuples in φ1(S), . . . , φs(S) we add the tuple t := t1 .// ts to the relation
ϕS1 if

• the tuples t1, . . . , ts are consistent, i.e. they coincide on shared variables,

• the ACQ instance that we get from φ′ by fixing the variables in var(ϕ1) to the
values specified by the tuples t1, . . . , ts is satisfiable.

Observe that we have to only consider
∏s
i=1 |φi(S)| ≤ ‖Φ‖s ≤ ‖Φ‖k combinations

t1, . . . , ts and the resulting Boolean queries can each be evaluated in time O(|φ′| · |S|) by
Yannakakis’ algorithm (see [Yan81]). Thus the construction of ϕ1 and the relation ϕS1
can be done in time ‖Φ‖O(k). Let us call S ′ the union of the structure S and ϕS1 . We
then have a new query ϕ1 ∧ ψ such that [ϕ1 ∧ ψ](S ′) = φ(S).

Let T be a join tree of φ. We can choose a subtree T ′ of T such that T ′ is a join
tree of H′ by considering the induced subgraph of the vertices {t | ∃e ∈ E′, λ(t) = e}.
Also free(φ′) = V ′ ∩ S = var(ϕ1) and recall that (var(φ′)\free(φ′)) ∩ var(ψ) = ∅. Hence,
contracting T ′ into a single node whose label is the constraint ϕ1, results in a join tree
of the formula ϕ1 ∧ ψ. Thus this latter formula is acyclic.

We iterate this process with the S-components of the subformula ψ. When each S-
component has been treated, φ is replaced by a quantifier free formula ϕ = ϕ1∧. . .∧ϕm∧φ0

where each ϕi for i = 1, . . . ,m is atomic and m is the number of S-components of φ.
Furthermore, φ0 is the conjunction of all atomic formulas of φ that contain only free
variables. Also var(ϕ) = S. Similarly S is replaced by a structure S ′ of size bounded by
‖Φ‖O(k) (recall that each component is treated separately) such that φ(S) = ϕ(S ′). In
each iteration step the formula stays acyclic. Hence, ϕ is acyclic and we conclude by
applying Theorem 3.

5.4 #W[1]-hardness of parameterized #ACQ

In this section we show that several parameterized versions of quantified #ACQ are not
fixed parameter tractable under standard assumptions from parametrized complexity.
We consider the following parameterized counting problems:

• p-star-#ACQ: counting parameterized by the quantified star size,

20

• p-var-#ACQ: counting parameterized by the number of free variables,

• p-#ACQ: counting parameterized by the size of the conjunctive formula.

Clearly, for every ACQ instance Φ with formula ϕ we have that the quantified star size
is at most |var(ϕ)| ≤ |ϕ|. Thus we get from p-var-#ACQ and p-#ACQ might be easier
than p-star-#ACQ. The next lemma states that – unless there is a severe collapses in
parameterized complexity – all three problems are not fixed parameter tractable. This is
in contrast to the decision version which is even in P for all three problems.

Lemma 19. p-star-#ACQ, p-var-#ACQ and p-#ACQ are all #W[1]-hard.

Proof. We reduce p-#DirPath, i.e. counting of paths of length k, to #ACQ on stars. With
the #W[1]-hardness of p-#DirPath [FG04] the result will follow. The basic observation
is that there are |E|k ordered choices of k edges with repetitions. Thus it suffices to count
the number of choices that are not paths to compute the number of k-paths in a graph.
A choice e1, . . . , ek is not a k-path, if and only if it has one of the following defects:

1. It is not a walk, i.e. there is an i such that ei has as end vertex not the start vertex
of ei+1, or

2. a vertex is visited twice.

We will encode these properties into a #ACQ-instance of polynomial size whose hyper-
graph is a k-star.

So let G = (V,E) be the input in which we are supposed to count k-paths. We construct
a #ACQ-instance Φ which has the variables y1, . . . , yk, z. The yi have the domain V ×V ,
while z has the more complicated domain {0, 1}× [k]×V ×V × [k]× [k]×V . Observe that
the domains have polynomial size and all constraints will be binary, so Φ has polynomial
size in n and k.

For each i ∈ [k] we add a binary constraint Ei in the variables yi, z. Out of these we
build the formula

ϕ := ∃z
k∧
i=1

Ei(yi, z).

The yi-variable will choose arbitrary potential start and end points of an edge. The role
of the z-variable is to guess one of the defects described above that prevents the chosen
vertices from describing a path. We systematically describe tuple set for Ei. The first
component of an assignment can only take 0 or 1 and encodes if z guesses either a defect
in the walk structure or a double variable.

• z may guess that the end vertex of ei is v while the start vertex of ei+1 is u for
u 6= v. It does so by taking the value (0, i, v, u, j1, j2, a) for arbitrary j1, j2, a. If
this guess is true, then yi must have chosen an edge that indeed does end in v. So
we add the tuples {((b, v), (0, i, v, u, j1, j2, a)) | a, b, v, u ∈ V, (b, v) ∈ E, j1, j2 ∈ [k]}.

21

• The second defect that z may guess is that the edges do not form a path, because
the end vertex of ei−1 is v while the start vertex of ei is u. This results in the
tuples {((u, b), (0, i− 1, v, u, j1, j2, a)) | a, b, v, u ∈ V, (b, v) ∈ E, j1, j2 ∈ [k]}.

• If z predicts a defect preventing a walk in some other place, Ei does not have to check
this, so we accept everything. The resulting tuples are {((u, v), (0, j, c, d, j1, j2, a)) |
a, c, d, v, u ∈ V, (u, v) ∈ E, j1, j2 ∈ [k], j /∈ {i − 1, i}}. These cover all cases of the
edges not being a path.

• If z guesses that the vertex v occurs at two different places in the potential path,
it does so by specifying edges ej1 , ej2 with j1 ≤ j2 such that the start vertex of
ej1 and the end vertex of ej2 is v. It does so by taking a value (1, `, a, b, j1, j2, v)
for `, a, b arbitrary. If i /∈ {j1, j2} then Ei does not have to check for an effect and
accepts if yi encodes an edge. Thus we add the tuples {((u,w), (1, `, a, b, j1, j2, v) |
a, b, u, v, w ∈ V, (u,w) ∈ E, `, j1, j2 ∈ [k], i /∈ {j1, j2}}.

• If z guesses a double occurence of v and i = j1 we accept only if that guess is
correct and j2 ≥ i. So we add the tuples {((v, w), (1, `, a, b, i, j2, v) | a, b, v, w ∈
V, (v, w) ∈ E, `, j2 ∈ [k]}. If i = j2 we add analogous tuples.

It is easy to see that Φ accepts assignments to the yi if and only if each yi gets the end
points of an edge in G and there is a defect that prevents the edges from being a path.
Thus the number of satisfying assignments of Φ is the number of ordered choices of edges
in G with repetition that are not paths. This completes the proof.

5.5 Bounded quantified star size is necessary

In this section we show that quantified star size is in a sense the only restriction that
makes #ACQ tractable. Not only does bounded quantified star size give tractable
instances, but the other way round under a standard assumption from parameterized
complexity all classes of tractable #ACQ-instances must have bounded quantified star
size. This is somewhat similar to the results of Grohe et al [GSS01] who proved that
under reasonable assumptions the only polynomial time decidable subclass of bounded
arity CQ is the class of bounded treewidth.

As we have seen in the previous sections, not only the hypergraph of the input formula
is decisive for tractability but also the structure of the quantified variables in this
hypergraph. We formalize this in the following definition.

Definition 20. An S-hypergraph is a pair (H, S) where H = (V,E) is a hypergraph and
S ⊆ V . We say that #ACQ is tractable for a class G of S-hypergraphs if for all #ACQ
instances Φ with the associated hypergraph H of Φ and the set S of free variables of Φ
with (H, S) ∈ G we can solve #ACQ in polynomial time.

Example 8. Let G be the class of acyclic S-hypergraphs of S-star size bounded by k.
Then the result of Theorem 14 can be expressed as “#ACQ is tractable for G”.

22

We will use the fact that #ACQ is already hard for very restricted S-hypergraphs,
namely for stars in which only the center is not in S. We call this class GS . Observe that
the proof of Lemma 19 gives the following Lemma.

Lemma 21. #ACQ is #W[1]-hard for GS parameterized by the size of the stars.

We now show the main result of this section.

Theorem 22. Assume FPT 6= #W[1], and let G be a recursively enumerable class of
acyclic S-hypergraphs. Then #ACQ is polynomial time solvable for G if and only if G is
of bounded S-star size.

Proof. One direction of the claim is Theorem 14. For the other direction assume that
there is a class G of unbounded S-star size such that #ACQ is tractable on G. We show
that in this case #ACQ on GS parameterized by the star size is in FPT and with Lemma
21 we get FPT = #W[1].

So all we have to do is to construct a fixed parameter algorithm for #ACQ on GS .
Let Φ be an instance of this problem, i.e. Φ has the formula ϕ := ∃z

∧k
i=1Ei(yi, z). Let

the domain of Φ be D. Because G is recursively enumerable and of unbounded S-star
size, there is a computable function g : N → N such that for k ∈ N one can compute
(H, S) ∈ G such that H is of S-star size at least k in time g(k). We will embed Φ into H
to construct an #ACQ-instance Ψ of size g(k)nO(1) where n is the size of Φ. Furthermore,
Ψ will have the S-hypergraph H and the same domain D as Φ.

Let H′ = (V ′, E′) be an S-k-star in H that is formed by Y = {y1, . . . , yk}, Y ⊆ S. For
each edge e ∈ E we define a constraint Ee. Let first e ∈ E′ be an edge that contains yi
for some i ∈ [k], then Ee has as variables the vertices of e. Let yi be the first variable of
Ee followed by the other variables in e∩S and after those the variables in e \S. Then Ee
has the tuples {(a, d, . . . , d, b, . . . , b) | (a, b) ∈ Ri}, where Ri is the relation of Ei and d is
an arbitrary but fixed value in D. Observe that this forces all variables in (e ∩ S) \ {yi}
to the variable d in satisfying assignments, while the variables in e \S all have a common
value b. Furthermore, observe that no two of the yi share an edge in E′, so Ee is always
well defined.

Let e ∈ E′ with e∩Y = ∅. Again we define a constraint Ee. Let in Ee the first variables
be those in S ∩ e followed by those in e \ S, then Ee has the tuples {(d, . . . , d, a, . . . , a) |
a ∈ D} for the same d ∈ D as before. Again in the satisfying assignments all variables in
e ∩ S are forced to d, while the variables in e \ S can take an arbitrary but equal value.

For e ∈ E \E′ with e∩V ′ = ∅, we add a constraint Ee in with the single tuple (d, . . . , d).
If e ∈ E \ E′ with e ∩ V ′ 6= ∅, we have e ∩ V ′ ⊆ S. Furthermore at most one vertex in
e∩ V ′, say yi, can be in Y , because Y forms a star. If there is no such yi, we construct a
constraint Ee with the only tuple (d, . . . , d). If there is yi ∈ e, we construct a constraint
Ee in which yi is the first variable with the tuples {(a, d, . . . , d) | a ∈ D}.

These are all constraints of Ψ. Let the formula

ψ′ :=
∧
e∈E

Ee

23

and ψ the formula that we get from ψ′ by quantifying all variables in V \ S. Let ψ be
the formula of Ψ, then it is easy to see that Ψ has has the associated S-hypergraph
(H, S). Furthermore, Ψ has the same number of satisfying assignments as Φ. This is
because in each satisfying assignment a of Ψ all variables in (V \ V ′) ∪ (S \ Y) are set
to d. Furthermore, all variables in V ′ \ S take one common value b in a. Let a′ be an
assignment to Φ that we get by setting a′(z) := b and a′(yi) := a(yi). It is easy to see
that by this construction the satisfying assignments of Ψ and Φ correspond directly, so
the number of satisfying assignments is the same.

Now assume that #ACQ is polynomial time solvable for G. It follows that the satisfying
assignments of Ψ can be counted in time (g(k)n)O(1) and thus #ACQ on GS is in FPT.
With Lemma 21 this contradicts the assumption which completes the proof.

6 Applications to arithmetic circuit complexity

We now show an adaptation of some of the results in this paper to arithmetic circuit
complexity, i.e. the so-called Valiant model [Val79]. A polynomial family is a sequence (fn)
of multivariate polynomials over a field F. The class of polynomial families of polynomial
degree computed by families of polynomial size arithmetic circuits is denoted by VP.
This class is a natural candidate to formalize efficient computation with arithmetic
circuits. A family (fn) of polynomials is in VNP, if there is a family (gn) ∈ VP and
a polynomial p such that fn(X) =

∑
e∈{0,1}p(n) gn(e,X) for all n where X denotes the

vector (X1, . . . , Xq(n)) for some polynomial q. By definition VP ⊆ VNP but the precise
relations between VP and VNP are still unknown. It is however widely conjectured
that VP 6= VNP, i.e. that not all polynomial familes in VP are efficiently computable
by arithmetic circuits.

A polynomial f is called a projection of g (symbol: f ≤ g), if there are values
ai ∈ F ∪ {X1, X2, . . .} such that f(X) = g(a1, . . . , aq). A family (fn) of polynomials is a
p-projection of (gn) (symbol: (fn) ≤p (gn)), if there is a polynomial r such that fn ≤ gr(n)

for all n. As usual we say that (gn) is hard for an arithmetic circuit class C if for every
(fn) ∈ C we have (fn) ≤p (gn). If further (gn) ∈ C we say that (gn) is C-complete.

Classes of polynomials are often better understood through the natural polynomial
families they contain or, better, which are complete for them. For example, it is well-
known that determinant family, denoted (Detn), of matrices (Xi,j)i,j∈[n] defined by:

Detn(Xi,j) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Xi,σ(i).

where sgn(σ) ∈ {−1, 1} is the sign of the permutation σ, is contained in VP (although
presumably not complete). Similarly, the polynomial family (Permn) representing the
permanent of the matrices (Xi,j)i,j∈[n] and defined as

Permn(Xi,j) =
∑
σ∈Sn

n∏
i=1

Xi,σ(i).

24

has been shown to be VNP-complete (see [Val81]). Recently, the complexity of poly-
nomial families defined by natural extensions of counting solutions to constraint satis-
faction problems (like the the Q-polynomial of this paper) has been investigated (see
[BKM11, Men11] and also [Bri11]) and several non-circuit characterizations of VP, VNP
and other classes have been obtained. In this section, we generalize some of these re-
sults by showing that acyclic conjunctive queries can define polynomial families that
characterizes VP and VNP.

6.1 Tractable polynomials

The weighted counting problem #FACQ can be seen as the problem of computing the
polynomial

Q(Φ) :=
∑

a∈φ(S)

∏
x∈var(φ)

Xa(x),

in the variables {Xd | d ∈ D} for a Φ in CQ. This naturally makes #FACQ or equivalently
computing Q(Φ) a question in the Valiant model. We have:

Theorem 23. If (Φn) is a family of ACQ of polynomially bounded size and bounded
quantified star size, then (Q(Φn)) ∈ VP. Moreover, any family in VP is a p-projection
of (Q(Φn)), where the Φn are polynomial size quantifier free conjunctive queries whose
hypergraph is a tree.

Proof. The upper bound follows from the proof of Theorem 14 and Theorem 3. The
lower bound is already true for acyclic queries on graphs and follows from [Men11].

This result shows that while #FACQ is a tractable counting problem, it is probably
harder than computing the determinant, which is quite rare in counting complexity (see
[MP08] for the role of the determinant in the Valiant model).

As a corollary, we also obtain the following result from [Men11].

Corollary 24. Let k, d be integers. Let (Φn) be a family of CSP of polynomially bounded
size with arity bounded by d and tree-width bounded by k. Then (Q(Φn)) ∈ VP.

Proof. Comes from the fact that any CSP of tree-width k built on relation of arity d can
be transformed (by taking joins of atoms in each bag of the tree decompositions) in time
O(nf(k,d)), for some function f , into an acyclic CSP with the same set of solutions.

6.2 The power of existentially quantified variables

In this section we show a version of Pichler and Skritek’s hardness result for #ACQ for
the Valiant model, i.e. the polynomial Q(Φ) appears to be harder to compute than in
the unquantified case. We state the upper bound in a more general way:

Let D be a finite set with |D| = d. For a positive integer n we encode an elements of
a = (a1, . . . , an) ∈ Dn by a d× n-matrix M = (mi,j)i∈D,j∈[n] such that mi,j = 1 if aj = i
and mi,j = 0 otherwise. Observe that a 0-1-matrix encodes an element in Dn if and only if
in each column there is exactly one 1. We define the monomial q(M) := q(a) =

∏
j∈[n]Xaj

25

if M encodes a and q(M) := 0 otherwise. With this notation we can prove a version of
Valiant’s classic criterion [Val79] for the Q-polynomial.

Proposition 25. Let α : {0, 1}∗ → Z a function in gapP. Furthermore let (Dn) be a
polynomially bounded family of sets and let p(n) be a polynomial. Then the family (fn)
defined by

fn =
∑

M∈{0,1}|Dn|×p(n)

α(M)q(M)

is in VNP.

Proof. It is folklore that α can be computed as α(x) =
∑

e∈{0,1}r(n) g|x|(x, e) where r is
a polynomial and gn is a family of uniform arithmetic formulas of polynomial size (see
e.g. [BF91]). In the proof of Lemma 4 in the full version of [Men11] it is shown how to
compute the function q with small arithmetic formulas. Combining this we directly get
the proposition.

Proposition 26. If (Φn) is a family of acyclic conjunctive queries of polynomial size,
then (Q(Φn)) ∈ VNP. Moreover, any family in VNP is a p-projection of such a (Q(Φn)).
The (Φn) family can be supposed of arity bounded by two.

Proof. We start off with the containment in VNP, which follows easily from the fact
that given an assignment a and an acyclic conjunctive query Φ one can in polynomial
time decide if the a satisfies Φ. Applying Proposition 25 we get the upper bound.

The hardness is obtained by reduction from the family (Permn). Permn can be seen
as the sum of weights of perfect matchings in the weighted bipartite graph Kn,n.

Let Kn,n = (A ∪ B,E) be the complete bipartite graph with A = {a1, ..., an}, B =
{b1, ..., bn}. We denote by ei,j the edge between vertices ai ∈ A and bj ∈ B. We construct
a structure S = 〈U , F,G,H, I, J,K, a1, ..., an〉 of domain U as follows.

• The universe U = A ∪B ∪ {ei,j | i, j ∈ [n]} ∪ {p, n, l},

• G = {p, n},

• F = {(n, l)} ∪ {(p, ei,j) | i, j ∈ [n]},

• H = {(ei,j , ai) | i, j ∈ [n]} ∪ {(l, ai) | i ∈ [n]},

• I = {(p, l)} ∪ {(n, bi) | i ∈ [n]},

• K = {(bj , ei,k) : i, j, k ∈ [n], j 6= k} ∪ {(l, l)}

Note that the maximal arity of a predicate is two. Let φ(x1, ..., xn, x, x
′
1, ..., x

′
n) be the

following acyclic conjunctive query:

G(x) ∧
n∧
i=1

F (x, xi) ∧
n∧
i=1

H(xi, ai) ∧ ∃yI(x, y) ∧
n∧
i=1

K(y, x′i) ∧
n∧
i=1

H(x′i, ai) (1)

There are two types of satisfying assignments:

26

• If x takes the value p, then y and all x′i must take the value l. The xi take as values
the edges ei,j in such a way that for each i ∈ [n] there is an edges ei,j . Thus the
vertices in A are mapped to the vertices of B in the original graph in an arbitrary
way.

• If x takes the value n, then all xi must take the value l. Furthermore y takes a
value b ∈ B. The x′i then take as values the edges ei,j in such a way that each ai is
mapped to a vertex bj ∈ B \ {b} by this edge. Thus the assignment to the x′i is an
arbitrary non-injective assignment of the vertices in A to those in B.

Thus the query Φ = (S, φ) defines a polynomial Q(Φ) with the following property
(with ei,j corresponding to variable Xi,j , p to Xp, n to Xn and l to Xl).

Q(Φ) =
∑
φ(S)

∏
t∈var(Φ)

Xa(t)

= XpX
n
l

∑
σ∈[n][n]

n∏
i=1

Xi,σ(i) +XnX
n
l

∑
σ∈[n][n]\Sn

n∏
i=1

Xi,σ(i).

Projecting correctly, we get

Permn(Xi,j) = Q(Φ)(X1, ..., Xn, Xp, Xn, Xl)|Xp=1,Xn=−1,Xl=1.

6.3 Unions and intersections of ACQ

We now show that a version of Proposition 5 is also true for the Valiant model.

Proposition 27. If (Φn) is a family of queries of polynomial size that are conjunction
(resp. disjunction) of two acyclic conjunctive queries, then (Q(Φn)) ∈ VNP. Moreover,
any family in VNP is a p-projection of such a (Q(Φn)). The result remains true for the
polynomial family (P (Φn)).

Proof (Sketch). The upper bound follows directly from Proposition 25. The proof of the
lower bound for conjunction of acyclic queries follows directly like Proposition 5. The case
of disjunction is obtained by reduction from the case of conjunction. Let Φ = (S, φ(x))
and Ψ = (S, ψ(x)) be two acyclic conjunctive queries. W.l.o.g. we can suppose they both
are on the same structure S of signature σ and domain D. We denote by Φ ∧ Ψ the
instance (S, φ(x) ∧ ψ(x)) and by Φ ∨Ψ the instance (S, φ(x) ∨ ψ(x)). Let S ′ be a new
structure of domain D′ = D ∪ {α1, α2, α3} where α1, α2, α3 are not in D. Structure S ′
includes S and is equipped with two new unary relations R and S which are defined as
follows:

R = {α1, α2}, S = {α2, α3}.

Let us now consider the following disjunction of two acyclic formulas:

27

ϕ(x, y) ≡ (φ(x) ∧R(y)) ∨ (ψ(x) ∧ S(y)) .

The query problem Υ = (S ′, ϕ(x, y)) has the following tuples as solutions:

• (a, α1) for a ∈ φ(S).

• (a, α3) for a ∈ ψ(S).

• (a, α2) for a ∈ φ(S) ∪ ψ(S).

Then, associating each value αi with variable Yi:

Q(Υ) = Y1Q(Φ) + Y3Q(Ψ) + Y2Q(Φ ∨Ψ).

By projection, we get

Q(Φ ∧Ψ) = Q(Υ)(X, Y1, Y2, Y3)|Y1=1,Y2=−1,Y3=1.

This shows that polynomials obtained by disjunction of two acyclic queries can repre-
sented as projections of polynomials obtained by conjunction and hence this is true for
all polynomial families in VNP.

7 Conclusion

We have presented a complete picture of tractability for weighted #ACQ. However, there
are still many open questions that could be explored in the future.

It seems clear that the notion of quantified star size may be adapted to other classes of
queries. For example, it is easily seen that one can characterize tractability for counting
queries for larger classes and that Theorem 16 can be extended for all queries of bounded
generalized hypertreewidth [GLS02, Mik08]. However, in these cases, deciding whether a
conjunctive query belonging to some nicely decomposable class is of bounded quantified
star size, may be difficult. We feel that the complexity of this so-called ”discovery”
problem for different class of queries deserves to be studied and address this problem in
an upcoming paper.

Another challenging problem is whether one can adapt the notion of star size to
quantified i.e. {∃, ∀,∧}-formulas and characterize tractability of decision and counting
for such queries. Also, an interesting application concerns aggregate queries, i.e. queries
in which the language may be enriched by predicates or operators for counting, summing,
averaging... It seems that the star size approach could be helpful for the design of
tractable query language in this setting.

Finally, one motivation for this work was to exhibit a simple characterization of
polynomial families belonging to VP. Classical families such as the determinant or the
permanent are complete for classes respectively below and above VP and till now, it
is open whether there exists a natural complete family for VP. We believe that our
approach may help in understanding the structure of VP.

28

References

[BCC+05] M. Bauland, P. Chapdelaine, N. Creignou, M. Hermann, and H. Vollmer. An
algebraic approach to the complexity of generalized conjunctive queries. In
Theory and Applications of Satisfiability Testing, pages 30–45. Springer, 2005.

[BDG07] G. Bagan, A. Durand, and G. Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In Computer Science Logic, 16th Annual
Conference of the EACSL, volume 4646 of LNCS, pages 208–222. Springer,
2007.

[BDG+10] A. A. Bulatov, M.E. Dyer, L.A. Goldberg, M. Jalsenius, M. Jerrum, and
D. Richerby. The complexity of weighted and unweighted #CSP. CoRR,
abs/1005.2678v2, 2010.

[BF91] L. Babai and L. Fortnow. Arithmetization: A new method in structural
complexity theory. Computational Complexity, 1(1):41–66, 1991.

[BKM11] I. Briquel, P. Koiran, and K. Meer. On the expressive power of CNF formulas
of bounded tree- and clique-width. Discrete Applied Mathematics, 159(1):1–14,
2011.

[Bol98] B. Bollobas. Modern graph theory. Springer Verlag, 1998.

[Bri11] I. Briquel. Complexity issues in counting, polynomial evaluation and zero
finding. PhD thesis, ENS Lyon - City University of Hong Kong, 2011.

[Bul08] Andrei A. Bulatov. The complexity of the counting constraint satisfaction
problem. In Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, volume 5125 of Lecture Notes
in Computer Science, pages 646–661. Springer, 2008.

[CCL11] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Non-negatively weighted #csp: An
effective complexity dichotomy. In Proceedings of the 26th Annual IEEE
Conference on Computational Complexity, CCC 2011, San Jose, California,
pages 45–54, 2011.

[CJG08] David Cohen, Peter Jeavons, and Marc Gyssens. A unified theory of structural
tractability for constraint satisfaction problems. Journal of Computer and
System Sciences, 74(5):721 – 743, 2008.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In 9h annual ACM STOC, pages 77–90.
ACM, 1977.

[DGJ09] M. E. Dyer, L. A. Goldberg, and M. Jerrum. The Complexity of Weighted
Boolean #CSP. SIAM J. Comput., 38(5):1970–1986, 2009.

29

[DHK05] A. Durand, M. Hermann, and P.G. Kolaitis. Subtractive reductions and
complete problems for counting complexity classes. Theoretical Computer
Science, 340(3):496–513, 2005.

[DJ04] Vı́ctor Dalmau and Peter Jonsson. The complexity of counting homomor-
phisms seen from the other side. Theor. Comput. Sci., 329(1-3):315–323,
2004.

[DR10] M. E. Dyer and D. Richerby. On the complexity of #CSP. In 42nd ACM
STOC, Cambridge, Massachusetts, USA, pages 725–734, 2010.

[Fag83] R. Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. Journal of the ACM, 30(3):514–550, 1983.

[FG04] J. Flum and M. Grohe. The parameterized complexity of counting problems.
SIAM Journal on Computing, 33(4):892–922, 2004.

[FG06] J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag
New York Inc, 2006.

[FMR08] E. Fischer, J.A. Makowsky, and E.V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discrete Applied Mathematics,
156(4):511–529, 2008.

[GLS01] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. J. ACM, 48(3):431–498, 2001.

[GLS02] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and
tractable queries. Journal of Computer and System Sciences, 64(3):579–627,
2002.

[GN06] J. Guo and R. Niedermeier. Exact algorithms and applications for tree-like
weighted set cover. J. Discrete Algorithms, 4(4):608–622, 2006.

[Gro07] Martin Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. Journal of the ACM, 54(1), 2007.

[GSS01] M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of con-
junctive queries tractable? In 33rd ACM STOC, pages 657–666. ACM,
2001.

[KPZ99] A. Kiayias, A. Pagourtzis, and S. Zachos. Cook reductions blur structural
differences between functional complexity classes. In Panhellenic Logic Sym-
posium, pages 132–137, 1999.

[Lib04] L. Libkin. Elements of finite model theory. EATCS Series. Springer, 2004.

30

[Men11] S. Mengel. Characterizing Arithmetic Circuit Classes by Constraint Satisfac-
tion Problems. In Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, volume 6755 of LNCS, pages 700–711. Springer,
2011.

[Mik08] Z. Miklós. Understanding Tractable Decompositions for Constraint Satisfac-
tion. PhD thesis, University of Oxford, 2008.

[MP08] G. Malod and N. Portier. Characterizing Valiant’s algebraic complexity
classes. J. Complexity, 24(1):16–38, 2008.

[PS11] R. Pichler and A. Skritek. Tractable Counting of the Answers to Conjunctive
Queries. In AMW, 2011.

[Thu06] M. Thurley. Tractability and Intractability of Parameterized Counting Prob-
lems. Diploma thesis, Humbold-Universiät zu Berlin, 2006.

[Val79] L. G. Valiant. Completeness classes in algebra. In 11th ACM STOC, pages
249–261, New York, NY, USA, 1979. ACM.

[Val81] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions
on Computers, 30(2):135–140, 1981.

[Yan81] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of
the 7th International Conference on Very Large Databases, pages 82–94, 1981.

31

