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Abstract. This paper is centered on the problem of merging (possi-
bly conflicting) information coming from different sources. Though
this problem has attracted much attention in propositional settings,
propositional languages remain typically not expressive enough for
a number of applications, especially when spatial information must
be dealt with. In order to fill the gap, we consider a (limited) first-
order logical setting, expressive enough for representing and rea-
soning about information modeled as half-spaces from metric affine
spaces. In this setting, we define a family of distance-based majority
merging operators which includes the propositional majority opera-
tor ∆dH ,

P
. We identify a subclass of interpretations of our repre-

sentation language for which the result of the merging process can
be computed and expressed as a formula.

1 INTRODUCTION
The problem of merging information coming from different sources
arises in many applications, e.g. distributed knowledge systems. Due
to the multiplicity of the sources providing information, combining
them may lead to conflicts. However, one would need to get from
a set of (possibly conflicting) belief/goal bases a single consistent
belief/goal base representing a global view of the input set, taking
into account every source as much as possible.

In the particular framework of propositional logic (PL), merging
multiple belief/goal bases has been the point of interest of many
works the last two decades [10, 11, 3, 7, 9, 8], a prominent reason
being that many problems can be conveniently expressed using PL
[4]. However, as PL only deals with true/false statements as units
we often need a more expressive language to express information, in
particular when the considered variables represent spatial entities, or
when they range over an infinite, unbounded, or continuous domain.
For instance, consider the following goal merging problem about a
family wanting to purchase a new house. Suppose that the members
of family compare accommodations on the basis of their type (flat or
house), price and location. As one would expect, there is generally no
type, price and location completely satisfying every person, though
they need to find a compromise. PL is not sufficient to represent the
available information, since two features in question (price and loca-
tion) range over continuous domains, the price in a one-dimensional
domain and the location in a two-dimensional domain. Yet each one
of these domains is naturally associated with a proper metric, or dis-
tance. If half of the group would like to pay more than a certain price
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P while the other half would prefer a cheap house less than a price
p with p < P , then it is natural to search for a house which price
would range between p and P .

In this paper, we deal with the representation of such kind of in-
formation for which PL is not adequate. We define a class of merging
operators that return a consistent set of information from a set of pos-
sibly conflicting sources. We consider quite a general setting, allow-
ing each variable considered in the merging process to take its value
out of a proper domain defined as unions and intersections of half-
spaces from finite-dimensional metric affine spaces. The essence of
our merging method then exploits the metrics associated to these do-
mains. For this purpose, we take our inspiration from distance-based
merging operators proposed in the PL framework [10, 8]. We pro-
pose a similar procedure for merging belief/goal bases expressed in
a more general setting, which can be viewed as a fragment of First-
Order Logic (FOL), monadic, typed, without symbol of quantifica-
tion or function; furthermore we consider a particular class of inter-
pretations. Since a common and natural choice to deal with conflicts
among a group is to let the majority decide [10], we focus in this pa-
per on the class of majority merging operators, which aims at com-
puting a consistent result minimizing the global dissatisfaction of the
input sources. The solid theoretical background on propositional ma-
jority merging operators [10, 8] and their aptitude to satisfy a signif-
icant set of rationality postulates motivates our choice. In particular
we show that the class of merging operators we define includes the
propositional majority merging operator ∆dH ,

P
. We identify a sub-

class of interpretations for which the result of the merging can be
computed and expressed as a formula.

The rest of the paper is organized as follows: in the next section we
provide some necessary mathematical background and we define the
syntax and the semantics of our representation language. In Section 3
we define a class of merging operators. In Section 4 we point out
how to compute the result of the merging under some restrictions. We
conclude and present some perspectives for further work in Section 5.
The results obtained are illustrated through the motivating example
sketched above.

2 PRELIMINARIES
2.1 Background on linear spaces
For a given positive integer n, Rn denotes the n-dimensional real
affine space. A hyperplane of Rn is a (n− 1)-dimensional affine
subspace of Rn. For instance, a line (resp. a plane) is a hyper-
plane of R2 (resp. of R3). Formally, a hyperplane h of Rn is
characterized by a vector (h0, . . . , hn) of Rn+1 and is defined by
the set {(x1, . . . , xn) ∈ Rn | h1x1 + . . . + hnxn = h0}. Let
k ∈ {1, . . . , n}. A hyperplane h of Rn is said to be rectilinear if
it is parallel to n−1 axes of Rn, formally h is defined by the set
{(x1, . . . , xn) ∈ Rn | xk = h0} for some k ∈ {1, . . . , n}. A hy-
perplane h of Rn is associated to two closed half-spaces h≤ and



h≥, namely two subsets of Rn defined as h≤ = {(x1, . . . , xn) ∈
Rn | h1x1 + . . . + hnxn ≤ h0} and h≥ = {(x1, . . . , xn) ∈
Rn | h1x1 + . . . + hnxn ≥ h0}. Thus a closed half-space asso-
ciated to a hyperplane h of Rn is one of the two parts into which h
divides Rn. An open half-space of Rn is the complement of a closed
half-space in Rn. A half-space is rectilinear if it is associated to a
rectilinear hyperplane. A convex polyhedron of Rn is the finite in-
tersection of closed or open half-spaces of Rn. A rectilinear convex
polyhedron of Rn, also called a cuboid of Rn, is the finite intersec-
tion of closed or open rectilinear half-spaces of Rn.

A norm N on Rn is a mapping from Rn to R satisfying the fol-
lowing properties, for every e1, e2 ∈ Rn, for every λ ∈ R:
8
<
:

N(e1) = 0 iff e1 is the zero vector (positive definiteness),
N(λ · e1) = |λ|.N(e1) (homogeneity),
N(e1 + e2) ≤ N(e1) +N(e2) (subadditivity)

Given a normN on Rn, a metric (or distance) d on Rn is typically
derived from N , namely, d is a mapping from Rn×Rn to R defined
for every e1, e2 ∈ Rn as d(e1, e2) = N(e1 + (−e2)). Let E ⊆ Rn,
S ⊆ E and d be the metric induced by a norm on Rn. S is called an
open set of E iff ∀e ∈ S, ∃r > 0 such that {e′ ∈ E | d(e, e′) <
r} ⊂ S. S is a closed set if its complement in E is an open set. The
closure of S, denoted ◦S, is the smallest closed set containing S. S
is bounded if ∃λ > 0 such that ∀c1, c2 ∈ S, d(c1, c2) ≤ λ.

2.2 Syntax and semantics of L
Given the above preliminaries, we now define the syntax and seman-
tics of our representation language L. The alphabet of L consists of
a finite set of variables V = {x1, x2, . . .}, a finite set of unary pred-
icate symbols P , noted X,Y, . . ., or Xi

j , i and j being two positive
integers, the usual logical connectives ¬ (not), ∧ (and), ∨ (or), the
usual constant symbols > (true) and ⊥ (false) and the punctuation
symbols ′(′ and ′)′.

Let T = {t1, t2, . . .} be a finite set of types. We assume that we
are given a mapping τ from V ∪ P to T , namely every symbol of
variable or predicate has a type. An atom is of the form (xi ∈ X),
with xi ∈ V , X ∈ P and τ(xi) = τ(X). A literal is an atom or its
negation. The language L is inductively defined as follows: every
atom is a formula, >, ⊥ are formulas and given two formulas α and
β, (¬α), (α ∧ β), (α ∨ β) are also formulas.

We consider a particular class H of interpretations for L. An in-
terpretation I from H is defined as a pair 〈DI ,MI〉, where:

• DI is a mapping which associates to every type tj of T a tuple
(nj , Hj , Dj , dj), where:

- nj is a positive integer,

- Hj is a finite non-empty set of hyperplanes of Rnj ,

- Dj ⊆ Rnj

results from some finite unions, intersections and
complements of closed half-spaces associated to hyperplanes
of Hj ,

- dj is a metric on Dj induced by a norm on Rnj .

• MI is mapping which associates to every predicate symbol
X ∈ P of type tj a closed half-space MI(X) associated
to a hyperplane of Hj , i.e., MI(X) = h≤ or MI(X) =
h≥ with h ∈ Hj . We require that for every Dj , there exists
X1, . . . , Xn ∈ P such that Dj is equal to a finite combina-
tion ofMI(X1), . . . ,MI(Xn) where allowed combinations are
unions, intersections and complements.

We also define the classHS of interpretations as being the subclass
of H satisfying the two following conditions, for every type tj :

• every Hj is a finite set of rectilinear hyperplanes of Rnj ,
• for every predicate symbol X of type tj such that MI(X) =
h≤ with h ∈ Hj , there exists a predicate symbol Y such that
MI(Y ) = h≥, and vice-versa,

• every metric dj is induced by the Manhattan norm NM on Rnj

defined for every e = (e1, . . . , enj ) ∈ Rnj as NM (e) =P{|ek| | k ∈ {1, . . . , nj}}.

For each variable xi ∈ V of type tj ∈ T , Dj is called the domain
of xi, also noted dom(xi). Let I be an interpretation fromH. An I-
assignment ω (on V) is a mapping which associates to each variable
xi ∈ V an element of its domain. The semantics of an atom of the
form (xi ∈ X) for a given I-assignment ω is defined as [[(xi ∈
X)]](I)(ω) = true if ω(xi) ∈MI(X), false otherwise.

In the rest of the paper, an I-assignment ω is also considered as
the vector (ω(x1), . . . , ω(x|V|)) ∈Q{dom(xi) | xi ∈ V}.
WI denotes the set of all I-assignments. An I-assignment ω is an

I-model of a formula φ (denoted ω |=I φ) iff it makes the formula φ
true. A formula is said to be I-consistent if it admits an I-model. The
set of I-models of a formula φ is denotedModI(φ). Two formulas φ
and ψ are I-equivalent (denoted φ ≡ ψ) iffModI(φ) = ModI(ψ).

Notice that using a formula φ of L in the context of an interpreta-
tion I ∈ H, for every variable xi of type tj and for every hyperplane
h ∈ Hj , if there exists two predicate symbols X and Y such that
MI(X) = h≤ and MI(Y ) = h≥, then we can easily express the
fact that xi belongs to one of the closed half-spaces h≤ and h≥ as
well as the open half-spaces associated to h, the hyperplane h itself
or the whole space Rnj by use of the logical connectives ¬, ∧ and ∨.

A cube is a finite conjunction of literals. A formula is said to
be in disjunctive normal form (DNF) if it is a disjunction of cubes
(also viewed as a set of cubes). Any formula φ ∈ L can be trans-
formed into an I-equivalent DNF formula denoted DNF (φ), in a
finite number of steps (though exponential in the size of the formula).

Example. We take the case drafted in the introduction to illustrate an
interpretation I∗ of H. We consider the variables V = {x1, x2, x3}
where x1 represents the kind of accomodation (house or flat), x2 rep-
resents its price in thousands of euros (kC) ranging over the interval
[0,+∞[ and x3 represent the location ranging over the plane R2.
Since the variables range over different domains, we consider three
types T = {t1, t2, t3} such that for every i ∈ {1, 2, 3}, xi has the
type ti. We consider a set of predicates P composed of 18 symbols
denotedX1

1 , . . . , X
1
4 ,X2

1 , . . . , X
2
5 ,X3

1 , . . . , X
3
9 , such that for every

Xi
j ∈ P , Xi

j has the type ti.
Assume that the family is composed of three members Helen,

David and Marc. Figure 1 depicts some regions A, B and C of R2

considered by the family for the location of the accomodation, the
half-spaces (i.e., half-planes) defining these regions, denoted h≤i and
h≥i , i ∈ {1, . . . , 9}, themselves associated to 9 hyperplanes (i.e.,
lines); the presence of the dashed region will be explained in the next
section. The equations of every hyperplane considered are defined as
follows:

h1 : 2x3
1 − x3

2 = −4, h2 : x3
1 = 2, h3 : x3

2 = 4,
h4 : x3

2 = 6, h5 : x3
1 + x3

2 = 11, h6 : 2x3
1 + x3

2 = 21,
h7 : x3

1 = 8, h8 : x3
2 = 6, h9 : x3

1 = 4.

We ask each member of the family to express their wishes in terms
of a formula. Helen prefers a flat between 90 and 100 kC in the
region A. David wants a flat below 80 kC in the region B or a house
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Figure 1. Nine lines h1, . . . , h9 forming the setH3.

above 130 kC in the region A. Marc expects an accomodation in the
region C regardless of its price and of its type.

The interpretation I∗ = 〈DI∗ ,MI∗〉 on which we focus is de-
fined as follows:

• x1 is a one-dimensional binary variable. We set n1 = 1, H1 =
{0, 1}, D1 = {0, 1} and d1 the restriction on D1 of the usual
distance over reals. 0 represents the flat and 1 the house. Notice
that elements of H1 are points as hyperplanes of R1.

• x2 is a one-dimensional variable ranging over the half-space
[0,+∞[. We set n2 = 1, H2 = {0, 80, 90, 100, 130}, D2 =
[0,+∞[ and d2 the restriction on D2 of the usual distance over
reals.

• x3 is a two-dimensional variable ranging over R2. We set n3 = 2,
H3 = {h1, . . . , h9}, D3 = R2 and d3 the euclidean distance of
the plane.

• MI∗ is defined as follows:

- predicate symbols of type t1:

MI∗(X1
1 ) =]−∞, 0], MI∗(X1

2 ) = [0,+∞[,
MI∗(X1

3 ) =]−∞, 1], MI∗(X1
4 ) = [1,+∞[,

- predicate symbols of type t2:

MI∗(X2
1 ) = [90,+∞[, MI∗(X2

2 ) =]−∞, 100],
MI∗(X2

3 ) =]−∞, 80], MI∗(X2
4 ) = [130,+∞[,

MI∗(X2
5 ) = [0,+∞[,

- predicate symbols of type t3:

MI∗(X3
1 ) = h≥1 , MI∗(X3

2 ) = h≤2 , MI∗(X3
3 ) = h≥3 ,

MI∗(X3
4 ) = h≥4 , MI∗(X3

5 ) = h≥5 , MI∗(X3
6 ) = h≤6 ,

MI∗(X3
7 ) = h≤7 , MI∗(X3

8 ) = h≤8 , MI∗(X3
9 ) = h≤9 .

Notice that for every Dj there exists a formula φ such that
ModI∗(φ) = Dj . Indeed, for instance, ModI∗(((x1 ∈ X1

1 ) ∧
(x1 ∈ X1

2 )) ∨ ((x1 ∈ X1
3 ) ∧ (x1 ∈ X1

4 ))) = {0, 1} = D1.

The formulas encoding the information provided by Helen, David
and Marc are respectively:

• φ1 = (x1 ∈ X1
1 )∧(x1 ∈ X1

2 )∧(x2 ∈ X2
1 )∧(x2 ∈ X2

2 )∧(x3 ∈
X3

1 ) ∧ (x3 ∈ X3
2 ) ∧ (x3 ∈ X3

3 ),

• φ2 = ((x1 ∈ X1
1 )∧(x1 ∈ X1

2 )∧(x2 ∈ X2
3 )∧(x3 ∈ X3

4 )∧(x3 ∈
X3

5 ) ∧ ((x3 ∈ X3
6 ) ∨ (x3 ∈ X3

7 ))) ∨ ((x1 ∈ X1
3 ) ∧ (x1 ∈

X1
4 ) ∧ (x2 ∈ X2

4 ) ∧ (x3 ∈ X3
1 ) ∧ (x3 ∈ X3

2 ) ∧ (x3 ∈ X3
3 )),

• φ3 = (x3 ∈ X3
8 ).

3 THE MERGING PROCESS
In this section I is any interpretation fromH. Recall thatWI denotes
the set of all I-assignments. A belief/goal base is a finite set of for-
mulas φ1, φ2, . . . from L, also viewed as the formula that is conjunc-
tion of its elements. A profile is a finite multisetK = {K1, . . . ,Km}
of I-consistent belief/goal bases. A merging operator ∆ is a mapping
which associates to a profile K and a I-consistent formula IC repre-
senting integrity constraints a subset ∆IC(K) of WI .

As in the PL case [8] we define a distance-based merging method
of a profile via a three-step process: we first define the distance d
between two I-assignments ω, ω′ ∈ WI as follows:

d(ω, ω′) =
X

{dj(ω(xi), ω′(xi)) | xi ∈ V, τ(xi) = tj}.

Given an I-assignment ω, its “local distance” to a belief/goal base
K is defined as follows: dK(ω) = inf{d(ω, ω′) | ω′ |=I K}.
Then we use an aggregation function to compute the “global dis-
tance” between ω and the profile K. As argued in the introduc-
tion, we focus in this paper on the aggregation function

P
which

supports the majority point of view of the belief/goal bases [10].
The global distance between ω and K is then denoted dK(ω) =P{dKk (ω) | Kk ∈ K}. Lastly, the result of the merging satisfies
∆IC(K) = {ω ∈ ◦ModI(IC) | dK(ω) is minimal}.

In PL the set ∆IC(K) is obviously a non-empty set satisfying IC.
Indeed every formula of PL admits a finite set of models over its set
of variables, thus there exists at least one model ω of IC for which
the distance dK(ω) reaches a minimum. However, in our class H of
interpretations of L, ModI(IC) is usually an infinite set and it can
be the case that ∆IC(K) is empty or that some I-assignment ω in it
is not an I-model of IC. To circumvent these problems, we consider
I-assignments of ◦ModI(IC) as candidates. This choice ensures
∆IC(K) to be a non-empty set when ModI(IC) is a bounded set.
Furthermore, it does not question the natural distance requirement
w.r.t. IC: each I-assignment of ◦ModI(IC) is at distance 0 of IC
w.r.t. dK. The following proposition holds:

Proposition 1. (1) Assume ModI(IC) is a bounded non-empty set.
Then ∆IC(K) is a closed and bounded non-empty set.
(2) Assume in addition that ModI(IC) is a closed set. Then
∆IC(K) is a subset of ModI(IC).

Proof. (1) By definition the set ◦ModI(IC) is a closed subset of
WI and it is bounded sinceModI(IC) is bounded. Let us prove that
∆IC(K) is a non-empty set. A norm on Rn is a continuous function.
Since for every xi ∈ V of type tj , dj is a distance induced by a norm
and since dK results from operations on dj preserving continuity, dK
is a continuous function on WI . Since ◦ModI(IC) is a closed and
bounded set, the minimum of dK on ◦ModI(IC) is reached in at
least one point (from the Weierstrass extreme value theorem). This
means that ∆IC(K) is a non-empty subset of ◦ModI(IC), it is also
closed since it is the inverse image of a closed set (a singleton) by a
continuous function.
(2) If ModI(IC) is a closed set, it is equal to ◦ModI(IC). There-
fore, ∆IC(K) is a subset of ModI(IC) by definition.

Example (continued). Let K = {K1,K2,K3} with for every
Kk ∈ K, Kk = {φk}. Let IC = (x3 ∈ X3

9 ), i.e., the integrity



constraints only bear on the location of the accomodation: available
accomodations must be contained in the half-plane h≤9 . Let D
be the closed region of R2 which is dashed in Figure 1. Then
∆IC(K) = {ω ∈ WI | ω(x1) = 0, ω(x2) ∈ [80, 90], ω(x3) ∈ D}.

In PL every variable xi ∈ V is binary, i.e., of type t1 according
to our running example. Hence, for two given assignments ω, ω′ of
PL we simply have d1(ω(xi), ω′(xi)) = 0 if ω(xi) = ω′(xi), 1
otherwise; this implies that the distance between two assignments
ω, ω′ defined as d(ω, ω′) =

P{d1(ω(xi), ω′(xi)) | xi ∈ V} cor-
responds to the Hamming distance dH between assignments of PL.
This shows that in the restricted PL setting, ∆IC(K) corresponds to
the propositional majority merging operator ∆

dH ,
P

IC (K) [10, 8].
Notice also that in PL the metric is the same for every variable.

Yet in our framework the variables can range over different domains
and be associated to different metrics. Due to the incommensurability
of these metrics, our majority merging operator does not garantee
to give the same importance to every variable. If one would like to
overcome this problem, one would need to add an upstream step of
normalization of the different metrics considered.

Finally, in PL the set of all possible assignments (propositional
worlds in this case) is finite, hence the result of the merging process
can be computed in a finite number of steps and be represented
as a formula of PL. However, in our case WI is not finite so that
∆IC(K) cannot always be expressed as a formula of L (see the
example above). We intend in the sequel to overcome this problem.

In the rest of the paper, IC∗ will denote a cube and K∗ a profile in
which every belief/goal base is a cube. We first point out two prelim-
inary results. The first one states that computing ∆IC∗(K∗) comes
down to computing componentwise some ∆i

IC∗(K∗) ⊆ dom(xi)
for every xi ∈ V . The second result exploits the first one and pro-
vides a generic method to compute ∆IC(K) in a piecewise fashion,
when IC and formulas of K are given in DNF (which can be as-
sumed without loss of expressiveness).

Let xi a variable of type tj . Given a cube φ, the pro-
jection of φ on xi, denoted φi, is the conjunction of lit-
erals appearing in φ bearing on xi; Si(φ) denotes the setT{MI(X) | (xi ∈ X) is a literal of φi} ∩ T{dom(xi) \
MI(X) | ¬(xi ∈ X) is a literal of φi}. ∆i

IC∗(K∗) is defined in a
three-step process. The i-local distance di

S between an element e
of dom(xi) and a subset S of dom(xi) is defined as di

S(e) =
inf{dj(e, e

′) | e′ ∈ S}. The i-global distance di
K∗ between an

element e of dom(xi) and the multiset {Si(Kk) | Kk ∈ K∗}
is defined as di

K∗(e) =
P{di

Si(Kk)(e) | Kk ∈ K∗}. The sub-
set ∆i

IC∗(K∗) of dom(xi) is then defined as ∆i
IC∗(K∗) = {e ∈

◦Si(IC∗) | di
K∗(e) is minimal}. The following proposition holds:

Proposition 2. ∆IC∗(K∗) =
Q{∆i

IC∗(K∗) | xi ∈ V}.

Proof. Let ω ∈ WI and Kk ∈ K∗. By definition, the local distance
between ω and Kk is dKk (ω) = inf{P{dj(ω(xi), ω′(xi)) | xi ∈
V, τ(xi) = tj} | ω′ |=I Kk}. Yet sinceKk is a cube,ModI(Kk) =Q{Si(Kk) | xi ∈ V}. Hence,

dKk (ω) =
P{inf{dj(ω(xi), e′) | e′ ∈ Si(Kk)} | xi ∈ V,

τ(xi) = tj}
=
P{di

Si(Kk)(ω(xi)) | xi ∈ V, τ(xi) = tj}.
Then we have:

dK∗(ω) =
P{P{di

Si(Kk)(ω(xi)) | xi ∈ V} |Kk ∈ K∗}
=
P{P{di

Si(Kk)(ω(xi)) |Kk ∈ K∗} | xi ∈ V}
=
P{di

K∗(ω(xi)) | xi ∈ V}.

For every ω∆ ∈ WI , ω∆ ∈ ∆IC∗(K∗) iff dK∗(ω∆) =
min{P{di

K∗(ω(xi)) | xi ∈ V} | ω ∈ ◦ModI(IC∗)}. Yet since
IC∗ is a cube, ◦ModI(IC∗) =

Q{◦Si(IC∗) | xi ∈ V}.
Hence, ω∆ ∈ ∆IC∗(K∗) iff dK∗(ω∆) =

P{min{di
K∗(e) | e ∈

◦Si(IC∗)} | xi ∈ V}. This means that ∆IC∗(K∗) =Q{∆i
IC∗(K∗) | xi ∈ V}.

Proposition 2 shows that computing ∆IC∗(K∗) comes down to
computing componentwise a set ∆i

IC∗(K∗) for every xi ∈ V since
the former results from the Cartesian product of the latters. This
property holds for our class of majority merging operators since
the aggregation function

P
commutes with itself (see the proof of

Proposition 2). Contrastingly, arbitration operators [11, 7] using e.g.
MAX as the aggregation function would not satisfy this property,
since MAX does not commute with

P
.

In [10] the authors proposed a syntactic characterization of the re-
sult of the merging process for propositional majority merging oper-
ators. They assumed that every propositional belief/goal base of the
profile to be merged is given in DNF. In the following we generalize
their approach. For this purpose, we assume now that IC and every
belief/goal base of K are formulas of L given in DNF. We exploit
Proposition 2 and provide a generic algorithm to compute ∆IC(K)
in a piecewise fashion.

Proposition 3.

∆IC(K) =
S{∆IC∗(K∗) |

IC∗ ∈ IC, K∗ ∈ K1 × . . .×Km,
dK(ω) is minimal, for some ω ∈ ∆IC∗(K∗)}.

Proof. Let R be the set on the right side of the equality.
⊆ : let ω ∈ ∆IC(K). Let ω1 |=I K1, . . . , ωm |=I Km such that
dK(ω) =

P{d(ω, ωk) | Kk ∈ K}. There exists a cube IC∗ ∈ IC
such that ω |=I IC∗ and for every Kk ∈ K there exists a cube
T ∈ Kk such that ωk |=I T . Thus ω ∈ R.
⊇ : let ω ∈ ∆IC∗(K∗), with IC∗ ∈ IC and K∗ ∈ K1 × . . . ×
Km such that dK(ω) is minimal. Assuming that there exists ω′ ∈
∆IC(K) with dK(ω′) < dK(ω) would contradict the minimality of
dK(ω). Therefore ω ∈ ∆IC(K).

Taking advantage of Propositions 2 and 3, we get Algorithm 1 for
computing ∆IC(K):

Proposition 4. Assume we are given an algorithm to compute
∆i

IC∗(K∗) for every xi ∈ V , and let f(IC∗,K∗) be its time com-
plexity. Let α = max{|IC|,max{|Kk| |Kk ∈ K}}. Then the space
and time complexities of Algorithm 1 are respectively in O(|V|αm)
and O(|V|αmf(IC∗,K∗)).

Proof. Obvious.

Example (continued). φ1, φ3 and IC are cubes and thus are
already in DNF. A DNF formula I-equivalent to φ2 is φ′2 =

{Tφ′2
1 , T

φ′2
2 , T

φ′2
3 } where:

• T
φ′2
1 = (x1 ∈ X1

1 )∧(x1 ∈ X1
2 )∧(x2 ∈ X2

3 )∧(x3 ∈ X3
4 )∧(x3 ∈

X3
5 ) ∧ (x3 ∈ X3

6 ),

• T
φ′2
2 = (x1 ∈ X1

1 )∧(x1 ∈ X1
2 )∧(x2 ∈ X2

3 )∧(x3 ∈ X3
4 )∧(x3 ∈

X3
5 ) ∧ (x3 ∈ X3

7 ),

• T
φ′2
3 = (x1 ∈ X1

3 )∧(x1 ∈ X1
4 )∧(x2 ∈ X2

4 )∧(x3 ∈ X3
1 )∧(x3 ∈

X3
2 ) ∧ (x3 ∈ X3

3 ).



Algorithm 1: Computing ∆IC(K)

Input : a profile K and a formula IC
Output: ∆IC(K)
begin1

∆IC(K) = ∅;2
dmin = +∞;3
forall IC∗ ∈ IC, K∗ ∈ K1 × . . .×Km do4

forall xi ∈ V do5
Compute ∆i

IC∗(K∗);6

Pick up any ωi ∈ ∆i
IC∗(K∗);7

end8

if
P{dK∗(ωi) | xi ∈ V} ≤ dmin then9

if
P{dK∗(ωi) | xi ∈ V} < dmin then10

∆IC(K) = ∅;11

∆IC(K) = ∆IC(K) ∪Q{∆i
IC∗(K∗) | xi ∈ V };12

end13

end14
return ∆IC(K);15

end16

Since |IC × K1 × K2 × K3| = 3, the main loop of Algorithm 1
(lines 4 to 14) is performed three times. The definition of ∆IC(K)
previously reported in this paper is given by ∆IC(K∗) ∪∆IC(K′∗)
with K∗ = {K1, T

φ′2
1 ,K3} and K′∗ = {K1, T

φ′2
2 ,K3}.

The algorithm proposed in [10] for computing ∆dH ,
P

is a special
case of Algorithm 1. When all variables of V are Boolean ones, com-
puting ∆i

IC∗(K∗) simply consists in electing using strict majority
the truth value(s) of the literals bearing on xi appearing in K∗.

4 COMPUTING ∆i
IC∗(K∗) UNDER HS

In this section we consider interpretations ofHS for L and show that
in this context ∆i

IC∗(K∗) can be expressed as a formula of L. In our
running example, the considered interpretation I∗ does not belong
to HS . So we need to switch to a particular interpretation IS ∈ HS .

Example (continued). Figure 2 depicts three regions A′, B′ and C′

considered by the family for the location of the accomodation. Each
one of these regions is a cuboid of R2 (i.e., a rectangle), thus all the
lines defining them are rectilinear hyperplanes as required, i.e., every
line of H3 is parallel to the axis x3

1 or x3
2.

Their equations are defined as follows:

h1 : x3
1 = 0, h2 : x3

1 = 2, h3 : x3
2 = 4,

h4 : x3
1 = 6, h5 : x3

2 = 1, h6 : x3
1 = 10,

h7 : x3
2 = 8, h8 : x3

2 = 6, h9 : x3
1 = 4.

IS requires that for every predicate symbol X of type tj such that
MIS (X) = h≤ with h ∈ Hj , there exists a predicate symbol Y
such that MIS (Y ) = h≥, and vice-versa. Following this condition,
we consider 18 predicate symbols X3

1 , . . . , X
3
18 of type t3. MIS is

defined as follows, for every predicate symbol of type t3, for every
j ∈ {1, . . . , 9}:

MIS (X3
2j−1) = h≤j and MIS (X3

2j) = h≥j .

Let K = {K1,K2,K3}. Let IC∗ be a cube of IC and for
every Kk ∈ K, let Tk be a cube of Kk such that by project-
ing formulas T1, T2, T3, IC∗ on x3, we get respectively four cubes
T 3

1 , T
3
2 , T

3
3 , IC

3
∗ bearing on x3, defined as

A’

9

10975431

2

5

7

8

3

C’

B’

h
≤
2 h

≥
2

h
≤
8

h
≥
8

h
≤
4 h

≥
4

h
≥
3

h
≤
3

h
≤
9 h

≥
9

x3
2

x3
1

h
≤
1 h

≥
1

h
≤
5

h
≥
5

h
≥
7

h
≤
7

h
≤
6 h

≥
6

Figure 2. Nine rectilinear lines h1, . . . , h9 forming the set H3.

• IC3
∗ = (x3 ∈ X3

17),
• T 3

1 = (x3 ∈ X3
2 ) ∧ (x3 ∈ X3

6 ) ∧ (x3 ∈ X3
3 ) ∧ (x3 ∈ X3

13),
• T 3

2 = (x3 ∈ X3
8 ) ∧ (x3 ∈ X3

10) ∧ (x3 ∈ X3
11),

• T 3
3 = (x3 ∈ X3

15).

Notice that for every k ∈ {1, 2, 3}, T 3
k is a cube, hence every set

S3(T 3
k ) represents a cuboid of R2 (i.e., a rectangle). In fact, the sets

S3(T 3
1 ), S3(T 3

2 ) and S3(T 3
3 ) respectively correspond to the regions

A′, B′ and C′. Let K∗ = {T1, T2, T3}. Then ∆3
IC∗(K∗) is the

closed set of points of ◦S3(IC∗) the “closest” ones to regions A′,
B′ and C′ (i.e., the dashed region in Figure 2).

Let I ∈ HS and xi a variable of V of type tj . For everyKk ∈ K∗,
recall that Ki

k denotes the conjunction of literals appearing in Kk

bearing on xi. For every l ∈ {1, . . . , nj}, letKi
k(xi

l) be the conjunc-
tion of literals ofKi

k defined on predicate symbolsX whereMI(X)
is a half-space which the associated hyperplane is orthogonal to the
axis xi

l (namely, the only axis which is not parallel to the hyperplane
associated to MI(X)). In our running example, the lines h1 and h2

are orthogonals to the axis x3
1 but not h3 and h7, hence K3

1 (x3
1) =

(x3 ∈ X3
2 ) ∧ (x3 ∈ X3

3 ) and K3
1 (x3

2) = (x3 ∈ X3
6 ) ∧ (x3 ∈ X3

13).
Algorithm 2 allows us to compute ∆i

IC∗(K∗) for a given xi ∈ V
of type tj . The key of this algorithm is that in HS , ◦Si(IC∗) is a
cuboid, as well as Si(Kk) for every Kk ∈ K∗. Hence, for comput-
ing ∆i

IC∗(K∗), it is enough, for each axis xi
l , to project the cuboids

on xi
l , then to “merge” locally the set of intervals resulting from the

projections on xi
l , and lastly to return the Cartesian product of all

the results. Notice that this decomposition on each axis is only fea-
sible when the metric dj is induced by the Manhattan norm, as it is
required by HS . For the sake of clarity, we use the following nota-
tion in Algorithm 2. Let R∞ = R ∪ {−∞,+∞} and α, β ∈ R∞,
(α, β) denotes the interval in which each bound is either open or
closed and [α, β] denotes a (possibly unbounded) closed interval; for
a given finite set E ⊆ R∞, if there exists γ ∈ E such that γ = −∞,
then min{γ | γ ∈ E} = −∞, and if there exists γ ∈ E such that
γ = +∞, then max{γ | γ ∈ E} = +∞.

Proposition 5. Let xi ∈ V of type tj .
(1) Algorithm 2 computes ∆i

IC∗(K∗) in O(nj |V|) time.
(2) There exists a formula φ of L such that Si(φ) = ∆i

IC∗(K∗).

We omit the proof of this proposition for space reasons.

Algorithms 1 and 2 allow us to compute ∆IC(K) when for every



Function:Match
Input : two closed intervals [IC−∗ , IC

+
∗ ] and [S−, S+]

Output: a closed interval R ⊆ [IC−∗ , IC
+
∗ ]

begin
if S− > IC+

∗ then return {IC+
∗ };

else if S+ < IC−∗ then return {IC−∗ };
else return [IC−∗ , IC

+
∗ ] ∩ [S−, S+];

end

Algorithm 2: Computing ∆i
IC∗(K∗)

Input : a profile K∗, a formula IC∗ and a variable xi of type tj
Output: ∆i

IC∗(K∗)
begin

forall l ∈ {1, . . . , nj} do
forall Kk ∈ K∗ do (I−k , I

+
k ) = Si(Ki

k(xi
l));

IntSet = {[I−k , I+
k ] |Kk ∈ K∗};

I+
min = min{I−k | [I−k , I+

k ] ∈ IntSet};
I−max = max{I+

k | [I−k , I+
k ] ∈ IntSet};

while Int 6= ∅ and
T{I | I ∈ IntSet} = ∅ do

I+
min = min{I+

k | [I−k , I+
k ] ∈ IntSet};

I−max = max{I−k | [I−k , I+
k ] ∈ IntSet};

Remove an interval [I−k , I
+
min] from IntSet;

Remove an interval [I−max, I
+
k ] from IntSet;

end
(IC−∗ , IC

+
∗ ) = Si(ICi

∗(x
i
l));

if IntSet = ∅ then
Il = Match ([IC−∗ , IC+

∗ ], [I+
min, I

−
max]);

else
Il = Match ([IC−∗ , IC+

∗ ],
[I+

min, I
−
max] ∩T{I | I ∈ IntSet});

end
return ∆i

IC∗(K∗) =
Q{Il | l ∈ {1, . . . , nj}};

end
end

xi ∈ V , τ(xi) = tj , every considered region of Dj can be repre-
sented as the finite union of cuboids. In the general case (i.e., when
considering an interpretation of H), every region of Dj represents
the finite union of (non-rectilinear) convex polyhedra. Interestingly,
an approximation of the union of a finite set P of (non-rectilinear)
convex polyhedra by the union of a finite set P ′ of cuboids can be
computed by considering a regular mesh for discretizing the space
and the union of a finite set P ′ of cuboids covering

S{P | P ∈ P}
w.r.t. the mesh (see e.g. [1]). Such an approximation can be chosen as
close as desired from the initial region by choosing an appropriated
size for the mesh. Of course, the number of cuboids of the resulting
set P ′ corresponds to the size of the formula representing the regionS{P | P ∈ P ′}. Yet the size of the formulas (the maximal num-
ber of cubes in them) is the prominent parameter in the complexity
of Algorithm 1. Hence, the number of cuboids of the resulting set
P ′ needs to be minimized. For this purpose, many polynomial-time
algorithms can be exploited (see [6]).

5 CONCLUSION AND PERSPECTIVES

In this paper we have proposed a framework for merging (possibly
conflicting) information from different sources. We have considered
a (limited) first-order logical representation language L, expressive
enough for representing information modeled as polyhedra of Rn for

a specific class H of interpretations. We have defined a class ∆ of
distance-based majority merging operators. We have shown that ∆
includes the propositional merging operator ∆dH ,

P
. By generalizing

a previous approach [10], we have also provided a generic method for
computing the result of the merging process in a piecewise fashion.
We have identified a subclassHS ofH allowing us to model cuboids
of Rn, and pointed out (and evaluated) an algorithm to compute the
result of the merging process and express it as a formula.

We have noticed that any region of Rn can be approximated as
close as desired by means of the union of some cuboids of Rn. This
allows us to represent polyhedra of Rn using formulas of L under
HS . Nevertheless, when high, the expected quality of the approxi-
mation can lead to increase significantly the size of the induced for-
mulas. Furthermore, while the class H considers any metric induced
by a norm on Rn, HS only deals with the metric induced by the
Manhattan norm. As a perspective we plan to study some alterna-
tives to the approach pointed out here for approximating the result
of the merging process under H. For this purpose, we will import
the solid theoretical background on convex optimization [2] into our
framework in order to compute an element “close” enough to the re-
sult of the merging process w.r.t. some arbitrary thresholds. We have
already proved that for every variable xi, the i-global distance is a
convex function. This property allows us to approximate efficiently
under an arbitrary threshold a minimum of the i-global distance by
using a projected subgradient method of minimization [12]. How-
ever, as far as we know, such thresholds are not directly related to the
distance, hence it is not possible to check how far the element is from
the result of the merging process. This problem has been addressed in
the literature and some thresholds sensitive to this distance have been
proposed [5]. The theoretical and practical study of their integration
in our framework is let as an issue for further research. Another per-
spective concerns the rationality postulates issue. A characterization
of propositional majority merging operators using such postulates
has been given in [9]. We plan to investigate how such postulates can
be extended to our setting.
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