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In this paper, we investigate the extent to which knowledge compilation can be

used to circumvent the complexity of skeptical inference from a stratified belief base

(SBB). We first analyze the compilability of skeptical inference from an SBB, under

various requirements concerning both the selection policy under consideration, the

possibility to make the stratification vary at the on-line query answering stage and

the expected complexity of inference from the compiled form. Not surprisingly, the

results are mainly negative. However, since they concern the worst case situation

only, they do not prevent a compilation-based approach from being practically useful

for some families of instances. While many approaches to compile an SBB can be

designed, we are primarily interested in those which take advantage of existing

knowledge compilation techniques for classical inference. Specifically, we present

a general framework for compiling SBBs into so-called C-normal SBBs, where C is

any tractable class for clausal entailment which is the target class of a compilation

function. Another major advantage of the proposed approach lies in the flexibility

of the C-normal belief bases obtained, which means that changing the stratification

does not require to re-compile the SBB. For several families of compiled SBBs and

several selection policies, the complexity of skeptical inference is identified. Some

tractable restrictions are exhibited for each policy. Finally, some empirical results

are presented.
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1. Introduction

Dealing with inconsistency is required in many situations in which pieces
of information come from different, possibly conflicting sources, or when some
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exceptions to knowledge must be handled. In order to prevent reasoning from
trivialization, classical inference cannot be directly used from an inconsistent
formula, or a conjunctively interpreted set of formulas.

To cope with this problem, we adhere in this paper to the coherence-based
approach to inconsistency handling. Pieces of information are represented by
propositional stratified belief bases (SBBs for short), i.e., finite sets of propo-
sitional formulas equipped with a total pre-order which represents the relative
plausibility of the given beliefs.1 Following [44,8,43], coherence-based nonmono-
tonic entailment can be viewed as a two-step process: first, the preferred consis-
tent subbases of the given SBB B are characterized and then inference from B is
defined as classical inference from some of the selected subbases.

Among the various formalisms pointed out so far to deal with inconsistency
(see [31] for a survey), the coherence-based approach is quite popular. Its success
can be explained by several factors: the fact that it is quite simple in essence, close
to well-studied possibilistic logic [2,4], and that it encompasses other important
frameworks, like supernormal default theories with priorities [8] and syntax-based
belief revision [38,39], as specific cases.

Clearly enough, there are many ways to extend a given total pre-order over
formulas into a preference relation over sets of beliefs. In this paper, four impor-
tant subbases selection policies are considered, namely the possibilistic policy, the
linear order policy, the inclusion-preference policy and the lexicographic policy
[2,4]. Additionally, several entailment principles can be defined [43,4]; indeed, a
formula can be considered as a (nonmonotonic) consequence of B whenever it is a
logical consequence of (1) all preferred subbases of B (skeptical inference), or (2)
at least one preferred subbase of B (credulous inference), or alternatively (3) when
it can be credulously inferred from B but its negation cannot be (argumentative
inference). These three entailment principles have their own motivations and fea-
tures; among them, skeptical inference is the most rational principle [2,15], which
means that it leads to inference relations that are preferential, quasi-rational or
even rational [33] (depending on the selection policy under consideration). This
explains why we focus on it in this paper.

Whatever the selection policy and the entailment principle among those
sketched above, inference from an SBB is computationally expensive. Especially,

1 Many techniques for deriving such plausibility information from a “flat” belief base exist (see

[1] for a survey).
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the decision problem associated with skeptical inference from SBBs typically is at
the first level or even at the second level of the polynomial hierarchy [41,16]. Thus
an important question is: How to circumvent the intractability of inference from
an SBB in order to enlarge the set of instances which can be solved in practice?

In this paper, we propose to use knowledge compilation as a way to improve
inference from an SBB when many queries are to be considered. The key idea of
compilation is pre-processing the fixed part of the inference problem (the SBB
under consideration). This SBB is turned into a compiled one during an off-line
compilation phase and then the compiled SBB is used to answer on-line queries.
Assuming that the SBB does not often change and that answering queries from
the compiled SBB is computationally easier than answering them from the origi-
nal SBB, the compilation time can be balanced over a sufficient number of queries.
Several knowledge compilation techniques for improving classical inference have
been proposed so far (see [10] for a survey). When compiled knowledge bases are
considered and queries are CNF formulas, the complexity of classical inference
falls from coNP-complete down to P. While none of the knowledge compilation
techniques that have been proposed so far can ensure the objective of improving
classical inference to be reached in the worst case (because the size of the com-
piled form can be exponentially larger than the size of the original knowledge
base), experiments reported in [46,6,20] have shown such approaches valuable in
many practical situations.

In the following, we investigate the extent to which knowledge compilation
can be used to circumvent the complexity of skeptical inference from an SBB.
We first analyze the compilability of skeptical inference from an SBB, under
various requirements concerning both the selection policy under consideration,
the possibility to make the stratification vary at the on-line query answering
stage and the expected complexity of inference from the compiled form. Not
surprisingly, the results are mainly negative. However, since they concern the
worst case situation only, they do not prevent a compilation-based approach
from being practically useful for some families of instances.

While many approaches to compile an SBB can be designed, we are primar-
ily interested in those which take advantage of existing knowledge compilation
techniques for classical inference. Obviously, it is not possible to compile a belief
base as a knowledge base in the general case, just because a belief base can be
inconsistent and equivalence-preserving knowledge compilation functions would
lead to trivialization in this situation. Accordingly, for any equivalence-preserving
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compilation function which maps propositional formulas into a tractable class C
for clausal entailment, we show how to compile any SBB B into a so-called C-
normal base while preserving the set of its skeptical consequences (w.r.t. the
four subbases selection policies evoked above) over the vocabulary of B. The
proposed transformation has two main advantages. First, it can take advan-
tage of any equivalence-preserving knowledge compilation technique for clausal
entailment; This is an important point from the practical side since the size of
the compiled base may heavily vary depending on the choice of the compilation
technique. Second, it does not require the SBB to be re-compiled whenever the
given stratification of beliefs changes. This is particularly helpful when some fur-
ther pieces of evidence lead to question the plausibility of some pieces of belief,
or when the preferential information encoded by the stratification change with
queries.

Clearly enough, our compilation-based approach can prove helpful to im-
prove reasoning only if the complexity of inference from a compiled SBB is lower
than the complexity of inference from the original SBB. That is why it is impor-
tant to identify the complexity pattern of inference from a C-normal SBB. We
achieve it, focusing on four major knowledge compilation functions found in the
literature. Interestingly, for each subbase selection policy under consideration,
we show that a judicious choice of the compilation function has the ability to
render tractable skeptical inference from a compiled SBB.

The rest of this paper is organized as follows. Some formal preliminaries are
given in Section 2, and some background about SBBs and knowledge compilation
in Section 3. The compilability of skeptical inference from SBBs is investigated
in Section 4. Our approach to compile SBBs is presented in Section 5, and
the complexity of inference from C-normal SBBs is reported in Section 6. Some
empirical results are given in Section 7. Connections to some related works are
discussed in Section 8, and Section 9 concludes the paper. Proofs are reported in
the appendix.

2. Formal Preliminaries

In the following, PROPPS denotes the propositional language built up from
a finite set PS of symbols, the boolean constants true and false, and the con-
nectives ¬, ∧, ∨, ⇒, ⇔, and ⊕ in the standard way. V ar(Σ) denotes the set of
propositional variables occurring in Σ.
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The size of a formula Σ from PROPPS , noted |Σ|, is the number of occur-
rences of symbols and connectives used to write it.

Every propositional symbol of PS is also called a positive literal and a
negated one a negative literal. A literal is either a positive literal or a negative
literal. For every subset V of PS, LV (resp. L+

V , L−V ) is the set of literals (resp.
positive literals, negative literals) built up from the propositional symbols of V .
Every finite disjunction of literals is called a clause and every finite conjunction
of literals is called a term. A CNF formula is any finite conjunction of clauses,
while a DNF formula is any finite disjunction of terms.

Formulas are interpreted in the classical way. |= denotes classical entaile-
ment and ≡ denotes logical equivalence. Every finite set Σ of formulas is inter-
preted conjunctively. card(Σ) denotes the cardinal of Σ. A Krom formula is a
CNF formula in which every clause contains at most two literals. A formula is
Horn CNF iff it is a CNF formula in which every clause contains at most one
positive literal. A renamable Horn CNF formula Σ is a CNF formula which can
be turned into a Horn CNF formula by substituting in a uniform way in Σ some
literals of LV ar(Σ) by their negation.

The following classes of formulas (which are target classes for some existing
compilation functions) are considered in the paper:

• The Blake class is the set of formulas given in prime implicates normal form,
i.e., for every CNF formula Σ from the Blake class and every clause γ, we have
Σ |= γ iff there exists a clause π of Σ s.t. π |= γ holds,

• the DNF class is the set of DNF formulas,

• the Horn cover class is the set of finite disjunctions of Horn CNF formulas,

• the renamable Horn cover class is the set of finite disjunctions of renamable
Horn CNF formulas.

Any formula Σ has a unique set of prime implicates (when each prime im-
plicate is considered up to logical equivalence), hence a unique Blake equivalent
(up to the ordering of the conjuncts) which can be viewed as the Blake normal
form of Σ; no similar canonicity result holds for any of the three other tractable
classes under consideration.

We assume that the reader is familiar with some basic notions of compu-
tational complexity, especially the complexity classes P, NP, and coNP, and the
classes ∆p

k, Σp
k and Πp

k of the polynomial hierarchy PH (see [42] for details).
∆p

2[O(log n)] (sometimes called Θp
2) is the class of problems which can be de-
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cided in polynomial time using only logarithmically many calls to an NP oracle.
Let us recall that a decision problem is said to be at the kth level of PH iff it
belongs to ∆p

k+1, and is either Σp
k-hard or Πp

k-hard. It is strongly believed that
PH does not collapse (at any level), i.e., it is a truly infinite hierarchy (for every
integer k, PH 6= Σp

k).

3. Stratified Belief Bases and Knowledge Compilation

Let us first give some background about stratified belief bases and knowledge
compilation.

3.1. Inference from Stratified Belief Bases

In this paper, we are concerned with (propositional) stratified belief bases:

Definition 1 Stratified belief bases.
A stratified belief base (SBB) B is an ordered pair B = 〈∆,≤〉, where
∆ = {φ1, . . . , φn} is a finite set of formulas from PROPPS and ≤ is a total pre-
order over ∆ (i.e., a reflexive and transitive relation over ∆ s.t. for every φi, φj

belonging to ∆, we have φi ≤ φj or φj ≤ φi) . Every subset S of ∆ is a subbase
of B.

It is equivalent to define B as a finite sequence (∆1, . . . ,∆k) of subbases of
∆, where each ∆i (i ∈ 1 .. k) is the non-empty set which contains all the minimal
elements of ∆ \ (

⋃i−1
j=1 ∆j) w.r.t. ≤.2 Clearly enough, {∆1, . . . ,∆k} is a partition

of ∆. Each subset ∆i (i ∈ 1 .. k) is called a stratum of B, and i is the priority
level of each formula of ∆i. Intuitively, the lower the priority level of a formula
the higher its plausibility. Given a subbase S of B, we note Si (i ∈ 1 .. k) the
subset of S defined by Si = S ∩∆i. We also note V ar(B) =

⋃k
i=1 V ar(∆i).

In the following, we assume that ∆1 is a singleton, consisting of the (consis-
tent) conjunction of all certain beliefs (i.e., the pieces of knowledge) of ∆. Slightly
abusing notations, we will identify ∆1 with the (unique) formula it contains. Note
that our assumption can be done without loss of generality since when no certain
beliefs are available, it is sufficient to add true to ∆ as its unique minimal element
w.r.t. ≤ (and this will not lead to any significant computational overhead).

2 By convention,
⋃0

j=1
∆j = ∅.
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Accordingly, an SBB B = (∆1, . . . ,∆k) is a “standard” consistent knowledge
base when k = 1, a supernormal default theory without prioritization when k = 2,
and a supernormal default theory with priorities in the general case [8].

There are several ways to use the information given by an SBB corresponding
to several epistemic attitudes. Following the analysis of previous works [44,8,43],
inference from an SBB B is considered as a two-step process, consisting first
in generating some preferred consistent subbases of B and then using classical
inference from some of them. Many policies (or generation mechanisms) for the
selection of preferred consistent subbases can be defined. In formal terms, a
policy P is a mapping that associates every SBB B with a set BP consisting of
all the preferred consistent subbases of B w.r.t. P. In the following, four policies
are considered: The possibilistic policy, the linear order policy, the inclusion-
preference policy, and the lexicographic policy.

Definition 2 Selection policies.
Let B = (∆1, . . . ,∆k) be an SBB.

• The set BPO of all the preferred subbases of B w.r.t. the possibilistic policy is
the singleton {

⋃s−1
i=1 ∆i}, where s is the smallest index (1 ≤ s ≤ k) s.t.

⋃s
i=1 ∆i

is inconsistent.

• The set BLO of all the preferred subbases of B w.r.t. the linear order policy
is the singleton {

⋃k
i=1 ∆′i}, where ∆′i (i ∈ 1 .. k) is defined by ∆′i = ∆i if

∆i ∪
⋃i−1

j=1 ∆′j is consistent, ∅ otherwise.

• The set B⊆ of all maximal (w.r.t. ⊆) consistent subbases of B containing ∆1

is {S ⊆ ∆ | S is consistent, ∆1 ⊆ S, and ∀φ ∈ ∆ \ S, S ∪ {φ} is inconsistent}.
Two valuable subsets of it are:

∗ The set BIP of all the preferred subbases of B w.r.t. the inclusion-preference
policy is {S ⊆ ∆ | S is consistent and ∀S′ ⊆ ∆ s.t. S′ 6= S and S′ is
consistent, ∀i ∈ 1 .. k ((∀j < i (S′j = Sj))⇒ Si 6⊂ S′i)}.
∗ The set BLE of all the preferred subbases of B w.r.t. the lexicographic policy

is {S ⊆ ∆ | S is consistent and ∀S′ ⊆ ∆ s.t. S′ 6= S and S′ is consistent,
∀i ∈ 1 .. k ((∀j < i (card(S′j) = card(Sj)))⇒ card(Si) 6< card(S′i))}.

Example 3. Let us ask Tweety the penguin for an illustration (for sure, Tweety
is a bird; normally, every penguin is a bird and every feathered animal is a bird;
we also have some evidence that birds fly, and that Tweety is feathered and does
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not fly; Finally, it is only plausible that Tweety eats fish and that animals eating
fish can swim). Formally, let B = (∆1,∆2,∆3) with:
∆1 = {penguin(Tweety)},
∆2 = {penguin(Tweety)⇒ bird(Tweety), feathered(Tweety)⇒ bird(Tweety),

bird(Tweety)⇒ fly(Tweety), feathered(Tweety) ∧ ¬fly(Tweety)},
∆3 = {eat fish(Tweety), eat fish(Tweety)⇒ swim(Tweety)})
Using the policies previously defined, we get:

• BPO = {{penguin(Tweety)}}
• BLO = {{penguin(Tweety), eat fish(Tweety), eat fish(Tweety)⇒ swim(Tweety)}}
• BIP = {{penguin(Tweety), penguin(Tweety)⇒ bird(Tweety),

feathered(Tweety)⇒ bird(Tweety), bird(Tweety)⇒ fly(Tweety),
eat fish(Tweety), eat fish(Tweety)⇒ swim(Tweety)},
{penguin(Tweety), penguin(Tweety)⇒ bird(Tweety),
feathered(Tweety)⇒ bird(Tweety),
feathered(Tweety) ∧ ¬fly(Tweety),
eat fish(Tweety), eat fish(Tweety)⇒ swim(Tweety)},
{penguin(Tweety), bird(Tweety)⇒ fly(Tweety),
feathered(Tweety) ∧ ¬fly(Tweety),
eat fish(Tweety), eat fish(Tweety)⇒ swim(Tweety)}}

• BLE = {{penguin(Tweety), penguin(Tweety)⇒ bird(Tweety),
feathered(Tweety)⇒ bird(Tweety), bird(Tweety)⇒ fly(Tweety),
eat fish(Tweety), eat fish(Tweety)⇒ swim(Tweety)},
{penguin(Tweety), penguin(Tweety)⇒ bird(Tweety),
feathered(Tweety)⇒ bird(Tweety),
feathered(Tweety) ∧ ¬fly(Tweety),
eat fish(Tweety), eat fish(Tweety)⇒ swim(Tweety)}}

All preferred subbases S of B (w.r.t. any of the above policies) are (by con-
struction) consistent sets. Moreover, since ∆1 is assumed consistent, we always
have ∆1 ⊆ S. Unlike BPO and BLO, every element S of BIP (or BLE) always is
a maximal (w.r.t. ⊆) consistent subbase of B. To be more precise, we have

BLE ⊆ BIP ⊆ B⊆.

While every stratum ∆i with i > 1 plays the same role w.r.t. B⊆, this is not the
case when BIP (resp. BLE) is considered; indeed, among the elements of B⊆,
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those containing as many prioritary formulas as possible, w.r.t. ⊆ (resp. cardi-
nality) are selected when the inclusion-preference (resp. the lexicographic) policy
is considered. Given B⊆, both BIP and BLE can be computed in polynomial
time (just filter out the preferred elements w.r.t. the chosen selection policy).
Notwithstanding ∆1, the elements of BIP correspond to the so-called preferred
subtheories of [8].

All these selection policies have their own motivations and lead to inference
relations that are more or less satisfying from a logical point of view and from
the computational complexity point of view (see [2,4,15]).

At that stage, it must be noted that there is a close correspondance between
inference from an SBB and inference from a revised belief base in the “syntax-
based” belief revision setting [41]. Indeed, we can define the set of consequences
of any SBB (∆1, . . . ,∆k) in the latter setting as the set of consequences of the
SBB (∆2, . . . ,∆k) revised by ∆1 in the former setting, and the converse also
holds. We heavily take advantage of such a correspondance in our complexity
proofs. Thus, the cut base revision scheme corresponds exactly to the possibilistic
policy, the linear-base revision scheme to the linear order policy, the prioritized
base revision scheme to the inclusion-preference policy, and the lexicographic base
revision scheme to the lexicographic policy [41].

Now, given a selection policy, several entailment principles can be consid-
ered, especially credulous inference, argumentative inference, skeptical inference.
Among them, skeptical inference leads to inference relations which are at least
preferential ones, i.e., relations satisfying all the rationality postulates given in
[33]: Reflexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious
Monotonicity and Or (see [2,15]); this is why we focus on skeptical inference
in the following.

Definition 4 Skeptical inference.
Let B = (∆1, . . . ,∆k) be an SBB, P a policy for the generation of preferred
subbases, and Ψ a formula from PROPPS . Ψ is a (skeptical) consequence of B
w.r.t. P, noted B|∼P∀ Ψ, iff ∀S ∈ BP , S |= Ψ.

Unfortunately, whatever the selection policy among PO,LO, IP,LE , skep-
tical inference is not tractable (under the standard assumptions of complexity
theory).
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Problem 5 formula |∼P∀ .
Let |∼P∀ be any inference relation from {|∼PO∀ , |∼LO∀ , |∼IP∀ , |∼LE∀ }. formula |∼P∀ is
the following decision problem:

• Input: An SBB B = (∆1, . . . ,∆k) and a formula Ψ from PROPPS .

• Query: Does B|∼P∀ Ψ hold?

clause |∼P∀ (resp. literal |∼P∀ ) is the restriction of formula |∼P∀ to the case
Ψ is required to be a CNF formula (resp. a term).3

The following complexity results can be found in the literature. Note that
these previous complexity results typically concern the formula |∼P∀ problem.
Nevertheless, it is easy to modify the corresponding hardness proofs to show that
the complexity lower bounds are also valid for both the corresponding clause

|∼P∀ and literal |∼P∀ problems. Proofs are given in the appendix.

Proposition 6. [Skeptical inference from SBBs]
The complexity of formula |∼P∀ from an SBB and of its restrictions to clause
and literal inference for P ∈ {PO,LO, IP,LE} is as reported in Table 1.

Table 1

Complexity of skeptical inference from SBBs (general case).

P formula / clause / literal |∼P
∀

PO ∆p
2[O(log n)]-complete [41]

LO ∆p
2-complete [40]

IP Πp
2-complete [38]

LE ∆p
2-complete [14]

3.2. Knowledge Compilation

Knowledge compilation (see [10] for a survey) gathers several techniques
which prove helpful in the objective of improving inference, in particular clause
entailment [47], but also diagnosis, planning, belief revision, etc [35]. In this

3 Whenever |∼P
∀ satisfies the rationality postulate And, the complexity of determining whether

a CNF (resp. a term) ψ is a consequence of an SBB B amounts to the complexity of the same

problem with ψ a clause (resp. a literal).
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section, we specifically focus on knowledge compilation techniques for improving
classical inference, i.e., for making the following decision problem computationally
easier:

Problem 7 formula |=.
formula |= is the following decision problem:

• Input: Two formulas Σ and Ψ from PROPPS .

• Query: Does Σ |= Ψ hold?

clause |= (resp. literal |=) is the restriction of formula |= to the case when
Ψ is required to be a CNF formula (resp. a term).

Existing researches about knowledge compilation can be split into two cat-
egories. The first category gathers theoretical works about compilability, which
indicates whether the objective can be expected to be reached in the worst case
by focusing on the size of the compiled form (see e.g., [12,35]) which should re-
main polynomial in the input size. Indeed, if the size of the compiled form is
exponentially larger than the size of the original KB Σ, significant computational
improvements are hard to be expected. Accordingly, some decision problems are
compilable, while others are probably not compilable (i.e., not compilable under
the standard assumptions of the complexity theory). Thus, literal |= is com-
pilable while both formula |= and clause |= are (probably) not compilable.4

The second category contains works that are much more oriented towards the
design of compilation algorithms for clause entailment and their empirical evalu-
ations. Their purpose is to point out some compilation functions, i.e., functions
which map any propositional formula (or any conjunctively-interpreted finite set
of propositional formulas) into a “more tractable”, yet equivalent formula. Thus,
among others, [45,25,36,46,6,19] present equivalence-preserving knowledge compi-
lation methods for clause entailment. In this context, “equivalent” means either
“logically equivalent” (the usual notion) or more generally “query-equivalent”,
which means that logical equivalence is only guaranteed over the propositional
language built up from the set of variables occurring in the original knowledge

4 The existence of an equivalence-preserving compilation function COMP s.t. it is guaranteed

that there exists a polynomial p s. t. for every propositional CNF formula Σ, formula |=
(resp. clause |=) from COMP (Σ) is in P and |COMP (Σ)| is ≤ p(|Σ|) would make P = NP

(just because determining whether a formula is valid is coNP-complete) (resp. the polynomial

hierarchy to collapse at the second level (see [47,10] for more details)).
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base (indeed, new variables can be incorporated into the compiled form if this
proves useful). All these methods aim at computing a formula COMP (Σ) “equiv-
alent” to Σ s.t. clause |= belongs to P when restricted to inputs of the form
〈COMP (Σ), ψ〉. Stated otherwise, compiling Σ consists in turning it into an
“equivalent” formula belonging to a |=-tractable class C for clause entailment
(i.e., a class of formulas for which there exists a polytime algorithm for deciding
the clausal entailment problem). Formally:

Definition 8 Compilation function.
An equivalence-preserving knowledge compilation function COMP is a mapping
from PROPPS to PROPPS which associates any Σ ∈ PROPPS with a formula
COMP (Σ) s.t.

• COMP (Σ) is query-equivalent to Σ, and

• the range of COMP is a |=-tractable class C.

Considering KBs Σ from |=-tractable class is helpful for the clause |=
problem, since determining whether a clause is entailed by such a KB Σ can
be achieved in polynomial time, while the problem is coNP-complete when Σ is
unconstrained. In the rest of this paper, the following tractable classes of formulas
which are target classes for some existing compilation functions are considered:

• The Blake class,

• the DNF class,

• the Horn cover class,

• the renamable Horn cover class.

Example 9. Let Σ = (a ∨ b ∨ c) ∧ (¬c ∨ d) ∧ (¬a ∨ ¬b ∨ ¬c). COMP -compiled
forms of Σ are:

• Blake(Σ) = (a ∨ b ∨ c) ∧ (¬c ∨ d) ∧ (¬a ∨ ¬b ∨ ¬c) ∧ (a ∨ b ∨ d).
• DNF (Σ) = (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ ¬c) ∨ (¬a ∧ c ∧ d) ∨ (¬a ∧ b ∧ ¬c).
• Horn cover(Σ) = (a ∧ ((¬b ∨ ¬c) ∧ (¬c ∨ d))) ∨ (¬a ∧ c ∧ d) ∨ (¬a ∧ b ∧ ¬c).
• r Horn cover(Σ) = (a ∧ ((¬b ∨ ¬c) ∧ (¬c ∨ d))) ∨ (¬a ∧ ((b ∨ c) ∧ (¬c ∨ d))).

Each of these COMP -compiled forms of Σ is logically equivalent to it.
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The Blake class (resp. the DNF class) is the target class of the compilation
function described in [45] (resp. in [46]). The Horn cover class and the renamable
Horn cover class are target classes for the tractable covers compilation functions
given in [6].

Among these four target classes, the DNF class, the Horn cover class and
the renamable Horn cover class can be compared w.r.t. succinctness [29]: Every
DNF formula is a Horn cover formula, and every Horn cover formula is a renam-
able Horn cover formula. Accordingly, the latter may offer much more compact
representations than the former, hence it is often a better performer when clausal
entailment is concerned (see the experimental results reported in [6]). However,
as we will see in the following, this is not necessarily the case when more sophis-
ticated forms of inference are considered (and this is why all three classes are
considered).

Of course, the four compilation functions COMP discussed above are sub-
ject to the theoretical limitation evoked previously: In the worst case, the size of
the compiled form COMP (Σ) is exponential in the size of Σ. Nevertheless, there
is some empirical evidence that some of these approaches can prove computation-
ally valuable for many instances of the clause |= problem (see the experimental
results given in [46,6,20]).

4. On the Compilability of Skeptical Inference from SBBs

Intuitively, compiling an SBB interpreted under some selection policy con-
sists in turning it off-line into a formula (or more generally into a data structure),
called a C-normal SBB, from which on-line query answering can be done more
efficiently than from the original SBB. As evoked in the introductive section, the
compilation time can be balanced over sufficiently many queries, provided that
the size of the compiled SBB remains small enough. In this case, we roughly say
that inference from the SBB is compilable (which just means that compiling the
SBB is computationally helpful).

Defining a formal notion of compilability that matches this intuitive defini-
tion but at the problem level instead of the instance level requires to make precise
what (i) “more efficiently” and (ii) “small enough” mean [12]. In the following,
the (skeptical) inference problem from an SBB interpreted under a given selec-
tion policy is said to be compilable whenever (i) the complexity of the inference
problem from such a data structure is below the complexity of the corresponding
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problem in the polynomial hierarchy (the counterpart of “more efficiently”), and
(ii) any SBB can be associated with a query-equivalent polyspace data structure
(the counterpart of “small enough”).

Since the complexity of the inference problem from an SBB lies between
∆p

2[O(log n)] and Πp
2 (depending on the selection policy, cf. Proposition 6),

it is natural to wonder whether any SBB interpreted under a given selection
policy can be compiled into a (1) query-equivalent polyspace formula, or even
into a (2) query-equivalent polyspace formula belonging to a |=-tractable class.
These two cases correspond respectively to two complexity classes located below
∆p

2[O(log n)] in the polynomial hierarchy. Indeed, in case (1), on-line query
answering would be “only” in coNP. In the more demanding case (2), on-line
clausal query answering would even be tractable, i.e., in P. Accordingly, these
two cases can be interpreted as degrees of compilability for the inference problem:
if (1) is feasible, the inference problem will be said to be weakly compilable while
if (2) is satisfied in addition, it will be said to be strongly compilable.

Now, an important feature of any inference problem in a compilability per-
spective is the separation between its fixed part (subject to preprocessing) and
its variable part (which is known at the on-line stage only). The basic case (a)
consists in considering the SBB (∆,≤) as fixed and the queries as varying. A
more demanding case (b) consists in considering the set ∆ of formulas forming
the SBB as fixed, while both the partitioning of formulas into strata induced by
≤ and the queries are varying. This is particularly helpful in the situation when
the preferential information encoded by the stratification change with queries.
These two cases can be viewed as degrees of flexibility for the inference problem:
in case (a), the inference problem is said to be unflexible and it is said to be
flexible if it satisfies the requirement (b).

We have obtained the following compilability results:

Proposition 10. [Compilability results]
The results reported in Table 2 hold. U (resp. F) means that the inference
problem is unflexible (resp. flexible). W (resp. S) means that the expected
compilability strength is weak (resp. strong). “no↓ 2” means “no” unless the
polynomial hierarchy collapses at the second level, while “no↓ 3” means “no”
unless the polynomial hierarchy collapses at the third level.

Many of these results are easy consequences of results reported in [12,13,11]



15

Table 2

Compilability of skeptical inference from SBBs.

P U - W F - W U - S F - S

PO yes no↓ 3 no↓ 2 no↓ 2

LO yes no↓ 3 no↓ 2 no↓ 2

IP no↓ 3 no↓ 3 no↓ 2 no↓ 2

LE yes no↓ 3 no↓ 2 no↓ 2

(see Appendix). As it could be expected, both the flexibility dimension, the com-
pilability strength and the selection policy under consideration may have a great
influence on the compilability issue. Thus, the IP selection policy leads to infer-
ence problems which are at least as hard as the other policies w.r.t. compilability
(a similar behaviour can be observed when considering the direct, “uncompiled”
inference problem (cf. Table 1)). The only compilable problems (under the usual
assumptions of the complexity theory) are obtained for the PO, LO and LE
policies when the preferential information are available at the compilation time
and tractability for answering on-line clausal queries is not required.

5. Compiling Stratified Belief Bases

From the previous compilability results, we cannot conclude that knowledge
compilation is out of value in the objective of improving inference from the prac-
tical side. Indeed, such results concern the worst case situation only, so they do
not prevent some compilation-based approaches from being valuable at least for
some instances. This will become more salient at Section 7, where some empirical
results are reported.

There exist many ways to compile an SBB (we will present the main ones
in Section 8). In this paper, we are interested in techniques taking advantage of
existing compilation functions for classical inference. Because a piece of belief
is not always a piece of knowledge, the conjunction of all pieces of belief of an
SBB is not always consistent. This explains why we cannot take advantage of
equivalence-preserving knowledge compilation techniques to compile belief bases
in a direct way when they are inconsistent. Indeed, such techniques are dedicated
to “flat” bases, i.e., no preferential information is part of the input. Accordingly,
compiling a “flat”, inconsistent knowledge base results in a “flat”, inconsistent
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knowledge base from which classical entailment is trivial. For instance, an in-
consistent knowledge base has only one prime implicate, the empty clause, from
which no significant inference can be done.

In order to avoid such a trivialization, our approach consists in compiling
only the conjunction of pieces of knowledge of ∆ (i.e., the stratum ∆1), provided
that each other piece of belief φi,j has been first given a name under the form
of a new literal holdsi,j , i.e., φi,j is replaced by holdsi,j and (holdsi,j ⇒ φi,j)
is added in ∆1.5 Formally, we define a normal SBB as an SBB s.t. the first
stratum belongs to a |=-tractable class and the remaining beliefs are represented
by literals:

Definition 11 C-normal SBBs.
An SBB B = (∆1, . . . ,∆k) is C-normal iff ∆1 belongs to the |=-tractable class
C and

⋃k
i=2 ∆i is a consistent subset of LPS . We also say that a C-normal SBB

B = (∆1, . . . ,∆k) is COMP -normal when ∆1 belongs to the target class of the
equivalence-preserving compilation function COMP .

Let us now show how any equivalence-preserving knowledge compilation
function can be used to compile an SBB.

Definition 12 COMP -compilations.
Let B = (∆1, . . . ,∆k) be an SBB (with ∆ =

⋃k
i=1 ∆i) and let COMP be any

equivalence-preserving compilation function (for clause entailment). Without loss
of generality, let us assume that every stratum ∆i (i ∈ 1 .. k) of B is totally
ordered (w.r.t. any fixed order) and let us note φi,j the jth formula of ∆i w.r.t.
this order. The SBB

(χ1, . . . , χk)

where χi = {holdsi,1, . . . , holdsi,card(∆i)} for i ∈ 2 .. k, each holdsi,j ∈ LPS \
LV ar(∆), and

χ1 = {COMP (∆1 ∧ (
k⋃

i=2

{
card(∆i)∧

j=1

(holdsi,j ⇒ φi,j)}))}

5 Adding (holdsi,j ⇔ φi,j) to ∆1 would work as well but it does not allow a linear time trans-

lation of the resulting stratum into a logically equivalent CNF formula, and many existing

compilation functions require the input to be CNF; nevertheless a linear time translation into

a query-equivalent CNF exists.
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is the COMP -compilation of B. Slightly abusing notations, we note it
COMP (B).6

This transformation basically consists in giving a name (under the form of
a new literal holdsi,j) to each assumption of ∆ and in storing the correspon-
dance assumption/name with the certain beliefs before compiling them for clause
entailment. A similar transformation is given in [16]; it has also been used in
the context of Dynamic Constraint Satisfaction Problems in order to enable a
pre-determined subset of constraints to be added or removed in an efficient way
(see e.g., [7]).

Obviously, every COMP -compilation of an SBB is a COMP -normal SBB.

Example 13. Let us now ask Omer the emu for an illustration of the transfor-
mation (for sure, Omer is an emu and every emu is a bird; normally, emus do not
fly; with more exceptions, birds fly). Formally, let B = (∆1,∆2,∆3) with:
∆1 = {emu(Omer) ∧ (emu(Omer)⇒ bird(Omer))},
∆2 = {emu(Omer)⇒ ¬fly(Omer)}, and
∆3 = {bird(Omer)⇒ fly(Omer)}.
The stratification used here reflects the fact that most specific beliefs are preferred
(exceptional emus are rarer than exceptional birds). On this simple example, all
four selection policies give the same results (w.r.t. skeptical inference).
The COMP -compilation of B is COMP (B) = (χ1, χ2, χ3) where:
χ1 = {COMP (emu(Omer) ∧ (emu(Omer)⇒ bird(Omer)) ∧

(Emusdon′tfly(Omer)⇒ (emu(Omer)⇒ ¬fly(Omer))) ∧
(Birdsfly(Omer)⇒ (bird(Omer)⇒ fly(Omer))))}

χ2 = {Emusdon′tfly(Omer)},
χ3 = {Birdsfly(Omer)}.
Here, Emusdon′tfly(Omer) and Birdsfly(Omer) are the new literals used to
name (uncertain) beliefs before compilation.
When COMP is a Blake compilation function (i.e., any function which computes
the set of all prime implicates of the given propositional formula), we obtain:

Blake(B) = (χ1, χ2, χ3)
where:
χ1 = {emu(Omer) ∧ bird(Omer) ∧

(¬Emusdon′tfly(Omer) ∨ ¬fly(Omer)) ∧
6 The notation is compatible with the notation COMP (Σ) when B = (Σ) is a one-stratum SBB.
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(¬Birdsfly(Omer) ∨ fly(Omer)) ∧
(¬Emusdon′tfly(Omer) ∨ ¬Birdfly(Omer))},

χ2 = {Emusdon′tfly(Omer)},
χ3 = {Birdsfly(Omer)}.

Interestingly, for every SBB, there exists an “equivalent” C-normal SBB,
where equivalence is defined by:

Definition 14 Equivalence of SBBs.
Let B = (∆1, . . . ,∆k) and B′ = (∆′1, . . . ,∆′l) be two SBBs. Let V be a subset
of PS and P a selection policy. B and B′ are equivalent on V w.r.t. P iff there
exists a bijection β from BP to B′P s.t. for every S ∈ BP and every formula Ψ
from PROPV , S |= Ψ iff β(S) |= Ψ.

Indeed, our compilation approach turns the input SBB B into a query-
equivalent one, i.e., into an SBB equivalent to B on V ar(B):

Proposition 15 Equivalence preservation.
Let B = (∆1, . . . , ∆k) be an SBB and let COMP be any equivalence-preserving
compilation function (for clause entailment). COMP (B) is a COMP -normal
SBB equivalent to B on V ar(B) w.r.t. P ∈ {PO,LO, IP,LE}.

Example 16. Whatever the selection policy may be (among the four ones con-
sidered in this paper), B has only one preferred subbase: ∆1 ∪∆2. COMP (B)
also has one preferred subbase: χ1 ∪χ2. Both subbases are equivalent on the set
of variables occurring in B.

The motivation for our definition of C-normal SBBs B relies on the fact that
it is not sufficient that every formula of ∆ belongs to a |=-tractable class in order
to improve clause |∼P∀ in the general case. Indeed, forming preferred subbases
of B requires to check the consistency of conjunctions of such formulas and,
usually, formulas from |=-tractable class do not mix well w.r.t. conjunction as far
as computational complexity is concerned. For instance, determining whether
a finite set of clauses containing only Horn CNF clauses and Krom clauses is
consistent is NP-complete (see Problem 9.5.6 in [42]).7 More specifically, tractable
classes of formulas are typically not closed under conjunction (especially, that is

7 To every instance Σ = {γ1, . . . , γn} of the 3-sat problem, let us associate in polynomial time
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not the case for any of the four tractable classes considered in this paper), and
the existence of a polytime algorithm that would turn the conjunction of two
input formulas of a given tractable class into one equivalent formula from that
class is hard to be expected.

Contrastingly, whatever the compilation function used to compile ∆1 may
be, the consistency of any subbase of a compiled SBB B which contains ∆1 can
be checked in polynomial time because every assumption from

⋃k
i=2 ∆i is a literal.

Thus, any equivalence-preserving compilation function can be used for compiling
an SBB. Since many of the existing compilation functions have no comparable
computational behaviours (each of them performs better than the others on some
instances), this is valuable from the practical side.

Another important feature offered by our compilation framework for SBBs
lies in the fact that no re-compilation is required whenever the stratification of
the given pieces of belief changes (even in the case when the number of strata
changes). Indeed, would the plausibility ordering ≤ over

⋃k
i=2 ∆i change, the

only impact on any COMP -normal B from any update would be limited to the
corresponding re-partitionning of

⋃k
i=2 ∆i.

6. Complexity of Inference from C-Normal SBBs

The purpose of compiling an SBB is to enhance inference from it. This
objective can be achieved only if (1) the size of the compiled SBB remains small
enough, compared with the size of the original SBB, and (2) inference from the
compilation is computationally easier than inference from the original SBB. Be-
cause classical entailment can be recovered as a specific case of any inference
relation considered in this paper (just consider SBBs for which ∆ = ∆1), the
compilability limitations for both formula |= and clause |= also apply for
these more sophisticated forms of inference: it is not granted that the size of the
compiled form of an SBB remains polynomial in the size of the original SBB, re-
gardless of the compilation function. Let us stress that these limitations not only
concern the compilation technique proposed in this paper, but any conceivable
preprocessing of SBBs. Because some of these functions have empirically proved

the CNF formula Σ′ = {γ′1, . . . , γ′n} ∪ {xi ∨ new xi,¬xi ∨ ¬new xi | xi is a variable occurring

as a positive literal in Σ}, where each γ′i is obtained by replacing every positive literal xj in it

by the negative literal ¬new xj . Σ′ contains only Horn and Krom clauses and is satisfiable iff

Σ is satisfiable.
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their computational value, we can nevertheless expect computational benefits for
many instances. In this section, we show the extent to which (2) can be expected,
depending on the inference relation under consideration, the nature of the query
(formula, clause, literal) and the compilation function COMP used.

We have first identified the following complexity upper bounds, correspond-
ing to the situation when no assumption is made about the nature of the tractable
fragment to which ∆1 belongs:

Proposition 17 Skeptical inference from C-normal SBBs.
The complexity of formula |∼P∀ and of its restrictions to clause and literal in-
ference for P ∈ {PO,LO, IP,LE} from a normal SBB is as reported in Table 3.

Table 3

Complexity of skeptical inference from C-normal SBBs (upper bounds).

P formula |∼P
∀ clause / literal |∼P

∀

PO in coNP in P

LO in coNP in P

IP in coNP in coNP

LE in ∆p
2 in ∆p

2

Proposition 17 shows that considering C-normal SBBs can actually make
inference computationally easier, even if this is not the case in every situation
(just consider |∼LE∀ ).

Within Proposition 17, no assumption on the nature of the C-normal SBB
has been done. In order to obtain complexity lower bounds (hardness results) or
tractability results for clausal inference w.r.t. the IP policy and the LE policy,
restricted C-normal SBBs must be considered. In the following, we focus on
COMP -normal SBBs where COMP is a compilation function which maps any
propositional formula into a Blake, DNF, Horn cover or renamable Horn cover
formula.

Proposition 18 Skeptical inference w.r.t. IP from COMP -normal SBBs.
The complexity of formula |∼IP∀ and of its restrictions to clause and literal
inference from COMP -normal SBBs is as reported in Table 4.
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Table 4

Complexity of skeptical inference w.r.t. IP from COMP -normal SBBs.

COMP formula |∼IP
∀ clause / literal |∼IP

∀

Blake coNP-complete coNP-complete

DNF coNP-complete in P

Horn cover coNP-complete coNP-complete

renamable Horn cover coNP-complete coNP-complete

Proposition 19 Skeptical inference w.r.t. LE from COMP -normal SBBs.
The complexity of formula |∼LE∀ and of its restrictions to clause and literal
inference from COMP -normal SBBs is as reported in Table 5.

Table 5

Complexity of skeptical inference w.r.t. LE from COMP -normal SBBs.

COMP formula |∼LE
∀ clause / literal |∼LE

∀

Blake ∆p
2-complete ∆p

2-complete

DNF coNP-complete in P

Horn cover ∆p
2-complete ∆p

2-complete

renamable Horn cover ∆p
2-complete ∆p

2-complete

Some of the hardness results are easy consequences of results reported in
[16,41,18] (see Appendix for more details).

Tractability is only achieved for COMP -normal SBBs for which ∆1 is a
DNF formula and queries are restricted to CNF formulas. Intractability results
w.r.t. both |∼IP∀ and |∼LE∀ still hold when ∆1 is a consistent Krom formula (such
formulas are renamable Horn CNF ones, and can be turned in polynomial time
into Blake normal form, see e.g., [37]), or when ∆1 is a Horn CNF formula. All
the hardness results presented in Table 4 still hold in the specific case when the
number k of strata under consideration satisfies k ≥ 2. literal |∼LE∀ remains
coNP-hard in the restricted case when k ≥ 2.

Interestingly, imposing some restrictions on the literals used to name as-
sumptions enables us to derive tractable restrictions for both clause |∼IP∀ and
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clause |∼LE∀ from the COMP -compilation of an SBB where ∆1 is a Horn cover
formula. Indeed, we have:

Proposition 20 Tractable restrictions.
clause |∼IP∀ and clause |∼LE∀ from a C-normal SBB B = (∆1, . . . , ∆k) where
∆1 is a Horn cover formula and

⋃k
i=2 ∆i contains only negative literals are in P.

Actually, all the tractable cases listed above rely on the following lemma:

Lemma 21. Let B = (∆1, . . . ,∆k) be an SBB with ∆ =
⋃k

i=1 ∆i. We recall
that B⊆ = (∆1, . . . ,∆k)⊆ is the set of all maximal (w.r.t.⊆) consistent subbase
of B =

⋃k
i=1 ∆i containing ∆1. We have:

1. If ∆1 = {α1∨ . . .∨αn} where each αi (i ∈ 1 .. n) is a formula from PROPPS ,
B⊆ = max⊆({∆1 ∪ (S ∩∆) | S ∈

⋃n
i=1({αi},

⋃k
j=2 ∆j)⊆}).

2. If α is a term and
⋃k

j=2 ∆j is a consistent set of literals, then ({α},
⋃k

j=2 ∆j)⊆
is the singleton {{α} ∪ {φ ∈

⋃k
j=2 ∆j | α 6|= ¬φ}}.

3. If α is a Horn CNF formula and
⋃k

j=2 ∆j contains only negative literals, then
({α},

⋃k
j=2 ∆j)⊆ is the singleton {{α} ∪ {φ ∈

⋃k
j=2 ∆j | α 6|= ¬φ}}.

Since the transformation reported in Definition 12 does not require any
constraint on the literals used to name beliefs, negative literals can be used.
Accordingly, it is possible to compile any SBB so as to make both clause |∼IP∀
and clause |∼LE∀ tractable from the compiled form. Of course, this is already
achieved by only requiring ∆1 to be a DNF formula. However, while every DNF
formula is a Horn cover formula, the converse typically does not hold and the Horn
cover fragment is strictly more compact then the DNF one as a representation
formalism (some DNF formulas can be represented by Horn cover formulas the
sizes of which are logarithmically smaller but the converse does not hold).8

Example 22. B can be turned into the following Horn cover compilation
Horn cover(B) = (χ1, χ2, χ3):
χ1 = {(fly(Omer) ∧ emu(Omer) ∧

(emu(Omer)⇒ bird(Omer)) ∧
8 For instance, the size of the smallest DNF formula equivalent to the Horn cover formula∧m

i=1
(¬x2i ∨ ¬x2i+1) is Ω(2m). Indeed, this formula has Ω(2m) essential prime implicants.
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(emu(Omer)⇒ Emusfly(Omer))) ∨
(¬fly(Omer) ∧ emu(Omer) ∧
(emu(Omer)⇒ bird(Omer)) ∧
(bird(Omer)⇒ Birdsdon′tfly(Omer))}

χ2 = {¬Emusfly(Omer)},
χ3 = {¬Birdsdon′tfly(Omer)}.
From this C-normal SBB, Horn cover(B)⊆ can be derived in polynomial time
as:

{χ1 ∪ {¬Birdsdon′tfly(Omer)}, χ1 ∪ {¬Emusfly(Omer)}}.

By construction, each of the two elements of Horn cover(B)⊆ is a Horn cover
formula. Only the latter one is preferred w.r.t. IP (or LE), enabling us to
conclude the desired result (Omer doesn’t fly).

7. Some Empirical Results

In order to assess the feasibility of the compilation approach from the prac-
tical side, we have computed DNF-compilations of SBBs. We have implemented
Schrag’s algorithm for computing prime implicants covers (i.e., DNFs in which
each term is a prime implicant) of propositional CNF formulas [46]; this algorithm
is based on the well-known Davis/Logemann/Loveland procedure for satisfiability
testing [24].

7.1. The Empirical Framework

All the experimentations have been done on PC under Linux. The code has
been written in c and compiled using gcc with the option -O2. It is available
from the authors.

For the sake of comparison, we have performed tests using the same families
of benchmarks as those reported in [16]. Thus, we have made experiments on a
complete version of the famous penguin problem and two formalizations of a small
real common-sense problem involving respectively 31 and 77 formulas, distributed
in respectively 7 and 9 strata, as given in [16]. We have also performed tests on
random 3-CNF contradictory instances, generated following the standard model
[34]: Each clause is obtained by randomly picking up 3 variables among the avail-
able ones and negating each variable with probability 0.5. This model has been
studied in depth by the sat community; specifically, it has been observed that it
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exhibits a phase transition phenomenon at a ratio of #clauses
#variables = 4.25. Instances

generated using a lower (resp. higher) ratio are supposed to be satisfiable (resp.
unsatisfiable) with high probability. Furthermore, instances generated using the
above ratio of 4.25 are typically difficult for satisfiability testing. We have con-
sidered instances generated from 10, 20 and 30 variables with a ratio #clauses

#variables

varying from 5 to 10 by increment of 1. Clauses are gathered conjunctively into
formulas to form the original belief bases B. The number of resulting formulas
varies from 2 to 20 percent of the total number of clauses by increment of 1. The
number of strata varies from 10 to 100 percent9 of the total number of formulas
by increment of 10 percent.

For each SBB under consideration, we have applied the transformation given
at Definition 12: Each formula is given a new name holdsi,j , which leads to
increase the number of variables of the base, and then a DNF χ1 of the conjunction
of ∆1 and all mappings formula/name is computed using Schrag’s algorithm.

Due to the number of parameters used, we cannot present here exhaustive
results from our experimentations (additional results can be obtained from the
authors on request). Instead, we just report in the following table and figures the
number of terms and the number of literals in χ1. It should be obvious that for
each SBB B under consideration, the number of literals in the DNF-compilation
of B (as given in Definition 12) is bounded by the number of literals in χ1 plus the
number of new names holdsi,j (and this last number can typically be neglected).
Hence, the number of literals in χ1 represents in a faithful way the size of the
corresponding DNF-compilation.

7.2. Experimental Results

Table 6 gives both the number of terms and the number of literals in χ1, for
the three toy problems. The compilation time can be neglected for each of them.

Table 6

Three toy problems.

Problem #implicants #literals

Penguin 4 22

31 formulas 6 117

77 formulas 6 129

9 In this case, each stratum contains exactly one formula.
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The empirical results concerning 3-CNF instances are gathered in a number
of figures. For each of them, the horizontal axis indicates the number of variables
#variables under consideration in the base once new variables holdsi,j have been
incorporated (#variables reflects the number of different formulas in the base);
the vertical axis gives the number of terms or the number of literals in χ1.

Figure 1. Results for 10 variables.
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Figure 2. Results for 20 variables.
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Figure 1 gives the the number of terms and the number of literals in χ1

for the 3-CNF random instances generated using 10 variables. Each curve corre-
sponds to a specific ratio, hence to a specific number of clauses. 50 instances per
point on the curves have been generated with the same parameters. Each point
is the mean value10 obtained over the 50 instances. For each instance tested, the

10 For the sake of readibility, we do not present other statistical information on the curves (like
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computation time required to compute χ1 was lower than 0.1 s.

Figure 3. Results for 30 variables.
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Similarly, Figure 2 (resp. 3) gives the number of terms and number of literal
in χ1 for 3-CNF random instances generated using 20 (resp. 30) variables. Each

the min, max, standard deviation and median); actually, average seems to be a significant

measurement here (especially, the standard deviation is typically small for each point).
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point here is the mean value obtained over at most 50 instances, as we have
imposed a upper limit of one hour CPU time per instance to compute χ1.

On Figure 3, the displayed points are the averages of 24 to 50 values. The
points for which less than 24 values over 50 have been obtained (given the CPU
time limit of one hour per instance) have been discarded.

7.3. Discussion

In the light of these experiments, a few conclusions can be drawn:

• The number of terms in χ1 is relevant to the whole compilation process. On
the one hand, the number of literals in χ1 is obviously bounded by the number
of variables in the instance after transformation times the number of terms in
χ1. Empirically, we observe that the number of literals in χ1 is proportional
to the number of terms in it. On the other hand, we also observe that the
time needed to compute χ1 is proportional to the number of implicants in it
(this has already been noticed in [46]).

• The more constrained the input instance, the less implicants in χ1. The num-
ber of formulas in the base also has a major impact on the size of the compila-
tion since the transformation leads to increase the number of variables in the
instance in a significant way, leading to a less constrained instance. Indeed,
within the limit of one hour CPU time per base, it has not been possible to
compute χ1 for more than 50 percent of the bases generated from 20 variables
and containing 200 clauses, provided that such clauses are gathered into at
least 40 formulas. This empirical evidence coheres with the results reported
in [6], showing that DNF-compilations are only suited to hardly constrained
instances.

Similar experiments are reported in [16], using Reduced Ordered Binary
Decision Diagrams (ROBDD) compilations of SBBs. ROBDD [9] can be viewed
as a |=-tractable class consisting of some DAG-based propositional formulas (i.e.,
identical subformulas are shared). Looking at the experimental results given
in [16] and related to ROBDD-compilations of SBBs (cf. Section 8), we can
observe that DNF-compilations seem to perform better than ROBDD-ones on
the toy problems (comparing the sizes of the compilations). However, in contrast
to DNF-compilations, it seems that ROBDD-compilations can be computed in
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a few minutes on random 3-CNF instances generated using 20 variables11 with
ratio 8, and one clause per formula. We can also observe that the size of ROBDD-
compilations grows with the number of clauses in the instances, but it is unclear
whether this is due to the fact that the original instances are more constrained
or, on the contrary, to the fact that the transformed ones (with names added)
are less constrained due to the new variables stemming from the transformation.

Contrariwise to [16], we do not report on the time needed to achieve clausal
inference from DNF-compilations. Actually, the time complexity of this problem
is linear in the number of terms of the DNF formulaBDNF which can be computed
from DNF (B) thanks to the following algorithm.12 Let P ∈ {IP,LE}:

1. Compute BP in time polynomial in |DNF (B)| taking advantage of points 1.
and 2. of Lemma 21.

2. Remove from χ1 every term t for which there does not exist S ∈ BP s.t.
t ∧ (S \ {χ1}) is consistent.

3. Forget every name holdsi,j in the resulting DNF (i.e., remove every literal
built up from such a variable from the terms where it occurs).

4. Minimize the resulting DNF (i.e., remove every term that entails another
term).

It is obvious that this algorithm takes only time polynomial in the size
of DNF (B). Furthermore, for any clause γ built up from V ar(B), we have
B|∼P∀ γ iff BDNF |= γ. Indeed, by definition of skeptical inference, we have B|∼P∀ γ
iff for each S ∈ BP , S |= γ. Now, all preferred subbases S ∈ BP share by
construction the same first stratum χ1, which can be factored. Hence, B|∼P∀ γ
iff χ1 ∧

∨
S∈BP

(S \ {χ1}) |= γ. Now, since each S \ {χ1} is a (conjunctively-
interpreted) set consisting of literals built up from variables holdsi,j , it can be
viewed as a term; subsequently,

∨
S∈BP

(S \ {χ1}) can be viewed as a DNF gen-
erated from the variables holdsi,j . Because we are interested in queries which do
not contain any variable holdsi,j , we do not need to compute a DNF equivalent
to χ1 ∧

∨
S∈BP

(S \ {χ1}) by distributing the ∧ connective over the two DNFs χ1

and
∨

S∈BP
(S \ {χ1}): Computing a query-equivalent DNF (on V ar(B)) is suffi-

11 No empirical results are reported concerning instances generated using 30 variables.
12 Note that a similar algorithm (restricted to steps 1. and 2.) can be designed for the case χ1

is a Horn cover formula (each term t in the algorithm above being replaced by a Horn CNF

formula).
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cient; to this purpose, it is sufficient to keep each term t from χ1 that would lead
to a consistent term if such an explicit distribution were made. This is exactly
what step 2. in the algorithm above is intended to. Steps 3. and 4. just lead to
minimize the size of the resulting DNF, by forgetting the variables holdsi,j which
are irrelevant when queries built up from V ar(B) are considered, only. Step 3.
leads to compute in linear time a DNF formula equivalent to the most general
consequence of the input DNF that is independent from any variable holdsi,j .
Step 4. is a minimization stage that preserves equivalence and can be achieved
in time at most quadratic in the size of the input. Clearly, steps 3. and 4. in the
algorithm above can be omitted without questioning its correctness.

Computing BDNF from DNF (B) can be viewed as a further compilation
step, but which can be achieved in time polynomial in the size of DNF (B). At an
abstract level, it is reminiscent to the transformation of an ROBDD-compilation
of an SBB into a “fat-free” one, dedicated to skeptical inference w.r.t. the lexico-
graphic policy, as described in [16]; however, unlike the latter, our transformation
is not dependent on the LE policy but applies as well to the IP one. An impor-
tant fact is that this further compilation may lead to save some space since the
size of the resulting DNF BDNF is always at least as small as |χ1|. Those sav-
ings have a direct impact on the time needed to perform clausal query answering
since a non-tautological clause γ is a logical consequence of BDNF iff each term
from BDNF contains a literal from γ. Accordingly, the number of implicants in
χ1 gives a upper bound (up to a constant factor) of the time needed to perform
clausal query answering from BDNF . The price to be paid for the space savings
that may result from the computation of BDNF lies in a loss of flexibility. Indeed,
from DNF (B), it is possible to perform tractable clausal query answering even
if the stratification or the selection policy (in {IP,LE}) change with time. No
re-compilation is required at all. Obviously enough, it is not the case any longer
if the formula stored as a compilation is BDNF instead of DNF (B), since both
the stratification and the selection policy determines BP , and this is a parameter
on which BDNF depends heavily. Of course, once both the stratification and the
selection policy are fixed, it is a good idea to replace DNF (B) by BDNF ; how-
ever, since BDNF is derived from DNF (B), the size of the latter is significant
for the compilation process. This observation and the fact that flexibility is an
important feature of our compilation method explain why we have focused on the
size of χ1 in our experiments.
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8. Related Work

Our approach is closely related to previous works centered on the complexity
of inference from belief bases and their compilation.

From the compilability side, we have exploited some compilability results
reported in [12,13,11] in order to achieve our analysis. In contrast to ours, these
works are not directly centered on skeptical inference from SBBs but on other
related forms of nonmonotonic inference, like circumscription and belief revi-
sion. [23] presents compilability results for inference and model checking in the
penalty logic setting (the inference relation considered in penalty logic encom-
passes |∼LE∀ as a specific case). Our non-compilability results are consistent with
those reported in [23], showing especially that the flexibility requirement is com-
putationally demanding.

From the computational complexity side, the closest works are [41,16,26].
Our work aims at completing the complexity results pointed out in these papers,
by focusing on other |=-tractable fragments of propositional logic. Interestingly,
we have considered fragments that are complete for propositional logic, i.e., ev-
ery propositional formula can be turned into an equivalent formula from any of
them, while [41,16] mainly consider the Horn CNF class, which is not complete
(see nevertheless later on the discussion about the ROBDD class considered in
[16]). Accordingly, any SBB can be compiled in our framework, even if it is
not composed of Horn CNF formulas. [18] shows how knowledge compilation
can prove helpful to improve various forms of closed-world reasoning. We con-
sider the same target classes for compilation, but different inference relations
(which are nevertheless connected since closed-world reasoning can be reduced
to assumption-based reasoning, i.e., inference from a supernormal default theory,
which is a specific case of SBB - see [27,32,30,48]).

The idea of compiling an SBB is not new. A very natural way to imple-
ment inference from an SBB B consists in computing BP . We refer to it as the
basic approach to compile B. Once this is done, inference is reduced to classical
entailment. Since classical entailment in “only” coNP-complete, this basic ap-
proach amounts to knowledge compilation: the generation of the set of preferred
subbases is the compilation step and query answering from the compiled form is
easier than from the original SBB from the computational complexity point of
view [10]. Like our approach, the basic one cannot be achieved in polynomial
time in the general case (BP can easily contain exponentially many elements
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when P ∈ {IP,LE}). However, our transformation is much more flexible. First
of all, many knowledge compilation functions can be used within it (and some
of them may achieve the objective of keeping the size “small enough” for some
instances). Furthermore, re-partitionning the belief base can be achieved without
requiring any expensive re-compilation step, when compiled using our approach,
while this is not the case when the basic one is considered. Finally, it is obvious
that, in the general case, there is no guarantee that every element of BP belongs
to a |=-tractable class, while on-line tractability can be ensured by our approach.

More sophisticated compilation-based approaches to inference from SBBs
are given in [3] and [16].

The approach presented in [3] aims at reducing many forms of skeptical
inference from an SBB (including those based on the IP and LE policies) to
the possibilistic one. Given a selection policy, this is achieved by compiling the
given SBB into an SBB equivalent to it when interpreted under |∼PO∀ . From the
compilability point of view, the aim is to reduce the complexity of inference to
∆p

2[O(log n)], through a pre-processing. The framework in which this approach
takes place (labelled knowledge bases) is more general than the SBB one (espe-
cially, the preferential information which are considered take the form of a partial
pre-ordering over beliefs, not a total one). Loosely speaking, this approach leads
to take account for any disjunction built up from explicit beliefs from the base.
While several simplification techniques may enable to remove much of them in
practice, the size of the resulting compiled SBB can easily be exponential in the
size of the original SBB (not surprisingly, this seems the price to be paid to re-
duce the |∼IP∀ inference - the decision problem of which is Πp

2-complete - to the
|∼PO∀ inference). Compared with the basic approach, the approach presented in
[3] has the major advantage that no information is lost during the compilation
step, which can be achieved in an incremental way using a syntactic combina-
tion operator. Compared with our approach, it ensures that the combination of
a compiled base containing n formulas with a new incoming base containing m
formulas leads to a new compiled base containing at most n × m formulas; in
our approach, it is much more difficult to give such a tight bound on the size of
a compiled base, issued from the re-compilation of a given compiled base aug-
mented with a new incoming formula. Contrastingly, the combination approach
does not enable a re-partitionning of beliefs if no re-compilation is done (unless
the resulting base is not filtered – but filtering is a way to possibly avoid a combi-
natorial blow-up). Finally, unlike our approach, the combination approach does
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not necessarily lead to a base from a |=-tractable class.
Close to this work is [5] which aims at computing a formula equivalent to an

SBB skeptically interpreted under the LE policy. In this work, the objective is
to reduce a ∆p

2-complete problem to a coNP one through a pre-processing. Here
again, the size of the resulting compiled SBB can easily be exponential in the
size of the original SBB (note that Proposition 10 shows that this can be avoided
for sure provided that query-equivalence is considered). Moreover, the flexibility
requirement is not satisfied in the general case and there is no guarantee that the
resulting base belongs to a |=-tractable class.

From the compilation side, the closest approaches to ours are [16,22,23].
In [16], an ROBDD-based algorithm for |∼LE∀ inference is presented (see [9] for
a presentation of ROBDDs). From an ROBDD-compilation of an SBB, skepti-
cal inference w.r.t. LE is shown tractable as long as CNF queries are considered.
[22,23] extends this work in two directions. On the one hand, a more general form
of inference is considered. On the other hand, a more succinct tractable fragment
of propositional logic (the DNNF one) is considered as a target language for com-
pilation. Our work completes those approaches by (1) considering other selection
policies (especially IP) and (2) focusing on other tractable fragments of propo-
sitional logic as target classes, showing that |∼LE∀ inference remains intractable
or becomes tractable according to the class into which the SBB is compiled. Es-
pecially, new tractable restrictions are provided; furthermore, the corresponding
target classes cannot be compared with the ROBDD one w.r.t. succinctness (see
[21]). Thus, some propositional formulas have ROBDD representations which are
exponentially larger than some of their DNF representations, and the converse
also holds. From the practical side, it seems that both classes have their own
set of favourable instances (i.e., those leading to compiled forms of reasonable
size). Thus, DNF-compilations (or more generally Horn cover compilations) are
apparently more suited to critically constrained bases, while ROBDD compila-
tions are more adapted to underconstrained bases (see [49,46]). For instance, [46]
reports on successful compilations of hard random 3-CNF formulas with 200 vari-
ables while experiments with Bryant’s ROBDD package shows difficult to derive
within a reasonable amount of time an ROBDD representation of such formulas
with more than 50 variables.
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9. Conclusion

The coherence-based approach to inconsistency handling offers an important
and quite popular framework for reasoning under inconsistency. While it has been
investigated in depth from a logical point of view, less efforts have been spent from
the practical side and few implementations exist. To which extent is the approach
convenient when large-size applications are considered is a question that mainly
remains unanswered. An explanation relies on the fact that inference is known as
intractable in the coherence-based framework. To fill this gap, it is important to
point out tractable restrictions and to design techniques for circumventing such
an intractability, i.e., to increase the set of instances feasible from the practical
side.

Along this line of research, we have shown in this paper how knowledge
compilation techniques can be used to compile SBBs in order to make skepti-
cal inference more efficient. Investigating the compilability of skeptical inference
from SBBs, we have first shown that computational gains are hard to be expected
from compilation in the worst case. Nevertheless, we have demonstrated that im-
provements can be expected (as long as the size of the compiled form remains
“small enough”) for all the selection policies under consideration, except LE . Fo-
cusing on four compilation functions found in the literature, tractable fragments
have also been exhibited for both IP and LE .

Our results give both good news and bad news. Among the good news is
the fact that knowledge compilation appears as an interesting approach to en-
hance clausal inference since skeptical inference from a C-normal base is typically
computationally easier than from an unconstrained base (just compare Table 3
with Table 1) and that tractable cases have been pointed out for every selection
policy. Our preliminary empirical results also give some evidence about the feasi-
bility of the approach, despite the fact that DNF-compilations are seemingly only
suited to very constrained SBBs. The bad news here are that the computational
improvement expected from a compilation approach is not systematic; thus, the
complexity of inference w.r.t. LE policy – one of the most interesting ones when
logical properties and cautiousness are considered [4,15] – does not necessarily
decrease when normal SBBs are considered. Note that the difficulty to lower
the complexity of ∆p

2-complete problems by focusing on formulas belonging to a
|=-tractable class is consistent with many results obtained so far in other contexts
(e.g., in belief revision [41]).
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This work calls for several perspectives. The major one concerns the empir-
ical side. A more intensive experimental evaluation must be conducted to assess
the computational benefits which can be expected from the approach. Consider-
ing the Horn cover class - strictly more succinct than the DNF one - as the target
class would certainly push back the computational limitations encountered in
practice. It would also be interesting to evaluate in depth the computational
space savings that can be achieved in practice through the generation of BDNF

fromDNF (B), as explained in Section 7. On another side, it would be interesting
to consider other target classes for compilation functions COMP and to investi-
gate the corresponding COMP -normal forms, both from the complexity point of
view and from the practical side. Finally, an additional perspective would be to
compare our approach with the sequential combination of the basic compilation
approach, i.e., the one consisting in computing BP from B (or the combination
one reported in [3]) with standard knowledge compilation techniques (enabling
to turn each element of BP into a formula from a |=-tractable class); this way,
tractability w.r.t. the resulting base would be ensured. While it is clear that such
an approach (with two successive compilation steps) is less flexible than ours (es-
pecially w.r.t. the possibility to re-partition beliefs), it would be interesting to
empirically compare the sizes of the resulting bases.
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Proofs

Proposition 6
The complexity of formula |∼P∀ from an SBB and of its restrictions to clause and literal
inference for P ∈ {PO,LO, IP,LE} is as reported in the following table.

Table 7

Complexity of skeptical inference from SBBs (general case).

P formula / clause / literal |∼P
∀

PO ∆p
2[O(log n)]-complete [41]

LO ∆p
2-complete [40]

IP Πp
2-complete [38]

LE ∆p
2-complete [14]

Proof of Proposition 6. We give a proof here for the sake of completeness, despite
the fact that many of the results reported in this proposition are not new ones. As
a notable exception, we show how some hardness results for formula inference
can be easily modified to the literal inference case (which results in more
general hardness results).

• PO: In order to prove the complexity results, it is sufficient to show that
formula |∼PO∀ belongs to ∆p

2[O(log n)] and that its restriction literal |∼PO∀
is ∆p

2[O(log n)]-hard.

∗ The membership of formula |∼PO∀ to ∆p
2[O(log n)] is a direct consequence

of Theorem 6.5 from [41] (since inference from a SBB (∆2, . . . ,∆k) revised
by ∆1 w.r.t. the cut base revision scheme corresponds exactly to formula

|∼PO∀ ).
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∗ The ∆p
2[O(log n)]-hardness of literal |∼PO∀ can be easily derived by adapt-

ing the hardness proof of Theorem 6.5 from [41]. Indeed, let us consider
the following ∆p

2[O(log n)]-complete problem from [50] that is called par-

ity(sat):

∗ Input: A sequence χ1, . . . , χn of formulas from PROPPS s.t. χi is in-
consistent implies that χi+1 is inconsistent (i ∈ 1..n− 1).

∗ Query: Is the maximum index i (i ∈ 1..n) s.t. χi is consistent an odd
number?

Let us associate to each instance of this problem13 a SBBB = (∆1, . . . ,∆n+1)
and a literal new ∈ PS, where

∆1 = {
n∧

i=1

(newi ⇒ χi), new ⇔ (
(n−1)/2∨

k=0

(
2k+1∧
l=1

newl ∧
n∧

l=2k+2

¬newl))}

and each ∆i (i ∈ 2..n + 1) is s.t. ∆i = {newi−1}. Each variable newi

(i ∈ 1..n) is a new variable, not occurring in χ1, . . . , χn. This is also the
case for new. Clearly enough, both B and new can be computed in time
polynomial in the size of χ1, . . . , χn. Now, χ1, . . . , χn is a “yes”-instance of
parity(sat) iff B|∼PO∀ new holds.

• LO: In order to prove the complexity results, it is sufficient to show that
formula |∼LO∀ belongs to ∆p

2 and that its restriction literal |∼LO∀ is ∆p
2-

hard.

∗ The membership of formula |∼LO∀ to ∆p
2 is a direct consequence of The-

orem 8 from [40] (or Corollary 1 from [14]) since inference from a SBB
(∆2, . . . ,∆k) revised by ∆1 w.r.t. the linear-base revision scheme corre-
sponds exactly to formula |∼LO∀ ).

∗ For the ∆p
2-hardness of literal |∼LO∀ , see Corollary 1 from [14].

• IP: In order to prove the complexity results, it is sufficient to prove that
formula |∼IP∀ belongs to Πp

2 and that its restriction literal |∼IP∀ is Πp
2-

hard.
13 We assume without loss of generality that n is odd - if it is not the case, we add to the sequence

the formula χn+1 = false.



41

∗ The membership of formula |∼IP∀ to Πp
2 is a direct consequence of Theorem

20 from [39] since inference from a SBB (∆2, . . . ,∆k) revised by ∆1 w.r.t.
the prioritized base revision scheme corresponds exactly to formula |∼IP∀ .

∗ For the Πp
2-hardness of literal |∼IP∀ , we slightly modify the proof of

Theorem 14 from [38] so that it still holds when queries are limited to
literals. Let G = ∀ a1 . . .∀ an ∃ b1 . . .∃ bm F a 2 − QBF formula where
V ar(F ) = {a1, . . . , an, b1, . . . , bm}. To G we associate the SBB B =
(∆1,∆2) where ∆1 = {new ⇒ F} and ∆2 = {a1, . . . , an,¬a1, . . . ,¬an, new}
with new ∈ PS \ V ar(F ), and the literal new. Clearly enough, both B and
new can be computed in time polynomial in the size of G. Now, G is valid
iff B|∼IP∀ new holds. Since the hardness result holds for k = 2, it also holds
for supernormal default theories without stratification.

• LE : In order to prove the complexity result, it is sufficient to prove that
formula |∼LE∀ belongs to ∆p

2 and that its restriction literal |∼LE∀ is ∆p
2-

hard.

∗ The membership of formula |∼LE∀ to ∆p
2 is a direct consequence of Theorem

5.17 from [41] since inference from a SBB B = (∆2, . . . ,∆n) revised by ∆1

w.r.t. the lexicographic base revision scheme corresponds exactly to |∼LE∀ .

∗ For the literal |∼LE∀ -hardness, see [14].

Proposition 10
The results reported in the following table hold. U (resp. F) means that the inference
problem is unflexible (resp. flexible). W (resp. S) means that the expected compilability
strength is weak (resp. strong).”no↓ 2” means “no” unless the polynomial hierarchy
collapses at the second level, while “no↓ 3” means “no” unless the polynomial hierarchy
collapses at the third level.

Proof of Proposition 10.

• U - W.

∗ PO and LO. The unique preferred subbase of the SBB (∆,≤) w.r.t. the
policy is by definition a subset of ∆. Hence, its size is polynomial in the size
of ∆. By construction, this (conjunctively-interpreted) preferred subbase
is a formula query-equivalent to (∆,≤) (skeptically) interpreted under the
corresponding policy.
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Table 8

Compilability of skeptical inference from SBBs.

P U - W F - W U - S F - S

PO yes no↓ 3 no↓ 2 no↓ 2

LO yes no↓ 3 no↓ 2 no↓ 2

IP no↓ 3 no↓ 3 no↓ 2 no↓ 2

LE yes no↓ 3 no↓ 2 no↓ 2

∗ IP. This results comes from the fact that (1) it is not possible to associate
a circumscribed formula CIRC(Σ) to a query-equivalent polyspace formula
unless the polynomial hierarchy collapses at the third level (see Theorem
7 from [13]) and that (2) CIRC(Σ) is equivalent over V ar(Σ) to the two-
strata SBB ({Σ}, {¬x | x ∈ V ar(Σ)}) skeptically interpreted under the IP
policy (see e.g., [27]).

∗ LE . Given a SBB B = (∆1, . . . ,∆k), we first compute the profile of B,
i.e., a vector consisting of k numbers p1, . . . , pk (in binary notation), where
pi (i ∈ 1 .. k) is the number of formulas from ∆i that belong to every
preferred subbase of B w.r.t. LE . Once this is done, we associate to B the
propositional formula COMP (B) =

k∧
i=1

(
card(∆i)∧

j=1

(holdsi,j ⇒ φi,j)} ∧ EXA(pi,

card(∆i)⋃
j=1

{holdsi,j})

where holdsi,j are new variables, not occurring in B. Each holdsi,j is
just a name given to the jth formula from ∆i. Let S be any subbase of
B; it is easy to show that S and the formula

∧k
i=1(

∧card(∆i)
j=1 (holdsi,j ⇒

φi,j)} ∧
∧

φi,j∈S holdsi,j are query-equivalent, i.e., equivalent over V ar(B)
(the proof is similar to the one of Proposition 15). The claim is that
COMP (B) is query-equivalent to B skeptically interpreted under LE and
the size of COMP (B) is polynomial in the size of B. Indeed, each conjunct
EXA(pi,

⋃card(∆i)
j=1 {holdsi,j}) encodes a boolean function that evaluates to

true iff exactly pi variables in
⋃card(∆i)

j=1 {holdsi,j} are set to true. The point
is that a polyspace formula encoding this function can easily be generated
(just combine a card(∆i)-bit adder with a comparator, see e.g., [11]).

• F - W.
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∗ PO, LO and LE . Let Σ ∈ 3−SATn be a 3-CNF formula built up from the set
of variables {x1, . . . , xn}. Let Σmax

n be the 4-CNF formula
∧

γi∈3−Cn
¬newi∨

γi where 3 − Cn is the set of all 3-literal clauses that can be generated
from {x1, . . . , xn} and the newi are new variables, not among {x1, . . . , xn}.
Obviously enough, each element Σ from 3− SATn can be identified by the
subset SΣ of the variables newi s.t. γi is a clause of Σ iff newi ∈ SΣ.
Now, to the entire family of 3 − SATn instances, we associate the belief
base ∆n =

⋃
γi∈3−Cn

{newi} ∪ {Σmax
n ∧ new} where new is a new variable,

and to each element Σ of the family, we associate the query new14 and
the total pre-order ≤Σ over ∆n s.t. the first stratum is SΣ, the second
stratum is the singleton {Σmax

n ∧ new} and the third (and last) stratum
is the complement of SΣ into

⋃
γi∈3−Cn

{newi}. It is easy to show that
Σ is satisfiable iff (∆n,≤Σ)|∼P∀ new, whatever the selection policy P may
be among PO, LO and LE . Clearly enough, the fixed part ∆n is of size
polynomial in n (since |Σmax

n | is in O(n3)). Moreover, the variable part
〈new,≤Σ〉 can be computed in time polynomial in |Σ| (if γi occurs in Σ
then put newi in the first stratum, otherwise put it into the third one).
Assume that there exists a polynomial p s.t. for every n > 0, there exists
a data structure COMP (∆n) whose size is p(n) and s.t. for any query γ

over {x1, . . . , xn} and for any total pre-ordering ≤ over ∆n, determining
whether γ follows from COMP (∆n) given ≤ is in coNP and this is the case
iff (∆n,≤Σ)|∼P∀ γ, where P is any selection policy among PO, LO and LE .
Then we would be able to determine whether any instance Σ ∈ 3 − SATn

is satisfiable using a non-deterministic Turing machine with a polynomial
advice A: if |V ar(Σ)| = n, then the machine loads A(n) = COMP (∆n).
Once this is done, it computes ≤Σ in time polynomial in |Σ| and it checks
whether new follows from COMP (∆n) given ≤, which is in coNP. Since
3-sat is complete for NP, this would imply NP ⊆ coNP/poly, and, as a
consequence, the polynomial hierarchy would collapse at the third level.

∗ IP. This comes directly from the non-compilability result in the case UW
presented above.

• U - S and F - S. The two rightmost columns are immediate consequences
from the fact that (1) it is not possible to associate any consistent propositional
formula Σ to a query-equivalent polyspace formula from a |=-tractable class

14 This shows that the query could be considered as fixed without questioning the result.
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unless the polynomial hierarchy collapses at the second level (cf. for instance
the proof of Theorem 2 from [12]) and that (2) classical entailment from a
consistent Σ is logically equivalent to skeptical inference from the one-stratum
SBB ({Σ}) whatever the selection policy among PO, LO, IP and LE .

Proposition 15

Let B = (∆1, . . . , ∆k) be an SBB and let COMP be any equivalence-preserving compi-

lation function (for clause entailment). COMP (B) is a COMP -normal SBB equivalent

to B on V ar(B) w.r.t. P ∈ {PO,LO, IP,LE}.

Proof of Proposition 15. Since for any P ∈ {PO,LO, IP} and every SBB
B = (∆1, . . . ,∆k), every element S of BP always contains ∆1 as a subset, the
following bijection β does the job: β(∆1) = χ1, and for φ ∈

⋃k
l=2 ∆l (φ is the jth

assumption of ∆i), β({φ}) = {holdsi,j} and we define for every subbase S of BP ,
β(S) = χ1 ∪

⋃
φ∈S\∆1

β({φ}). It is clear that χ1 is consistent; by assumption ∆1

is consistent, hence it has a model which can be extended into a model of χ1 by
assigning every variable holdsi,j to 0). Now, S(⊇ ∆1) is a consistent subbase of
B iff β(S)(⊇ χ1) is a consistent subbase of COMP (B). Moreover, S and β(S)
have the same consequences on V ar(∆) since every formula φ from stratum ∆i

(i ≥ 2) is equivalent on V ar(∆) to its name holdsi,j whenever χ1 holds. Finally,
the preferential information conveyed by the stratification of B is preserved in
COMP (B) since every formula φ from stratum ∆i (i ≥ 2) is replaced by its
name holdsi,j in stratum χi.

Proposition 17
The complexity of formula |∼P∀ and of its restrictions to clause and literal inference for
P ∈ {PO,LO, IP,LE} from a C-normal SBB is as reported in the following table.

Proof of Proposition 17.

• PO: When B = (∆1, . . . ,∆k) is C-normal, every formula φ from
⋃k

i=2 ∆i is a
literal; BPO can be computed in time polynomial in |B| thanks to the following
algorithm:
Since ∆1 belongs to a |=-tractable class whenever B is C-normal and since∨i

j=2(
∨

φ∈∆j
¬φ) is a clause, the given algorithm runs in time polynomial in

the size of B. Now, for every formula ψ of PROPPS , we have B|∼PO∀ ψ iff
BPO |= ψ iff ∆1 |= (

∨
φ∈BPO\∆1

¬φ) ∨ ψ. This shows that skeptical infer-
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Table 9

Complexity of skeptical inference from C-normal SBBs (upper bounds).

P formula |∼P
∀ clause / literal |∼P

∀

PO in coNP in P

LO in coNP in P

IP in coNP in coNP

LE in ∆p
2 in ∆p

2

for i = 2 to k do
if ∆1 |=

∨i
j=2(

∨
φ∈∆j

¬φ) then
return ({

⋃i−1
j=1 ∆j})

end if
end for
return ({

⋃k
j=1 ∆j})

ence w.r.t. the possibilistic policy can be polynomially many-one reduced to
classical inference. Since classical inference belongs to coNP and since coNP

is closed under polynomial reduction, the membership of formula |∼PO∀ to
coNP follows.
In the specific case ψ is a clause, (

∨
φ∈BPO\∆1

¬φ) ∨ ψ is a clause as well, and
since ∆1 belongs to a |=-tractable class, clause |∼PO∀ belongs to P.

• LO: The proof is close to the PO one. When B is C-normal, BLO can be
computed in time polynomial in |B|, thanks to the following algorithm:

I ← {1}
for i = 2 to k do

if ∆1 6|=
∨

j∈I∪{i}(
∨

φ∈∆j
¬φ) then

I ← I ∪ {i}
end if

end for
return ({

⋃
j∈I ∆j})

Since ∆1 belongs to a |=-tractable class whenever B is C-normal and
since

∨
j∈I∪i(

∨
φ∈∆j

¬φ) is a clause, the algorithm above runs in polyno-
mial time. Now, for every formula ψ of PROPPS , we have B|∼LO∀ ψ iff
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∆1 |= (
∨

φ∈BLO\∆1
¬φ) ∨ ψ. This shows that skeptical inference w.r.t. the

linear order policy can be polynomially many-one reduced to classical infer-
ence. Since classical inference belongs to coNP and since coNP is closed under
polynomial reductions, the membership of formula |∼LO∀ to coNP follows.
In the specific case when ψ is a clause, (

∨
φ∈BLO\∆1

¬φ) ∨ ψ is also a clause
and since ∆1 belongs to a |=-tractable class, clause |∼LO∀ belongs to P.

• IP: We show the membership to coNP by exhibiting a preferred-models char-
acterization of skeptical inference w.r.t. the inclusion-preference policy. Given
I and J two models of ∆1, we note I < J iff there exists i ∈ 2 . . . k s.t.
{φ ∈ ∆i | I |= φ} ⊃ {φ ∈ ∆i | J |= φ} holds and for every j ∈ 2 . . . i − 1,
{φ ∈ ∆i | I |= φ} = {φ ∈ ∆i | J |= φ}. < is a strict order (i.e., an irreflexive
and transitive relation) over the set of models of ∆1. Now, we call preferred
models of B the models of ∆1 that are minimal w.r.t. <. Clearly enough,
{φ ∈ ∆ | I |= φ} is a preferred subbase of B iff I is a preferred model of
B. Accordingly, we have B|∼IP∀ ψ iff every preferred model of B is a model of
ψ. Let us now show that determining whether B 6 |∼IP∀ ψ holds belongs to NP

when ψ is any formula. It is sufficient to prove that checking whether a given
interpretation I is a preferred model of B can be achieved in time polynomial
in |B|. Indeed, it is sufficient to guess I, then check in (deterministic) polyno-
mial time that I is a preferred model of B and check that I 6|= ψ holds. Now,
in order to check whether I is a preferred model of B, it is sufficient to check
that S = {φ ∈ ∆ | I |= φ} (which can be computed in polynomial time given
B and I) is a preferred subbase of B w.r.t. to the inclusion-preference policy.
This can be done thanks to the following algorithm:

S = (S1, S2, . . . , Sk)
for For i = 2 to k do

for φ ∈ ∆i \ Si do
if

⋃i
j=1 Sj ∪ {φ} is consistent then

return (not preferred)
end if

end for
end for
return (preferred)
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Since S1 = ∆1 belongs to a |=-tractable class and since ¬(
∧i

j=2 Sj ∧ φ) is a
clause, this algorithm runs in polynomial time.

• LE : The membership of formula |∼IP∀ to ∆p
2 is a direct consequence of the

general case (cf. Proposition 6).

Proposition 18
The complexity of formula |∼IP∀ and of its restrictions to clause and literal inference
from COMP -normal SBBs is as reported in the following table.

Table 10

Complexity of skeptical inference w.r.t. IP from COMP -normal SBBs.

COMP formula |∼IP
∀ clause / literal |∼IP

∀

Blake coNP-complete coNP-complete

DNF coNP-complete in P

Horn cover coNP-complete coNP-complete

renamable Horn cover coNP-complete coNP-complete

Proof of Proposition 18. All the membership results reported in the Table are
direct consequences of the membership results of the general case (Proposition
17), except for the clause |∼IP∀ membership to P when the C-normal base is a
DNF formula. Hence, we shall focus on this result and on the hardness results.

• formula |∼IP∀ : coNP-hardness can be proved through the reduction already
used for showing the coNP-hardness of formula |∼PO∀ and formula |∼LO∀ :
a formula ψ from PROPPS is valid iff B|∼IP∀ ψ holds, where B = ({true})
is a C-normal, one-stratum, belief base. Accordingly, this is a polynomial
reduction from the validity problem of propositional logic (well-known to be
coNP-complete) to skeptical inference w.r.t. the inclusion-preference policy, in
the restricted case when ∆1 is a Blake, DNF, Horn cover or renamable Horn
cover formula.

• clause |∼IP∀ :

∗ DNF: From points (1) and (2) of Lemma 21, we know that when
B = (∆1, . . . ,∆k) is s.t. ∆1 is a DNF formula and

⋃k
i=2 ∆i is a consistent
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set of literals, B⊆ can be computed in polynomial time and every element S
of B⊆ can be turned into a DNF formula in polynomial time. Moreover, it
is obvious that filtering out BIP from B⊆ can be done in polynomial time.
Since clausal entailment can be achieved in polynomial time from a DNF
formula, the conclusion follows.

∗ Blake, Horn cover, renamable Horn cover: The membership of clause |∼IP∀
to coNP is a consequence from formula |∼IP∀ .
It remains to show that literal |∼IP∀ is coNP-hard. It is well-known that
extended closed world reasoning can be reduced to skeptical inference from
some specific default theories [27,32]. Indeed, given a formula Φ ∈ PROPPS

and a partition 〈P,Q,Z〉 of V ar(Σ), for every formula Ψ ∈ PROPPS , we
have ECWA(Φ, 〈P,Q,Z〉) |= Ψ iff Ψ is a skeptical consequence of the de-
fault theory 〈Φ,∆〉 where ∆ = { true:l

l | l ∈ LQ or l ∈ L−P }. Equivalently,
({Φ}, LQ ∪ L−P )|∼IP∀ Ψ. Clearly enough, this reduction can be achieved in
polynomial time. Note that ({Φ}, LQ ∪ L−P ) is not a C-normal SBB (even
when Φ belongs to a |=-tractable class) since LQ is by definition an incon-
sistent set when Q 6= ∅. Nevertheless, it is known that literal inference from
Φ interpreted under ECWA is coNP-hard whenever Φ is a Blake formula
and Q = ∅ (see Proposition 14 from [18]). Accordingly, the above reduction
can be used to show that literal |∼IP∀ is coNP-hard when φ is a Blake
formula (even in the case when the number k of strata is 2). Actually, the
coNP-hardness result still holds in the case when ∆1 is a Krom formula.
Concerning the Horn cover class or the renamable Horn cover one, let us
first prove the following lemma:

Lemma 23. Let B = (∆1,∆2, . . . ,∆k) be a SBB s.t.
⋃k

i=2 ∆i is a subset
of LPS (not necessarily a consistent one) and ∆1 is from the Horn cover
class (resp. the renamable Horn cover one). Then we can compute in time
polynomial in |B| a SBB B′ = (∆′

1,∆
′
2, . . . ,∆

′
k) which is equivalent to B on

V ar(
⋃k

i=1 ∆i) w.r.t. P ∈ {PO,LO, IP,LE} and s.t. ∆′
1 is from the Horn

cover class (resp. the renamable Horn cover class) and
⋃k

i=2 ∆′
i is a set of

positive literals (hence consistent).

Proof of Lemma 23. Let us consider the SBB (∆′
1,∆

′
2, . . . ,∆

′
k) defined in

the following way. Every ∆′
i is s.t. i ≥ 2 is derived from ∆i by replacing

every negative literal φi,j by a new positive literal holdsi,j and ∆′
1 is obtained
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by conjoining each disjunct of ∆1 with the clauses ¬holdsi,j ∨ φi,j for every
new literal which is introduced (hence, at most |

⋃k
i=2 ∆i| clauses must be

considered (which is bounded by |B|)). Clearly enough, the resulting base is
equivalent to B on V ar(

⋃k
i=1 ∆i) w.r.t. P ∈ {PO,LO, IP,LE} (the proof is

similar to the one of Proposition 15). Conjoining every disjunct of the Horn
cover formula ∆1 with the conjunction of the Horn clauses ¬holdsi,j ∨ φi,j

clearly leads to a Horn cover formula. As to the renamable Horn cover case,
it is important to note that none of the variables holdsi,j that are introduced
appears positively in ∆′

1. Accordingly, when the renamable Horn cover class
is considered, it is sufficient to conjoin every disjunct of the renamable Horn
cover formula ∆1 with the conjunction of the clauses ¬holdsi,j∨φi,j to obtain
a renamable Horn cover formula (any substitution used to show any disjunct
as a Horn CNF formula can still be used to show the Horn renamability of
the resulting disjunct).

This lemma shows that, when Horn cover formulas or renamable Horn cover
formulas are considered, the case when

⋃k
j=2 ∆j is a consistent set can be

recovered (without loss of generality). Combining both polynomial reduc-
tions shows that literal |∼IP∀ is coNP-hard when the formula of the first
stratum belongs to the Horn cover class or the renamable Horn cover class
(even in the case when the number k of strata is 2).

Proposition 19
The complexity of formula |∼LE∀ and of its restrictions to clause and literal inference
from COMP -normal SBBs is as reported in the following table.

Table 11

Complexity of skeptical inference w.r.t. LE from COMP -normal SBBs.

COMP formula |∼LE
∀ clause / literal |∼LE

∀

Blake ∆p
2-complete ∆p

2-complete

DNF coNP-complete in P

Horn cover ∆p
2-complete ∆p

2-complete

renamable Horn cover ∆p
2-complete ∆p

2-complete
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Proof of Proposition 19.

• Blake, Horn cover, renamable Horn cover: We have to show that formula

|∼LE∀ belongs to ∆p
2 and that literal |∼LE∀ is ∆p

2-hard.

∗ The membership of formula |∼LE∀ to ∆p
2 comes from the general case (see

Proposition 17).

∗ It remains to show the hardness result for literal |∼LE∀ .

∗ Blake:
We focus on the specific case when ∆1 is a Krom formula. It is well-
known that the set of prime implicates of a Krom formula can be easily
computed in polynomial time (e.g., a resolution-based algorithm like Ti-
son’s version of old good Quine-McCluskey’s algorithm achieves the goal).
Hence showing the hardness result in the situation where ∆1 is a Krom
formula is sufficient.
We first need a preferred-models characterization of skeptical inference
w.r.t. the lexicographic policy. Given I and J two models of ∆1, we note
I < J iff there exists i ∈ 2 . . . k s.t. card({φ ∈ ∆i | I |= φ}) > card({φ ∈
∆i|J |= φ}) holds and for every j ∈ 2 . . . i− 1, card({φ ∈ ∆i | I |= φ}) =
card({φ ∈ ∆i | J |= φ}). < is a strict order (i.e., an irreflexive and
transitive relation) over the set of models of ∆1. Now, we call preferred
models of B the models of ∆1 that are minimal w.r.t. < in their set.
Clearly enough, {φ ∈ ∆ | I |= φ} is a preferred subbase of B iff I is a
preferred model of B. Accordingly, we have B|∼LE∀ ψ iff every preferred
model of B is a model of ψ.
We now need the following lemma showing that the set of models of any
consistent 3-CNF formula Σ s.t. V ar(Σ) = {v1, . . . , vn} can be associated
to the set of minimum-cardinality models of a Krom formula computable
in time polynomial in |Σ|.
Let Σ =

∧m
i=1(li,1 ∨ li,2 ∨ li,3) be a consistent 3-CNF formula s.t.

V ar(Σ) = {v1, . . . , vn} (each li,j with i ∈ 1 . . .m and j ∈ 1 . . . 3 de-
notes a literal built up from V ar(Σ)). To Σ we associate the formula
Krom(Σ) =

∧m
i=1(xi,1∨xi,2)∧ (xi,1∨xi,3)∧ (xi,2∨xi,3)∧

∧m
i=1

∧3
j=1(xi,j ∨

li,j) ∧
∧n

i=1(vi ∨ ui) ∧ (¬vi ∨ ¬ui). We have V ar(Krom(Σ)) =
{v1, . . . , vn, u1, . . . , un, x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xm,1, xm,2, xm,3}.
As mentioned in [51], this mapping is close to the reduction from 3-sat

to vertex cover (given in Theorem 3.3 of [28]). We derived:
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Lemma 24. Krom(Σ) is a consistent Krom formula. It can be computed
in time polynomial in |Σ| and for every interpretation I over V ar(Σ), I is a
model of Σ iff there exists a a minimum-cardinality model I ′ of Krom(Σ)
(i.e., a model for which the number of variables assigned to 1 is minimum)
over V ar(Krom(Σ)) s.t. ∀i ∈ 1 . . .m I ′(vi) = I(vi).

Proof of Lemma 24. The fact that Krom(Σ) is a consistent Krom for-
mula computable in time polynomial in |Σ| is obvious. Now, in Krom(Σ),
the conjunct

∧m
i=1(xi,1∨xi,2)∧ (xi,1∨xi,3)∧ (xi,2∨xi,3) ensures that every

model of Krom(Σ) assigns at least 2m variables to 1 and the conjunct∧n
i=1(vi ∨ ui) ∧ (¬vi ∨ ¬ui) ensures that in every model of Krom(Σ) ex-

actly one of vi and ui are assigned to 1 for any i ∈ 1 . . .m. Accordingly,
the cardinality of every model of Krom(Σ) is ≥ 2m + n. The conjunct∧m

i=1

∧3
j=1(xi,j ∨ li,j) ensures that to every model I of Σ we can associate

at least one model I ′ of Krom(Σ) that extends I and assigns exactly
2m+n variables to 1. Moreover, the converse also holds. Indeed, assume
that there exists a minimum-cardinality model I ′ of Krom(Σ) whose re-
striction I to V ar(Σ) is not a model of Σ. Then there exists a clause
(li,1 ∨ li,2 ∨ li,3) of Σ s.t. I(li,1) = I(li,2) = I(li,3) = 0. The conjunct∧m

i=1

∧3
j=1(xi,j ∨ li,j) requires that I ′(xi,1) = I ′(xi,2) = I ′(xi,3) = 1. But

in this case I ′ assigns at least 2m+ n+ 1 variables to 1, hence it is not a
minimum-cardinality model of Krom(Σ).

We can now give a polynomial many-one reduction from max-sat-asgodd

to literal |∼LE∀ from a Blake-normal SBB. max-sat-asgodd is the fol-
lowing decision problem:

+ Input: A propositional formula Σ over {s1, . . . , sn}.
+ Query: Is the maximal model I of Σ w.r.t. the lexicographic ordering

induced by s1 < . . . < sn s.t. I(sn) = 1?

Let us first note that the ∆p
2-hardness of max-sat-asgodd still holds in

the restricted case when the formula Σ under consideration is a consis-
tent 3-CNF formula (see e.g., [23]). Let V ar(Krom(Σ)) = {y1, . . . , yp}.
To Σ we associate the Blake-normal SBB B = (Blake(Krom(Σ) ∧∧

yi∈V ar(Krom(Σ))(¬yi ∨ zi) ∧ (¬zi ∨ yi)), {¬z1, . . . ,¬zp}, {s1}, . . . , {sn})
where each zi is a new variable (i ∈ 1 . . . p). This reduction can be
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achieved in polynomial time since Krom(Σ)∧
∧

yi∈V ar(Krom(Σ))(¬yi∨zi)∧
(¬zi ∨ yi) is a Krom formula that can be computed in time polynomial in
|Σ|, and the prime implicates of a Krom formula can be computed in poly-
nomial time. Now Σ is a positive instance of max-sat-asgodd iff B|∼LE∀ zp.
Indeed, to every variable yi of V ar(Krom(Σ)) is associated an equivalent
variable zi, so that every model of Krom(Σ)∧

∧
yi∈V ar(Krom(Σ))(¬yi∨zi)∧

(¬zi ∨ yi) is fully characterized by its restriction to {y1, . . . , yp}. More-
over, minimum cardinality is preserved in the sense that the restriction of
a minimum-cardinality model of Krom(Σ)∧

∧
yi∈V ar(Krom(Σ))(¬yi ∨ zi)∧

(¬zi∨yi) to {y1, . . . , yp} is a minimum-cardinality model ofKrom(Σ). Re-
quiring that the second stratum of B is {¬z1, . . . ,¬zp} forces the preferred
models of B w.r.t. LE to be among the minimum-cardinality models of
Krom(Σ) ∧

∧
yi∈V ar(Krom(Σ))(¬yi ∨ zi) ∧ (¬zi ∨ yi). Accordingly, using

Lemma 24, every model I of Σ over {s1, . . . , sn} can be extended into (at
least) one preferred model of (Blake(Krom(Σ) ∧

∧
yi∈V ar(Krom(Σ))(¬yi ∨

zi) ∧ (¬zi ∨ yi)), {¬z1, . . . ,¬zp}) w.r.t LE . By taking into account the
n following strata {s1}, . . . , {sn} of B, we restrict the resulting set of
preferred models to those extending the maximal model of Σ w.r.t. the
lexicographic ordering induced by s1 < . . . < sn. Thus, sn is assigned to
1 in this model iff it is assigned to 1 in every preferred model of B w.r.t.
LE .
Clearly enough, Lemma 24 can be used to reduce the problem literal |=
to literal |∼LE∀ in the restricted case when B is a Blake-normal SBB with
two strata (the models of Σ are extended into the minimum-cardinality
models of a Krom formula); this shows that literal |∼LE∀ from a Blake-
normal SBB remains coNP-hard when k ≥ 2.

∗ Horn cover, renamable Horn cover: The hardness result can be easily
derived from the reduction given in the proof of Theorem 5.18 from [41]
since inference from a SBB B = (∆1, . . . ,∆n) revised by φ (consistent)
w.r.t. the lexicographic base revision scheme corresponds exactly to |∼LE∀ .
In this proof, φ is a variable and the most prioritary stratum (named
An+2) consists of a single Horn CNF formula. Since φ is consistent with
this formula, the revised base is equivalent on the set of its variables w.r.t.
LE to the SBB obtained by expanding the most prioritary stratum with
φ. Now, since the formulas from the other strata are positive literals,
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they form a consistent set and the resulting base is a compiled one in
which ∆1 is a Horn CNF formula. Since every Horn CNF formula is a
Horn cover formula and a fortiori a renamable Horn cover formula, the
expected result follows. Note that the ∆p

2-hardness of literal |∼LE∀ still
holds in the restricted case when the number of strata k = 2 (this is a
direct consequence of Theorem 5.15 from [41]).

• DNF:

∗ formula |∼LE∀ : We first give the following lemma:
Lemme 21
Let B = (∆1, . . . ,∆k) be an SBB with ∆ =

⋃k
i=1 ∆i. We recall that B⊆ =

(∆1, . . . ,∆k)⊆ is the set of all maximal (w.r.t.⊆) consistent subbases of B =⋃k
i=1 ∆i containing ∆1. We have:

1. If ∆1 = {α1 ∨ . . .∨αn} where each αi (i ∈ 1 .. n) is a formula from PROPPS ,
B⊆ = max⊆({∆1 ∪ (S ∩∆) | S ∈

⋃n
i=1({αi},

⋃k
j=2 ∆j)⊆}).

2. If α is a term and
⋃k

j=2 ∆j is a consistent set of literals, then ({α},
⋃k

j=2 ∆j)⊆
is the singleton {{α} ∪ {φ ∈

⋃k
j=2 ∆j | α 6|= ¬φ}}.

3. If α is a Horn CNF formula and
⋃k

j=2 ∆j contains only negative literals, then
({α},

⋃k
j=2 ∆j)⊆ is the singleton {{α} ∪ {φ ∈

⋃k
j=2 ∆j | α 6|= ¬φ}}.

Proof of Lemma 21.

1. By definition, every element of B⊆ is of the form ∆1 ∪ S where S is
a maximal (w.r.t. ⊆) subset of

⋃k
j=2 ∆j which is consistent with ∆1.

Now, S is consistent with ∆1 = α1 ∨ . . . ∨ αn iff there exists i ∈ 1 . . . n
s.t. S is consistent with αi. Hence, every S is a maximal (w.r.t. ⊆)
subset of

⋃k
j=2 ∆j which is consistent with at least one αi (i ∈ 1 . . . n).

This is equivalent to state that {αi} ∪ S ∈ ({αi},
⋃k

j=2 ∆j)⊆ for at least
one i ∈ 1 . . . n. Accordingly, we have B⊆ = max⊆({∆1 ∪ S | ∃i ∈ 1 . . . n
{αi} ∪ S ∈ ({αi},

⋃k
j=2 ∆j)⊆}). There are two possibilities for S as a

subset of
⋃k

j=2 ∆j :

∗ either αi ∈ S. In this case, αi ∈
⋃k

j=2 ∆j .

∗ or αi 6∈ S. In this case, αi 6∈
⋃k

j=2 ∆j since we could add αi to S while
preserving consistency with αi if it were not the case. But then the
maximality (w.r.t. ⊆) requirement on S would be violated.

Thus, for every S′ ∈ ({αi},
⋃k

j=2 ∆j)⊆ s.t. S′ = {αi} ∪ S, we have:
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∗ S = S′ if αi ∈
⋃k

j=2 ∆j .

∗ S = S′ \ {αi} otherwise.

In any case, we have S = S′ ∩
⋃k

j=2 ∆j . Thus, for every S′ ∈
({αi},

⋃k
j=2 ∆j)⊆, we have ∆1 ∪ (S′ ∩∆)

= ∆1 ∪ (S′ ∩ (∆1 ∪
⋃k

j=2 ∆j))
= ∆1 ∪ ((S′ ∩∆1) ∪ (S′ ∩

⋃k
j=2 ∆j))

= ∆1 ∪ (S′ ∩
⋃k

j=2 ∆j).
Hence, we have

B⊆ = max⊆({∆1 ∪ (S ∩∆) | S ∈
n⋃

i=1

({αi},
k⋃

j=2

∆j)⊆}).

2. When α is a term and
⋃k

j=2 ∆j is a consistent set of literals, for every
subset S of

⋃k
j=2 ∆j , {α} ∪ S is consistent iff {α} ∪ {l} is consistent for

every l ∈ S. Indeed, S does not contain a complementary pair of literals,
hence α is consistent with the conjunction of two literals of S iff it is
consistent with each of them. Thus, it is sufficient to gather the literals of⋃k

j=2 ∆j with which α is consistent to generate the (necessarily unique)
maximal (w.r.t. ⊆) subset S of

⋃k
j=2 ∆j with which α is consistent.

3. If α is a Horn CNF formula and
⋃k

j=2 ∆j is a set of negative liter-
als (hence a consistent set), then for every subset S = {l1, . . . , lp} of⋃k

j=2 ∆j , {α} ∪ S is consistent iff α 6|= ¬l1 ∨ . . . ∨ ¬lp iff α 6|= ¬li for
any i ∈ 1 . . . p. Indeed, the clause ¬l1 ∨ . . . ∨ ¬lp is a positive clause
(it consists of positive literals only) and the positive prime implicates
of a Horn CNF formula are unit clauses. Here again, it is sufficient to
gather the literals of

⋃k
j=2 ∆j with which α is consistent to generate the

(necessarily unique) maximal (w.r.t. ⊆) subset S of
⋃k

j=2 ∆j with which
α is consistent.

We use the results of Lemma 21 in order to prove the membership of for-

mula |∼LE∀ to coNP. We can compute B⊆ in polynomial time (see Lemma
21). Then, from B⊆, we can derive BLE in polynomial time. Now, for every
formula Ψ ∈ PROPPS , we have B|∼LE∀ Ψ iff ∀S ∈ BLE , S |= Ψ. This shows
that skeptical inference w.r.t. the lexicographic policy from a DNF formula
can be polynomially reduced to classical inference. Since classical inference
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belongs to coNP and since coNP is closed under polynomial reduction, the
membership to coNP follows.
It remains to show that formula |∼LE∀ is coNP-hard. A formula Ψ from
PROPPS is valid iff B|∼LE∀ Ψ holds with B = ({true}) being a C-normal,
one-stratum belief base. Accordingly, this is a polynomial reduction from
the validity problem of propositional logic (known to be coNP-complete) to
skeptical inference w.r.t. the lexicographic policy.

∗ clause |∼LE∀ : similar to the proof for the DNF form in Proposition 18,
replacing BIP by BLE .

Proposition 20

clause |∼IP∀ and clause |∼LE∀ from a C-normal SBB B = (∆1, . . . , ∆k) where ∆1 is a

Horn cover formula and
⋃k

i=2 ∆i contains only negative literals are in P.

Proof of Proposition 20. From points (1) and (3) of Lemma 21, we know that
when B = (∆1, . . . ,∆k) is s.t. ∆1 is a Horn cover formula and

⋃k
i=2 ∆i contains

only negative literals, B⊆ can be computed in polynomial time and every element
S of B⊆ can be turned into a Horn cover formula in polynomial time. Moreover,
it is obvious that filtering out BIP (or BLE) from B⊆ can be done in polynomial
time. Since clausal entailment can be achieved in polynomial time from a Horn
cover formula, the conclusion follows.


