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Abstract
This paper is concerned with knowledge compilation (KC), a
family of approaches developed in AI for more than twenty
years. Knowledge compilation consists in pre-processing
some pieces of the available information in order to improve
the computational efficiency (especially, the time complex-
ity) of some tasks. In this paper, the focus is laid on three
KC topics which gave rise to many works: the development
of knowledge compilation techniques for the clausal entail-
ment problem in propositional logic, the concept of compi-
lability and the notion of knowledge compilation map. The
three topics, as well as an overview of the main results from
the literature, are presented. Some recent research lines are
also discussed.

Introduction
Pioneered more than two decades ago, knowledge compi-
lation (KC) (see (Cadoli and Donini 1998) for a survey)
appears nowadays as a very active field in AI. In KC one
is basically concerned with the computation of a recursive
function f , which represents the task to be solved. f takes
two arguments: a ”fixed” part F and a ”varying part” V . The
objective is to improve the time needed to compute f(F, V ),
the image of F, V by f , when V varies. To reach this goal,
the fixed part F is pre-processed during an off-line phase:
F is turned into a compiled form C(F ) using a compila-
tion function C. In some situations, such a pre-processing
is computationally useful: for some p the (cumulated) time
needed to compute C(F ), f(C(F ), V1), . . ., f(C(F ), Vp)
can be lower (sometimes by orders of magnitude) than the
(cumulated, on-line) time needed to compute f(F, V1), . . .,
f(F, Vp). It must be noted that the assumption that some
pieces of information are not very often subject to change (a
”fixed” part exists) is valid in many scenarios. For instance,
in a computer-aided product configuration problem (which
will be considered as a ”running example”), the objective is
to help the customer to find out a product (e.g., a car) by
making some elementary choices (e.g., the number of seats,
the engine, the color of the car). What makes this task not
obvious is that, on the one hand, not all the combinations of
elementary choices correspond to a feasible product (due to
production or marketing constraints) and on the other hand,
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the product catalog is so large that it cannot be represented
extensionally. Here, F may represent intensionally the fea-
sible products and each Vi represents some user choices; F
is independent of the Vi; among the tasks of interest, a basic
one consists in determining whether the current choices Vi
of the user are compatible with F , i.e., whether there exists
a product which satisfies those choices (if the answer is neg-
ative, then the user must be aware of it and has to question
some of her choices).

In KC, ”knowledge” must be taken in a rather broad
sense: F may represent any piece of information. In AI, F
typically corresponds to beliefs or to preferences, but pieces
of information of other types could be considered as well.
Obviously, beliefs and preferences can be modeled in many
different ways; most of the existing work focus on propo-
sitional statements (in classical logic) and utility functions,
respectively. Unsurprisingly, due to the very nature of the
input, the tasks to be achieved typically amount to combi-
nations of elementary inference or optimization processes.
For instance, in a configuration problem, one needs to be
able to provide the user with the direct consequences of the
choices she makes and to maintain the minimal and maximal
costs of the products compatible with the current choices. In
such applications where guaranteed response times are ex-
pected, knowledge compilation appears as very challenging.
Indeed, offering some guarantee on the response time is a
first-class requirement for many programs which must make
on-line decisions under strong time constraints. Especially,
this is the case for a number of Web-based applications (the
user is typically not ready to wait a long time for getting the
information she is looking for).

A standard scenario for which some KC approaches have
been developed is the one where F is a database (or a knowl-
edge base), each Vi is a query, and f(F, Vi) is the answer
to Vi given F . More specifically, one is often interested
in the case when F is a (classical) propositional formula,
Vi is a propositional clause (or a propositional CNF for-
mula), and f corresponds to the clausal entailment prob-
lem CE, i.e., f is the characteristic function of the language
{(F, Vi) | F |= Vi}. This problem occurs in many AI ap-
plications. Indeed, since F |= Vi holds iff F ∧ ¬Vi is con-
sistent, determining whether the user choices (¬Vi) are con-
sistent with F reduces to the clausal entailment problem.
In particular, such a task is of the utmost value for product



configuration: the models of F represents the feasible prod-
ucts and each time the user makes some choices one must be
able to determine efficiently whether such choices can be ex-
tended to a feasible product. Because the clausal entailment
problem is coNP-complete in propositional logic when F
is a CNF formula, there is no available polynomial-time al-
gorithm for solving it (i.e., for computing f ) in this case,
and it is conjectured that no such algorithm is possible (this
would imply P = NP). As a consequence, in the general
case there is no polynomial bound on the time required to
compute f(F, V ) whatever the algorithm used. Especially,
while modern SAT solvers prove efficient in many cases, tak-
ing account for the partial assignment corresponding to ¬V
may reduce drastically the set of solutions, so that F ∧ ¬V
has very few models and those models are hard to be found.
Thus, no guaranteed response times can be ensured in the
general case when f(F, V ) is computed as sat(F ∧ ¬V ).

A fundamental question is the assessment of a KC
method: “when does a KC approach C achieve its goal?”.
This is not an easy question. Indeed, the set of all possi-
ble Vi which will be considered during the on-line phase is
typically unknown and often too large for being taken into
account exhaustively. Hence one needs to select a subset
of ”significant” Vi and check whether the cumulated time
needed to compute C(F ) and f(C(F ), Vi) for each ”signif-
icant” Vi is lower than the cumulated time needed to com-
pute f(F, Vi) for each ”significant” Vi. Several difficulties
must be overcome: how to select the Vi used for assessing
the method? Which algorithm should be considered as a base
line for computing f(F, Vi)?

Instead of looking at the assessment problem at the in-
stance level (i.e., for some given Vi), one can also consider
it at the problem level (i.e., whatever V ). This leads to the
concept of compilability, see e.g., (Cadoli et al. 2002). Un-
der this view, provided that f is a pseudo-Boolean function
(corresponding to a decision problem encoded as usual as
the formal language of its positive instances), compiling F
using C is considered as valuable if the problem which con-
sists in deciding whether f(C(F ), V ) = 1 for any admis-
sible V is computationally easier than the problem which
consists in deciding whether f(F, V ) = 1 for any admissi-
ble V . C is required to be a polynomial-size function (i.e.,
for some fixed polynomial, the size of C(F ) is polynomial
in the size of F ). ”Computationally easier” typically means
that the decision problem when F is compiled using C be-
longs to a complexity class C located ”below” in the poly-
nomial hierarchy than the same problem when F has not
been compiled. Of special interest is the case when C = P,
i.e., the problem becomes tractable provided that the fixed
part of the input is C(F ). In such a case, the problem is said
to be compilable to P. It must be noted that the polynomial-
size condition on C is a mandatory requirement for avoiding
an unbiased evaluation. Nevertheless, evaluating a KC ap-
proach C at the problem level also has its cons: it can prove
too coarse-grained to give an accurate view of the improve-
ments offered by KC for a given application. Indeed, an ap-
plication corresponds to a specific instance of a problem (or
to a finite set of such instances), but not to the problem it-
self (where the focus is laid on the worst case and arbitrarily

large instances are considered). Thus, it can be the case that
KC proves useful in practice for solving some instances of
interest of a problem, even if it does not make the problem
itself “less intractable” or if it does not ensure that the size
of C(F ) is polynomial in the size of F .

Another important issue in knowledge compilation is the
choice of the language L into which the fixed part F must
be compiled, i.e., the co-domain of the compilation func-
tion C. Often the domain-dependent task f to be achieved is
the combination of a number of elementary subtasks, each
of them modeled as a specific function fi. Each function
corresponds either to a query (i.e., an operation which does
not modify the input) or to a transformation (i.e. an opera-
tion which returns another L-representation). The choice of
a target language L (which is reminiscent to a well-known
issue in Computer Science: the choice of a data structure for
a given abstract data type, made precise by the set of func-
tions fi) relies on several criteria, including the expressive-
ness of L (i.e., its ability to represent the available informa-
tion) and more precisely its spatial efficiency (i.e., its ability
to do so using little space), as well as its time efficiency (i.e.,
the ability to compute the functions fi efficiently when the
input is an L-representation). A knowledge compilation map
(Darwiche and Marquis 2002) is a systematic, multi-criteria
comparative analysis of languages which are candidates for
the representation of C(F ). A first map for propositional
formulae / Boolean functions has been developed and en-
riched from then.

The rest of the paper is organized as follows. First, I re-
view some of the pioneering works on knowledge compi-
lation, where the problem of interest is clausal entailment
in propositional logic. Given its importance (as explained
before), there is still some active research on the topic and
some recent results based on the notion of empowering
clause are sketched. Then the concept of compilability is
formally defined and again a couple of properties presented.
The next section is about the notion of knowledge compi-
lation map. The concepts of queries and transformations, as
well as those of expressiveness, spatial efficiency and time
efficiency w.r.t. some queries and/or transformations are re-
called. Some examples pertaining to the propositional case
are provided. I also briefly describe some propositional lan-
guages which have been added recently to the propositional
map. Finally, I sketch some hot off the press results about the
compilation of valued CSPs (and similar representations),
which can be used in AI for modeling various types of infor-
mation, including probability distributions and utility func-
tions. Of course, due to space reasons, some choices had to
be made so that this paper is far from an exhaustive survey of
the topic. Among other things, KC for closed-world reason-
ing and default reasoning, KC for modal logics/description
logics, KC for lifted probabilistic inference, applications of
KC to diagnosis, to planning, are all interesting topics which
are not covered here.

KC for Clausal Entailment
One of the main applications of KC (at least from a ”his-
torical” perspective) is to enhance the efficiency of clausal



entailment CE in propositional logic. One often makes a dis-
tinction between the approaches satisfying CE (called “ex-
act compilation methods”) and approaches ensuring that a
(proper) subset of all clausal queries can be answered ex-
actly in polynomial time (“approximate compilation meth-
ods”). In the first case, C is said to be equivalence-
preserving. In the second case, the subset of queries under
consideration is not explicitly given as part of the entailment
problem; it can be intensionally characterized, for instance
as the set of all clauses generated from a given set of vari-
ables or literals, all the Horn clauses, all the clauses from
k-CNF (for a fixed parameter k), etc. It can also be unspec-
ified at the start and derived as a consequence of the com-
pilation technique under used. For instance, one can asso-
ciate with any propositional formula F one of the logically
weakest HORN-CNF formula fl(F ) implying F as well as
one of the logically strongest HORN-CNF formula fu(F )
implied by F (Selman and Kautz 1996). While fu(F ) is
unique up to logical equivalence, exponentially many non-
equivalent fl(F ) may exist. Once fl(F ) and fu(F ) are com-
puted, they can be used to answer in polynomial time every
clausal query V s.t. fl(F ) 6|= V (1) or fu(F ) |= V (2) (due
to the transitivity of |=); the answer is “no” in case (1), “yes”
in case (2), and Horn (clausal) queries can be answered ex-
actly using fl(L). Such approaches have been extended to
other languages (see e.g., (Simon and del Val 2001)).

Both families of methods (i.e., the “exact” methods and
the “approximate” ones) include approaches based on prime
implicates (or the dual concept of prime implicants), which
have been used for a long time for the KC purpose. Like the
conjunctive formulae F = F1 ∧ . . . ∧ Fn which are decom-
posable, i.e., the conjuncts do not share common variables,
the prime implicates formulae (alias Blake formulae) satisfy
a (first) separability property (the conjunctive one) stating
that:

F = F1 ∧ . . . ∧ Fn is conjunctively separable if and only
if for any clause V , F |= V if and only if there exists
i ∈ 1 . . . n s.t. Fi |= V .

A similar (yet distinct) second separability property (the
disjunctive one) is satisfied by all disjunctive formulae F :

F = F1 ∨ . . . ∨ Fn is disjunctively separable, i.e., for any
formula V , F |= V if and only if for every i ∈ 1 . . . n s.t.
Fi |= V .

Beyond the language PI of prime implicates formulae,
those two separability properties underly many target lan-
guages for KC satisfying CE, especially the language DNNF
(Darwiche 2001) of propositional circuits in ”Decomposable
Negation Normal Form” (and its subsets d-DNNF, OBDD<,
DNF, MODS). This can be explained by considering Shannon
decompositions of formulae. Indeed, the Shannon decompo-
sition of a formula F over a variable x is a formula

(¬x ∧ (F | ¬x)) ∨ (x ∧ (F | x))
equivalent to F exhibiting several separable subformulae:
• ¬x∧(F | ¬x) and x∧(F | x) are disjunctively separable;

• ¬x and F | ¬x are conjunctively separable;

• x and F | x are conjunctively separable.

Performing in a systematic way the Shannon decomposi-
tion of a formula F over the variables occurring in it leads to
formulae from languages satisfying CE. Using or not a fixed
decomposition ordering gives rise to distinct languages.
Since the DPLL procedure (Davis, Logemann, and Love-
land 1962) for the satisfiability problem SAT can be used
to perform such decompositions, several target languages
for KC can be characterized by the traces achieved by this
search procedure (Huang and Darwiche 2007). Many KC
approaches to clausal entailment actually exploit the sepa-
rability properties (see e.g., (Marquis 1995; Schrag 1996;
Boufkhad et al. 1997)).

Finally, other compilation techniques aim at exploiting
the power of unit resolution so as to make clausal entailment
tractable. Saturating a CNF formula F using unit resolution,
i.e., computing the CNF formula obtained by removing the
literal ∼ l in every clause of F whenever the unit clause l
belongs to F , can be achieved in time linear in the size of F .
When the empty clause is generated, a unit refutation from
F exists. In order to make a CNF formula F unit-refutation
complete (i.e., such that for every implicate V = l1∨ . . .∨ lk
of it, there is a unit refutation from F∧ ∼ l1 ∧ . . .∧ ∼ lk),
an approach consists in adding some clauses (typically some
prime implicates of F ) to it. Computing all the prime impli-
cates is useless; especially it is enough to focus on those
which can be derived using merge resolution (del Val 1994).

There has been recently a ”revival” of the KC tech-
niques for clausal entailment based on unit resolution, see
e.g., (Bordeaux and Marques-Silva 2012; Bordeaux et al.
2012). This can be explained by the design for the past few
years in the Constraint Programming community of some
propagation-complete CNF encodings for several specific
constraints. Basically, one wants to derive CNF encodings
which are such that unit propagation is enough to derive ev-
ery unit clause which is implied by the formula in any con-
junctive context. In more formal terms, a CNF formula F is
propagation-complete iff for every term l1 ∧ . . .∧ lk and ev-
ery literal l, if F ∧ l1 ∧ . . . ∧ lk |= l, then there exists a unit
resolution proof of l from F ∧ l1 ∧ . . .∧ lk. Clearly enough,
if F is propagation-complete, then it is unit-refutation com-
plete as well. In order to make F propagation-complete, it
is enough to add empowering implicates to it: an implicate
V = l1 ∨ . . . ∨ lk ∨ l of F is empowering when F∧ ∼
l1 ∧ . . .∧ ∼ lk |= l but there is no unit resolution proof of
l from F∧ ∼ l1 ∧ . . .∧ ∼ lk. It has been proved that F has
no empowering implicate (i.e., it is closed under empower-
ment) precisely when F is propagation-complete. Interest-
ingly, the concept of empowering clause plays an important
role for characterizing clause-learning SAT solvers (Pipatsri-
sawat and Darwiche 2011). Approaches to the compilation
of CNF formulae by adding empowering clauses have been
developed. Noticeably, there are families of CNF formulae
which are closed under empowerment (hence propagation-
complete) but also have exponentially many prime impli-
cates (even when considering only those produced by merge
resolution).



A Glimpse at Compilability
For all the compilation functions C considered in the previ-
ous section, there exist families of formulae Fs of size s such
that C(Fs) is of size exponential in s.1 While the clausal
entailment problem can be solved in polynomial time from
C(Fs), the computational benefits of KC is dubious in such
a case since it is not guaranteed that the computational ef-
fort spent for compiling Fs can be balanced; indeed, due to
the size of C(Fs) it can be the case that the time needed to
determine whether a clause V is a logical consequence of
C(Fs) exceeds the time needed to determine whether V is a
logical consequence of Fs. Could a clever choice of C lead
to overcome the problem? This question amounts to deter-
mining whether the decision problem corresponding to CE
is compilable to P. As we will see, the answer to it is nega-
tive (under standard assumptions of complexity theory).

Roughly speaking, a decision problem is said to be com-
pilable to a given complexity class C if it is in C once the
fixed part of any instance has been pre-processed, i.e., turned
off-line into a data structure of size polynomial in the input
size. As explained in the introduction, the fact that the pre-
processing leads to a compiled form of polynomial size is
crucial. In order to formalize such a notion of compilabil-
ity, Cadoli and his colleagues introduced new classes (com-
pilability classes) organized into hierarchies (which echo
the polynomial hierarchy PH) and the corresponding reduc-
tions (see the excellent pieces of work (Liberatore 2001;
Cadoli et al. 2002)). This enables to classify many AI prob-
lems as compilable to a class C, or as not compilable to C
(usually under standard assumptions of complexity theory -
the fact that PH does not collapse).

Several families of classes can be considered as candi-
dates to represent what “compilable to C” means. One of
them is the family of compC classes:

Definition 1 Let C be a complexity class closed under poly-
nomial many-one reductions and admitting complete prob-
lems for such reductions. A language of pairs L1 belongs to
compC if and only if there exists a polynomial-size function
C 2 and a language of pairs L2 ∈ C such that (F, V ) ∈ L1

if and only if (C(F ), V ) ∈ L2.

Obviously enough, for every admissible complexity class
C, we have the inclusion C ⊆ compC (choose C as the
identity function). Note that no requirement is imposed on
the time complexity of C (the function C can even be non-
recursive!). This leads to strong non-compilability results.

In order to prove the membership to compC of a prob-
lem it is enough to follow the definition (hence, exhibiting a
polynomial-size compilation function C). Things are more
complex to prove that a given problem does not belong to

1This is known for years for prime implicates; contrastingly,
though a non-constructive proof was already known, the identifica-
tion of a family of CNF formulae for which the number of clauses
to be added for rendering it propagation-complete is recent (Babka
et al. 2013).

2A function C is polynomial-size if and only if there exists a
polynomial p such that |C(F )| is bounded by p(|F |) for every F
in the domain of C.

compC (under the standard assumptions of complexity the-
ory).

A notion of comp-reduction suited to the compilabil-
ity classes compC has been pointed out, and the existence
of complete problems for such classes proved. However,
many non-compilability results from the literature cannot be
rephrased as compC-completeness results. For instance, it
is unlikely that CE is compcoNP-complete (it would make
P = NP). In order to go further, one needs to consider the
compilability classes nu-compC (Cadoli et al. 2002):

Definition 2 Let C be a complexity class closed under poly-
nomial many-one reductions and admitting complete prob-
lems for such reductions. A language of pairs L1 belongs to
nu-compC if and only if there exists a binary polynomial-
size function C and a language of pairs L2 ∈ C such that
for all 〈F, V 〉 ∈ L1, we have:

〈F, V 〉 ∈ L1 if and only if 〈C(F, |V |), V 〉 ∈ L2.

Here “nu” stands for “non-uniform”, which indicates that
the compiled form of F may also depend on the size of the
varying part V . A notion of non-uniform comp-reduction
suited to the compilability classes nu-compC has also been
pointed out (it includes the notion of (uniform) comp-
reduction), as well as the existence of complete problems for
such classes. For instance, the clausal entailment problem is
nu-compcoNP-complete.

Inclusion of compilability classes compC, nu-compC
similar to those holding in the polynomial hierarchy PH ex-
ist (see (Cadoli et al. 2002)). It is strongly believed that the
corresponding compilability hierarchies are proper: if one
of them collapses, then the polynomial hierarchy collapses
at well (cf. Theorem 2.12 from (Cadoli et al. 2002)). For
instance, if the clausal entailment problem CE is in nu-
compP, then the polynomial hierarchy collapses. Accord-
ingly, in order to show that a problem is not in compC, it is
enough to prove that it is nu-compC’-hard, where C’ is lo-
cated higher than C in the polynomial hierarchy. Since com-
plete problems for any nu-compC class can be easily de-
rived from complete problems for the corresponding class C
of the polynomial hierarchy, nu-compC-complete problems
appear as a key tool for proving non-compilability results.

Thus, the compilability of a number of AI problems, in-
cluding diagnosis, planning, abduction, belief revision, be-
lief update, closed-world reasoning, and paraconsistent in-
ference from belief bases has been investigated from then.

The Notion of KC Map
Another important issue to be addressed in KC is the choice
of a target language L, i.e., the representation language of
compiled forms (L is the co-domain of C). Obviously, this
is a domain-dependent issue since it depends on the tasks
we would like to improve via KC, computationally speak-
ing. However, as explained in the introductive section, many
tasks can be decomposed into domain-independent basic
queries and transformations fi, so that one can focus on such
queries and transformations instead of the tasks themselves.
Stepping back to the configuration problem, beyond deter-
mining whether the user choices correspond to a feasible



product, one can be asked to count them, and when their
number is small enough, the user can be interested in enu-
merating such products.

Generally speaking, the choice of a target language L for
KC is based on several criteria including:

• the expressiveness and the spatial efficiency (succinct-
ness) of L;

• the time efficiency of L for the queries of interest;

• the time efficiency ofL for the transformations of interest.

Expressiveness is modeled by a pre-order over represen-
tation languages. It captures the ability of encoding infor-
mation. Considering a language L which is not expressive
enough for representing F may lead to a loss of information
(the best we can do is then to approximate F in L, see the
previous discussion about approximate compilation methods
for the clausal entailment problem). Succinctness is a refine-
ment of expressiveness which considers the representation
sizes.

The Propositional Case
In the propositional case, expressiveness and succinctness
are defined as follows:

Definition 3 LetL1 andL2 be two propositional languages.

• L1 is at least as expressive as L2, denoted L1 ≤e L2,
iff for every formula α ∈ L2, there exists an equivalent
formula β ∈ L1;

• L1 is at least as succinct as L2, denoted L1 ≤s L2, iff
there exists a polynomial p such that for every formula
α ∈ L2, there exists an equivalent formula β ∈ L1 where
|β| ≤ p(|α|).
Observe that the definition of succinctness does not re-

quire that there exists a function C computing β given α
in polynomial time; it is only asked that a polynomial-size
functionC exists. The succinctness criterion is important be-
cause the time complexity of any fi depends on the size of
the inputC(Fi); switching from F to an exponentially larger
C(F ) can be a way to obtain polynomial-time algorithms
for some fi but actual benefits will be hardly reached (as
a matter of example, just consider the compilation of CNF
formulae into the MODS language).

The KC map presented in (Darwiche and Marquis 2002)
is suited to the case of classical propositional logic. Be-
yond clausal entailment CE, queries considered in it are
tests for consistency CO (i.e., the SAT problem), validity
VA, implicants IM, equivalence EQ, and sentential entail-
ment SE. Model counting MC and model enumeration ME
have also been considered. A number of transformations
have also been taken into account in (Darwiche and Mar-
quis 2002), especially conditioning CD, closures w.r.t. the
n-ary connectives ∧C (conjunction), ∨C (disjunction), the
unary one ¬C (negation), and the corresponding bounded
versions ∧BC and ∨BC. Forgetting FO (i.e., the elimina-
tion of existentially quantified variables) is another transfor-
mation which is important for many problems. Each query
and each transformation corresponds to a specific function
fi of interest. Queries and transformations are also viewed

as properties satisfied (or not) by representation languages:
roughly speaking, L is said to satisfy a given query / trans-
formation fi when there exists a polynomial-time algorithm
for computing fi provided that the input is in L; L is said
not to satisfy fi if the existence of such an algorithm is im-
possible or if it would imply P = NP.

The KC map reported in (Darwiche and Marquis 2002)
gathers the multi-criteria evaluation of a number of propo-
sitional languages. As to the time efficiency, one can find
”positive results” in it. For instance, DNNF satisfies CO, CE,
ME, CD, FO, ∨C. ”Negative results” can also be found in
the KC map, e.g., the fact that DNNF does not satisfy any of
VA, IM, EQ, SE, CT, ∧BC, ¬C unless P = NP. Impor-
tantly, the KC map also indicates how languages compare
one another w.r.t. expressiveness/succinctness. For instance,
while DNNF, d-DNNF, OBDD< and MODS are equally (and
fully) expressive (i.e., every propositional formula has a rep-
resentation in any of those languages), they are not equally
succinct; indeed, we have the following strict succinctness
ordering: DNNF <s d-DNNF <s OBDD< <s MODS.

Here, “positive” translatability results (i.e., showing that
L1 ≤s L2 for some given languages L1 and L2) can be
obtained by exhibiting a polynomial-size function C; “neg-
ative” results (i.e., showing that L2 6≤s L1) can be obtained
using combinatorial arguments or non-compilability results!
For instance, in order to show that DNNF 6≤s CNF unless PH
collapses, it is enough to remember that DNNF satisfies CE
and that the clausal entailment problem from CNF formulae
is not in compP unless PH collapses.

Based on the KC map, the choice of a target language
for the KC purpose can be done by listing first the queries
and transformations required by the application under con-
sideration and by considering as second class criteria the ex-
pressiveness/succinctness ones. Other selection policies are
possible.

It must be noted that many additional languages (and
some missing results (Bova et al. 2014)) have been added
to the propositional KC map for the past twelve years.
The objective was to search for languages offering other
trade-offs w.r.t. spatial complexity and time complexity than
the existing ones. Among others, let us mention the lan-
guage DDG of decomposable decision graphs (alias decision-
DNNF) (Fargier and Marquis 2006; Beame et al. 2013), the
language ToOBDD< of trees of OBDD< (Subbarayan, Bor-
deaux, and Hamadi 2007), the language SDD of sentential
decision diagrams, which is a subset of d-DNNF but a su-
perset of OBDD<(Darwiche 2011), the language EADT of
extended affine decision trees (Koriche et al. 2013), the lan-
guages of disjunctive closures (Fargier and Marquis 2014),
the language Sym-DDG of symmetry-driven decomposable
decision graphs (Bart et al. 2014), etc.

Beyond the Propositional Case
For many applications, the language of propositional logic is
not expressive enough for the representation of the available
information. Considering again the configuration problem,
the user choices have costs, and the cost of a full config-
uration is typically the sum of the costs of the elementary
choices. For such a problem, it is important to provide the



user with both the minimum price and the maximum price
of a feasible product corresponding to her current choices.
This calls for languages enabling the representation (and the
compilation) of non-Boolean functions, for instance real-
valued pseudo-Boolean functions (i.e., functions from Bn to
R) or more generally real-valued multivariate functions from
D1 × . . .×Dn to R, where each Di is a finite domain. Ob-
viously, the family of such functions does not reduce to cost
functions as considered in product configuration but encom-
passes many other functions, widely used in AI, like utility
functions and probability distributions.

Clearly enough, many languages have been defined so far
for the representation of such multivariate functions. Among
them are the language of weighted propositional formulae,
Bayes nets, GAI-nets, valued CSPs, etc. However none of
them qualifies as a target language for KC because those
languages do not offer polynomial-time algorithms for some
basic queries like the consistency one (does there exist a
variable assignment leading to a valuation different from the
least one?). This calls for languages for representing com-
piled forms of such functions.

Interestingly, the languages of the propositional KC map
can be exploited to this purpose. An approach consists in as-
sociating a weight (or more generally a valuation from the
carrier of a valuation structure) with each value of a variable
and to compute the image by f of an assignment as a combi-
nation of the valuations of its components. Because the vari-
ables of f are often pairwise dependent (the independence
of two variables of f , when it holds, is typically conditional
to the assignment of other variables), new variables must be
introduced, and only the corresponding weights are signifi-
cant (the weights of the initial variables take the values of the
neutral element of the combination operator). Thus proposi-
tional weighted bases can be compiled by associating a new
(selector) variable with each formula of the base so that if
the variable is set to true, the formula must be set to true
as well. The weight given to the selector is the one of the
associated formula. The propositional formulae associating
each selector with an input formula are hard (structural) con-
straints. Once their conjunction has been compiled into a
DNNF representation, determining an optimal model (e.g., a
minimal cost one when initial weights represent costs addi-
tively aggregated) is a tractable query and minimizing it (i.e.,
computing a DNNF representation of all the optimal models)
is a tractable transformation (Darwiche and Marquis 2004).
Bayes nets can also be compiled by considering first a CNF
formula representing it; this CNF formula can then be com-
piled as a d-DNNF representation, from which an arithmetic
circuit is extracted in linear time; this circuit represents the
polynomial of the input network. New variables (”parameter
variables”) corresponding to each entry of each conditional
probability table are introduced (Darwiche 2009).

It must be noted that several families of valued decision
diagrams have also been considered for a while as com-
piled representations of real-valued multivariate functions
given by valued CSPs. In such diagrams, weights are used
as labels of the nodes or the arcs and the valuation asso-
ciated with an assignment is obtained by aggregating the
weights encountered in the corresponding path in the dia-

gram. Different languages result depending on the nature of
the weights and the way they are aggregated. Let us men-
tion the algebraic decision diagrams (ADD) (Bahar et al.
1993), the edge-valued decision diagrams (EVBDD) (Lai and
Sastry 1992; Lai, Pedram, and Vrudhula 1996; Amilhas-
tre, Fargier, and Marquis 2002), the semiring-labeled deci-
sion diagrams (SLDD) (Wilson 2005), the affine algebraic
decision diagrams (AADD) (Tafertshofer and Pedram 1997;
Sanner and McAllester 2005). However, no systematic eval-
uation of them w.r.t. the criteria considered in the KC map
is available. Some recent papers are first steps in this di-
rection. Thus, in (Fargier, Marquis, and Niveau 2013), the
key concepts underlying the KC map have been general-
ized recently to the non-propositional case. In (Fargier, Mar-
quis, and Schmidt 2013), the relative succinctness of ADD,
AADD, and of two SLDD languages (one with + as aggrega-
tor, the other one with ×) has been established. In (Fargier
et al. 2014), the time efficiency of several valued decision
diagrams for a number of queries (including optimization,
consistency, validity) and transformations (including com-
binations and variable eliminations w.r.t. several operators –
min , max , +, × – and cuts) has been identified.

Some Recent Compilers
Interestingly, in the past few years, several new compilers
have been developed and applied to a number of AI prob-
lems. Let us mention among others:
• SDD is a recent package for constructing, manipulat-

ing and optimizing sentential decision diagrams (SDD)
(Darwiche 2011). SDD representations are generated in a
bottom-up way from CNF or DNF formulae.

• EADT is a top-down compiler which outputs an EADT rep-
resentation (extended affine decision tree) (Koriche et al.
2013) equivalent to the input CNF formula.

• VDD is a bottom-up compiler which is currently devel-
oped in the context of the BR4CP project, about prod-
uct configuration and granted by the French National Re-
search Agency. The VDD compiler aims at generating (or-
dered) valued decision diagrams from valued CSPs; the
knowledge compilation languages which can be targeted
are AADD, SLDD+, SLDD× and ADD.
Such compilers are efficient enough for enabling the com-

pilation of many instances of significant sizes, correspond-
ing to real problems. For instance, a weighted CSP repre-
senting the cost function associated with cars from the same
family has been compiled using VDD as a SLDD+ represen-
tation in less than 2 minutes, despite its size which is quite
big (268 variables, with a maximal domain size of 324, and
2157 constraints). Similarly, SDD makes possible to compile
probabilistic graphical models with hundred of variables and
thousands of parameters in a couple of minutes (see (Choi,
Kisa, and Darwiche 2013)), while with EADT the compila-
tion of some CNF instances including thousands of Boolean
variables and thousands of clauses proved feasible within a
few seconds. Everyone can now take advantage of such com-
pilers (they available on the Web) to determine whether it is
suited to her purpose. Thus: compile!
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