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4CRIL-CNRS, Université d’Artois, Lens, France
5Institut Universitaire de France

nicolas-schwind@aist.go.jp, inoue@nii.ac.jp, {konieczny, lagniez, marquis}@cril.fr

Abstract
We consider the problem of identifying the change
formula in a belief revision scenario: given that an
unknown announcement (a formula µ) led a set of
agents to revise their beliefs and given the prior be-
liefs and the revised beliefs of the agents, what can
be said about µ? We show that under weak condi-
tions about the rationality of the revision operators
used by the agents, the set of candidate formulae
has the form of a logical interval. We explain how
the bounds of this interval can be tightened when
the revision operators used by the agents are known
and/or when µ is known to be independent from a
given set of variables. We also investigate the com-
pleteness issue, i.e., whether µ can be exactly iden-
tified. We present some sufficient conditions for
it, identify its computational complexity, and report
the results of some experiments about it.

1 Introduction
Announcements have been widely studied in the Dynamic
Epistemic Logic framework [van Ditmarsch et al., 2008;
Baltag and Moss, 2004]. Three main types of announcements
have been identified in this setting: private announcements,
where some agents receive new information but the other
agents are not aware of this communication, semi-private an-
nouncements where the other agents know that the agents re-
ceive some information about a formula ϕ (but they do not
know whether it was ϕ or ¬ϕ), and finally, public announce-
ments where the exact message is known by all agents.

We want to address another kind of announcement, that is
in-between private and semi-private, where the other agents
are aware that something has been said to the agents but
do not know what. Let us call these announcements quasi-
private announcements. This corresponds to very common
situations when one can see a conversation between several
persons but cannot hear what is said. Thus, in this work,
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we focus on the case when a formula µ (announcement) has
been said to a group of agents, and each person of this group
has rationally incorporated this new piece of information into
her beliefs, using a belief revision operator [Alchourrón et
al., 1985; Katsuno and Mendelzon, 1991]. We want to know
what can be said about this formula from the prior and revised
beliefs of the agents.

Technically, this issue can be considered as an inverse
problem for belief revision. Usually, in belief revision, one
knows the prior beliefs ϕi of an agent i and the new piece of
information µ, and the aim is to compute her revised beliefs
γi so that γi = ϕi ◦ µ. Here, our goal is to find the new piece
of information µ from the prior beliefs ϕi and the revised be-
liefs γi of a group of agents. In formal terms, the problem
amounts to “solving” the system of equations ϕi ◦ µ = γi,
where the unknown is µ.

For the sake of illustration, let us present a scenario that
will be used as a running example in the paper:

Example 1. We know that Amy and Beniko received some
announcement about a park they plan to visit. The prior be-
liefs of Amy were that the park is far to the north and that the
park’s entrance is free, whereas Beniko believes at start that
the park is near to the south and that the entrance is subject
to a fee. Then we saw that a third person told them something,
but we do not know what. Nevertheless, we know that, after
the occurrence of this event, the beliefs of Amy have evolved
in such a way that she now believes that the park’s entrance is
free, but that the park is located to the east, and is either near
to the north or far to the south. We also know that Beniko
still believes that the park is near and that entrance is sub-
ject to a fee, and additionally believes that it is located south
east of their current location. The issue is to determine the
announcement made to Amy and Beniko.

In this work the agents are supposed to be rational in the
sense that each one of them uses a belief revision operator to
revise her beliefs. This is enough to show that the set of can-
didate formulae for µ has the form of a logical interval. We
explain how the bounds of this interval can be tightened when
µ is known to be independent from a given set of variables



(this captures a situation when the topic of the change for-
mula is known), and/or when the revision operators used by
the agents are known. We also study the completeness issue,
i.e., whether the input allows one to identify µ (up to logical
equivalence). We present some sufficient conditions for it,
identify its computational complexity, and report the results
of some experiments about the completeness issue when the
revision operators used by the agents are Dalal’s.

2 Preliminaries
Let LP be a propositional language built up from a finite set
of propositional variables P and the usual connectives. ⊥
(resp. >) is the Boolean constant always false (resp. true).
An interpretation (or world) is a mapping from P to {0, 1}.
The set of all interpretations is denotedW . [ϕ] denotes the set
of models of the formula ϕ, i.e., [ϕ] = {ω ∈ W | ω |= ϕ}.
|= denotes logical entailment and ≡ logical equivalence, i.e.,
ϕ |= ψ iff [ϕ] ⊆ [ψ] and ϕ ≡ ψ iff [ϕ] = [ψ]. V ar(α)
denotes the set of propositional variables appearing in α.

A belief base (base for short) is a formula (or equivalently a
finite set of propositional formulae considered conjunctively)
that represents the set of beliefs of an agent.
Definition 1 (KM revision operator [Katsuno and Mendel-
zon, 1991]). A KM revision operator ◦ is a revision operator
associating a base ϕ and formula µ with a new base ϕ ◦ µ,
such that for all formulae µ, µ′, ϕ,ϕ′:
(R1) ϕ ◦ µ |= µ;
(R2) If ϕ ∧ µ is consistent, then ϕ ◦ µ ≡ ϕ ∧ µ;
(R3) If µ is consistent, then ϕ ◦ µ is consistent;
(R4) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ ◦ µ ≡ ϕ′ ◦ µ′;
(R5) (ϕ ◦ µ) ∧ µ′ |= ϕ ◦ (µ ∧ µ′);
(R6) If (ϕ ◦ µ) ∧ µ′ is consistent,

then ϕ ◦ (µ ∧ µ′) |= (ϕ ◦ µ) ∧ µ′.

Postulates (R1 - R3) are the most essential ones. Postulate
(R4) is the syntax-independence postulate. Postulates (R5 -
R6) require that the minimality of change is induced by a no-
tion of proximity between worlds (see [Katsuno and Mendel-
zon, 1991] for more details about the rationale of these pos-
tulates).

KM revision operators can be characterized in terms of
total preorders over interpretations. Given a preorder �, '
(resp. ≺) denotes the indifference (resp. strict) part of �:
a faithful assignment is a mapping associating every base ϕ
with a preorder �ϕ such that for all bases ϕ,ϕ1, ϕ2 and all
interpretations ω, ω′ ∈ W , the following conditions are satis-
fied:

1. If ω, ω′ |= ϕ, then ω 'ϕ ω′;
2. If ω |= ϕ and ω′ 6|= ϕ, then ω ≺ϕ ω′;
3. If ϕ1 ≡ ϕ2, then �ϕ1

=�ϕ2
.

Proposition 1. [Katsuno and Mendelzon, 1991] A revision
operator ◦ is a KM revision operator if and only if there
exists a faithful assignment associating each base ϕ with a
total preorder �ϕ such that for all ϕ, µ ∈ LP , [ϕ ◦ µ] =
min([µ],�ϕ).

An interesting class of KM revision operators is the class of
distance-based revision operators ◦d characterized by a dis-
tance between interpretations1 d :W×W 7→ N [Lehmann et
al., 2001; Konieczny et al., 2004]. For all ϕ, µ ∈ LP , ϕ◦dµ is
defined as any formula whose models are the most plausible
models of µ w.r.t. �dϕ, i.e.,

[ϕ ◦d µ] = min([µ],�dϕ),

where for all ω1, ω2 ∈ W , ω1 �dϕ ω2 if and only if
d(ω1, ϕ) ≤ d(ω2, ϕ), and for every ω ∈ W , d(ω, ϕ) =
minω′|=ϕ d(ω, ω′).

Noteworthy, KM revision operators include Dalal’s revi-
sion operator ◦Dal [Dalal, 1988] which corresponds to the
distance-based revision operator based on the Hamming dis-
tance dH defined for all ω, ω′ ∈ W as dH(ω, ω′) = |{x ∈
P | ω(x) 6= ω′(x)}|.

3 Identifying the Change Formula
We consider a finite set of agents n = {1, . . . , n}, n ≥ 1.
Each agent i ∈ n is associated with a prior belief base ϕi. A
formula, called change formula and denoted by µ, is assumed
to be said to all agents but it is not known. Each agent i ∈ n
revises her prior belief base ϕi by µ, resulting in the revised
belief base γi. Lastly, we assume that each agent performs
rational revision operations. More precisely, each agent i ∈ n
uses a revision operator ◦i which is not known, but which
satisfies all KM rationality postulates :

ϕ1 ◦1 µ = γ1

...
ϕn ◦n µ = γn.

Overall, we consider an “inverse revision problem” whose
input is characterized by an IP pair defined as follows:

Definition 2 (IP pair). Given a prior profile Φ = 〈ϕ1, . . . ,
ϕn〉 and a revised profile Γ = 〈γ1, . . . , γn〉, where for each
i ∈ n, ϕi and γi correspond respectively to the prior belief
base and the revised belief base of agent i, the pair IP =
〈Φ,Γ〉 is called an Inverse revision Problem description, or
IP pair for short.

Our goal is to characterize the change formula µwhen pos-
sible, or “approximate” it as much as possible given the infor-
mation provided by the IP pair.

Definition 3 (Frame). The frame of an IP pair IP = 〈Φ,Γ〉,
denoted by fr(IP), is the set of formulae δ from LP such
that for each agent i ∈ n, there exists a revision operator ◦i
satisfying all KM postulates and such that ϕi ◦i δ ≡ γi.

From now on, we assume that (i) the change formula µ is
consistent, and (ii) no agent lies on her actual prior or revised
belief base. Obviously enough, under these assumptions, we
always have that fr(IP) 6= ∅, since for each agent i ∈ n, the
revised base γi results as a matter of fact from the revision
of the prior base ϕi by µ. We say that a frame fr(IP) is

1Actually a pseudo-distance is enough, i.e., the triangular in-
equality is not needed.



complete when for all δ, δ′ ∈ fr(IP), we have that δ ≡ δ′.
Intuitively, this means that the change formula of an IP pair
IP can be characterized (up to logical equivalence) precisely
when fr(IP) is complete.
Example 1 (continued). Let us now model the scenario pro-
vided in the introduction. We are given two agents 2 = {1, 2},
where 1 corresponds to Amy, 2 to Beniko. LP is the propo-
sitional language defined from the set of variables P =
{s, e, n, f}, where s stands for “the park is located to the
south”, e stands for “the park is located to the east”, nmeans
“the park is near”, and f means that “the park’s entrance
is free”. Amy’s (resp. Beniko’s) prior beliefs are then repre-
sented as ϕ1 = ¬s∧¬n∧f (resp. ϕ2 = s∧n∧¬f ). After get-
ting information from the third person, Amy’s (resp. Beniko’s)
revised beliefs are represented as γ1 = e ∧ (n ⇔ ¬s) ∧ f
(resp. γ2 = s ∧ e ∧ n ∧ ¬f ). Thus, we consider the IP
pair IP = {〈ϕ1, ϕ2〉, 〈γ1, γ2〉}. We assume that there are two
KM revision operators ◦1, ◦2 such that ϕ1 ◦1 µ = γ1, ϕ2 ◦2
µ = γ2, although nothing is known about ◦1 and ◦2 apart
from the fact that they satisfy all KM postulates. The issue
of interest is to identify, or at least approximate as much as
possible, the frame fr(IP), i.e., the set of possible candidates
for µ.

Let us first observe that:

fr(〈Φ t 〈ϕn+1〉,Γ t 〈γn+1〉〉) ⊆ fr(IP),

where t denotes the concatenation of vectors. This means
that the more agents in an IP pair, the better the approximation
of the change formula.

We show below that the frame of an IP pair can be simply
characterized:
Proposition 2. Let IP be an IP pair. Then fr(IP) is precisely
the set of formulae given by

fr(IP) = {δ ∈ LP |
∨
γi∈Γ

γi |= δ |=
∧

ϕi∈Φ,γi∈Γ

¬ϕi ∨ γi}.

Proof. (⊆) Let δ ∈ fr(IP). By definition of fr(IP), we
know that for each agent i ∈ n, there is a revision opera-
tor ◦i satisfying (R1-R6) such that ϕi ◦i δ ≡ γi. Since for
each i ∈ n, ◦i satisfies (R1), we get that for each γi ∈ Γ,
γi |= δ. Hence,

∨
γi∈Γ γi |= δ. Let us now prove that δ |=∧

ϕi∈Φ,γi∈Γ ¬ϕi ∨ γi. Let i ∈ n. In the case where ϕi ∧ δ is
inconsistent, we get that δ |= ¬ϕi, so we trivially have that
δ |= ¬ϕi ∨ γi. Otherwise ϕi ∧ δ is consistent, and since ◦i
satisfies (R2) we know that γi ≡ ϕi ∧ δ, thus we also have
that δ |= ¬ϕi ∨ γi. Therefore, δ |=

∧
ϕi∈Φ,γi∈Γ ¬ϕi ∨ γi.

(⊇) Let δ ∈ LP such that
∨
γi∈Γ γi |= δ and δ |=∧

ϕi∈Φ,γi∈Γ ¬ϕi ∨ γi. To prove that δ ∈ fr(IP), we need to
show that one can associate with each agent i ∈ n a revision
operator ◦i satisfying (R1-R6) and such that ϕi ◦i δ ≡ γi.
We proceed as follows. For each agent i ∈ n such that
ϕi ∧ γi is consistent, let ◦i be the drastic revision operator,
i.e., ◦i = ◦D, where ◦D is defined for all α, β ∈ LP as
α ◦D β = α∧β if α∧β is consistent, otherwise α ◦D β = β.
And for each remaining agent i ∈ n, since we know that
◦i can be represented by a faithful assignment, we associate

with each ◦i the faithful assignment associating each formula
ϕ with the total preoder �iϕi

, where �iϕi
is defined for all in-

terpretations ω, ω′ ∈ W as ω �iϕi
ω′ if and only if (ω |= ϕi

or ω′ |= ¬(ϕi ∨ γi)). Under these constructions, it can eas-
ily be verified that for each i ∈ n, ϕi ◦i δ ≡ γi. Therefore,
δ ∈ fr(IP). This concludes the proof.

Proposition 2 above shows that the frame of an IP pair has
the form of a logical interval that can be characterized suc-
cinctly and in polynomial time. A frame fr(IP) can simply
be identified by a pair of propositional formulae, so that it
can be denoted by (fr−(IP), fr+(IP)), where fr−(IP) =∨
γi∈Γ γi and fr+(IP) =

∧
ϕi∈Φ,γi∈Γ ¬ϕi ∨ γi. On the one

hand, fr+(IP) represents what has been said “at least” in the
change formula µ given the information provided by the IP
pair, i.e., for every formula α such that fr+(IP) |= α, we
know that µ |= α. On the other hand, fr−(IP) characterizes
what has been said “at most” in µ, i.e., for every formula α
such that α ∧ fr−(IP) is consistent, we know that µ 6|= ¬α.

A simple observation is that under the assumptions (i)
(the change formula µ is consistent), and (ii) (no agent lies
on her actual prior or revised belief base), we necessarily
have fr−(IP) |= fr+(IP), which is equivalent to state that
fr(IP) 6= ∅. The set fr(IP) contains all the interpolants of
fr−(IP) and fr+(IP) in the sense of Craig / Lyndon the-
orem [Craig, 1957], but it is not restricted to them in gen-
eral since one does not ask the admissible δ to be such that
Var(δ) ⊆

⋃n
i=1 Var(γi).

Clearly enough, Proposition 2 has an interesting conse-
quence from the computational viewpoint. Indeed, deciding
whether a given formula belongs to the frame of an IP pair is
not harder than the inference problem in propositional logic:
Proposition 3. Given an IP pair IP and a formula α ∈ LP ,
the problem of deciding whether α ∈ fr(IP) is coNP-
complete.

Proof. Direct from Proposition 2 and the fact that the infer-
ence problem in propositional logic is a coNP-complete prob-
lem [Cook, 1971].

Example 1 (continued). From Proposition 2, we get that
fr(IP) = (fr−(IP), fr+(IP)), where

fr−(IP) = e ∧ (s⇒ (n⇔ ¬f)) ∧ (¬s⇒ (n ∧ f))

and

fr+(IP) = (s ∨ n ∨ ¬f) ∧ (¬s ∨ e ∨ ¬n ∨ f).

This means that among what has been said by the person met
by Amy and Beniko is that (cf. fr+(IP)) if the park’s entrance
is free, then it is not located far to the north; and if the park’s
entrance is not free, then it is not located near to the south
west.

Note that in the above example, little is known about µ:
since fr−(IP) admits three models and fr+(IP) admits 13
models, there is significant uncertainty about µ, which can be
assessed by the ratio 10

16 = 5
8 given that for 10 interpretations

out of 16 interpretations (the total number of interpretations
over P = {s, e, n, f}) one ignores whether it is a model or a
counter-model of µ.



Thus, our greatest interest lies in complete frames. Tak-
ing advantage of Proposition 2, we know that a frame fr(IP)
is complete when fr−(IP) ≡ fr+(IP), and in such a case,
fr(IP) is denoted by (δ), where δ is any formula from the
frame. Interestingly, one can easily identify the cases when a
frame is complete:

Proposition 4. Given an IP pair IP, fr(IP) is complete if
and only if

∨
ϕi∈Φ,γi∈Γ ϕi ∨ γi is a valid formula.

Proof. Let IP be an IP pair. From Proposition 2, fr(IP) =
(fr−(IP), fr+(IP)). So fr(IP) is complete if and only if
fr+(IP) |= fr−(IP) if and only if

∧
ϕi∈Φ,γi∈Γ ¬ϕi ∨ γi |=∨

γi∈Γ γi if and only if
∨
γi∈Γ γi ∨ ¬

∧
ϕi∈Φ,γi∈Γ ¬ϕi ∨ γi is

valid, if and only if
∨
γi∈Γ γi∨

∨
ϕi∈Φ,γi∈Γ ϕi ∧ ¬γi is valid,

if and only if
∨
ϕi∈Φ,γi∈Γ ϕi ∨ γi is valid. This concludes the

proof.

So this result means that if we have a varied enough set of
bases, so that the disjunction of all these formulae is a valid
formula, then we know that the announcement can be identi-
fied up to logical equivalence.

This result also tells us that the computational complex-
ity of the frame completeness issue is at the first level of the
polynomial hierarchy:

Proposition 5. The problem of deciding whether the frame of
an IP pair is complete is coNP-complete.

Proof. Direct from Proposition 4 and the fact that deciding
whether

∨
ϕi∈Φ,γi∈Γ ϕi ∨ γi is a valid formula is a coNP-

complete problem.

4 Independence Assumptions
We now intend to show how the bounds of the logical interval
representing a frame can be tightened in the case when the
change formula µ is known to be independent from a given
set of variables. We say that µ is independent of a set of
propositional variables X ⊆ P if there exists a formula µ′
logically equivalent to µ and such that X ∩ V ar(µ′) = ∅
[Lang et al., 2003]. Equivalently, µ is independent of X ⊆ P
if µ is equivalent to ∃X · µ, i.e., the formula µ obtained after
forgetting X:

Definition 4 (Forgetting [Lang et al., 2003]). Let X ⊆ P
and α ∈ LP . The forgetting of X in α is the formula ∃X · α
defined inductively as

∃X ·α =

{
α if X = ∅,
αx←0 ∨ αx←1 if X = {x},
∃(X \ {x}) · (∃{x} · α) if |X| > 1, x ∈ X ,

where αx←0 (resp. αx←1) is the formula α obtained by re-
placing each occurence of x in α by the constant⊥ (resp. >).

Given an IP pair IP and X ⊆ P , we are then interested
in the frame of IP projected onto X = P \ X , denoted by
fr(IP, X), defined as the subset of formulae from fr(IP) that
are independent of X . For any formula α, let us denote by
∀X · α the formula ¬∃X · ¬α:

Proposition 6. Let IP be an IP pair and X ⊆ P . Then

fr(IP, X) = (∃X · fr−(IP),∀X · fr+(IP)) ∩ LX .

Proof. (⊆) By definition of fr(IP, X), we know that µ ∈
fr(IP, X). And by assumption, µ ≡ ∃X · µ. So by Proposi-
tion 2, we get that fr−(IP) |= ∃X ·µ. Yet we know that for all
formulae α, β, if α |= ∃X ·β, then ∃X ·α |= ∃X ·β. So we can
write that ∃X ·fr−(IP) |= ∃X ·µ. Hence, ∃X ·fr−(IP) |= µ.
Similarly, we can prove that µ |= ∀X · fr+(IP). This shows
that fr(IP, X) ⊆ (∃X · fr−(IP),∀X · fr+(IP)) ∩ LX .

(⊇) Let δ ∈ (∃X · fr−(IP),∀X · fr+(IP)) ∩ LX . Yet we
know that for any formula α, we have that α |= ∃X · α and
∀X ·α |= α. This means that (∃X ·fr−(IP),∀X ·fr+(IP)) ⊆
(fr−(IP), fr+(IP)), so δ ∈ fr(IP). Since we also have
that δ ∈ LX , we get that δ ∈ fr(IP, X) by definition of
fr(IP, X). This concludes the proof.

Accordingly, the frame of an IP pair IP projected onto
X is also represented as a logical interval (restricted to
the propositional language LX ), denoted by fr(IP, X) =

(fr−(IP, X), fr+(IP, X))∩LX , where fr−(IP, X) = ∃X ·
fr−(IP) and fr+(IP, X) = ∀X · fr+(IP).

Example 1 (continued). Let us assume that in addition to
their revised beliefs, Amy and Beniko have declared that the
person they met did not mention anything about whether
the park has a paid entrance or not. In this case, µ
is independent of {f}. From Proposition 6, we get that
fr(IP, {f}) = (fr−(IP, {f}), fr+(IP, {f})) ∩ L{f}, where

fr−(IP, {f}) = ∃{f} · (e ∧ (s⇒ (n⇔ ¬f))
∧(¬s⇒ (n ∧ f)))
≡ e ∧ (s ∨ n)

fr+(IP, {f}) = ∀{f} · ((s ∨ n ∨ ¬f)
∧(¬s ∨ e ∨ ¬n ∨ f))
≡ (s ∨ n) ∧ (¬s ∨ ¬n ∨ e)

Accordingly, f does not appear in fr−(IP, X) and
fr+(IP, X). Note that here, the logical interval obtained
by fr(IP, {f}) is more restrained: among the total of
eight interpretations, fr−(IP, {f}) admits three models and
fr+(IP, {f}) admits five models, so there exist only two in-
terpretations over {s, e, n} for which one ignores whether
they are models or counter-models of µ. Thus the uncertainty
on µ can be quantified this time as 2

8 = 1
4 .

With such additional independence assumptions, the frame
completeness issue can be characterized as follows:

Proposition 7. Let IP be an IP pair and X ⊆ P . Then
fr(IP, X) is complete if and only if ∃X ·

∨
ϕi∈Φ,γi∈Γ ϕi ∨ γi

is a valid formula.

Proof. The proof is identical to the one of Proposition 4, by
taking advantage of Proposition 6 instead of Proposition 2.

And as a consequence:



Proposition 8. The problem of deciding whether the frame of
an IP pair is complete whenever µ is known to be independent
of X ⊆ P is Πp2-complete.

Proof. Direct from Proposition 7 and the fact that deciding
whether ∃X ·

∨
ϕi∈Φ,γi∈Γ ϕi ∨ γi is a valid formula is a Πp2-

complete problem [Lang et al., 2003].

Tu sum up, using additional independence information, a
better approximation of µ can be obtained, but identifying
whether the resulting frame is complete is more demanding
from a computational point of view.

Interestingly, when the bases from the prior and revised
profiles are all represented as terms (i.e., conjunctions of liter-
als), the complexity of the frame completeness problem drops
to coNP:

Proposition 9. The problem of deciding whether the frame of
an IP pair is complete whenever µ is known to be independent
of X ⊆ P is coNP-complete when all ϕi and γi are terms.

Proof. When all ϕi and γi are terms, the formula∨
ϕi∈Φ,γi∈Γ ϕi ∨ γi is a DNF formula, i.e., it is a disjunction

of terms. In such a case, the formula ∃X ·
∨
ϕi∈Φ,γi∈Γ ϕi ∨ γi

can be turned in polynomial time into an equivalent DNF for-
mula (see e.g., [Lang et al., 2003]). Yet deciding whether
a DNF formula is valid is a coNP-complete problem, which
concludes the proof.

5 When the Revision Operators are Known
So far we have considered a setting when the prior and re-
vised bases are known for each agent, and we have assumed
that each agent uses a revision operator satisfying the KM
postulates. We now intend to show how the bounds of the
logical interval representing a frame of the input IP pair can
be tightened in the case when the revision operators used by
the agents are known. One considers successively two sce-
narios: the case when each ◦i is known, and its subcase when
each ◦i is a distance-based revision operator.

Each KM Revision Operator ◦i is Provided Formally, we
are now given an IP pair IP and a set Θ = 〈◦1, . . . , ◦n〉,
where each ◦i is the KM revision operator used by agent i.
We are then interested in the frame of IP given Θ, denoted by
fr(IP,Θ), which is defined as the subset of formulae δ from
fr(IP) such that for each agent i ∈ n, ϕi ◦i δ ≡ γi, where ◦i
is specified by Θ. This frame can be characterized as follows:

Proposition 10. Let IP be an IP pair and Θ = 〈◦1, . . . , ◦n〉.
Then

fr(IP,Θ) = (fr−(IP),
∧
i∈n

(αi ∨ γi)),

where for each i ∈ n, αi is any formula such that

[αi] = {ω ∈ W | ∃ω′ |= γi, ω
′ ≺iϕi

ω},

and �iϕi
is the total preorder corresponding to ◦i and asso-

ciated with ϕi through its faithful assignment.

Proof. (⊆) Let δ ∈ fr(IP,Θ). We already know by defini-
tion of fr(IP,Θ) that fr(IP,Θ) ⊆ fr(IP), thus fr(IP,Θ) ⊆
(fr−(IP), fr+(IP)), hence fr−(IP) |= δ. So we only need
to prove that δ |=

∧
i∈n (αi ∨ γi). Let i ∈ n, we must

prove that δ |= αi ∨ γi. Toward a contradiction, assume
that δ 6|= αi ∨ γi, i.e., there exists an interpretation ω |=
δ ∧ ¬αi ∧ ¬γi. We have that ω ∈ [δ] and ω 6∈ [γi], i.e., ω 6∈
min([δ],�iϕi

). Since �iϕi
is a preorder, we get that for every

ω′ ∈ min([δ],�iϕi
), ω′ ≺iϕi

ω. Yet [γi] = min([δ],�iϕi
), so

for every ω′ |= γi, ω′ ≺iϕi
ω. By definition of αi, this means

that ω ∈ [αi], which leads to a contradiction.
(⊇) Let δ ∈ (fr−(IP),

∧
i∈n (αi ∨ γi)), i.e.,

∨
γi∈Γ γi |= δ

and δ |=
∧
γi∈Γ αi ∨ γi. For each agent i ∈ n, using the

definition of αi and the fact that [γi] = min([δ],�iϕi
), one

can easily verify that ϕi ◦i δ ≡ γi. Therefore, δ ∈ fr(IP,Θ).
This concludes the proof.

So we also obtain a better approximation in this case,
and the frame of an IP pair IP given Θ is also rep-
resented as a logical interval, denoted by fr(IP,Θ) =
(fr−(IP,Θ), fr+(IP,Θ)), where fr−(IP,Θ) = fr−(IP)
and fr+(IP,Θ) = fr+(IP) ∧

∧
i∈n αi.

Propositions 6 and 10 state that the frame of an IP pair
IP can be tightened in two different ways. Let us denote by
fr(IP, X,Θ) the frame of an IP pair IP projected onto X
given Θ, i.e., fr(IP, X,Θ) is the subset of formulae from
fr(IP) that are independent ofX and such that for each agent
i ∈ n, ϕi ◦i δ ≡ γi, where ◦i is given by Θ. Interestingly, one
can combine both results to strengthen the frame of IP:
Corollary 1. Let IP be an IP pair, Θ = 〈◦1, . . . , ◦n〉, and
assume that µ is independent of X ⊆ P . Then

fr(IP, X,Θ) = (fr−(IP, X,Θ), fr+(IP, X,Θ)),

where fr−(IP, X,Θ) = fr−(IP, X) ∨ fr−(IP,Θ) and
fr+(IP, X,Θ) = fr+(IP, X) ∧ fr+(IP,Θ).

Each ◦i is a Distance-Based Revision Operator Exploit-
ing Proposition 10 requires to consider a representation of
each �iϕi

(i ∈ n) in order to compute a corresponding αi.
Such representations are not always available. Things are
easier when each ◦i ∈ 〈◦1, . . . , ◦n〉 is a distance-based re-
vision operator characterized by a distance di since in this
case, whatever ϕi, the corresponding preorder �iϕi

is in-
duced from the underlying distance di. Indeed, with k =
minω∈[γi] di(ω, ϕi), let Di(ϕi, > k) be any formula which
is satisfied by the interpretations ω satisfying di(ω, ϕi) > k.
Then Proposition 10 can be specialized by replacing αi by
Di(ϕi, > k).
Example 1 (continued). Assume that in addition to the as-
sumption that µ is independent of {f}, one knows that
Θ = {◦1, ◦2}, where ◦1 = ◦2 = ◦Dal, i.e., both
Amy and Beniko use Dalal’s operator for revising their be-
liefs. From Corollary 1, we get that fr(IP, {f},Θ) =

(fr−(IP, {f},Θ), fr+(IP, {f},Θ)). On the one hand, we
have that

fr−(IP, {f},Θ) = fr−(IP, {f}) ≡ e ∧ (s ∨ n).



On the other hand, we have that fr+(IP, {f},Θ) =

fr+(IP, {f}) ∧ fr+(IP,Θ); yet fr+(IP, {f}) = (s ∨ n) ∧
(¬s ∨ ¬n ∨ e), and it can be verified that fr+(IP,Θ) =
fr+(IP) ∧

∧
i∈n αi (from Proposition 10), which is equiv-

alent to (s ∨ n) ∧ (s ∨ e ∨ ¬n ∨ ¬f) ∧ (¬s ∨ e ∨ n ∨ ¬f) ∧
(¬s ∨ e ∨ ¬n ∨ f). Overall, we get that

fr+(IP, {f},Θ) ≡ e ∧ (s ∨ n).

Therefore, we get that

fr−(IP, {f},Θ) = fr+(IP, {f},Θ) ≡ e ∧ (s ∨ n),

which means that fr(IP, {f},Θ) is complete, with
fr(IP, {f},Θ) ≡ (e ∧ (s ∨ n)). We can deduce that
what has been said to Amy and Beniko is precisely that the
park is located to the south east, or near to the north east.

6 Some Experimental Results
This section reports experimental results about the number of
agents needed to identify the change formula µ (up to logi-
cal equivalence) when each agent takes advantage of Dalal’s
operator for revising her beliefs.

Computing such a number requires to generate instances
consisting of a change formula µ, and IP pairs for this
µ. To this end, we have taken advantage of a random
CNF generator available at https://www.csc.kth.
se/˜giraldez/. For a given number p ≥ 10, one creates
a CNF instance containing d0.5×pe variables and d1.75×pe
clauses; if this formula is unsatisfiable, then one removes
clauses from it in a greedy fashion until getting a satisfiable
formula µ. The sizes of the clauses that are generated depend
on the number of communities which is expected (this num-
ber varies between 1 and dp3e). When dp3e < 3, clauses of
size 2 have been considered.

The bases ϕi (under the form of CNF formulae) are gen-
erated in the same way as µ considering d0.8 × pe variables
and d2.8 × pe clauses. For each IP pair associated with µ,
µ is identified whenever the upper bound of the logical inter-
val associated with its frame implies the corresponding lower
bound. Those implication tests are at the second level of the
polynomial hierarchy (they correspond to instances of a Πp

2-
complete problem). Indeed, in the CNF encodings associ-
ated with the upper bounds, some extra-variables (existen-
tially quantified) are introduced. In our approach, those vari-
ables are eliminated (using the resolution principle) so that
the complexity of the resulting implication tests falls down
to coNP, and a SAT solver is used to solve them. Obviously
enough, the variable elimination step is computationally ex-
pensive (the output can be exponential in the size of the in-
put). This explains why the number of variables considered
in the experiments has been kept small.

The following figures synthesize the results we got by con-
sidering a set of 100 change formulae µ over the same set of
10 propositional variables.

Figure 1 (a-b) makes precise for each interval of number of
agents (on the x-axis) the number of additional change for-
mulae out of 100 (on the y-axis) that have been characterized
in comparison with the previous interval. Figure 1 (a) corre-
sponds to the case one just knows that these operators are KM
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Figure 1: Number of agents required for identifying µ.

ones, and in Figure 1 (b), the reported results correspond to
the case when we know that each agent uses Dalal’s revision
operator (leading to tighter logical intervals).

Figure 2 presents a scatter plot enabling to compare the
corresponding numbers of agents at the instance level: each
point corresponds to an instance, its x-coordinate indicates
the number of agents required to identify µ in case (b), and
its y-coordinate indicates the number of agents required to
identify µ in case (a).
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Figure 2: Comparison of the number of agents required for identi-
fying µ in cases (a) and (b).

One can observe on the two figures that exploiting the in-
formation given by the revision operators used by the agents
(here, Dalal’s) leads to diminish significantly the number of
agents required for the identification task. It is also interest-
ing to note that the number of agents required to identify the
announcement becomes quite reasonable when the revision
operators are known (mostly around 20-30 agents).

7 Other Related Work
Several inverse problems of belief revision have been consid-
ered in the literature. [Booth and Nittka, 2008] considered
a framework where one observes a sequence of belief states
from a single agent that evolves over time. At each step we
are given some formulae that hold and some formulae that do
not hold in the belief state of the agent. The change formulae
µi are also given, and a lexicographic revision (by µi) is as-
sumed to be performed at each step. The main issue is to find
the initial belief state. [Liberatore, 2015] considered a simi-
lar sequence-based framework, except that the belief base of
the agent is fully known at each step. The focus is then given
on the computational complexity of deciding whether the se-
quence allows for an initial epistemic state, given some as-
sumption on the iterated revision operator that is used at each



step. In both works, the unobservable component is on the
agent’s side. This clearly departs from our approach where
the unknown is the change formula µ.

More closely related to our setting is [Hunter et al., 2017]:
n agents are considered, and each agent i provides her belief
base ϕi together with her revision operator ◦i. In addition, a
goal ψi is given for each agent i. The issue of interest is to
determine whether there exists a formula µ such that ϕi ◦i µ,
the revised base of each agent, entails the goal ψi associated
with it. Clearly, our contribution departs from [Hunter et al.,
2017], both in terms of setting and objective. Rather than
manipulating the beliefs of a set of agents, one wants to find
what has been said to them, so we are not given goals to be
achieved for the agents, but their actual revised bases. But,
on the same vain, it could be interesting to study if our results
can be exported for multi-agent epistemic planning problems
(see, e.g., [Muise et al., 2015]).

8 Conclusion and Perspectives
We have considered a belief revision scenario where an an-
nouncement (a propositional formula) µ is made to a group
of agents. We assumed that we do not know µ, but we are
given access for each agent to her prior beliefs and her be-
liefs after revision by µ. We proved that the set of µ satis-
fying those requirements has the form of a logical interval
which can be characterized by compact bounds (i.e., formu-
lae of size polynomial in the input size). We explained how
this interval can be tightened under variable-independence as-
sumptions or when the revision operator used by each agent
is known. We also provided some experimental results about
the identification issue, showing the benefits of taking into
account such extra-information.

One of our findings is that the announcement µ can be
completely characterized in the case when the disjunction of
the agents’ prior beliefs and revised beliefs is a valid for-
mula. A direct consequence of this result is that whenever
one can identify a subset of agents such that the disjunc-
tion of their prior beliefs is valid, we know that µ could be
characterized, were the revised beliefs of these agents avail-
able. Thus, when the access to those revised (and prior)
beliefs is not “for free”, i.e., some underlying cost has to
be paid to get them, the identification issue can be recast
as a cost-minimization problem. Studying this optimiza-
tion problem and designing algorithms can be interesting for
studying causes for changes of opinion in social networks,
allowing to complete the study of social networks opin-
ion change using belief change tools [Schwind et al., 2015;
2016]. This will be a perspective for further research.
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