
An Improved CNF Encoding Scheme
for Probabilistic Inference

Anicet Bart1 and Frédéric Koriche and Jean-Marie Lagniez and Pierre Marquis2

Abstract. We present and evaluate a new CNF encoding scheme for
reducing probabilistic inference from a graphical model to weighted
model counting. This new encoding scheme elaborates on the CNF
encoding scheme ENC4 introduced by Chavira and Darwiche, and
improves it by taking advantage of log encodings of the elementary
variable/value assignments and of the implicit encoding of the most
frequent probability value per conditional probability table. From the
theory side, we show that our encoding scheme is faithful, and that
for each input network, the CNF formula it leads to contains less vari-
ables and less clauses than the CNF formula obtained using ENC4.
From the practical side, we show that the C2D compiler empowered
by our encoding scheme performs in many cases significantly better
than when ENC4 is used, or when the state-of-the-art ACE compiler
is considered instead.

1 INTRODUCTION

A number of approaches have been developed during the past fifteen
years for improving probabilistic inference, by taking advantage of
the local structure (contextual independence and determinism) which
may occur in the input graphical model (a weighted constraint net-
work, representing typically a Bayesian network or a Markov net-
work) [4, 34, 22, 3, 28, 18, 9, 16, 23, 36]. Among them are ap-
proaches which consist in associating with the input graphical model
a weighted propositional formula via a polynomial-time translation
[14, 33, 7, 37, 10, 11]. Once the translation has been applied, the
problem of computing the probability (or more generally, the weight)
of a given piece of evidence (assignments of values to some vari-
ables) mainly amounts to solving an instance of the (weighted) model
counting problem.

While this problem is still #P-complete, it has received much
attention in the past few years, both in theory and in practice;
thus, many algorithms have been designed for solving the model
counting problem #SAT, either exactly or approximately (see e.g.,
[2, 19, 20, 31, 5]); search-based model counters (like Cachet [32]
and sharpSAT [35]) and preprocessing techniques for #SAT [21]
have been developed and evaluated. Propositional languages support-
ing the (weighted) model counting query in polynomial time have
been defined and investigated, paving the way to compilation-based
model counters (i.e., when the propositional encoding of the model is
first turned into a compiled representation). The most prominent ones
are the language Decision-DNNF of decision-based decomposable
negation normal form formulas [12] and the language SDD consisting

1 LINA-CNRS-INRIA and Ecole des Mines de Nantes, F-44000 Nantes,
France, email: anicet.bart@univ-nantes.fr

2 CRIL, Univ. Artois and CNRS, F-62300 Lens, France, email: {koriche,
lagniez, marquis}@cril.univ-artois.fr

of sentential decision diagrams – a subset of d-DNNF – [17]. Com-
pilers targeting those languages have been developed (many of them
are available on line); let us mention the top-down compilers C2D
and Dsharp targeting the Decision-DNNF language [12, 15, 25], and
the top-down compiler and the bottom-up compiler targeting the SDD
language [27, 17].

In the following, we present and evaluate a new CNF encoding
scheme for weighted constraint networks. This new encoding scheme
elaborates on the CNF encoding scheme ENC4 introduced in [10],
and improves it by taking advantage of two supplementary ”ideas”:
the log encodings of the elementary variable/value assignments and
of the implicit encoding of the most frequent probability value per
table. While log encodings of variables is a simple idea which has
been considered before for credal networks (and defined as ”bina-
rization”) [1], as far as we know, it had never been tested before for
encoding weighted constraint networks into CNF. Furthermore, us-
ing an implicit encoding of the most frequent probability value per
table seems brand new in this context.

Interestingly, unlike the formulae obtained using ENC4, the CNF
formulae generated by our encoding scheme can be compiled into
Decision-DNNF representations which do not need to be minimized
(thanks to a specific handling of the weights given to the negative
parameter literals). As such, they can also be exploited directly by
any weighted model counter. From the theory side, we show that
our encoding scheme is faithful, and that for each weighted con-
straint network, the CNF formula it leads to contains less variables
and less clauses than the CNF formula obtained using ENC4. From
the practical side, we performed a large-scale evaluation by com-
piling 1452 weighted constraint networks from 6 data sets. This
evaluation shows our encoding scheme valuable in practice. More
in detail, we have compared the compilation times and the sizes
of the compiled representations produced by C2D (reasoning.
cs.ucla.edu/c2d/) when using our encoding scheme, with the
corresponding measures when ENC4 is considered instead. Our en-
coding scheme appeared as a better performer than ENC4 since it
led most of the time to improved compilation times and improved
compilation sizes. We have also done a differential evaluation which
has revealed that each of the two ”ideas” considered in our encod-
ing is computationally fruitful. We finally compared the performance
of C2D empowered by our encoding scheme with those of ACE, a
state-of-the-art compiler for Bayesian networks based on ENC4, see
http://reasoning.cs.ucla.edu/ace. Again, our empiri-
cal investigation also showed that C2D equipped with our encoding
scheme challenges ACE in many cases. More precisely, it was able to
compile more instances given the time and memory resources allo-
cated in our experiments, and it led often to compiled representations
significantly smaller than the ones computed using ACE.

2 FORMAL PRELIMINARIES

A (finite-domain) weighted constraint network (alias WCN) is a
triple WCN = (X ,D,R) where X = {X1, . . . , Xn} is a finite
set of variables; each variable X from X is associated with a finite
set, its domain DX , and D is the set of all domains of the variables
fromX ;R = {R1, . . . , Rm} is a finite set of (possibly partial) func-
tions over the reals; with eachR inR is associated a subset scope(R)
of X , called the scope of R and gathering the variables involved in
R; each R is a mapping from its domain Dom(R), a subset of the
Cartesian product DR of the domains of the variables of scope(R),
to R; the cardinality of scope(R) is the arity of R. In the following,
each function R is supposed to be represented in extension (i.e., as a
table associating weights with assignments).

An assignment a of WCN over a subset S of X is a set a =
{(X, d) | X ∈ S, d ∈ DX} of elementary asignments (X, d),
where for eachX ∈ S there exists a unique pair of the form (X, d) in
a. If a is an assignment ofWCN over S and T ⊆ S, then the restric-
tion a[T] of a over T is given by a[T] = {(X, d) ∈ a | X ∈ T }.
Given two subsets S and T of X such that T ⊆ S, an assignment a1
ofWCN over S is said to extend an assignment a2 ofWCN over T
when a1[T] = a2. A full assignment of WCN is an assignment of
WCN over X .

A full assignment s ofWCN is a solution ofWCN if and only if
for everyR ∈ R, we have s[scope(R)] ∈ Dom(R). The weight of a
full assignment s ofWCN iswWCN (s) = 0 when s is not a solution
ofWCN ; otherwise, wWCN (s) = ΠR∈RR(s[scope(R)]). Finally,
the weight wWCN (a) of an assignment a ofWCN over S is the sum
over all full assignments s extending a of the values wWCN (s).

Example 1 Let us consider as a running example the following
”toy” WCN = (X = {X1, X2}, D = {DX1 , DX2}, R =
{R}), where DX1 = {0, 1, 2}, DX2 = {0, 1}, and R such that
scope(R) = {X1, X2} is given by Table 1.

X1 X2 R
0 0 0
0 1 8/30
1 0 1/10
1 1 1/10
2 0 8/30
2 1 8/30

Table 1: A tabular representation of R.

a = {(X2, 1)} is an assignment ofWCN over S = {X2}. We have
wWCN (a) = 8/30 + 1/10 + 8/30 = 19/30.

3 ON CNF ENCODING SCHEMES

Our objective is to be able to compute the weight of any assignment
a of a givenWCN . Typically, the WCN under consideration will be
derived without any heavy computational effort (i.e., in linear time)
from a given random Markov field or a Bayesian network, and the
assignment a under consideration will represent some available piece
of evidence. In such a case, w(a) simply is the probability of this
piece of evidence.

In order to achieve this goal, an approach consists in translat-
ing first the input WCN = (X ,D,R) into a weighted proposi-
tional formula WPROP = (Σ, w, w0). In such a triple, Σ is a
propositional representation built up from a finite set of proposi-
tional variables PS , w is a weight distribution over the literals over
PS , i.e., a mapping from LPS = {x,¬x | x ∈ PS} to R, and

w0 is a real number (a scaling factor). The weight of an interpre-
tation ω over PS given WPROP is defined as wWPROP(ω) =
w0×Πx∈LPS |ω(x)=1w(x)×Π¬x∈LPS |ω(x)=0w(¬x) if ω is a model
of Σ, andwWPROP(ω) = 0 in the remaining case. Furthermore, the
weight of any consistent term γ over PS given WPROP is given
by wWPROP(γ) = Σω|=γwWPROP(ω). Given a CNF formula Σ,
we denote by #var(Σ) the number of variables occurring in Σ, and
by #cl(Σ), the number of clauses in Σ. Finally, a canonical term
over a subset V of PS is a consistent term where each variable of V
occurs.

Computing w(γ) from a consistent term γ and a WPROP =
(Σ, w, w0) is a computationally hard problem in general (it is #P-
complete). Weighted model counters (such as Cachet [32]) can be
used in order to perform such a computation when Σ is a CNF for-
mula. Reductions from the weighted model counting problem to the
(unweighted) model counting problem, as the one reported in [6], can
also be exploited, rendering possible the use of (unweighted) model
counter, like sharpSAT [35]. Interestingly, when Σ has been com-
piled first into a Decision-DNNF representation (and more generally
into a d-DNNF representation3), the computation of w(γ) can be
done in time linear in the size of the input, i.e., the size of γ, plus
the size of the explicit representation of the weight distribution w
over LPS , the size of the representation of w0, and the size of the
d-DNNF representation of Σ. Stated otherwise, the problem of com-
putingw(γ) from a consistent term γ and aWPROP = (Σ, w, w0)
where Σ is a d-DNNF representation can be solved efficiently.

Whatever the targeted model counter (direct or compilation-
based), the approach requires a notion of translation function (the
formal counterpart of an encoding scheme):

Definition 1 (translation function) A mapping τ associating any
WCN = (X , D, R) with a weighted propositional formula
τ(WCN) = (Σ, w, w0) and any assignment a of WCN over a
subset S of X with a term τ(a) over the set of propositional vari-
ables PS on which Σ is built, is a translation function.

Valuable translation functions are those for which the encoding
scheme is correct. We say that they are faithful:

Definition 2 (faithful translation) A translation function τ is faith-
ful when it is such that for any WCN = (X ,D,R) and any
assignment a of WCN over a subset S of X , wWCN (a) =
wτ(WCN)(τ(a)).

Some faithful translation functions have already been identified in
the literature, see [13, 33, 8, 10, 11]. Typically, the set PS of proposi-
tional variables used in the translation is partitioned into two subsets:
a set of indicator variables λi used to encode the assignments, and a
set of parameter variables θj used to encode the weights. Formally let
us denote by ΛX the set of indicator variables used to encode assign-
ments of variable X ∈ X and ΘR be the set of parameter variables
introduced in the encoding of R ∈ R. Every literal l over all those
variables has weight 1 (i.e.,w1(l) = w4(l) = 1), except for the (pos-
itive) literals θj . Translations functions are typically modular ones,
where ”modular” means that the representation Σ to be generated is
the conjunction of the representations τ(X) corresponding to the en-
coding of the domain DX of each X ∈ X , with the representations
τ(R) corresponding to each mapping R inR:

Σ =
∧
X∈X

τ(X) ∧
∧
R∈R

τ(R).

3 But existing d-DNNF compilers actually target the Decision-DNNF lan-
guage [26].

2

As a matter of example, let us consider the translation functions
τ1 and τ4 associated respectively with the encoding schemes ENC1
[13] and ENC4 reported in [8]. In ENC1 and ENC4, direct encoding
is used for the representation of elementary assignments (X, d). This
means that every (X, d) is associated by τ1 (and similarly by τ4) in
a bijective way with an indicator variable τ1((X, d)) = τ4((X, d)),
and every assignment a is associated with the term τ1(a) = τ4(a)
which is the conjunction of the indicator variables τ1((X, d)) for
each (X, d) ∈ a. The encoding τ1(X) = τ4(X) consists of the
following CNF formula:

(
∨

d∈DX

τ1((X, d)))∧(
∧

d1,d2∈DX |d1 6=d2

¬τ1((X, d1))∨¬τ1((X, d2))).

Finally, in τ1 and τ4, the scaling factor (w1)0 = (w4)0 is 1.
Contrastingly, ENC1 and ENC4 differ in the way mappings

R are encoded. In ENC1, each τ1(R) is a CNF formula, con-
sisting for each a ∈ Dom(R) of the following CNF formulae:
(
∨

(X,d)∈a ¬τ1((X, d)) ∨ θa) ∧
∧

(X,d)∈a(τ1((X, d)) ∨ ¬θa). This
formula contains c × (a + 1) clauses where c is the cardinality
of Dom(R) and a is the arity of R. Here, θa is a parameter vari-
able which is specific to a. For each a, the corresponding CNF for-
mula actually states an equivalence between τ1(a) and θa. Finally,
w1(θa) = R(a).

In ENC4, for eachR ∈ R, one parameter variable θj per non-null
weight in R is introduced, only. Thus, no parameter variable is
introduced for the a ∈ Dom(R) such that R(a) = 0. Furthermore,
all the assignments a ∈ Dom(R) which are associated with the
same value R(a) are associated with the same parameter variable θj
which is such that w4(θj) = R(a). Each τ4(R) is a CNF formula,
obtained first by computing a compressed representation of R in
a way similar to the way a simplification of a Boolean function f
is computed using Quine/McCluskey algorithm, i.e., as a minimal
number of prime implicants of f the disjunction of which being
equivalent to f (see [29, 30, 24] and [10] for details). Once R has
been compressed, τ4(R) is computed as the conjunction for each
a ∈ Dom(R) of the following clauses:∨

(X,d)∈a ¬τ4((X, d)) if R(a) = 0,∨
(X,d)∈a ¬τ4((X, d)) ∨ θj if R(a) 6= 0.

Note that τ4 by itself is not a faithful translation: the generated
formula Σ4 (the conjunction of all τ4(X) for X ∈ X and of all
τ4(R) for R ∈ R) must be minimized first w.r.t. its parameter vari-
ables in order to get a faithful translation. Such a ”cardinality mini-
mization”, noted minθ(Σ4), leads to a strengthening of Σ4, obtained
by removing every model of it assigning to true more than one pa-
rameter variable associated with a given R. Now, for each variable
X ∈ X , given the CNF formula τ4(X), exactly one of the indicator
variables τ4((X, d)) for d ∈ DX can be set to true in a model of Σ4.
Accordingly, the ”global cardinality minimization” min(Σ4) of Σ4

(i.e., when ”cardinality minimization” is w.r.t. all the variables) can
be done instead, since we have min(Σ4) = minθ(Σ4). The main
point is that the mapping τmin

4 associatingWCN = (X ,D,R) with
the WPROP (min(Σ4), w4, (w4)0) is faithful. Interestingly, when
Σ4 has been turned first into an equivalent d-DNNF representation,
such a ”global cardinality minimization” process leading to a min-
imized d-DNNF representation min(Σ4) can be achieved in linear
time [12].

Example 2 (Example 1 continued) As a matter of illustration, let
us present the encodings obtained by applying τ1 and τ4 to our run-
ning example. τ1 and τ4 are based on the same set consisting of 5

indicator variables, λji , where λji corresponds to the elementary as-
signment (Xi, j), and on the same set of indicator clauses:

λ0
1 ∨ λ1

1 ∨ λ2
1,

¬λ0
1 ∨ ¬λ1

1,
¬λ0

1 ∨ ¬λ2
1,

¬λ1
1 ∨ ¬λ2

1,
λ0
2 ∨ λ1

2,
¬λ0

2 ∨ ¬λ1
2.

τ1 and τ4 differ as to their parameter variables, and as to their
parameter clauses. For τ1, one parameter variable per element of
Dom(R) (hence per line in Table 1) is introduced: each θi corre-
sponds to line i, thus 6 variables are introduced. For τ4, one param-
eter variable per non-null value taken by R is considered, hence two
parameter variables θ1 (corresponding to 1/10) and θ2 (correspond-
ing to 8/30) are introduced. On this ground, τ1(R) consists of the
following parameter clauses:

¬λ0
1 ∨ ¬λ0

2 ∨ θ1,
λ0
1 ∨ ¬θ1,
λ0
2 ∨ ¬θ1,
¬λ0

1 ∨ ¬λ1
2 ∨ θ2,

λ0
1 ∨ ¬θ2,
λ1
2 ∨ ¬θ2,

¬λ1
1 ∨ ¬λ0

2 ∨ θ3,
λ1
1 ∨ ¬θ3,
λ0
2 ∨ ¬θ3,
¬λ1

1 ∨ ¬λ1
2 ∨ θ4,

λ1
1 ∨ ¬θ4,
λ1
2 ∨ ¬θ4,

¬λ2
1 ∨ ¬λ0

2 ∨ θ5,
λ2
1 ∨ ¬θ5,
λ0
2 ∨ ¬θ5,
¬λ2

1 ∨ ¬λ1
2 ∨ θ6,

λ2
1 ∨ ¬θ6,
λ1
2 ∨ ¬θ6,

with w1(θ1) = 0, w1(θ2) = w1(θ5) = w1(θ6) = 8/30, w1(θ3) =
w1(θ4) = 1/10, and every other literal has weight 1. Σ1 contains 24
clauses, over 11 variables.

Contrastingly, with τ4, R is first compressed into

X1 X2 R
0 0 0
0 1 8/30
1 1/10
2 8/30

As a consequence, τ4(R) consists of the following parameter
clauses:

¬λ0
1 ∨ ¬λ0

2,
¬λ0

1 ∨ ¬λ1
2 ∨ θ2,

¬λ1
1 ∨ θ1,

¬λ2
1 ∨ θ2,

with w4(θ1) = 1/10, w4(θ2) = 8/30, and every other literal has
weight 1. Σ4 contains 10 clauses, over 7 variables.

4 A NEW, IMPROVED CNF ENCODING
SCHEME

We present a new translation function τ4linp, which is modular as τ1
and τ4. τ4linp elaborates on τ4 in two directions: the way elementary
assignments are encoded, and the implicit handling of one parameter
variable per mapping R.

Thus, within the translation function τ4linp, log encoding (aka bit-
wise encoding) is used for the representation of elementary assign-
ments (X, d). The corresponding τ4linp(X) CNF formula aims at
forbidding the interpretations which do not correspond to any el-
ementary assignment. Thus, there is no such constraint (i.e., it is
equivalent to >) when the cardinality of the domain of X is a power
of 2.

As to the parameter variables and the parameter clauses, our trans-
lation function τ4linp is reminiscent to τ4. However, there are some
important differences. First, log encoding is used to define the indi-
cator variables within the parameter clauses. Second, one parameter

3

variable θR per R is kept implicit once R has been compressed; it
is selected as one of those θj such that w4(θj) 6= 0 is one of the
most frequent weight in R once compressed. Then we take the scal-
ing factor (w4linp)0 to be equal to the product of all the weights
w4(θR) when R varies in R, and we replace the weight w4(θj)
of all the remaining parameter variables θj associated with R by
w4linp(θj) = w4(θj)/w4(θR). The benefits achieved by this scal-
ing come from the fact that there is no need to add any clause into
τ4linp(R) for the assignments a such that R(a) = w4(θR). More
formally, for each R ∈ R, R is first compressed as in ENC4; then
we define τ4linp(R) as a CNF formula, consisting of the conjunction
for each a ∈ Dom(R) such that R(a) 6= w4(θR) of the following
clauses:∨

(X,d)∈a ¬τ4linp((X, d)) if R(a) = 0,∨
(X,d)∈a ¬τ4linp((X, d)) ∨ θj if R(a) 6= 0.

Here ¬τ4linp((X, d)) is the clause which is obtained as the disjunc-
tion of the negations of all literals occurring in τ4linp((X, d)).

Finally, considering the same weight distribution w4linp = w4 as
the one considered in ENC4 would not make the translation faithful;
in order to ensure it, we now assign a specific weight to the negative
parameter literals, so that w4linp(¬θj) = 1 − w4linp(θj) for every
parameter variable θj considered in the parameter clauses of R, for
every R ∈ R.

As we will show it later, no minimization step is mandatory with
τ4linp; furthermore, this translation is modular (like τ4 but unlike
τmin
4); more importantly, we obtain as a side effect that any weighted

model counter can be considered downstream (unlike τ4, which re-
quires a minimization step).

Example 3 (Example 1 continued) For the WCN considered in Ex-
ample 1, one just needs to consider two indicator variables for en-
coding the elementary assignments associated with X1 (let us say,
λ0
1 and λ1

1) and one indicator variable for encoding the elementary
assignments associated with X2 (λ2). The correspondances between
elementary assignments and their representation as terms over the
indicator variables are as follows for X1:

X1 λ1
1 λ0

1
0 0 0
1 0 1
2 1 0

and for X2, λ2 corresponds to (X2, 1) (thus, ¬λ2 corresponds to
(X2, 0)). We have τ4linp(X1) = ¬λ1

1 ∨ ¬λ0
1 and τ(X2) = >. The

most frequent value achieved by R(a) is w4(θR) = 8/30. SinceR =
{R}, we get that (w4linp)0 = 8/30. τ4linp(R) consists of the two
following clauses:

λ0
1 ∨ λ1

1 ∨ λ2, λ1
1 ∨ ¬λ0

1 ∨ θ1.

The first clause aims at ensuring that the weight corresponding to
the full assignment {(X1, 0), (X2, 0)} is 0. The purpose of the sec-
ond clause is to enforce the parameter variable θ1 to be true when
any assignment extending {(X1, 1)} is considered. We finally have
w4linp(θ1) = 3/8 and w4linp(¬θ1) = 5/8, while every other literal
has weight 1. Σ4linp contains only 3 clauses, over 4 variables.
Table 2 makes precise for each interpretation over the variables
λ0
1, λ1

1, λ2, and θ1 the corresponding full assignment of WCN over
{X1, X2} (if any) and the associated weight w4linp.

Proposition 1 τ4linp is faithful.

λ1
1 λ0

1 λ2 θ1 X1 X2 w4linp

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 1 1/6
0 0 1 1 0 1 1/10
0 1 0 0 1 0 0
0 1 0 1 1 0 1/10
0 1 1 0 1 1 0
0 1 1 1 1 1 1/10
1 0 0 0 2 0 1/6
1 0 0 1 2 0 1/10
1 0 1 0 2 1 1/6
1 0 1 1 2 1 1/10
1 1 0 0 - - 0
1 1 0 1 - - 0
1 1 1 0 - - 0
1 1 1 1 - - 0

Table 2: The full assignment of WCN over {X1, X2} and the the
weight w4linp associated with each interpretation over the variables
of Σ4linp.

Proof: By definition of log encoding, every (partial) assignment a
of WCN over a subset S of X is associated with a term τ4linp(a)
over ΛWCN =

⋃
X∈X ΛX . Furthermore, every full assignment s of

WCN is associated in a bijective way with a term τ4linp(s) over
ΛWCN which implies

∧
X∈X τ4linp(X).

Let us recall that the weight of any full assignment s is
wWCN (s) = 0 when s is not a solution of WCN and is
wWCN (s) = ΠR∈RR(s[scope(R)]) otherwise.

Assume first thatwWCN (s) = 0. Then either s is not a solution of
WCN or s is such thatR(s[scope(R)]) = 0 for at least oneR ∈ R.
Hence there exists R ∈ R such that either s[scope(R)] 6∈ Dom(R)
or R(s[scope(R)]) = 0. Subsequently, there exists a clause in
Σ4linp such that τ4linp(s) falsifies it. This implies that every inter-
pretation over ΛWCN ∪ΘR which extends τ4linp(s) falsifies Σ4linp.
Accordingly, w4linp(τ4linp(s)) = 0 as expected.

Assume now that s is such that wWCN (s) 6= 0. By construc-
tion, for every R ∈ R, the contribution of R to wWCN (s) is equal
to the factor R(s[scope(R)]). Suppose that k parameter variables
θ1, . . . , θk have been introduced in τ4linp(R). Then there are two
cases to be considered: (1) R(s[scope(R)]) = w4(θR) and (2)
R(s[scope(R)]) 6= w4(θR).

In case (1), by construction, τ4linp(s) satisfies every clause of
τ4linp(R). Hence each of the 2k canonical terms extending τ4linp(s)
over the k parameter variables implies τ4linp(R). Therefore, the con-
tribution of R to w4linp(τ4linp(s)) is equal to the sum, for each
canonical term, of the products of the parameter literals occurring in
it. But this sum is also equal to Πk

i=1(w4linp(θi)+w4linp(¬θi)) = 1
= w4(θR)/w4(θR) = R(s[scope(R)])/w4(θR).

In case (2), by construction, there is a clause
¬τ4linp(s[scope(R)]) ∨ θj in τ4linp(R), so that the parameter vari-
able θj is set to true in every model of Σ4linp extending τ4linp(s). As
above, each of the 2k−1 canonical terms extending τ4linp(s) over the
k− 1 remaining parameter variables (i.e., all of them but θj) implies
τ4linp(R). Therefore, the contribution of R to w4linp(τ4linp(s))
is equal to the sum, for each canonical term, of the products of
the parameter literals occurring in it. But this sum is also equal to
R(s[scope(R)])/w4(θR) × Πk

i=1|i 6=j(w4linp(θi) + w4linp(¬θi)) =
R(s[scope(R)])/w4(θR).

Whatever the case (1) or (2), since (w4linp)0 is equal
to ΠR∈Rw4(θR), the factor w4(θR) of this product balances
the denominator of the ratio w4(θR)/w4(θR), so that finally,
w4linp(τ4linp(s)) = ΠR∈RR(s[scope(R)]) = wWCN (s) as ex-
pected.

Our purpose was also to compare the efficiency of τ4linp w.r.t. the

4

efficiency of τ4, where the efficiency is measured as the number of
variables and/or as the number of clauses in the corresponding CNF
encodings Σ4linp and Σ4. We obtained that τ4linp is more efficient
than τ4 for both measures:

Proposition 2 Given WCN = (X ,D,R), let τ4(WCN) = (Σ4,
w4, (w4)0), and τ4linp(WCN) = (Σ4linp, w4linp, (w4linp)0).
Then we have:

• #var(Σ4linp) < #var(Σ4),
• #cl(Σ4linp) < #cl(Σ4).

Proof:

• #var. When the cardinality of DX is k, τ4(X) uses k indicator
variables, while τ4linp(X) requires only dlog2(k)e indicator vari-
ables. As to the parameter variables, by construction, τ4linp(R)
requires one variable less than τ4(R).

• #cl. By construction, τ4(X) contains k×(k−1)+1 clauses when
k is the cardinality of DX . Contrastingly, τ4linp(X) contains at
most k − 2 ”blocking clauses” (this worst case is obtained when
k = 2l+1 for some l). Hence, the number of clauses in τ4linp(X)
is strictly lower than the number of clauses in τ4(X). Further-
more, by construction, τ4linp(R) contains at least one clause less
than τ4(R) (this worst case situation is obtained when all the val-
ues w(θj) 6= 0 of the parameter variables θj considered by τ4(R)
are distinct).

5 EXPERIMENTS

Our benchmarks consist of 1452 WCNs downloaded from
http://www.hlt.utdallas.edu/˜vgogate/uai14-
competition/index.html and http://reasoning.
cs.ucla.edu/ace/. Those instances correspond to Bayesian
networks or random Markov fields in the UAI competition format.
They are gathered into 6 data sets, as follows: Diagnose (100), UAI
(377), Grids (320), Pedigree (22), Promedas (238), Relational (395).

We translated each input WCN into a WPROP, using both the
τ4 and the τ4linp translation function. Downstream to the encoding,
we took advantage of the C2D compiler which targets the Decision-
DNNF language [12, 15] to compute, for each instance, a minimized
Decision-DNNF representation of the CNF formula generated by τ4,
and a Decision-DNNF representation of the CNF formula generated
by τ4linp. C2D has been run with its default parameters. Note that we
could also consider a model counter (like Cachet, which supports
weights) downstream to the CNF encoding produced by τ4linp. For
space reasons, we refrain from reporting the corresponding empirical
results here because C2D performs often much better that Cachet
on CNF instances issued from graphical models (the dtree computed
to guide the Decision-DNNF computation achieved by C2D has a ma-
jor positive impact on the process).

Our experiments have been conducted on a Quad-core Intel XEON
X5550 with 32GiB of memory. A time limit of 900s for the compila-
tion phase (including the translation time and the minimization time
when τ4 has been used4), and a total amount of 8GiB of memory
for storing the resulting Decision-DNNF representations have been

4 Minimization can be achieved in linear time on d-DNNF representations
[12]. It may have a valuable reduction effect on the size of the compiled
form.

considered for each instance. Both the instances used in our ex-
periments, the run-time code of our translator bn2Cnf implement-
ing the τ4 encoding scheme and the τ4linp encoding scheme, and
some detailed empirical results are available on line from http:
//www.cril.fr/KC.

In order to figure out the reductions in the number of variables and
in the number of clauses done by τ4linp compared to τ4, we com-
puted the number of variables #var and the number of clauses #cl
of Σ4linp and Σ4 for each instance. Some of our empirical results are
depicted using scatter plots with logarithmic scales. Thus, the scatter
plots (a) and (b) from Figure 1 report respectively the relative per-
formances of τ4 and τ4linp w.r.t. the measurements #var and #cl.
They cohere with Proposition 2 and show that τ4linp leads in prac-
tice to CNF encodings which are exponentially smaller w.r.t. both the
number of variables and the number of clauses than those produced
by τ4.

The two scatter plots (c) and (d) from Figure 1 report respectively
the CPU times (in seconds) needed to compute the Decision-DNNF
representations associated with the input WCNs (for each of the two
encoding schemes τ4 and τ4linp) and make precise the sizes (in num-
ber of arcs) of those Decision-DNNF representations.

Table 3 presents a selection of the results available from http:
//www.cril.fr/KC and used in the scatter plots from Figure 1.
The columns of the table make precise, from the leftmost one to the
rightmost one:

• data about the input instance, namely:

– the family of the input WCN, among the six families considered
in the experiments;

– the type of the instance (Bayes net or Markov net);

– the name of the instance;

– the number of variables of the instance;

– the number of tables of the instance;

– the cardinality of (one of) the largest domain(s) of a variable of
the instance;

– the arity of (one of) the relations of the instance, of largest arity;

– the total number of tuples in the instance (i.e., the sum of the
cardinalities of the relations);

– the sum of the cardinalities of the domains of the variables;

• and for each of the two encoding schemes τ4 and τ4linp under
consideration:

– the number of variables in the CNF encoding of the instance;

– the number of clauses in the CNF encoding of the instance;

– the time (in seconds) required to generate the CNF encoding,
plus the time needed by C2D to generate a Decision-DNNF rep-
resentation from it (and to minimize it when τ4 has been used);

– the size (in number of arcs) of the resulting Decision-DNNF
representation produced by C2D (after minimization when τ4
has been used).

Clearly enough, the scatter plots (c) and (d) from Figure 1 as well
as Table 3 illustrate the benefits that can be achieved by consid-
ering τ4linp instead of τ4 when C2D is used downstream. Indeed,
τ4linp led most of the time to improved compilation times and im-
proved compilation sizes. To be more precise, as to the compilation
times, τ4linp proved strictly better than τ4 for 911 instances (while
τ4 proved strictly better than τ4linp for 87 instances). As to the sizes

5

100

1000

10000

100000

100 1000 10000 100000

τ 4
li
n
p

τ4

Promedas
Pedigree

Grids
Diagnose

UAI
Relational

(a) #var

100

1000

10000

100000

100 1000 10000 100000

τ 4
li
n
p

τ4

Promedas
Pedigree

Grids
Diagnose

UAI
Relational

(b) #cl

1

10

100

1000

1 10 100 1000

τ 4
li
n
p
+
c
2
d

τ4+c2d+minimization

Promedas
Pedigree

Grids
Diagnose

UAI
Relational

(c) Compilation times: τ4+C2D +minimization vs. τ4linp+C2D

10000

100000

1e+06

1e+07

1e+08

10000 100000 1e+06 1e+07 1e+08

τ 4
li
n
p
+
c
2
d

τ4+c2d+minimization

Promedas
Pedigree

Grids
Diagnose

UAI
Relational

(d) Compiled form sizes: τ4+C2D +minimization vs. τ4linp+C2D

Figure 1: Comparing τ4linp with τ4.

Instance τ4 τ4linp
Family Name Type #var #Rel max dom. max ari. #tuples #values #var #cl time C2D size C2D #var #cl time C2D size C2D

Promedas or chain 96.fg MARKOV 719 719 2 3 4260 1438 3058 4663 216.4 3058 1620 1942 111.5 1620
Promedas or chain 223.fg MARKOV 988 988 2 3 5754 1976 ? ? ? ? 2268 2639 1427.4 2268
Promedas or chain 178.fg MARKOV 1021 1021 2 3 5936 2042 ? ? ? ? 2314 2715 816.3 2314
Promedas or chain 132.fg MARKOV 723 723 2 3 4058 1446 3009 4522 95.6 3009 1563 1818 199.6 1563
Promedas or chain 86.fg MARKOV 892 891 2 3 5020 1784 3789 5602 499.6 3789 ? ? ? ?
Pedigree pedigree23 MARKOV 402 402 5 4 5025 784 1479 2933 525.4 1479 737 1276 174.4 737
Pedigree pedigree30 MARKOV 1289 1289 5 5 12819 2491 4802 8860 1836.2 4802 2468 3802 1282.6 2468
Pedigree pedigree18 MARKOV 1184 1184 5 5 12198 2291 4407 8252 927.7 4407 2262 3560 1140.9 2262

Grids 50-20-8 BAYES 400 400 2 3 3042 800 2556 3428 872.8 2556 1756 1887 1073.0 1756
Grids 90-46-1 BAYES 2116 2116 2 3 16562 4232 ? ? ? ? 3503 6727 87.9 3503
Grids 90-42-2 BAYES 1764 1764 2 3 13778 3528 6228 13756 57.2 6228 2700 5513 48.6 2700
Grids 90-50-7 BAYES 2500 2500 2 3 19602 5000 9222 19846 420.3 9222 ? ? ? ?
Grids 90-50-8 BAYES 2500 2500 2 3 19602 5000 ? ? ? ? 4131 8048 145.7 4131
Grids 75-26-4 BAYES 676 676 2 3 5202 1352 3020 5446 496.7 3020 1668 2468 376.4 1668

Diagnose 3073 BAYES 329 329 6 12 34704 763 1695 3436 151.5 1695 1020 741 27.0 1020
UAI 404.wcsp MARKOV 100 710 4 3 4538 258 1678 3421 1653.5 1678 839 1037 777.1 839
UAI moissac4.pre BAYES 462 462 3 3 7308 1386 2593 7338 39.7 2593 1669 3585 32.5 1669
UAI linkage 21 MARKOV 437 437 5 4 6698 941 1722 3638 1136.4 1722 ? ? ? ?
UAI prob005.pddl MARKOV 2701 29534 2 6 125726 5402 ? ? ? ? 2701 29534 249.7 2701
UAI log-1 MARKOV 939 3785 2 5 16266 1878 5663 13393 45.0 5663 939 3785 11.4 939
UAI CSP 13 MARKOV 100 710 4 3 4538 258 ? ? ? ? 839 1037 468.9 839

Relational blockmap 15 03-0003 BAYES 18787 18787 2 3 132436 37574 56451 141138 473.2 56451 18877 51827 152.4 18877
Relational blockmap 20 01-0009 BAYES 39297 39297 2 3 278138 78594 ? ? ? ? 39334 108649 303.5 39334
Relational blockmap 22 02-0006 BAYES 56873 56873 2 3 405240 113746 ? ? ? ? 56955 157979 625.8 56955
Relational mastermind 10 08 03-0004 BAYES 2606 2606 2 3 18658 5212 8250 19699 277.7 8250 3038 7446 176.5 3038
Relational blockmap 20 01-0008 BAYES 39297 39297 2 3 278138 78594 ? ? ? ? 39334 108649 364.7 39334
Relational blockmap 22 03-0008 BAYES 59404 59404 2 3 423452 118808 ? ? ? ? 59533 165085 490.0 59533

Table 3: Comparing τ4linp with τ4. Each ’?’ means that the process aborted with a time-out or a memory-out.

6

of the compiled representations, τ4linp proved strictly better than τ4
for 759 instances (while τ4 proved strictly better than τ4linp for 239
instances). Using the τ4 encoding scheme, C2D has been able to gen-
erate a Decision-DNNF for 903 instances over 1452 within the time
and memory limits. Contrastingly, when equipped with τ4linp, C2D
has been able to generate a Decision-DNNF for 1007 instances using
the same computational resource bounds.

In order to evaluate the impact of the two ”ideas” used in our
encoding, we also performed a differential evaluation. Table 4 re-
ports the number of instances for which the whole process – encod-
ing+compilation+minimization (when needed) – terminated before
the time limit, when the input encoding scheme is, respectively, τ4,
τ4l (log encoding of the indicator variables), τ4inp (implicit encoding
of the most frequent probability value per table), and τ4linp.

τ4 903
τ4l 975
τ4inp 982
τ4linp 1007

Table 4: Number of instances compiled within a time limit of 900s.

The cactus plot given at Figure 2 makes precise for each of those
four encodings, the number of instances processed successfully de-
pending on the allocated time. Both Table 4 and Figure 2 show that
each of the two ”ideas” used in our encoding has a positive influence
on the time needed to ”compile” the input WCN.5

0

100

200

300

400

500

600

700

800

900

700 750 800 850 900 950 1000

ti
m
e
(s
)

number of solved instances

τ4
τ4inp
τ4linp
τ4l

Figure 2: Number of instances compiled depending on the allocated
time.

Finally, we also compared the performance of C2D empowered by
our encoding scheme with those of ACE (version 3.0), a package that
compiles a graphical model into an arithmetic circuit (AC) and then
uses the AC to answer multiple queries with respect to the model, see
http://reasoning.cs.ucla.edu/ace. In our experiments,
logical model counting is used as a basis for compilation (we used the

5 The computation times reported for τ4l are lower bounds, since they do not
include the times required for achieving the minimization step w.r.t. the pa-
rameter variables. Indeed, this step has not been implemented. Especially,
given that min(Σ4l) 6= minθ(Σ4l), it was not possible to take advan-
tage of the ”global cardinality minimization” functionality offered by C2D
to compute minθ(Σ4l). Nevertheless, since cardinality minimization of a
specific subset of variables is feasible efficiently from a Decision-DNNF
representation, the approximation done does not question the conclusions
drawn about the impact of the two ”ideas” used in our encoding.

-forceC2d option of ACE for ensuring it). In this case, compilation
proceeds by encoding the model into a propositional formula, com-
piling it into Decision-DNNF (using the C2D knowledge compiler),
and extracting the AC from the compiled Decision-DNNF.

ACE is mainly based on ENC4, but incorporates several improve-
ments; thus, exactly one constraints (alias Eclauses) are generated in
the encoding used by C2D (so that this encoding is not exactly a CNF
encoding); such constraints are useful for representing the domains
of the variables (they can replace the indicator clauses); furthermore,
no parameter variable and no parameter clause are introduced for the
a ∈ Dom(R) such that R(a) = 1.

Like in the previous experiments reported in the paper, the com-
parison between τ4linp+C2D and ACE -forceC2d mainly con-
cerns the generation (using C2D) of a Decision-DNNF representation
from an input WCN. However, there is a fundamental difference: in
the previous experiments, nothing changed but the encoding under
consideration; for this reason, it was possible to draw firm conclu-
sions about the relative efficiency of the encodings; in the compar-
ison with ACE, the situation is different because the input of C2D
when run within ACE does not simply consist of the encoding of the
given WCN. Indeed, a dtree derived from the input WCN (using the
well-known minfill heuristic) is considered as well for guiding
the compilation process. This dtree may easily be distinct from the
one considered by C2D when computed from the encoding, only, and
may lead to improved compilation times and compilation sizes. Ac-
cordingly, one must keep in mind that the empirical protocol used
for comparing τ4linp+C2D with ACE -forceC2d is not favorable
to τ4linp+C2D.

The scatter plots (a) and (b) from Figure 3 show respectively
the compilation times and the compiled form sizes obtained by
using τ4linp+C2D on the one hand, and ACE -forceC2d on
the other hand. As to the compilation times, τ4linp+C2D proved
strictly better than ACE -forceC2d for 335 instances (while ACE

-forceC2d proved strictly better than τ4linp+C2D for 667 in-
stances). As to the sizes of the compiled representations, τ4linp+C2D
proved strictly better than ACE -forceC2d for 676 instances (while
ACE -forceC2d proved strictly better than τ4linp+C2D for 326
instances). Overall, ACE -forceC2d has been able to generate a
Decision-DNNF for 922 instances over 1452 within the time and
memory limits. Contrastingly, τ4linp+C2D has been able to generate
a Decision-DNNF for 1007 instances using the same computational
resource bounds.

Empirically, ACE -forceC2d appeared as a better performer
than τ4linp+C2D w.r.t. the compilation times. Here are two possible
explanations for it. Firstly, the dtree computed derived from the in-
put WCN can lead to a better decomposition, as explained above (this
looks particularly salient for instances from the ”Relational” family).
Secondly, there are numerous instances for which ACE -forceC2d
terminated within 10s, while τ4linp+C2D did not. This can be ex-
plained by the fact that each reported time actually covers all the
computation time required by the process starting from the input
WCN and finishing with the generation of the resulting Decision-
DNNF representation. Especially, it includes the time required to
generate the dtree used by C2D, and this dtree generation time can
be much smaller when the generation process exploits the structure
of the given WCN than when its input is just an encoding of the
WCN. On the other hand, the combination τ4linp+C2D solved more
instances than ACE -forceC2d within the time and memory lim-
its and led to significantly smaller compiled representations in many
cases. This is a further illustration of the practical benefits which can
be achieved by taking advantage of our encoding τ4linp.

7

1

10

100

1000

1 10 100 1000

τ 4
li
n
p
+
c
2
d

ACE–forceC2d

Promedas
Pedigree

Grids
Diagnose

UAI
Relational

(a) Compilation times: ACE -forceC2d vs. τ4linp+C2D

10000

100000

1e+06

1e+07

1e+08

10000 100000 1e+06 1e+07 1e+08

τ 4
li
n
p
+
c
2
d

ACE–forceC2d

Promedas
Pedigree

Grids
Diagnose

UAI
Relational

(b) Compiled form sizes: ACE -forceC2d vs. τ4linp+C2D

Figure 3: Comparing ACE -forceC2d vs. τ4linp+C2D.

6 OTHER RELATED WORK
Interestingly, the key ideas used in τ4linp are not specific to the
CNF encoding pointed out, but could also be exploited to define a
CDNF encoding (i.e., a conjunction of DNF representations), which
can serve as an input to the bottom-up SDD compiler [17]. This can
prove useful since bypassing intermediate representations in CNF can
lead in some cases to a more efficient compilation algorithm (some-
times by orders of magnitude) [11].

Let τ4linp−sdd be the translation leading to the WPROP
(Σ4linp−sdd, w4linp−sdd, (w4linp−sdd)0) where Σ4linp−sdd =∧
X∈X τ4linp−sdd(X) ∧

∧
R∈R τ4linp−sdd(R). We define

τ4linp−sdd(X) = τ4linp(X) for every X ∈ X . Then for ev-
ery R ∈ R, τ4linp−sdd(R) is a simplified DNF formula computed
from the compressed representation of R as the disjunction of all
terms τ4linp−sdd(a) for a ∈ Dom(R) such thatR(a) = w(θR), and
all terms τ4linp−sdd(a) ∧ θj for a ∈ Dom(R) such that R(a) 6= 0
and R(a) 6= w(θR). The simplification step is achieved using
Quine/McCluskey algorithm.6 Let us finally define w4linp−sdd as
w4linp (and (w4linp−sdd)0 = (w4linp)0).

Proposition 3 τ4linp−sdd is faithful.

Proof: The result comes easily from the fact that τ4linp is faithful and
that under

∧
X∈X τ4linp−sdd(X) (equivalent to

∧
X∈X τ4linp(X)),

each DNF formula τ4linp−sdd(R) is equivalent to the CNF formula
τ4linp(R).

Example 4 (Example 1 continued) τ4linp−sdd(R) is computed by
considering first the DNF representation reported in the next table
(left part), where the last line corresponds to a don’t care.

λ1
1 λ0

1 λ2 θ1
0 0 1
1 0
0 1 1
1 1

λ1
1 λ0

1 λ2 θ1
0 1

1
1 1

This DNF representation is then simplified, leading to the DNF repre-
sentation reported in the table (right part), equivalent to

λ1
1 ∨ (¬λ0

1 ∧ λ2) ∨ (λ0
1 ∧ θ1).

6 Terms conflicting with
∧
X∈scope(R) τ4linp−sdd(X) can also be added

as don’t cares prior to the simplification step; this may lead to smaller DNF
representations.

This DNF representation is also equivalent under∧
X∈X τ4linp(X) = ¬λ1

1 ∨ ¬λ0
1 to

τ4linp(R) = (λ0
1 ∨λ1

1 ∨λ2) ∧(λ1
1 ∨ ¬λ0

1 ∨ θ1).

7 CONCLUSION
We have presented a new CNF encoding scheme τ4linp for reducing
probabilistic inference from a graphical model to weighted model
counting. This scheme takes advantage of log encodings of the ele-
mentary variable/value assignments and of the implicit encoding of
the most frequent probability value per conditional probability table.
We have proved that τ4linp is faithful. Experiments have shown that
τ4linp can be useful in practice; especially, the C2D compiler em-
powered by it performs in many cases significantly better than when
ENC4 is used, or when ACE is considered instead.

This work opens several perspectives for further research. From
the practical side, we set a time limit to 900s in our experiments and
we did not repeat the computations with C2D because the number
of instances considered (1452) was large. However, default settings
of C2D uses randomization to generate dtrees, which guide the com-
pilation process and may have a huge impact on the total process.
Thus we plan to repeat the experiments a few times with a greater
time limit, averaging the obtained results to minimize the effect of
randomization. On a different, yet empirical perspective, we plan
also to compare the performances of τ4linp+C2D with those of ACE

-forceC2d, when C2D is guided in both cases by a dtree derived
from the input network.

On the other hand, instead of associating specific weights with the
negative parameter literals, it would be enough to ask (via the intro-
duction of a further constraint) that at most one parameter variable
for any relation R ∈ R is set to true. Our preliminary investigation
showed that, empirically, this approach is less efficient than τ4linp
when one considers the compilation times obtained by C2D used
downstream, but also that it leads to compiled representations which
are typically of smaller sizes. It would be interesting to look for a
trade-off by taking advantage of the two approaches (introducing
specific weights for negative parameter literals for someR and intro-
ducing at most one constraints for other R). In the future, we plan
also to evaluate in practice the benefits offered by such approaches
when Decision-DNNF is targeted, and by the τ4linp−sdd translation
when SDD is targeted.

8

REFERENCES

[1] A. Antonucci, Y. Sun, C. Polpo de Campos, and M. Zaffalon, ‘Gener-
alized loopy 2u: A new algorithm for approximate inference in credal
networks’, Int. J. Approx. Reasoning, 51(5), 474–484, (2010).

[2] F. Bacchus, S. Dalmao, and T. Pitassi, ‘Algorithms and complexity re-
sults for #sat and Bayesian inference’, in Proc. of FOCS’03, pp. 340–
351, (2003).

[3] F. Bacchus, S. Dalmao, and T. Pitassi, ‘Value elimination: Bayesian in-
terence via backtracking search’, in Proc. of UAI’03, pp. 20–28, (2003).

[4] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, ‘Context-
specific independence in bayesian networks’, in Proc. of UAI’96, pp.
115–123, (1996).

[5] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y.
Vardi, ‘Distribution-aware sampling and weighted model counting for
SAT’, in Proc. of AAAI’14, pp. 1722–1730, (2014).

[6] S. Chakraborty, D. Fried, K.S. Meel, and M.Y. Vardi, ‘From weighted
to unweighted model counting’, in Proc. of IJCAI’15, pp. 689–695,
(2015).

[7] M. Chavira and A. Darwiche, ‘Compiling bayesian networks with local
structure’, in Proc. of IJCAI’05, pp. 1306–1312, (2005).

[8] M. Chavira and A. Darwiche, ‘Encoding CNFs to empower component
analysis’, in Proc. of SAT’06, pp. 61–74, (2006).

[9] M. Chavira and A. Darwiche, ‘Compiling Bayesian networks using
variable elimination’, in Proc. of IJCAI’07, pp. 2443–2449, (2007).

[10] M. Chavira and A. Darwiche, ‘On probabilistic inference by weighted
model counting’, Artificial Intelligence, 172(6-7), 772–799, (2008).

[11] A. Choi, D. Kisa, and A. Darwiche, ‘Compiling probabilistic graphical
models using sentential decision diagrams’, in Proc. of ECSQARU’13,
pp. 121–132, (2013).

[12] A. Darwiche, ‘Decomposable negation normal form’, Journal of the
ACM, 48(4), 608–647, (2001).

[13] A. Darwiche, ‘A compiler for deterministic decomposable negation
normal form’, in AAAI’02, pp. 627–634, (2002).

[14] A. Darwiche, ‘A logical approach to factoring belief networks’, in Proc.
of KR’02, pp. 409–420, (2002).

[15] A. Darwiche, ‘New advances in compiling CNF into decomposable
negation normal form’, in Proc. of ECAI’04, pp. 328–332, (2004).

[16] A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cam-
bridge University Press, 2009.

[17] A. Darwiche, ‘SDD: A new canonical representation of propositional
knowledge bases’, in Proc. of IJCAI’11, pp. 819–826, (2011).

[18] F. J. Dı́ez and S. F. Galán, ‘Efficient computation for the noisy MAX’,
Int. J. of Intelligent Systems, 18(2), 165–177, (2003).

[19] C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman, ‘From sam-
pling to model counting’, in Proc. of IJCAI’07, pp. 2293–2299, (2007).

[20] C. P. Gomes, A. Sabharwal, and B. Selman, ‘Model counting’, in Hand-
book of Satisfiability, 633–654, (2009).

[21] J.-M. Lagniez and P. Marquis, ‘Preprocessing for propositional model
counting’, in Proc. of AAAI’14, pp. 2688–2694, (2014).

[22] D. Larkin and R. Dechter, ‘Bayesian inference in the presence of deter-
minism’, in Proc. of AISTATS’03, (2003).

[23] W. Li, P. Poupart, and P. van Beek, ‘Exploiting structure in weighted
model counting approaches to probabilistic inference’, J. of Artificial
Intelligence Research, 40, 729–765, (2011).

[24] E.J. McCluskey, ‘Minimization of Boolean functions’, Bell System
Technical Journal, 35(6), 1417–1444, (1956).

[25] Ch.J. Muise, Sh.A. McIlraith, J.Ch. Beck, and E.I. Hsu, ‘Dsharp: Fast
d-DNNF compilation with sharpSAT’, in Proc. of AI’12, pp. 356–361,
(2012).

[26] U. Oztok and A. Darwiche, ‘On compiling CNF into Decision-DNNF’,
in Proc. of CP’14, pp. 42–57, (2014).

[27] U. Oztok and A. Darwiche, ‘A top-down compiler for sentential deci-
sion diagrams’, in Proc. of IJCAI’15, pp. 3141–3148, (2015).

[28] D. Poole and N.L. Zhang, ‘Exploiting contextual independence in prob-
abilistic inference’, J. of Artificial Intelligence Research, 18, 263–313,
(2003).

[29] W.V.O. Quine, ‘The problem of simplifying truth functions’, American
Mathematical Monthly, 59, 521–531, (1952).

[30] W.V.O. Quine, ‘A way to simplify truth functions’, American Mathe-
matical Monthly, 62, 627–631, (1955).

[31] M. Samer and S. Szeider, ‘Algorithms for propositional model count-
ing’, J. Discrete Algorithms, 8(1), 50–64, (2010).

[32] T. Sang, F. Bacchus, P. Beame, H.A. Kautz, and T. Pitassi, ‘Combining

component caching and clause learning for effective model counting’,
in Proc. of SAT’04, (2004).

[33] T. Sang, P. Beame, and H. A. Kautz, ‘Performing Bayesian inference by
weighted model counting’, in Proc. of AAAI’05, pp. 475–482, (2005).

[34] M. Takikawa and B. D’Ambrosio, ‘Multiplicative factorization of
noisy-max’, in Proc. of UAI’99, pp. 622–630, (1999).

[35] M. Thurley, ‘sharpSAT - counting models with advanced component
caching and implicit BCP’, in Proc. of SAT’06, pp. 424–429, (2006).

[36] J. Vomlel and P. Tichavský, ‘Probabilistic inference in BN2T models by
weighted model counting’, in Proc. of SCAI’13, pp. 275–284, (2013).

[37] M. Wachter and R. Haenni, ‘Logical compilation of Bayesian net-
works with discrete variables’, in Proc. of ECSQARU’07, pp. 536–547,
(2007).

9

